summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/nt/mp-r0drv-nt.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/VBox/Runtime/r0drv/nt/mp-r0drv-nt.cpp1979
1 files changed, 1979 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/nt/mp-r0drv-nt.cpp b/src/VBox/Runtime/r0drv/nt/mp-r0drv-nt.cpp
new file mode 100644
index 00000000..9419e41f
--- /dev/null
+++ b/src/VBox/Runtime/r0drv/nt/mp-r0drv-nt.cpp
@@ -0,0 +1,1979 @@
+/* $Id: mp-r0drv-nt.cpp $ */
+/** @file
+ * IPRT - Multiprocessor, Ring-0 Driver, NT.
+ */
+
+/*
+ * Copyright (C) 2008-2020 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
+ * VirtualBox OSE distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#include "the-nt-kernel.h"
+
+#include <iprt/mp.h>
+#include <iprt/cpuset.h>
+#include <iprt/err.h>
+#include <iprt/asm.h>
+#include <iprt/log.h>
+#include <iprt/mem.h>
+#include <iprt/time.h>
+#include "r0drv/mp-r0drv.h"
+#include "symdb.h"
+#include "internal-r0drv-nt.h"
+#include "internal/mp.h"
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+typedef enum
+{
+ RT_NT_CPUID_SPECIFIC,
+ RT_NT_CPUID_PAIR,
+ RT_NT_CPUID_OTHERS,
+ RT_NT_CPUID_ALL
+} RT_NT_CPUID;
+
+
+/**
+ * Used by the RTMpOnSpecific.
+ */
+typedef struct RTMPNTONSPECIFICARGS
+{
+ /** Set if we're executing. */
+ bool volatile fExecuting;
+ /** Set when done executing. */
+ bool volatile fDone;
+ /** Number of references to this heap block. */
+ uint32_t volatile cRefs;
+ /** Event that the calling thread is waiting on. */
+ KEVENT DoneEvt;
+ /** The deferred procedure call object. */
+ KDPC Dpc;
+ /** The callback argument package. */
+ RTMPARGS CallbackArgs;
+} RTMPNTONSPECIFICARGS;
+/** Pointer to an argument/state structure for RTMpOnSpecific on NT. */
+typedef RTMPNTONSPECIFICARGS *PRTMPNTONSPECIFICARGS;
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** Inactive bit for g_aidRtMpNtByCpuSetIdx. */
+#define RTMPNT_ID_F_INACTIVE RT_BIT_32(31)
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/** Maximum number of processor groups. */
+uint32_t g_cRtMpNtMaxGroups;
+/** Maximum number of processors. */
+uint32_t g_cRtMpNtMaxCpus;
+/** Number of active processors. */
+uint32_t volatile g_cRtMpNtActiveCpus;
+/** The NT CPU set.
+ * KeQueryActiveProcssors() cannot be called at all IRQLs and therefore we'll
+ * have to cache it. Fortunately, NT doesn't really support taking CPUs offline,
+ * and taking them online was introduced with W2K8 where it is intended for virtual
+ * machines and not real HW. We update this, g_cRtMpNtActiveCpus and
+ * g_aidRtMpNtByCpuSetIdx from the rtR0NtMpProcessorChangeCallback.
+ */
+RTCPUSET g_rtMpNtCpuSet;
+
+/** Static per group info.
+ * @remarks With 256 groups this takes up 33KB. */
+static struct
+{
+ /** The max CPUs in the group. */
+ uint16_t cMaxCpus;
+ /** The number of active CPUs at the time of initialization. */
+ uint16_t cActiveCpus;
+ /** CPU set indexes for each CPU in the group. */
+ int16_t aidxCpuSetMembers[64];
+} g_aRtMpNtCpuGroups[256];
+/** Maps CPU set indexes to RTCPUID.
+ * Inactive CPUs has bit 31 set (RTMPNT_ID_F_INACTIVE) so we can identify them
+ * and shuffle duplicates during CPU hotplugging. We assign temporary IDs to
+ * the inactive CPUs starting at g_cRtMpNtMaxCpus - 1, ASSUMING that active
+ * CPUs has IDs from 0 to g_cRtMpNtActiveCpus. */
+RTCPUID g_aidRtMpNtByCpuSetIdx[RTCPUSET_MAX_CPUS];
+/** The handle of the rtR0NtMpProcessorChangeCallback registration. */
+static PVOID g_pvMpCpuChangeCallback = NULL;
+/** Size of the KAFFINITY_EX structure.
+ * This increased from 20 to 32 bitmap words in the 2020 H2 windows 10 release
+ * (i.e. 1280 to 2048 CPUs). We expect this to increase in the future. */
+static size_t g_cbRtMpNtKaffinityEx = RT_UOFFSETOF(KAFFINITY_EX, Bitmap)
+ + RT_SIZEOFMEMB(KAFFINITY_EX, Bitmap[0]) * 256;
+/** The size value of the KAFFINITY_EX structure. */
+static uint16_t g_cRtMpNtKaffinityExEntries = 256;
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static VOID __stdcall rtR0NtMpProcessorChangeCallback(void *pvUser, PKE_PROCESSOR_CHANGE_NOTIFY_CONTEXT pChangeCtx,
+ PNTSTATUS prcOperationStatus);
+static int rtR0NtInitQueryGroupRelations(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **ppInfo);
+
+
+
+/**
+ * Initalizes multiprocessor globals (called by rtR0InitNative).
+ *
+ * @returns IPRT status code.
+ * @param pOsVerInfo Version information.
+ */
+DECLHIDDEN(int) rtR0MpNtInit(RTNTSDBOSVER const *pOsVerInfo)
+{
+#define MY_CHECK_BREAK(a_Check, a_DbgPrintArgs) \
+ AssertMsgBreakStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs; rc = VERR_INTERNAL_ERROR_4 )
+#define MY_CHECK_RETURN(a_Check, a_DbgPrintArgs, a_rcRet) \
+ AssertMsgReturnStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs, a_rcRet)
+#define MY_CHECK(a_Check, a_DbgPrintArgs) \
+ AssertMsgStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs; rc = VERR_INTERNAL_ERROR_4 )
+
+ /*
+ * API combination checks.
+ */
+ MY_CHECK_RETURN(!g_pfnrtKeSetTargetProcessorDpcEx || g_pfnrtKeGetProcessorNumberFromIndex,
+ ("IPRT: Fatal: Missing KeSetTargetProcessorDpcEx without KeGetProcessorNumberFromIndex!\n"),
+ VERR_SYMBOL_NOT_FOUND);
+
+ /*
+ * Get max number of processor groups.
+ *
+ * We may need to upadjust this number below, because windows likes to keep
+ * all options open when it comes to hotplugged CPU group assignments. A
+ * server advertising up to 64 CPUs in the ACPI table will get a result of
+ * 64 from KeQueryMaximumGroupCount. That makes sense. However, when windows
+ * server 2012 does a two processor group setup for it, the sum of the
+ * GroupInfo[*].MaximumProcessorCount members below is 128. This is probably
+ * because windows doesn't want to make decisions grouping of hotpluggable CPUs.
+ * So, we need to bump the maximum count to 128 below do deal with this as we
+ * want to have valid CPU set indexes for all potential CPUs - how could we
+ * otherwise use the RTMpGetSet() result and also RTCpuSetCount(RTMpGetSet())
+ * should equal RTMpGetCount().
+ */
+ if (g_pfnrtKeQueryMaximumGroupCount)
+ {
+ g_cRtMpNtMaxGroups = g_pfnrtKeQueryMaximumGroupCount();
+ MY_CHECK_RETURN(g_cRtMpNtMaxGroups <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxGroups > 0,
+ ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u\n", g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
+ VERR_MP_TOO_MANY_CPUS);
+ }
+ else
+ g_cRtMpNtMaxGroups = 1;
+
+ /*
+ * Get max number CPUs.
+ * This also defines the range of NT CPU indexes, RTCPUID and index into RTCPUSET.
+ */
+ if (g_pfnrtKeQueryMaximumProcessorCountEx)
+ {
+ g_cRtMpNtMaxCpus = g_pfnrtKeQueryMaximumProcessorCountEx(ALL_PROCESSOR_GROUPS);
+ MY_CHECK_RETURN(g_cRtMpNtMaxCpus <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxCpus > 0,
+ ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, max %u [KeQueryMaximumProcessorCountEx]\n",
+ g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
+ VERR_MP_TOO_MANY_CPUS);
+ }
+ else if (g_pfnrtKeQueryMaximumProcessorCount)
+ {
+ g_cRtMpNtMaxCpus = g_pfnrtKeQueryMaximumProcessorCount();
+ MY_CHECK_RETURN(g_cRtMpNtMaxCpus <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxCpus > 0,
+ ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, max %u [KeQueryMaximumProcessorCount]\n",
+ g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
+ VERR_MP_TOO_MANY_CPUS);
+ }
+ else if (g_pfnrtKeQueryActiveProcessors)
+ {
+ KAFFINITY fActiveProcessors = g_pfnrtKeQueryActiveProcessors();
+ MY_CHECK_RETURN(fActiveProcessors != 0,
+ ("IPRT: Fatal: KeQueryActiveProcessors returned 0!\n"),
+ VERR_INTERNAL_ERROR_2);
+ g_cRtMpNtMaxCpus = 0;
+ do
+ {
+ g_cRtMpNtMaxCpus++;
+ fActiveProcessors >>= 1;
+ } while (fActiveProcessors);
+ }
+ else
+ g_cRtMpNtMaxCpus = KeNumberProcessors;
+
+ /*
+ * Just because we're a bit paranoid about getting something wrong wrt to the
+ * kernel interfaces, we try 16 times to get the KeQueryActiveProcessorCountEx
+ * and KeQueryLogicalProcessorRelationship information to match up.
