diff options
Diffstat (limited to 'src/VBox/Runtime/r0drv/memobj-r0drv.cpp')
-rw-r--r-- | src/VBox/Runtime/r0drv/memobj-r0drv.cpp | 825 |
1 files changed, 825 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/memobj-r0drv.cpp b/src/VBox/Runtime/r0drv/memobj-r0drv.cpp new file mode 100644 index 00000000..c91e9833 --- /dev/null +++ b/src/VBox/Runtime/r0drv/memobj-r0drv.cpp @@ -0,0 +1,825 @@ +/* $Id: memobj-r0drv.cpp $ */ +/** @file + * IPRT - Ring-0 Memory Objects, Common Code. + */ + +/* + * Copyright (C) 2006-2020 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL) only, as it comes in the "COPYING.CDDL" file of the + * VirtualBox OSE distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP RTLOGGROUP_DEFAULT /// @todo RTLOGGROUP_MEM +#define RTMEM_NO_WRAP_TO_EF_APIS /* circular dependency otherwise. */ +#include <iprt/memobj.h> +#include "internal/iprt.h" + +#include <iprt/alloc.h> +#include <iprt/asm.h> +#include <iprt/assert.h> +#include <iprt/err.h> +#include <iprt/log.h> +#include <iprt/mp.h> +#include <iprt/param.h> +#include <iprt/process.h> +#include <iprt/thread.h> + +#include "internal/memobj.h" + + +/** + * Internal function for allocating a new memory object. + * + * @returns The allocated and initialized handle. + * @param cbSelf The size of the memory object handle. 0 mean default size. + * @param enmType The memory object type. + * @param pv The memory object mapping. + * @param cb The size of the memory object. + */ +DECLHIDDEN(PRTR0MEMOBJINTERNAL) rtR0MemObjNew(size_t cbSelf, RTR0MEMOBJTYPE enmType, void *pv, size_t cb) +{ + PRTR0MEMOBJINTERNAL pNew; + + /* validate the size */ + if (!cbSelf) + cbSelf = sizeof(*pNew); + Assert(cbSelf >= sizeof(*pNew)); + Assert(cbSelf == (uint32_t)cbSelf); + AssertMsg(RT_ALIGN_Z(cb, PAGE_SIZE) == cb, ("%#zx\n", cb)); + + /* + * Allocate and initialize the object. + */ + pNew = (PRTR0MEMOBJINTERNAL)RTMemAllocZ(cbSelf); + if (pNew) + { + pNew->u32Magic = RTR0MEMOBJ_MAGIC; + pNew->cbSelf = (uint32_t)cbSelf; + pNew->enmType = enmType; + pNew->fFlags = 0; + pNew->cb = cb; + pNew->pv = pv; + } + return pNew; +} + + +/** + * Deletes an incomplete memory object. + * + * This is for cleaning up after failures during object creation. + * + * @param pMem The incomplete memory object to delete. + */ +DECLHIDDEN(void) rtR0MemObjDelete(PRTR0MEMOBJINTERNAL pMem) +{ + if (pMem) + { + ASMAtomicUoWriteU32(&pMem->u32Magic, ~RTR0MEMOBJ_MAGIC); + pMem->enmType = RTR0MEMOBJTYPE_END; + RTMemFree(pMem); + } +} + + +/** + * Links a mapping object to a primary object. + * + * @returns IPRT status code. + * @retval VINF_SUCCESS on success. + * @retval VINF_NO_MEMORY if we couldn't expand the mapping array of the parent. + * @param pParent The parent (primary) memory object. + * @param pChild The child (mapping) memory object. + */ +static int rtR0MemObjLink(PRTR0MEMOBJINTERNAL pParent, PRTR0MEMOBJINTERNAL pChild) +{ + uint32_t i; + + /* sanity */ + Assert(rtR0MemObjIsMapping(pChild)); + Assert(!rtR0MemObjIsMapping(pParent)); + + /* expand the array? */ + i = pParent->uRel.Parent.cMappings; + if (i >= pParent->uRel.Parent.cMappingsAllocated) + { + void *pv = RTMemRealloc(pParent->uRel.Parent.papMappings, + (i + 32) * sizeof(pParent->uRel.Parent.papMappings[0])); + if (!pv) + return VERR_NO_MEMORY; + pParent->uRel.Parent.papMappings = (PPRTR0MEMOBJINTERNAL)pv; + pParent->uRel.Parent.cMappingsAllocated = i + 32; + Assert(i == pParent->uRel.Parent.cMappings); + } + + /* do the linking. */ + pParent->uRel.Parent.papMappings[i] = pChild; + pParent->uRel.Parent.cMappings++; + pChild->uRel.Child.pParent = pParent; + + return VINF_SUCCESS; +} + + +/** + * Checks if this is mapping or not. + * + * @returns true if it's a mapping, otherwise false. + * @param MemObj The ring-0 memory object handle. + */ +RTR0DECL(bool) RTR0MemObjIsMapping(RTR0MEMOBJ MemObj) +{ + /* Validate the object handle. */ + PRTR0MEMOBJINTERNAL pMem; + AssertPtrReturn(MemObj, false); + pMem = (PRTR0MEMOBJINTERNAL)MemObj; + AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false); + AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false); + + /* hand it on to the inlined worker. */ + return rtR0MemObjIsMapping(pMem); +} +RT_EXPORT_SYMBOL(RTR0MemObjIsMapping); + + +/** + * Gets the address of a ring-0 memory object. + * + * @returns The address of the memory object. + * @returns NULL if the handle is invalid (asserts in strict builds) or if there isn't any mapping. + * @param MemObj The ring-0 memory object handle. + */ +RTR0DECL(void *) RTR0MemObjAddress(RTR0MEMOBJ MemObj) +{ + /* Validate the object handle. */ + PRTR0MEMOBJINTERNAL pMem; + if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ)) + return NULL; + AssertPtrReturn(MemObj, NULL); + pMem = (PRTR0MEMOBJINTERNAL)MemObj; + AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NULL); + AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NULL); + + /* return the mapping address. */ + return pMem->pv; +} +RT_EXPORT_SYMBOL(RTR0MemObjAddress); + + +/** + * Gets the ring-3 address of a ring-0 memory object. + * + * This only applies to ring-0 memory object with ring-3 mappings of some kind, i.e. + * locked user memory, reserved user address space and user mappings. This API should + * not be used on any other objects. + * + * @returns The address of the memory object. + * @returns NIL_RTR3PTR if the handle is invalid or if it's not an object with a ring-3 mapping. + * Strict builds will assert in both cases. + * @param MemObj The ring-0 memory object handle. + */ +RTR0DECL(RTR3PTR) RTR0MemObjAddressR3(RTR0MEMOBJ MemObj) +{ + PRTR0MEMOBJINTERNAL pMem; + + /* Validate the object handle. */ + if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ)) + return NIL_RTR3PTR; + AssertPtrReturn(MemObj, NIL_RTR3PTR); + pMem = (PRTR0MEMOBJINTERNAL)MemObj; + AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTR3PTR); + AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTR3PTR); + if (RT_UNLIKELY( ( pMem->enmType != RTR0MEMOBJTYPE_MAPPING + || pMem->u.Mapping.R0Process == NIL_RTR0PROCESS) + && ( pMem->enmType != RTR0MEMOBJTYPE_LOCK + || pMem->u.Lock.R0Process == NIL_RTR0PROCESS) + && ( pMem->enmType != RTR0MEMOBJTYPE_PHYS_NC + || pMem->u.Lock.R0Process == NIL_RTR0PROCESS) + && ( pMem->enmType != RTR0MEMOBJTYPE_RES_VIRT + || pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS))) + return NIL_RTR3PTR; + + /* return the mapping address. */ + return (RTR3PTR)pMem->pv; +} +RT_EXPORT_SYMBOL(RTR0MemObjAddressR3); + + +/** + * Gets the size of a ring-0 memory object. + * + * The returned value may differ from the one specified to the API creating the + * object because of alignment adjustments. The minimal alignment currently + * employed by any API is PAGE_SIZE, so the result can safely be shifted by + * PAGE_SHIFT to calculate a page count. + * + * @returns The object size. + * @returns 0 if the handle is invalid (asserts in strict builds) or if there isn't any mapping. + * @param MemObj The ring-0 memory object handle. + */ +RTR0DECL(size_t) RTR0MemObjSize(RTR0MEMOBJ MemObj) +{ + PRTR0MEMOBJINTERNAL pMem; + + /* Validate the object handle. */ + if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ)) + return 0; + AssertPtrReturn(MemObj, 0); + pMem = (PRTR0MEMOBJINTERNAL)MemObj; + AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), 0); + AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), 0); + AssertMsg(RT_ALIGN_Z(pMem->cb, PAGE_SIZE) == pMem->cb, ("%#zx\n", pMem->cb)); + + /* return the size. */ + return pMem->cb; +} +RT_EXPORT_SYMBOL(RTR0MemObjSize); + + +/** + * Get the physical address of an page in the memory object. + * + * @returns The physical address. + * @returns