+ */
+ for (unsigned cTries = 0;; cTries++)
+ {
+ /*
+ * Get number of active CPUs.
+ */
+ if (g_pfnrtKeQueryActiveProcessorCountEx)
+ {
+ g_cRtMpNtActiveCpus = g_pfnrtKeQueryActiveProcessorCountEx(ALL_PROCESSOR_GROUPS);
+ MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus && g_cRtMpNtActiveCpus > 0,
+ ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u [KeQueryActiveProcessorCountEx]\n",
+ g_cRtMpNtMaxGroups, g_cRtMpNtMaxCpus),
+ VERR_MP_TOO_MANY_CPUS);
+ }
+ else if (g_pfnrtKeQueryActiveProcessorCount)
+ {
+ g_cRtMpNtActiveCpus = g_pfnrtKeQueryActiveProcessorCount(NULL);
+ MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus && g_cRtMpNtActiveCpus > 0,
+ ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u [KeQueryActiveProcessorCount]\n",
+ g_cRtMpNtMaxGroups, g_cRtMpNtMaxCpus),
+ VERR_MP_TOO_MANY_CPUS);
+ }
+ else
+ g_cRtMpNtActiveCpus = g_cRtMpNtMaxCpus;
+
+ /*
+ * Query the details for the groups to figure out which CPUs are online as
+ * well as the NT index limit.
+ */
+ for (unsigned i = 0; i < RT_ELEMENTS(g_aidRtMpNtByCpuSetIdx); i++)
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ g_aidRtMpNtByCpuSetIdx[i] = NIL_RTCPUID;
+#else
+ g_aidRtMpNtByCpuSetIdx[i] = i < g_cRtMpNtMaxCpus ? i : NIL_RTCPUID;
+#endif
+ for (unsigned idxGroup = 0; idxGroup < RT_ELEMENTS(g_aRtMpNtCpuGroups); idxGroup++)
+ {
+ g_aRtMpNtCpuGroups[idxGroup].cMaxCpus = 0;
+ g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = 0;
+ for (unsigned idxMember = 0; idxMember < RT_ELEMENTS(g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers); idxMember++)
+ g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = -1;
+ }
+
+ if (g_pfnrtKeQueryLogicalProcessorRelationship)
+ {
+ MY_CHECK_RETURN(g_pfnrtKeGetProcessorIndexFromNumber,
+ ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeGetProcessorIndexFromNumber!\n"),
+ VERR_SYMBOL_NOT_FOUND);
+ MY_CHECK_RETURN(g_pfnrtKeGetProcessorNumberFromIndex,
+ ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeGetProcessorIndexFromNumber!\n"),
+ VERR_SYMBOL_NOT_FOUND);
+ MY_CHECK_RETURN(g_pfnrtKeSetTargetProcessorDpcEx,
+ ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeSetTargetProcessorDpcEx!\n"),
+ VERR_SYMBOL_NOT_FOUND);
+
+ SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pInfo = NULL;
+ int rc = rtR0NtInitQueryGroupRelations(&pInfo);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ MY_CHECK(pInfo->Group.MaximumGroupCount == g_cRtMpNtMaxGroups,
+ ("IPRT: Fatal: MaximumGroupCount=%u != g_cRtMpNtMaxGroups=%u!\n",
+ pInfo->Group.MaximumGroupCount, g_cRtMpNtMaxGroups));
+ MY_CHECK(pInfo->Group.ActiveGroupCount > 0 && pInfo->Group.ActiveGroupCount <= g_cRtMpNtMaxGroups,
+ ("IPRT: Fatal: ActiveGroupCount=%u != g_cRtMpNtMaxGroups=%u!\n",
+ pInfo->Group.ActiveGroupCount, g_cRtMpNtMaxGroups));
+
+ /*
+ * First we need to recalc g_cRtMpNtMaxCpus (see above).
+ */
+ uint32_t cMaxCpus = 0;
+ uint32_t idxGroup;
+ for (idxGroup = 0; RT_SUCCESS(rc) && idxGroup < pInfo->Group.ActiveGroupCount; idxGroup++)
+ {
+ const PROCESSOR_GROUP_INFO *pGrpInfo = &pInfo->Group.GroupInfo[idxGroup];
+ MY_CHECK_BREAK(pGrpInfo->MaximumProcessorCount <= MAXIMUM_PROC_PER_GROUP,
+ ("IPRT: Fatal: MaximumProcessorCount=%u\n", pGrpInfo->MaximumProcessorCount));
+ MY_CHECK_BREAK(pGrpInfo->ActiveProcessorCount <= pGrpInfo->MaximumProcessorCount,
+ ("IPRT: Fatal: ActiveProcessorCount=%u > MaximumProcessorCount=%u\n",
+ pGrpInfo->ActiveProcessorCount, pGrpInfo->MaximumProcessorCount));
+ cMaxCpus += pGrpInfo->MaximumProcessorCount;
+ }
+ if (cMaxCpus > g_cRtMpNtMaxCpus && RT_SUCCESS(rc))
+ {
+ DbgPrint("IPRT: g_cRtMpNtMaxCpus=%u -> %u\n", g_cRtMpNtMaxCpus, cMaxCpus);
+#ifndef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ uint32_t i = RT_MIN(cMaxCpus, RT_ELEMENTS(g_aidRtMpNtByCpuSetIdx));
+ while (i-- > g_cRtMpNtMaxCpus)
+ g_aidRtMpNtByCpuSetIdx[i] = i;
+#endif
+ g_cRtMpNtMaxCpus = cMaxCpus;
+ if (g_cRtMpNtMaxGroups > RTCPUSET_MAX_CPUS)
+ {
+ MY_CHECK(g_cRtMpNtMaxGroups <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxGroups > 0,
+ ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u\n", g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS));
+ rc = VERR_MP_TOO_MANY_CPUS;
+ }
+ }
+
+ /*
+ * Calc online mask, partition IDs and such.
+ *
+ * Also check ASSUMPTIONS:
+ *
+ * 1. Processor indexes going from 0 and up to
+ * KeQueryMaximumProcessorCountEx(ALL_PROCESSOR_GROUPS) - 1.
+ *
+ * 2. Currently valid processor indexes, i.e. accepted by
+ * KeGetProcessorIndexFromNumber & KeGetProcessorNumberFromIndex, goes
+ * from 0 thru KeQueryActiveProcessorCountEx(ALL_PROCESSOR_GROUPS) - 1.
+ *
+ * 3. PROCESSOR_GROUP_INFO::MaximumProcessorCount gives the number of
+ * relevant bits in the ActiveProcessorMask (from LSB).
+ *
+ * 4. Active processor count found in KeQueryLogicalProcessorRelationship
+ * output matches what KeQueryActiveProcessorCountEx(ALL) returns.
+ *
+ * 5. Active + inactive processor counts in same does not exceed
+ * KeQueryMaximumProcessorCountEx(ALL).
+ *
+ * Note! Processor indexes are assigned as CPUs come online and are not
+ * preallocated according to group maximums. Since CPUS are only taken
+ * online and never offlined, this means that internal CPU bitmaps are
+ * never sparse and no time is wasted scanning unused bits.
+ *
+ * Unfortunately, it means that ring-3 cannot easily guess the index
+ * assignments when hotswapping is used, and must use GIP when available.
+ */
+ RTCpuSetEmpty(&g_rtMpNtCpuSet);
+ uint32_t cInactive = 0;
+ uint32_t cActive = 0;
+ uint32_t idxCpuMax = 0;
+ uint32_t idxCpuSetNextInactive = g_cRtMpNtMaxCpus - 1;
+ for (idxGroup = 0; RT_SUCCESS(rc) && idxGroup < pInfo->Group.ActiveGroupCount; idxGroup++)
+ {
+ const PROCESSOR_GROUP_INFO *pGrpInfo = &pInfo->Group.GroupInfo[idxGroup];
+ MY_CHECK_BREAK(pGrpInfo->MaximumProcessorCount <= MAXIMUM_PROC_PER_GROUP,
+ ("IPRT: Fatal: MaximumProcessorCount=%u\n", pGrpInfo->MaximumProcessorCount));
+ MY_CHECK_BREAK(pGrpInfo->ActiveProcessorCount <= pGrpInfo->MaximumProcessorCount,
+ ("IPRT: Fatal: ActiveProcessorCount=%u > MaximumProcessorCount=%u\n",
+ pGrpInfo->ActiveProcessorCount, pGrpInfo->MaximumProcessorCount));
+
+ g_aRtMpNtCpuGroups[idxGroup].cMaxCpus = pGrpInfo->MaximumProcessorCount;
+ g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = pGrpInfo->ActiveProcessorCount;
+
+ for (uint32_t idxMember = 0; idxMember < pGrpInfo->MaximumProcessorCount; idxMember++)
+ {
+ PROCESSOR_NUMBER ProcNum;
+ ProcNum.Group = (USHORT)idxGroup;
+ ProcNum.Number = (UCHAR)idxMember;
+ ProcNum.Reserved = 0;
+ ULONG idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
+ if (idxCpu != INVALID_PROCESSOR_INDEX)
+ {
+ MY_CHECK_BREAK(idxCpu < g_cRtMpNtMaxCpus && idxCpu < RTCPUSET_MAX_CPUS, /* ASSUMPTION #1 */
+ ("IPRT: Fatal: idxCpu=%u >= g_cRtMpNtMaxCpus=%u (RTCPUSET_MAX_CPUS=%u)\n",
+ idxCpu, g_cRtMpNtMaxCpus, RTCPUSET_MAX_CPUS));
+ if (idxCpu > idxCpuMax)
+ idxCpuMax = idxCpu;
+ g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpu;
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ g_aidRtMpNtByCpuSetIdx[idxCpu] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember);
+#endif
+
+ ProcNum.Group = UINT16_MAX;
+ ProcNum.Number = UINT8_MAX;
+ ProcNum.Reserved = UINT8_MAX;
+ NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(idxCpu, &ProcNum);
+ MY_CHECK_BREAK(NT_SUCCESS(rcNt),
+ ("IPRT: Fatal: KeGetProcessorNumberFromIndex(%u,) -> %#x!\n", idxCpu, rcNt));
+ MY_CHECK_BREAK(ProcNum.Group == idxGroup && ProcNum.Number == idxMember,
+ ("IPRT: Fatal: KeGetProcessorXxxxFromYyyy roundtrip error for %#x! Group: %u vs %u, Number: %u vs %u\n",
+ idxCpu, ProcNum.Group, idxGroup, ProcNum.Number, idxMember));
+
+ if (pGrpInfo->ActiveProcessorMask & RT_BIT_64(idxMember))
+ {
+ RTCpuSetAddByIndex(&g_rtMpNtCpuSet, idxCpu);
+ cActive++;
+ }
+ else
+ cInactive++; /* (This is a little unexpected, but not important as long as things add up below.) */
+ }
+ else
+ {
+ /* Must be not present / inactive when KeGetProcessorIndexFromNumber fails. */
+ MY_CHECK_BREAK(!(pGrpInfo->ActiveProcessorMask & RT_BIT_64(idxMember)),
+ ("IPRT: Fatal: KeGetProcessorIndexFromNumber(%u/%u) failed but CPU is active! cMax=%u cActive=%u fActive=%p\n",
+ idxGroup, idxMember, pGrpInfo->MaximumProcessorCount, pGrpInfo->ActiveProcessorCount,
+ pGrpInfo->ActiveProcessorMask));
+ cInactive++;
+ if (idxCpuSetNextInactive >= g_cRtMpNtActiveCpus)
+ {
+ g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpuSetNextInactive;
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ g_aidRtMpNtByCpuSetIdx[idxCpuSetNextInactive] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember)
+ | RTMPNT_ID_F_INACTIVE;
+#endif
+ idxCpuSetNextInactive--;
+ }
+ }
+ }
+ }
+
+ MY_CHECK(cInactive + cActive <= g_cRtMpNtMaxCpus, /* ASSUMPTION #5 (not '==' because of inactive groups) */
+ ("IPRT: Fatal: cInactive=%u + cActive=%u > g_cRtMpNtMaxCpus=%u\n", cInactive, cActive, g_cRtMpNtMaxCpus));
+
+ /* Deal with inactive groups using KeQueryMaximumProcessorCountEx or as
+ best as we can by as best we can by stipulating maximum member counts
+ from the previous group. */
+ if ( RT_SUCCESS(rc)
+ && idxGroup < pInfo->Group.MaximumGroupCount)
+ {
+ uint16_t cInactiveLeft = g_cRtMpNtMaxCpus - (cInactive + cActive);
+ while (idxGroup < pInfo->Group.MaximumGroupCount)
+ {
+ uint32_t cMaxMembers = 0;
+ if (g_pfnrtKeQueryMaximumProcessorCountEx)
+ cMaxMembers = g_pfnrtKeQueryMaximumProcessorCountEx(idxGroup);
+ if (cMaxMembers != 0 || cInactiveLeft == 0)
+ AssertStmt(cMaxMembers <= cInactiveLeft, cMaxMembers = cInactiveLeft);
+ else
+ {
+ uint16_t cGroupsLeft = pInfo->Group.MaximumGroupCount - idxGroup;
+ cMaxMembers = pInfo->Group.GroupInfo[idxGroup - 1].MaximumProcessorCount;
+ while (cMaxMembers * cGroupsLeft < cInactiveLeft)
+ cMaxMembers++;
+ if (cMaxMembers > cInactiveLeft)
+ cMaxMembers = cInactiveLeft;
+ }
+
+ g_aRtMpNtCpuGroups[idxGroup].cMaxCpus = (uint16_t)cMaxMembers;
+ g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = 0;
+ for (uint16_t idxMember = 0; idxMember < cMaxMembers; idxMember++)
+ if (idxCpuSetNextInactive >= g_cRtMpNtActiveCpus)
+ {
+ g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpuSetNextInactive;
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ g_aidRtMpNtByCpuSetIdx[idxCpuSetNextInactive] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember)
+ | RTMPNT_ID_F_INACTIVE;
+#endif
+ idxCpuSetNextInactive--;
+ }
+ cInactiveLeft -= cMaxMembers;
+ idxGroup++;
+ }
+ }
+
+ /* We're done with pInfo now, free it so we can start returning when assertions fail. */
+ RTMemFree(pInfo);
+ if (RT_FAILURE(rc)) /* MY_CHECK_BREAK sets rc. */
+ return rc;
+ MY_CHECK_RETURN(cActive >= g_cRtMpNtActiveCpus,
+ ("IPRT: Fatal: cActive=%u < g_cRtMpNtActiveCpus=%u - CPUs removed?\n", cActive, g_cRtMpNtActiveCpus),
+ VERR_INTERNAL_ERROR_3);
+ MY_CHECK_RETURN(idxCpuMax < cActive, /* ASSUMPTION #2 */
+ ("IPRT: Fatal: idCpuMax=%u >= cActive=%u! Unexpected CPU index allocation. CPUs removed?\n",
+ idxCpuMax, cActive),
+ VERR_INTERNAL_ERROR_4);
+
+ /* Retry if CPUs were added. */
+ if ( cActive != g_cRtMpNtActiveCpus
+ && cTries < 16)
+ continue;
+ MY_CHECK_RETURN(cActive == g_cRtMpNtActiveCpus, /* ASSUMPTION #4 */
+ ("IPRT: Fatal: cActive=%u != g_cRtMpNtActiveCpus=%u\n", cActive, g_cRtMpNtActiveCpus),
+ VERR_INTERNAL_ERROR_5);
+ }
+ else
+ {
+ /* Legacy: */
+ MY_CHECK_RETURN(g_cRtMpNtMaxGroups == 1, ("IPRT: Fatal: Missing KeQueryLogicalProcessorRelationship!\n"),
+ VERR_SYMBOL_NOT_FOUND);
+
+ /** @todo Is it possible that the affinity mask returned by
+ * KeQueryActiveProcessors is sparse? */
+ if (g_pfnrtKeQueryActiveProcessors)
+ RTCpuSetFromU64(&g_rtMpNtCpuSet, g_pfnrtKeQueryActiveProcessors());
+ else if (g_cRtMpNtMaxCpus < 64)
+ RTCpuSetFromU64(&g_rtMpNtCpuSet, (UINT64_C(1) << g_cRtMpNtMaxCpus) - 1);
+ else
+ {
+ MY_CHECK_RETURN(g_cRtMpNtMaxCpus == 64, ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, expect 64 or less\n", g_cRtMpNtMaxCpus),
+ VERR_MP_TOO_MANY_CPUS);
+ RTCpuSetFromU64(&g_rtMpNtCpuSet, UINT64_MAX);
+ }
+
+ g_aRtMpNtCpuGroups[0].cMaxCpus = g_cRtMpNtMaxCpus;
+ g_aRtMpNtCpuGroups[0].cActiveCpus = g_cRtMpNtMaxCpus;
+ for (unsigned i = 0; i < g_cRtMpNtMaxCpus; i++)
+ {
+ g_aRtMpNtCpuGroups[0].aidxCpuSetMembers[i] = i;
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ g_aidRtMpNtByCpuSetIdx[i] = RTMPCPUID_FROM_GROUP_AND_NUMBER(0, i);
+#endif
+ }
+ }
+
+ /*
+ * Register CPU hot plugging callback (it also counts active CPUs).
+ */
+ Assert(g_pvMpCpuChangeCallback == NULL);
+ if (g_pfnrtKeRegisterProcessorChangeCallback)
+ {
+ MY_CHECK_RETURN(g_pfnrtKeDeregisterProcessorChangeCallback,
+ ("IPRT: Fatal: KeRegisterProcessorChangeCallback without KeDeregisterProcessorChangeCallback!\n"),
+ VERR_SYMBOL_NOT_FOUND);
+
+ RTCPUSET const ActiveSetCopy = g_rtMpNtCpuSet;
+ RTCpuSetEmpty(&g_rtMpNtCpuSet);
+ uint32_t const cActiveCpus = g_cRtMpNtActiveCpus;
+ g_cRtMpNtActiveCpus = 0;
+
+ g_pvMpCpuChangeCallback = g_pfnrtKeRegisterProcessorChangeCallback(rtR0NtMpProcessorChangeCallback, NULL /*pvUser*/,
+ KE_PROCESSOR_CHANGE_ADD_EXISTING);
+ if (g_pvMpCpuChangeCallback)
+ {
+ if (cActiveCpus == g_cRtMpNtActiveCpus)
+ { /* likely */ }
+ else
+ {
+ g_pfnrtKeDeregisterProcessorChangeCallback(g_pvMpCpuChangeCallback);
+ if (cTries < 16)
+ {
+ /* Retry if CPUs were added. */
+ MY_CHECK_RETURN(g_cRtMpNtActiveCpus >= cActiveCpus,
+ ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u < cActiveCpus=%u! CPUs removed?\n",
+ g_cRtMpNtActiveCpus, cActiveCpus),
+ VERR_INTERNAL_ERROR_2);
+ MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus,
+ ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u > g_cRtMpNtMaxCpus=%u!\n",
+ g_cRtMpNtActiveCpus, g_cRtMpNtMaxCpus),
+ VERR_INTERNAL_ERROR_2);
+ continue;
+ }
+ MY_CHECK_RETURN(0, ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u cActiveCpus=%u\n", g_cRtMpNtActiveCpus, cActiveCpus),
+ VERR_INTERNAL_ERROR_3);
+ }
+ }
+ else
+ {
+ AssertFailed();
+ g_rtMpNtCpuSet = ActiveSetCopy;
+ g_cRtMpNtActiveCpus = cActiveCpus;
+ }
+ }
+ break;
+ } /* Retry loop for stable active CPU count. */
+
+#undef MY_CHECK_RETURN
+
+ /*
+ * Special IPI fun for RTMpPokeCpu.
+ *
+ * On Vista and later the DPC method doesn't seem to reliably send IPIs,
+ * so we have to use alternative methods.
+ *
+ * On AMD64 We used to use the HalSendSoftwareInterrupt API (also x86 on
+ * W10+), it looks faster and more convenient to use, however we're either
+ * using it wrong or it doesn't reliably do what we want (see @bugref{8343}).
+ *
+ * The HalRequestIpip API is thus far the only alternative to KeInsertQueueDpc
+ * for doing targetted IPIs. Trouble with this API is that it changed
+ * fundamentally in Window 7 when they added support for lots of processors.
+ *
+ * If we really think we cannot use KeInsertQueueDpc, we use the broadcast IPI
+ * API KeIpiGenericCall.
+ */
+ if ( pOsVerInfo->uMajorVer > 6
+ || (pOsVerInfo->uMajorVer == 6 && pOsVerInfo->uMinorVer > 0))
+ g_pfnrtHalRequestIpiPreW7 = NULL;
+ else
+ g_pfnrtHalRequestIpiW7Plus = NULL;
+
+ if ( g_pfnrtHalRequestIpiW7Plus
+ && g_pfnrtKeInitializeAffinityEx
+ && g_pfnrtKeAddProcessorAffinityEx
+ && g_pfnrtKeGetProcessorIndexFromNumber)
+ {
+ /* Determine the real size of the KAFFINITY_EX structure. */
+ size_t const cbAffinity = _8K;
+ PKAFFINITY_EX pAffinity = (PKAFFINITY_EX)RTMemAllocZ(cbAffinity);
+ AssertReturn(pAffinity, VERR_NO_MEMORY);
+ size_t const cMaxEntries = (cbAffinity - RT_UOFFSETOF(KAFFINITY_EX, Bitmap[0])) / sizeof(pAffinity->Bitmap[0]);
+ g_pfnrtKeInitializeAffinityEx(pAffinity);
+ if (pAffinity->Size > 1 && pAffinity->Size <= cMaxEntries)
+ {
+ g_cRtMpNtKaffinityExEntries = pAffinity->Size;
+ g_cbRtMpNtKaffinityEx = pAffinity->Size * sizeof(pAffinity->Bitmap[0]) + RT_UOFFSETOF(KAFFINITY_EX, Bitmap[0]);
+ g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingHalRequestIpiW7Plus;
+ RTMemFree(pAffinity);
+ DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingHalRequestIpiW7Plus\n");
+ return VINF_SUCCESS;
+ }
+ DbgPrint("IPRT: RTMpPoke can't use rtMpPokeCpuUsingHalRequestIpiW7Plus! pAffinity->Size=%u\n", pAffinity->Size);
+ AssertReleaseMsg(pAffinity->Size <= cMaxEntries, ("%#x\n", pAffinity->Size)); /* stack is toast if larger (32768 CPUs). */
+ RTMemFree(pAffinity);
+ }
+
+ if (pOsVerInfo->uMajorVer >= 6 && g_pfnrtKeIpiGenericCall)
+ {
+ DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingBroadcastIpi\n");
+ g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingBroadcastIpi;
+ }
+ else if (g_pfnrtKeSetTargetProcessorDpc)
+ {
+ DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingDpc\n");
+ g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingDpc;
+ /* Windows XP should send always send an IPI -> VERIFY */
+ }
+ else
+ {
+ DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingFailureNotSupported\n");
+ Assert(pOsVerInfo->uMajorVer == 3 && pOsVerInfo->uMinorVer <= 50);
+ g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingFailureNotSupported;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Called by rtR0TermNative.
+ */
+DECLHIDDEN(void) rtR0MpNtTerm(void)
+{
+ /*
+ * Deregister the processor change callback.
+ */
+ PVOID pvMpCpuChangeCallback = g_pvMpCpuChangeCallback;
+ g_pvMpCpuChangeCallback = NULL;
+ if (pvMpCpuChangeCallback)
+ {
+ AssertReturnVoid(g_pfnrtKeDeregisterProcessorChangeCallback);
+ g_pfnrtKeDeregisterProcessorChangeCallback(pvMpCpuChangeCallback);
+ }
+}
+
+
+DECLHIDDEN(int) rtR0MpNotificationNativeInit(void)
+{
+ return VINF_SUCCESS;
+}
+
+
+DECLHIDDEN(void) rtR0MpNotificationNativeTerm(void)
+{
+}
+
+
+/**
+ * Implements the NT PROCESSOR_CALLBACK_FUNCTION callback function.
+ *
+ * This maintains the g_rtMpNtCpuSet and works MP notification callbacks. When
+ * registered, it's called for each active CPU in the system, avoiding racing
+ * CPU hotplugging (as well as testing the callback).
+ *
+ * @param pvUser User context (not used).
+ * @param pChangeCtx Change context (in).
+ * @param prcOperationStatus Operation status (in/out).
+ *
+ * @remarks ASSUMES no concurrent execution of KeProcessorAddCompleteNotify
+ * notification callbacks. At least during callback registration
+ * callout, we're owning KiDynamicProcessorLock.
+ *
+ * @remarks When registering the handler, we first get KeProcessorAddStartNotify
+ * callbacks for all active CPUs, and after they all succeed we get the
+ * KeProcessorAddCompleteNotify callbacks.
+ */
+static VOID __stdcall rtR0NtMpProcessorChangeCallback(void *pvUser, PKE_PROCESSOR_CHANGE_NOTIFY_CONTEXT pChangeCtx,
+ PNTSTATUS prcOperationStatus)
+{
+ RT_NOREF(pvUser, prcOperationStatus);
+ switch (pChangeCtx->State)
+ {
+ /*
+ * Check whether we can deal with the CPU, failing the start operation if we
+ * can't. The checks we are doing here are to avoid complicated/impossible
+ * cases in KeProcessorAddCompleteNotify. They are really just verify specs.