NIL_RTHCPHYS if the object doesn't contain fixed physical pages. + * @returns NIL_RTHCPHYS if the iPage is out of range. + * @returns NIL_RTHCPHYS if the object handle isn't valid. + * @param MemObj The ring-0 memory object handle. + * @param iPage The page number within the object. + */ +/* Work around gcc bug 55940 */ +#if defined(__GNUC__) && defined(RT_ARCH_X86) && (__GNUC__ * 100 + __GNUC_MINOR__) == 407 + __attribute__((__optimize__ ("no-shrink-wrap"))) +#endif +RTR0DECL(RTHCPHYS) RTR0MemObjGetPagePhysAddr(RTR0MEMOBJ MemObj, size_t iPage) +{ + /* Validate the object handle. */ + PRTR0MEMOBJINTERNAL pMem; + size_t cPages; + AssertPtrReturn(MemObj, NIL_RTHCPHYS); + pMem = (PRTR0MEMOBJINTERNAL)MemObj; + AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, NIL_RTHCPHYS); + AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, NIL_RTHCPHYS); + AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTHCPHYS); + AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTHCPHYS); + cPages = (pMem->cb >> PAGE_SHIFT); + if (iPage >= cPages) + { + /* permit: while (RTR0MemObjGetPagePhysAddr(pMem, iPage++) != NIL_RTHCPHYS) {} */ + if (iPage == cPages) + return NIL_RTHCPHYS; + AssertReturn(iPage < (pMem->cb >> PAGE_SHIFT), NIL_RTHCPHYS); + } + + /* + * We know the address of physically contiguous allocations and mappings. + */ + if (pMem->enmType == RTR0MEMOBJTYPE_CONT) + return pMem->u.Cont.Phys + iPage * PAGE_SIZE; + if (pMem->enmType == RTR0MEMOBJTYPE_PHYS) + return pMem->u.Phys.PhysBase + iPage * PAGE_SIZE; + + /* + * Do the job. + */ + return rtR0MemObjNativeGetPagePhysAddr(pMem, iPage); +} +RT_EXPORT_SYMBOL(RTR0MemObjGetPagePhysAddr); + + +/** + * Frees a ring-0 memory object. + * + * @returns IPRT status code. + * @retval VERR_INVALID_HANDLE if + * @param MemObj The ring-0 memory object to be freed. NULL is accepted. + * @param fFreeMappings Whether or not to free mappings of the object. + */ +RTR0DECL(int) RTR0MemObjFree(RTR0MEMOBJ MemObj, bool fFreeMappings) +{ + /* + * Validate the object handle. + */ + PRTR0MEMOBJINTERNAL pMem; + int rc; + + if (MemObj == NIL_RTR0MEMOBJ) + return VINF_SUCCESS; + AssertPtrReturn(MemObj, VERR_INVALID_HANDLE); + pMem = (PRTR0MEMOBJINTERNAL)MemObj; + AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE); + AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE); + RT_ASSERT_PREEMPTIBLE(); + + /* + * Deal with mappings according to fFreeMappings. + */ + if ( !rtR0MemObjIsMapping(pMem) + && pMem->uRel.Parent.cMappings > 0) + { + /* fail if not requested to free mappings. */ + if (!fFreeMappings) + return VERR_MEMORY_BUSY; + + while (pMem->uRel.Parent.cMappings > 0) + { + PRTR0MEMOBJINTERNAL pChild = pMem->uRel.Parent.papMappings[--pMem->uRel.Parent.cMappings]; + pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings] = NULL; + + /* sanity checks. */ + AssertPtr(pChild); + AssertFatal(pChild->u32Magic == RTR0MEMOBJ_MAGIC); + AssertFatal(pChild->enmType > RTR0MEMOBJTYPE_INVALID && pChild->enmType < RTR0MEMOBJTYPE_END); + AssertFatal(rtR0MemObjIsMapping(pChild)); + + /* free the mapping. */ + rc = rtR0MemObjNativeFree(pChild); + if (RT_FAILURE(rc)) + { + Log(("RTR0MemObjFree: failed to free mapping %p: %p %#zx; rc=%Rrc\n", pChild, pChild->pv, pChild->cb, rc)); + pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings++] = pChild; + return rc; + } + } + } + + /* + * Free this object. + */ + rc = rtR0MemObjNativeFree(pMem); + if (RT_SUCCESS(rc)) + { + /* + * Ok, it was freed just fine. Now, if it's a mapping we'll have to remove it from the parent. + */ + if (rtR0MemObjIsMapping(pMem)) + { + PRTR0MEMOBJINTERNAL pParent = pMem->uRel.Child.pParent; + uint32_t i; + + /* sanity checks */ + AssertPtr(pParent); + AssertFatal(pParent->u32Magic == RTR0MEMOBJ_MAGIC); + AssertFatal(pParent->enmType > RTR0MEMOBJTYPE_INVALID && pParent->enmType < RTR0MEMOBJTYPE_END); + AssertFatal(!rtR0MemObjIsMapping(pParent)); + AssertFatal(pParent->uRel.Parent.cMappings > 0); + AssertPtr(pParent->uRel.Parent.papMappings); + + /* locate and remove from the array of mappings. */ + i = pParent->uRel.Parent.cMappings; + while (i-- > 0) + { + if (pParent->uRel.Parent.papMappings[i] == pMem) + { + pParent->uRel.Parent.papMappings[i] = pParent->uRel.Parent.papMappings[--pParent->uRel.Parent.cMappings]; + break; + } + } + Assert(i != UINT32_MAX); + } + else + Assert(pMem->uRel.Parent.cMappings == 0); + + /* + * Finally, destroy the handle. + */ + pMem->u32Magic++; + pMem->enmType = RTR0MEMOBJTYPE_END; + if (!rtR0MemObjIsMapping(pMem)) + RTMemFree(pMem->uRel.Parent.papMappings); + RTMemFree(pMem); + } + else + Log(("RTR0MemObjFree: failed to free %p: %d %p %#zx; rc=%Rrc\n", + pMem, pMem->enmType, pMem->pv, pMem->cb, rc)); + return rc; +} +RT_EXPORT_SYMBOL(RTR0MemObjFree); + + + +RTR0DECL(int) RTR0MemObjAllocPageTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeAllocPage(pMemObj, cbAligned, fExecutable); +} +RT_EXPORT_SYMBOL(RTR0MemObjAllocPageTag); + + +RTR0DECL(int) RTR0MemObjAllocLowTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeAllocLow(pMemObj, cbAligned, fExecutable); +} +RT_EXPORT_SYMBOL(RTR0MemObjAllocLowTag); + + +RTR0DECL(int) RTR0MemObjAllocContTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeAllocCont(pMemObj, cbAligned, fExecutable); +} +RT_EXPORT_SYMBOL(RTR0MemObjAllocContTag); + + +RTR0DECL(int) RTR0MemObjLockUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3Ptr, size_t cb, + uint32_t fAccess, RTR0PROCESS R0Process, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb + (R3Ptr & PAGE_OFFSET_MASK), PAGE_SIZE); + RTR3PTR const R3PtrAligned = (R3Ptr & ~(RTR3PTR)PAGE_OFFSET_MASK); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + if (R0Process == NIL_RTR0PROCESS) + R0Process = RTR0ProcHandleSelf(); + AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER); + AssertReturn(fAccess, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the locking. */ + return rtR0MemObjNativeLockUser(pMemObj, R3PtrAligned, cbAligned, fAccess, R0Process); +} +RT_EXPORT_SYMBOL(RTR0MemObjLockUserTag); + + +RTR0DECL(int) RTR0MemObjLockKernelTag(PRTR0MEMOBJ pMemObj, void *pv, size_t cb, uint32_t fAccess, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb + ((uintptr_t)pv & PAGE_OFFSET_MASK), PAGE_SIZE); + void * const pvAligned = (void *)((uintptr_t)pv & ~(uintptr_t)PAGE_OFFSET_MASK); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + AssertPtrReturn(pvAligned, VERR_INVALID_POINTER); + AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER); + AssertReturn(fAccess, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeLockKernel(pMemObj, pvAligned, cbAligned, fAccess); +} +RT_EXPORT_SYMBOL(RTR0MemObjLockKernelTag); + + +RTR0DECL(int) RTR0MemObjAllocPhysTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, PAGE_SIZE /* page aligned */); +} +RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysTag); + + +RTR0DECL(int) RTR0MemObjAllocPhysExTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER); + if (uAlignment == 0) + uAlignment = PAGE_SIZE; + AssertReturn( uAlignment == PAGE_SIZE + || uAlignment == _2M + || uAlignment == _4M + || uAlignment == _1G, + VERR_INVALID_PARAMETER); +#if HC_ARCH_BITS == 32 + /* Memory allocated in this way is typically mapped into kernel space as well; simply + don't allow this on 32 bits hosts as the kernel space is too crowded already. */ + if (uAlignment != PAGE_SIZE) + return VERR_NOT_SUPPORTED; +#endif + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, uAlignment); +} +RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysExTag); + + +RTR0DECL(int) RTR0MemObjAllocPhysNCTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeAllocPhysNC(pMemObj, cbAligned, PhysHighest); +} +RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysNCTag); + + +RTR0DECL(int) RTR0MemObjEnterPhysTag(PRTR0MEMOBJ pMemObj, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb + (Phys & PAGE_OFFSET_MASK), PAGE_SIZE); + const RTHCPHYS PhysAligned = Phys & ~(RTHCPHYS)PAGE_OFFSET_MASK; + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + AssertReturn(Phys != NIL_RTHCPHYS, VERR_INVALID_PARAMETER); + AssertReturn( uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE + || uCachePolicy == RTMEM_CACHE_POLICY_MMIO, + VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the allocation. */ + return rtR0MemObjNativeEnterPhys(pMemObj, PhysAligned, cbAligned, uCachePolicy); +} +RT_EXPORT_SYMBOL(RTR0MemObjEnterPhysTag); + + +RTR0DECL(int) RTR0MemObjReserveKernelTag(PRTR0MEMOBJ pMemObj, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + if (uAlignment == 0) + uAlignment = PAGE_SIZE; + AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER); + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + if (pvFixed != (void *)-1) + AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the reservation. */ + return rtR0MemObjNativeReserveKernel(pMemObj, pvFixed, cbAligned, uAlignment); +} +RT_EXPORT_SYMBOL(RTR0MemObjReserveKernelTag); + + +RTR0DECL(int) RTR0MemObjReserveUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3PtrFixed, size_t cb, + size_t uAlignment, RTR0PROCESS R0Process, const char *pszTag) +{ + /* sanity checks. */ + const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE); + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + if (uAlignment == 0) + uAlignment = PAGE_SIZE; + AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER); + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER); + if (R3PtrFixed != (RTR3PTR)-1) + AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER); + if (R0Process == NIL_RTR0PROCESS) + R0Process = RTR0ProcHandleSelf(); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* do the reservation. */ + return rtR0MemObjNativeReserveUser(pMemObj, R3PtrFixed, cbAligned, uAlignment, R0Process); +} +RT_EXPORT_SYMBOL(RTR0MemObjReserveUserTag); + + +RTR0DECL(int) RTR0MemObjMapKernelTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, + size_t uAlignment, unsigned fProt, const char *pszTag) +{ + return RTR0MemObjMapKernelExTag(pMemObj, MemObjToMap, pvFixed, uAlignment, fProt, 0, 0, pszTag); +} +RT_EXPORT_SYMBOL(RTR0MemObjMapKernelTag); + + +RTR0DECL(int) RTR0MemObjMapKernelExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment, + unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag) +{ + PRTR0MEMOBJINTERNAL pMemToMap; + PRTR0MEMOBJINTERNAL pNew; + int rc; + + /* sanity checks. */ + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + *pMemObj = NIL_RTR0MEMOBJ; + AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE); + pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap; + AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE); + AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE); + AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER); + AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER); + if (uAlignment == 0) + uAlignment = PAGE_SIZE; + AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER); + if (pvFixed != (void *)-1) + AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER); + AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER); + AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER); + AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER); + AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER); + AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* adjust the request to simplify the native code. */ + if (offSub == 0 && cbSub == pMemToMap->cb) + cbSub = 0; + + /* do the mapping. */ + rc = rtR0MemObjNativeMapKernel(&pNew, pMemToMap, pvFixed, uAlignment, fProt, offSub, cbSub); + if (RT_SUCCESS(rc)) + { + /* link it. */ + rc = rtR0MemObjLink(pMemToMap, pNew); + if (RT_SUCCESS(rc)) + *pMemObj = pNew; + else + { + /* damn, out of memory. bail out. */ + int rc2 = rtR0MemObjNativeFree(pNew); + AssertRC(rc2); + pNew->u32Magic++; + pNew->enmType = RTR0MEMOBJTYPE_END; + RTMemFree(pNew); + } + } + + return rc; +} +RT_EXPORT_SYMBOL(RTR0MemObjMapKernelExTag); + + +RTR0DECL(int) RTR0MemObjMapUserTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed, + size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process, const char *pszTag) +{ + return RTR0MemObjMapUserExTag(pMemObj, MemObjToMap, R3PtrFixed, uAlignment, fProt, R0Process, 0, 0, pszTag); +} +RT_EXPORT_SYMBOL(RTR0MemObjMapUserTag); + + +RTR0DECL(int) RTR0MemObjMapUserExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed, size_t uAlignment, + unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag) +{ + /* sanity checks. */ + PRTR0MEMOBJINTERNAL pMemToMap; + PRTR0MEMOBJINTERNAL pNew; + int rc; + AssertPtrReturn(pMemObj, VERR_INVALID_POINTER); + pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap; + *pMemObj = NIL_RTR0MEMOBJ; + AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE); + AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE); + AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE); + AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER); + AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER); + if (uAlignment == 0) + uAlignment = PAGE_SIZE; + AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER); + if (R3PtrFixed != (RTR3PTR)-1) + AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER); + AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER); + AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER); + AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER); + AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER); + AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER); + if (R0Process == NIL_RTR0PROCESS) + R0Process = RTR0ProcHandleSelf(); + RT_ASSERT_PREEMPTIBLE(); + + RT_NOREF_PV(pszTag); + + /* adjust the request to simplify the native code. */ + if (offSub == 0 && cbSub == pMemToMap->cb) + cbSub = 0; + + /* do the mapping. */ + rc = rtR0MemObjNativeMapUser(&pNew, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process, offSub, cbSub); + if (RT_SUCCESS(rc)) + { + /* link it. */ + rc = rtR0MemObjLink(pMemToMap, pNew); + if (RT_SUCCESS(rc)) + *pMemObj = pNew; + else + { + /* damn, out of memory. bail out. */ + int rc2 = rtR0MemObjNativeFree(pNew); + AssertRC(rc2); + pNew->u32Magic++; + pNew->enmType = RTR0MEMOBJTYPE_END; + RTMemFree(pNew); + } + } + + return rc; +} +RT_EXPORT_SYMBOL(RTR0MemObjMapUserExTag); + + +RTR0DECL(int) RTR0MemObjProtect(RTR0MEMOBJ hMemObj, size_t offSub, size_t cbSub, uint32_t fProt) +{ + PRTR0MEMOBJINTERNAL pMemObj; + int rc; + + /* sanity checks. */ + pMemObj = (PRTR0MEMOBJINTERNAL)hMemObj; + AssertPtrReturn(pMemObj, VERR_INVALID_HANDLE); + AssertReturn(pMemObj->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE); + AssertReturn(pMemObj->enmType > RTR0MEMOBJTYPE_INVALID && pMemObj->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE); + AssertReturn(rtR0MemObjIsProtectable(pMemObj), VERR_INVALID_PARAMETER); + AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(offSub < pMemObj->cb, VERR_INVALID_PARAMETER); + AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER); + AssertReturn(offSub + cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER); + AssertReturn(!(fProt & ~(RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER); + RT_ASSERT_PREEMPTIBLE(); + + /* do the job */ + rc = rtR0MemObjNativeProtect(pMemObj, offSub, cbSub, fProt); + if (RT_SUCCESS(rc)) + pMemObj->fFlags |= RTR0MEMOBJ_FLAGS_PROT_CHANGED; /* record it */ + + return rc; +} +RT_EXPORT_SYMBOL(RTR0MemObjProtect); + |