+ */
+ case KeProcessorAddStartNotify:
+ {
+ NTSTATUS rcNt = STATUS_SUCCESS;
+ if (pChangeCtx->NtNumber < RTCPUSET_MAX_CPUS)
+ {
+ if (pChangeCtx->NtNumber >= g_cRtMpNtMaxCpus)
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: NtNumber=%u is higher than the max CPU count (%u)!\n",
+ pChangeCtx->NtNumber, g_cRtMpNtMaxCpus);
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+
+ /* The ProcessNumber field was introduced in Windows 7. */
+ PROCESSOR_NUMBER ProcNum;
+ if (g_pfnrtKeGetProcessorIndexFromNumber)
+ {
+ ProcNum = pChangeCtx->ProcNumber;
+ KEPROCESSORINDEX idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
+ if (idxCpu != pChangeCtx->NtNumber)
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: g_pfnrtKeGetProcessorIndexFromNumber(%u.%u) -> %u, expected %u!\n",
+ ProcNum.Group, ProcNum.Number, idxCpu, pChangeCtx->NtNumber);
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+ }
+ else
+ {
+ ProcNum.Group = 0;
+ ProcNum.Number = pChangeCtx->NtNumber;
+ }
+
+ if ( ProcNum.Group < RT_ELEMENTS(g_aRtMpNtCpuGroups)
+ && ProcNum.Number < RT_ELEMENTS(g_aRtMpNtCpuGroups[0].aidxCpuSetMembers))
+ {
+ if (ProcNum.Group >= g_cRtMpNtMaxGroups)
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: %u.%u is out of range - max groups: %u!\n",
+ ProcNum.Group, ProcNum.Number, g_cRtMpNtMaxGroups);
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+
+ if (ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus)
+ {
+ Assert(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] != -1);
+ if (g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] == -1)
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: Internal error! %u.%u was assigned -1 as set index!\n",
+ ProcNum.Group, ProcNum.Number);
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+
+ Assert(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] != NIL_RTCPUID);
+ if (g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] == NIL_RTCPUID)
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: Internal error! %u (%u.%u) translates to NIL_RTCPUID!\n",
+ pChangeCtx->NtNumber, ProcNum.Group, ProcNum.Number);
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+ }
+ else
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: max processors in group %u is %u, cannot add %u to it!\n",
+ ProcNum.Group, g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus, ProcNum.Group, ProcNum.Number);
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+ }
+ else
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: %u.%u is out of range (max %u.%u)!\n",
+ ProcNum.Group, ProcNum.Number, RT_ELEMENTS(g_aRtMpNtCpuGroups), RT_ELEMENTS(g_aRtMpNtCpuGroups[0].aidxCpuSetMembers));
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+ }
+ else
+ {
+ DbgPrint("IPRT: KeProcessorAddStartNotify failure: NtNumber=%u is outside RTCPUSET_MAX_CPUS (%u)!\n",
+ pChangeCtx->NtNumber, RTCPUSET_MAX_CPUS);
+ rcNt = STATUS_INTERNAL_ERROR;
+ }
+ if (!NT_SUCCESS(rcNt))
+ *prcOperationStatus = rcNt;
+ break;
+ }
+
+ /*
+ * Update the globals. Since we've checked out range limits and other
+ * limitations already we just AssertBreak here.
+ */
+ case KeProcessorAddCompleteNotify:
+ {
+ /*
+ * Calc the processor number and assert conditions checked in KeProcessorAddStartNotify.
+ */
+ AssertBreak(pChangeCtx->NtNumber < RTCPUSET_MAX_CPUS);
+ AssertBreak(pChangeCtx->NtNumber < g_cRtMpNtMaxCpus);
+ Assert(pChangeCtx->NtNumber == g_cRtMpNtActiveCpus); /* light assumption */
+ PROCESSOR_NUMBER ProcNum;
+ if (g_pfnrtKeGetProcessorIndexFromNumber)
+ {
+ ProcNum = pChangeCtx->ProcNumber;
+ AssertBreak(g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum) == pChangeCtx->NtNumber);
+ AssertBreak(ProcNum.Group < RT_ELEMENTS(g_aRtMpNtCpuGroups));
+ AssertBreak(ProcNum.Group < g_cRtMpNtMaxGroups);
+ }
+ else
+ {
+ ProcNum.Group = 0;
+ ProcNum.Number = pChangeCtx->NtNumber;
+ }
+ AssertBreak(ProcNum.Number < RT_ELEMENTS(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers));
+ AssertBreak(ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus);
+ AssertBreak(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] != -1);
+ AssertBreak(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] != NIL_RTCPUID);
+
+ /*
+ * Add ourselves to the online CPU set and update the active CPU count.
+ */
+ RTCpuSetAddByIndex(&g_rtMpNtCpuSet, pChangeCtx->NtNumber);
+ ASMAtomicIncU32(&g_cRtMpNtActiveCpus);
+
+ /*
+ * Update the group info.
+ *
+ * If the index prediction failed (real hotplugging callbacks only) we
+ * have to switch it around. This is particularly annoying when we
+ * use the index as the ID.
+ */
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ RTCPUID idCpu = RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
+ RTCPUID idOld = g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber];
+ if ((idOld & ~RTMPNT_ID_F_INACTIVE) != idCpu)
+ {
+ Assert(idOld & RTMPNT_ID_F_INACTIVE);
+ int idxDest = g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
+ g_aRtMpNtCpuGroups[rtMpCpuIdGetGroup(idOld)].aidxCpuSetMembers[rtMpCpuIdGetGroupMember(idOld)] = idxDest;
+ g_aidRtMpNtByCpuSetIdx[idxDest] = idOld;
+ }
+ g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] = idCpu;
+#else
+ Assert(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] == pChangeCtx->NtNumber);
+ int idxDest = g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
+ if ((ULONG)idxDest != pChangeCtx->NtNumber)
+ {
+ bool fFound = false;
+ uint32_t idxOldGroup = g_cRtMpNtMaxGroups;
+ while (idxOldGroup-- > 0 && !fFound)
+ {
+ uint32_t idxMember = g_aRtMpNtCpuGroups[idxOldGroup].cMaxCpus;
+ while (idxMember-- > 0)
+ if (g_aRtMpNtCpuGroups[idxOldGroup].aidxCpuSetMembers[idxMember] == (int)pChangeCtx->NtNumber)
+ {
+ g_aRtMpNtCpuGroups[idxOldGroup].aidxCpuSetMembers[idxMember] = idxDest;
+ fFound = true;
+ break;
+ }
+ }
+ Assert(fFound);
+ }
+#endif
+ g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] = pChangeCtx->NtNumber;
+
+ /*
+ * Do MP notification callbacks.
+ */
+ rtMpNotificationDoCallbacks(RTMPEVENT_ONLINE, pChangeCtx->NtNumber);
+ break;
+ }
+
+ case KeProcessorAddFailureNotify:
+ /* ignore */
+ break;
+
+ default:
+ AssertMsgFailed(("State=%u\n", pChangeCtx->State));
+ }
+}
+
+
+/**
+ * Wrapper around KeQueryLogicalProcessorRelationship.
+ *
+ * @returns IPRT status code.
+ * @param ppInfo Where to return the info. Pass to RTMemFree when done.
+ */
+static int rtR0NtInitQueryGroupRelations(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **ppInfo)
+{
+ ULONG cbInfo = sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)
+ + g_cRtMpNtMaxGroups * sizeof(GROUP_RELATIONSHIP);
+ NTSTATUS rcNt;
+ do
+ {
+ SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pInfo = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)RTMemAlloc(cbInfo);
+ if (pInfo)
+ {
+ rcNt = g_pfnrtKeQueryLogicalProcessorRelationship(NULL /*pProcNumber*/, RelationGroup, pInfo, &cbInfo);
+ if (NT_SUCCESS(rcNt))
+ {
+ *ppInfo = pInfo;
+ return VINF_SUCCESS;
+ }
+
+ RTMemFree(pInfo);
+ pInfo = NULL;
+ }
+ else
+ rcNt = STATUS_NO_MEMORY;
+ } while (rcNt == STATUS_INFO_LENGTH_MISMATCH);
+ DbgPrint("IPRT: Fatal: KeQueryLogicalProcessorRelationship failed: %#x\n", rcNt);
+ AssertMsgFailed(("KeQueryLogicalProcessorRelationship failed: %#x\n", rcNt));
+ return RTErrConvertFromNtStatus(rcNt);
+}
+
+
+
+
+
+RTDECL(RTCPUID) RTMpCpuId(void)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ PROCESSOR_NUMBER ProcNum;
+ ProcNum.Group = 0;
+ if (g_pfnrtKeGetCurrentProcessorNumberEx)
+ {
+ ProcNum.Number = 0;
+ g_pfnrtKeGetCurrentProcessorNumberEx(&ProcNum);
+ }
+ else
+ ProcNum.Number = KeGetCurrentProcessorNumber(); /* Number is 8-bit, so we're not subject to BYTE -> WORD upgrade in WDK. */
+ return RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
+
+#else
+
+ if (g_pfnrtKeGetCurrentProcessorNumberEx)
+ {
+ KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(NULL);
+ Assert(idxCpu < RTCPUSET_MAX_CPUS);
+ return idxCpu;
+ }
+
+ return (uint8_t)KeGetCurrentProcessorNumber(); /* PCR->Number was changed from BYTE to WORD in the WDK, thus the cast. */
+#endif
+}
+
+
+RTDECL(int) RTMpCurSetIndex(void)
+{
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ if (g_pfnrtKeGetCurrentProcessorNumberEx)
+ {
+ KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(NULL);
+ Assert(idxCpu < RTCPUSET_MAX_CPUS);
+ return idxCpu;
+ }
+ return (uint8_t)KeGetCurrentProcessorNumber(); /* PCR->Number was changed from BYTE to WORD in the WDK, thus the cast. */
+#else
+ return (int)RTMpCpuId();
+#endif
+}
+
+
+RTDECL(int) RTMpCurSetIndexAndId(PRTCPUID pidCpu)
+{
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ PROCESSOR_NUMBER ProcNum = { 0 , 0, 0 };
+ KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(&ProcNum);
+ Assert(idxCpu < RTCPUSET_MAX_CPUS);
+ *pidCpu = RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
+ return idxCpu;
+#else
+ return *pidCpu = RTMpCpuId();
+#endif
+}
+
+
+RTDECL(int) RTMpCpuIdToSetIndex(RTCPUID idCpu)
+{
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ if (idCpu != NIL_RTCPUID)
+ {
+ if (g_pfnrtKeGetProcessorIndexFromNumber)
+ {
+ PROCESSOR_NUMBER ProcNum;
+ ProcNum.Group = rtMpCpuIdGetGroup(idCpu);
+ ProcNum.Number = rtMpCpuIdGetGroupMember(idCpu);
+ ProcNum.Reserved = 0;
+ KEPROCESSORINDEX idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
+ if (idxCpu != INVALID_PROCESSOR_INDEX)
+ {
+ Assert(idxCpu < g_cRtMpNtMaxCpus);
+ Assert((ULONG)g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] == idxCpu);
+ return idxCpu;
+ }
+
+ /* Since NT assigned indexes as the CPUs come online, we cannot produce an ID <-> index
+ mapping for not-yet-onlined CPUS that is consistent. We just have to do our best... */
+ if ( ProcNum.Group < g_cRtMpNtMaxGroups
+ && ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus)
+ return g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
+ }
+ else if (rtMpCpuIdGetGroup(idCpu) == 0)
+ return rtMpCpuIdGetGroupMember(idCpu);
+ }
+ return -1;
+#else
+ /* 1:1 mapping, just do range checks. */
+ return idCpu < RTCPUSET_MAX_CPUS ? (int)idCpu : -1;
+#endif
+}
+
+
+RTDECL(RTCPUID) RTMpCpuIdFromSetIndex(int iCpu)
+{
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ if ((unsigned)iCpu < g_cRtMpNtMaxCpus)
+ {
+ if (g_pfnrtKeGetProcessorIndexFromNumber)
+ {
+ PROCESSOR_NUMBER ProcNum = { 0, 0, 0 };
+ NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(iCpu, &ProcNum);
+ if (NT_SUCCESS(rcNt))
+ {
+ Assert(ProcNum.Group <= g_cRtMpNtMaxGroups);
+ Assert( (g_aidRtMpNtByCpuSetIdx[iCpu] & ~RTMPNT_ID_F_INACTIVE)
+ == RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number));
+ return RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
+ }
+ }
+ return g_aidRtMpNtByCpuSetIdx[iCpu];
+ }
+ return NIL_RTCPUID;
+#else
+ /* 1:1 mapping, just do range checks. */
+ return (unsigned)iCpu < RTCPUSET_MAX_CPUS ? iCpu : NIL_RTCPUID;
+#endif
+}
+
+
+RTDECL(int) RTMpSetIndexFromCpuGroupMember(uint32_t idxGroup, uint32_t idxMember)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ if (idxGroup < g_cRtMpNtMaxGroups)
+ if (idxMember < g_aRtMpNtCpuGroups[idxGroup].cMaxCpus)
+ return g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember];
+ return -1;
+}
+
+
+RTDECL(uint32_t) RTMpGetCpuGroupCounts(uint32_t idxGroup, uint32_t *pcActive)
+{
+ if (idxGroup < g_cRtMpNtMaxGroups)
+ {
+ if (pcActive)
+ *pcActive = g_aRtMpNtCpuGroups[idxGroup].cActiveCpus;
+ return g_aRtMpNtCpuGroups[idxGroup].cMaxCpus;
+ }
+ if (pcActive)
+ *pcActive = 0;
+ return 0;
+}
+
+
+RTDECL(uint32_t) RTMpGetMaxCpuGroupCount(void)
+{
+ return g_cRtMpNtMaxGroups;
+}
+
+
+RTDECL(RTCPUID) RTMpGetMaxCpuId(void)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ return RTMPCPUID_FROM_GROUP_AND_NUMBER(g_cRtMpNtMaxGroups - 1, g_aRtMpNtCpuGroups[g_cRtMpNtMaxGroups - 1].cMaxCpus - 1);
+#else
+ /* According to MSDN the processor indexes goes from 0 to the maximum
+ number of CPUs in the system. We've check this in initterm-r0drv-nt.cpp. */
+ return g_cRtMpNtMaxCpus - 1;
+#endif
+}
+
+
+RTDECL(bool) RTMpIsCpuOnline(RTCPUID idCpu)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+ return RTCpuSetIsMember(&g_rtMpNtCpuSet, idCpu);
+}
+
+
+RTDECL(bool) RTMpIsCpuPossible(RTCPUID idCpu)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
+ if (idCpu != NIL_RTCPUID)
+ {
+ unsigned idxGroup = rtMpCpuIdGetGroup(idCpu);
+ if (idxGroup < g_cRtMpNtMaxGroups)
+ return rtMpCpuIdGetGroupMember(idCpu) < g_aRtMpNtCpuGroups[idxGroup].cMaxCpus;
+ }
+ return false;
+
+#else
+ /* A possible CPU ID is one with a value lower than g_cRtMpNtMaxCpus (see
+ comment in RTMpGetMaxCpuId). */
+ return idCpu < g_cRtMpNtMaxCpus;
+#endif
+}
+
+
+
+RTDECL(PRTCPUSET) RTMpGetSet(PRTCPUSET pSet)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ /* The set of possible CPU IDs(/indexes) are from 0 up to
+ g_cRtMpNtMaxCpus (see comment in RTMpGetMaxCpuId). */
+ RTCpuSetEmpty(pSet);
+ int idxCpu = g_cRtMpNtMaxCpus;
+ while (idxCpu-- > 0)
+ RTCpuSetAddByIndex(pSet, idxCpu);
+ return pSet;
+}
+
+
+RTDECL(RTCPUID) RTMpGetCount(void)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+ return g_cRtMpNtMaxCpus;
+}
+
+
+RTDECL(PRTCPUSET) RTMpGetOnlineSet(PRTCPUSET pSet)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ *pSet = g_rtMpNtCpuSet;
+ return pSet;
+}
+
+
+RTDECL(RTCPUID) RTMpGetOnlineCount(void)
+{
+ RTCPUSET Set;
+ RTMpGetOnlineSet(&Set);
+ return RTCpuSetCount(&Set);
+}
+
+
+RTDECL(RTCPUID) RTMpGetOnlineCoreCount(void)
+{
+ /** @todo fix me */
+ return RTMpGetOnlineCount();
+}
+
+
+
+#if 0
+/* Experiment with checking the undocumented KPRCB structure
+ * 'dt nt!_kprcb 0xaddress' shows the layout
+ */
+typedef struct
+{
+ LIST_ENTRY DpcListHead;
+ ULONG_PTR DpcLock;
+ volatile ULONG DpcQueueDepth;
+ ULONG DpcQueueCount;
+} KDPC_DATA, *PKDPC_DATA;
+
+RTDECL(bool) RTMpIsCpuWorkPending(void)
+{
+ uint8_t *pkprcb;
+ PKDPC_DATA pDpcData;
+
+ _asm {
+ mov eax, fs:0x20
+ mov pkprcb, eax
+ }
+ pDpcData = (PKDPC_DATA)(pkprcb + 0x19e0);
+ if (pDpcData->DpcQueueDepth)
+ return true;
+
+ pDpcData++;
+ if (pDpcData->DpcQueueDepth)
+ return true;
+ return false;
+}
+#else
+RTDECL(bool) RTMpIsCpuWorkPending(void)
+{
+ /** @todo not implemented */
+ return false;
+}
+#endif
+
+
+/**
+ * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
+ * the RTMpOnAll case.
+ *
+ * @param uUserCtx The user context argument (PRTMPARGS).
+ */
+static ULONG_PTR rtmpNtOnAllBroadcastIpiWrapper(ULONG_PTR uUserCtx)
+{
+ PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
+ /*ASMAtomicIncU32(&pArgs->cHits); - not needed */
+ pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);
+ return 0;
+}
+
+
+/**
+ * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
+ * the RTMpOnOthers case.
+ *
+ * @param uUserCtx The user context argument (PRTMPARGS).
+ */
+static ULONG_PTR rtmpNtOnOthersBroadcastIpiWrapper(ULONG_PTR uUserCtx)
+{
+ PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
+ RTCPUID idCpu = RTMpCpuId();
+ if (pArgs->idCpu != idCpu)
+ {
+ /*ASMAtomicIncU32(&pArgs->cHits); - not needed */
+ pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
+ }
+ return 0;
+}
+
+
+/**
+ * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
+ * the RTMpOnPair case.
+ *
+ * @param uUserCtx The user context argument (PRTMPARGS).
+ */
+static ULONG_PTR rtmpNtOnPairBroadcastIpiWrapper(ULONG_PTR uUserCtx)
+{
+ PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
+ RTCPUID idCpu = RTMpCpuId();
+ if ( pArgs->idCpu == idCpu
+ || pArgs->idCpu2 == idCpu)
+ {
+ ASMAtomicIncU32(&pArgs->cHits);
+ pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
+ }
+ return 0;
+}
+
+
+/**
+ * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
+ * the RTMpOnSpecific case.
+ *
+ * @param uUserCtx The user context argument (PRTMPARGS).
+ */
+static ULONG_PTR rtmpNtOnSpecificBroadcastIpiWrapper(ULONG_PTR uUserCtx)
+{
+ PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
+ RTCPUID idCpu = RTMpCpuId();
+ if (pArgs->idCpu == idCpu)
+ {
+ ASMAtomicIncU32(&pArgs->cHits);
+ pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
+ }
+ return 0;
+}
+
+
+/**
+ * Internal worker for the RTMpOn* APIs using KeIpiGenericCall.
+ *
+ * @returns VINF_SUCCESS.
+ * @param pfnWorker The callback.
+ * @param pvUser1 User argument 1.
+ * @param pvUser2 User argument 2.
+ * @param pfnNativeWrapper The wrapper between the NT and IPRT callbacks.
+ * @param idCpu First CPU to match, ultimately specific to the
+ * pfnNativeWrapper used.
+ * @param idCpu2 Second CPU to match, ultimately specific to the
+ * pfnNativeWrapper used.
+ * @param pcHits Where to return the number of this. Optional.
+ */
+static int rtMpCallUsingBroadcastIpi(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2,
+ PKIPI_BROADCAST_WORKER pfnNativeWrapper, RTCPUID idCpu, RTCPUID idCpu2,
+ uint32_t *pcHits)
+{
+ RTMPARGS Args;
+ Args.pfnWorker = pfnWorker;
+ Args.pvUser1 = pvUser1;
+ Args.pvUser2 = pvUser2;
+ Args.idCpu = idCpu;
+ Args.idCpu2 = idCpu2;
+ Args.cRefs = 0;
+ Args.cHits = 0;
+
+ AssertPtr(g_pfnrtKeIpiGenericCall);
+ g_pfnrtKeIpiGenericCall(pfnNativeWrapper, (uintptr_t)&Args);
+ if (pcHits)
+ *pcHits = Args.cHits;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Wrapper between the native nt per-cpu callbacks and PFNRTWORKER
+ *
+ * @param Dpc DPC object
+ * @param DeferredContext Context argument specified by KeInitializeDpc
+ * @param SystemArgument1 Argument specified by KeInsertQueueDpc
+ * @param SystemArgument2 Argument specified by KeInsertQueueDpc
+ */
+static VOID rtmpNtDPCWrapper(IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
+{
+ PRTMPARGS pArgs = (PRTMPARGS)DeferredContext;
+ RT_NOREF3(Dpc, SystemArgument1, SystemArgument2);
+
+ ASMAtomicIncU32(&pArgs->cHits);
+ pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);
+
+ /* Dereference the argument structure. */
+ int32_t cRefs = ASMAtomicDecS32(&pArgs->cRefs);
+ Assert(cRefs >= 0);
+ if (cRefs == 0)
+ RTMemFree(pArgs);
+}
+
+
+/**
+ * Wrapper around KeSetTargetProcessorDpcEx / KeSetTargetProcessorDpc.
+ *
+ * This is shared with the timer code.
+ *
+ * @returns IPRT status code (errors are asserted).
+ * @param pDpc The DPC.
+ * @param idCpu The ID of the new target CPU.
+ */
+DECLHIDDEN(int) rtMpNtSetTargetProcessorDpc(KDPC *pDpc, RTCPUID idCpu)
+{
+ if (g_pfnrtKeSetTargetProcessorDpcEx)
+ {
+ /* Convert to stupid process number (bet KeSetTargetProcessorDpcEx does
+ the reverse conversion internally). */
+ PROCESSOR_NUMBER ProcNum;
+ NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(RTMpCpuIdToSetIndex(idCpu), &ProcNum);
+ AssertMsgReturn(NT_SUCCESS(rcNt),
+ ("KeGetProcessorNumberFromIndex(%u) -> %#x\n", idCpu, rcNt),
+ RTErrConvertFromNtStatus(rcNt));
+
+ rcNt = g_pfnrtKeSetTargetProcessorDpcEx(pDpc, &ProcNum);
+ AssertMsgReturn(NT_SUCCESS(rcNt),
+ ("KeSetTargetProcessorDpcEx(,%u(%u/%u)) -> %#x\n", idCpu, ProcNum.Group, ProcNum.Number, rcNt),
+ RTErrConvertFromNtStatus(rcNt));
+ }
+ else if (g_pfnrtKeSetTargetProcessorDpc)
+ g_pfnrtKeSetTargetProcessorDpc(pDpc, RTMpCpuIdToSetIndex(idCpu));
+ else
+ return VERR_NOT_SUPPORTED;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Internal worker for the RTMpOn* APIs.
+ *
+ * @returns IPRT status code.
+ * @param pfnWorker The callback.
+ * @param pvUser1 User argument 1.
+ * @param pvUser2 User argument 2.
+ * @param enmCpuid What to do / is idCpu valid.
+ * @param idCpu Used if enmCpuid is RT_NT_CPUID_SPECIFIC or
+ * RT_NT_CPUID_PAIR, otherwise ignored.
+ * @param idCpu2 Used if enmCpuid is RT_NT_CPUID_PAIR, otherwise ignored.
+ * @param pcHits Where to return the number of this. Optional.
+ */
+static int rtMpCallUsingDpcs(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2,
+ RT_NT_CPUID enmCpuid, RTCPUID idCpu, RTCPUID idCpu2, uint32_t *pcHits)
+{
+#if 0
+ /* KeFlushQueuedDpcs must be run at IRQL PASSIVE_LEVEL according to MSDN, but the
+ * driver verifier doesn't complain...
+ */
+ AssertMsg(KeGetCurrentIrql() == PASSIVE_LEVEL, ("%d != %d (PASSIVE_LEVEL)\n", KeGetCurrentIrql(), PASSIVE_LEVEL));
+#endif
+ /* KeFlushQueuedDpcs is not present in Windows 2000; import it dynamically so we can just fail this call. */
+ if (!g_pfnrtNtKeFlushQueuedDpcs)
+ return VERR_NOT_SUPPORTED;
+
+ /*
+ * Make a copy of the active CPU set and figure out how many KDPCs we really need.
+ * We must not try setup DPCs for CPUs which aren't there, because that may fail.
+ */
+ RTCPUSET OnlineSet = g_rtMpNtCpuSet;
+ uint32_t cDpcsNeeded;
+ switch (enmCpuid)
+ {
+ case RT_NT_CPUID_SPECIFIC:
+ cDpcsNeeded = 1;
+ break;
+ case RT_NT_CPUID_PAIR:
+ cDpcsNeeded = 2;
+ break;
+ default:
+ do
+ {
+ cDpcsNeeded = g_cRtMpNtActiveCpus;
+ OnlineSet = g_rtMpNtCpuSet;
+ } while (cDpcsNeeded != g_cRtMpNtActiveCpus);
+ break;
+ }
+
+ /*
+ * Allocate an RTMPARGS structure followed by cDpcsNeeded KDPCs
+ * and initialize them.
+ */
+ PRTMPARGS pArgs = (PRTMPARGS)RTMemAllocZ(sizeof(RTMPARGS) + cDpcsNeeded * sizeof(KDPC));
+ if (!pArgs)
+ return VERR_NO_MEMORY;
+
+ pArgs->pfnWorker = pfnWorker;
+ pArgs->pvUser1 = pvUser1;
+ pArgs->pvUser2 = pvUser2;
+ pArgs->idCpu = NIL_RTCPUID;
+ pArgs->idCpu2 = NIL_RTCPUID;
+ pArgs->cHits = 0;
+ pArgs->cRefs = 1;
+
+ int rc;
+ KDPC *paExecCpuDpcs = (KDPC *)(pArgs + 1);
+ if (enmCpuid == RT_NT_CPUID_SPECIFIC)
+ {
+ KeInitializeDpc(&paExecCpuDpcs[0], rtmpNtDPCWrapper, pArgs);
+ if (g_pfnrtKeSetImportanceDpc)
+ g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[0], HighImportance);
+ rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[0], idCpu);
+ pArgs->idCpu = idCpu;
+ }
+ else if (enmCpuid == RT_NT_CPUID_PAIR)
+ {
+ KeInitializeDpc(&paExecCpuDpcs[0], rtmpNtDPCWrapper, pArgs);
+ if (g_pfnrtKeSetImportanceDpc)
+ g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[0], HighImportance);
+ rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[0], idCpu);
+ pArgs->idCpu = idCpu;
+
+ KeInitializeDpc(&paExecCpuDpcs[1], rtmpNtDPCWrapper, pArgs);
+ if (g_pfnrtKeSetImportanceDpc)
+ g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[1], HighImportance);
+ if (RT_SUCCESS(rc))
+ rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[1], (int)idCpu2);
+ pArgs->idCpu2 = idCpu2;
+ }
+ else
+ {
+ rc = VINF_SUCCESS;
+ for (uint32_t i = 0; i < cDpcsNeeded && RT_SUCCESS(rc); i++)
+ if (RTCpuSetIsMemberByIndex(&OnlineSet, i))
+ {
+ KeInitializeDpc(&paExecCpuDpcs[i], rtmpNtDPCWrapper, pArgs);
+ if (g_pfnrtKeSetImportanceDpc)
+ g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[i], HighImportance);
+ rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[i], RTMpCpuIdFromSetIndex(i));
+ }
+ }
+ if (RT_FAILURE(rc))
+ {
+ RTMemFree(pArgs);
+ return rc;
+ }
+
+ /*
+ * Raise the IRQL to DISPATCH_LEVEL so we can't be rescheduled to another cpu.
+ * KeInsertQueueDpc must also be executed at IRQL >= DISPATCH_LEVEL.
+ */
+ KIRQL oldIrql;
+ KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
+
+ /*
+ * We cannot do other than assume a 1:1 relationship between the
+ * affinity mask and the process despite the warnings in the docs.
+ * If someone knows a better way to get this done, please let bird know.
+ */
+ ASMCompilerBarrier(); /* paranoia */
+ if (enmCpuid == RT_NT_CPUID_SPECIFIC)
+ {
+ ASMAtomicIncS32(&pArgs->cRefs);
+ BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[0], 0, 0);
+ Assert(fRc); NOREF(fRc);
+ }
+ else if (enmCpuid == RT_NT_CPUID_PAIR)
+ {
+ ASMAtomicIncS32(&pArgs->cRefs);
+ BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[0], 0, 0);
+ Assert(fRc); NOREF(fRc);
+
+ ASMAtomicIncS32(&pArgs->cRefs);
+ fRc = KeInsertQueueDpc(&paExecCpuDpcs[1], 0, 0);
+ Assert(fRc); NOREF(fRc);
+ }
+ else
+ {
+ uint32_t iSelf = RTMpCurSetIndex();
+ for (uint32_t i = 0; i < cDpcsNeeded; i++)
+ {
+ if ( (i != iSelf)
+ && RTCpuSetIsMemberByIndex(&OnlineSet, i))
+ {
+ ASMAtomicIncS32(&pArgs->cRefs);
+ BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[i], 0, 0);
+ Assert(fRc); NOREF(fRc);
+ }
+ }
+ if (enmCpuid != RT_NT_CPUID_OTHERS)
+ pfnWorker(iSelf, pvUser1, pvUser2);
+ }
+
+ KeLowerIrql(oldIrql);
+
+ /*
+ * Flush all DPCs and wait for completion. (can take long!)
+ */
+ /** @todo Consider changing this to an active wait using some atomic inc/dec
+ * stuff (and check for the current cpu above in the specific case). */
+ /** @todo Seems KeFlushQueuedDpcs doesn't wait for the DPCs to be completely
+ * executed. Seen pArgs being freed while some CPU was using it before
+ * cRefs was added. */
+ if (g_pfnrtNtKeFlushQueuedDpcs)
+ g_pfnrtNtKeFlushQueuedDpcs();
+
+ if (pcHits)
+ *pcHits = pArgs->cHits;
+
+ /* Dereference the argument structure. */
+ int32_t cRefs = ASMAtomicDecS32(&pArgs->cRefs);
+ Assert(cRefs >= 0);
+ if (cRefs == 0)
+ RTMemFree(pArgs);
+
+ return VINF_SUCCESS;
+}
+
+
+RTDECL(int) RTMpOnAll(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
+{
+ if (g_pfnrtKeIpiGenericCall)
+ return rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnAllBroadcastIpiWrapper,
+ NIL_RTCPUID, NIL_RTCPUID, NULL);
+ return rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_ALL, NIL_RTCPUID, NIL_RTCPUID, NULL);
+}
+
+
+RTDECL(int) RTMpOnOthers(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
+{
+ if (g_pfnrtKeIpiGenericCall)
+ return rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnOthersBroadcastIpiWrapper,
+ NIL_RTCPUID, NIL_RTCPUID, NULL);
+ return rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_OTHERS, NIL_RTCPUID, NIL_RTCPUID, NULL);
+}
+
+
+RTDECL(int) RTMpOnPair(RTCPUID idCpu1, RTCPUID idCpu2, uint32_t fFlags, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
+{
+ int rc;
+ AssertReturn(idCpu1 != idCpu2, VERR_INVALID_PARAMETER);
+ AssertReturn(!(fFlags & RTMPON_F_VALID_MASK), VERR_INVALID_FLAGS);
+ if ((fFlags & RTMPON_F_CONCURRENT_EXEC) && !g_pfnrtKeIpiGenericCall)
+ return VERR_NOT_SUPPORTED;
+
+ /*
+ * Check that both CPUs are online before doing the broadcast call.
+ */
+ if ( RTMpIsCpuOnline(idCpu1)
+ && RTMpIsCpuOnline(idCpu2))
+ {
+ /*
+ * The broadcast IPI isn't quite as bad as it could have been, because
+ * it looks like windows doesn't synchronize CPUs on the way out, they
+ * seems to get back to normal work while the pair is still busy.
+ */
+ uint32_t cHits = 0;
+ if (g_pfnrtKeIpiGenericCall)
+ rc = rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnPairBroadcastIpiWrapper, idCpu1, idCpu2, &cHits);
+ else
+ rc = rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_PAIR, idCpu1, idCpu2, &cHits);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(cHits <= 2);
+ if (cHits == 2)
+ rc = VINF_SUCCESS;
+ else if (cHits == 1)
+ rc = VERR_NOT_ALL_CPUS_SHOWED;
+ else if (cHits == 0)
+ rc = VERR_CPU_OFFLINE;
+ else
+ rc = VERR_CPU_IPE_1;
+ }
+ }
+ /*
+ * A CPU must be present to be considered just offline.
+ */
+ else if ( RTMpIsCpuPresent(idCpu1)
+ && RTMpIsCpuPresent(idCpu2))
+ rc = VERR_CPU_OFFLINE;
+ else
+ rc = VERR_CPU_NOT_FOUND;
+ return rc;
+}
+
+
+RTDECL(bool) RTMpOnPairIsConcurrentExecSupported(void)
+{
+ return g_pfnrtKeIpiGenericCall != NULL;
+}
+
+
+/**
+ * Releases a reference to a RTMPNTONSPECIFICARGS heap allocation, freeing it
+ * when the last reference is released.
+ */
+DECLINLINE(void) rtMpNtOnSpecificRelease(PRTMPNTONSPECIFICARGS pArgs)
+{
+ uint32_t cRefs = ASMAtomicDecU32(&pArgs->cRefs);
+ AssertMsg(cRefs <= 1, ("cRefs=%#x\n", cRefs));
+ if (cRefs == 0)
+ RTMemFree(pArgs);
+}
+
+
+/**
+ * Wrapper between the native nt per-cpu callbacks and PFNRTWORKER
+ *
+ * @param Dpc DPC object
+ * @param DeferredContext Context argument specified by KeInitializeDpc
+ * @param SystemArgument1 Argument specified by KeInsertQueueDpc
+ * @param SystemArgument2 Argument specified by KeInsertQueueDpc
+ */
+static VOID rtMpNtOnSpecificDpcWrapper(IN PKDPC Dpc, IN PVOID DeferredContext,
+ IN PVOID SystemArgument1, IN PVOID SystemArgument2)
+{
+ PRTMPNTONSPECIFICARGS pArgs = (PRTMPNTONSPECIFICARGS)DeferredContext;
+ RT_NOREF3(Dpc, SystemArgument1, SystemArgument2);
+
+ ASMAtomicWriteBool(&pArgs->fExecuting, true);
+
+ pArgs->CallbackArgs.pfnWorker(RTMpCpuId(), pArgs->CallbackArgs.pvUser1, pArgs->CallbackArgs.pvUser2);
+
+ ASMAtomicWriteBool(&pArgs->fDone, true);
+ KeSetEvent(&pArgs->DoneEvt, 1 /*PriorityIncrement*/, FALSE /*Wait*/);
+
+ rtMpNtOnSpecificRelease(pArgs);
+}
+
+
+RTDECL(int) RTMpOnSpecific(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
+{
+ /*
+ * Don't try mess with an offline CPU.
+ */
+ if (!RTMpIsCpuOnline(idCpu))
+ return !RTMpIsCpuPossible(idCpu)
+ ? VERR_CPU_NOT_FOUND
+ : VERR_CPU_OFFLINE;
+
+ /*
+ * Use the broadcast IPI routine if there are no more than two CPUs online,
+ * or if the current IRQL is unsuitable for KeWaitForSingleObject.
+ */
+ int rc;
+ uint32_t cHits = 0;
+ if ( g_pfnrtKeIpiGenericCall
+ && ( RTMpGetOnlineCount() <= 2
+ || KeGetCurrentIrql() > APC_LEVEL)
+ )
+ {
+ rc = rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnSpecificBroadcastIpiWrapper,
+ idCpu, NIL_RTCPUID, &cHits);
+ if (RT_SUCCESS(rc))
+ {
+ if (cHits == 1)
+ return VINF_SUCCESS;
+ rc = cHits == 0 ? VERR_CPU_OFFLINE : VERR_CPU_IPE_1;
+ }
+ return rc;
+ }
+
+#if 0
+ rc = rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_SPECIFIC, idCpu, NIL_RTCPUID, &cHits);
+ if (RT_SUCCESS(rc))
+ {
+ if (cHits == 1)
+ return VINF_SUCCESS;
+ rc = cHits == 0 ? VERR_CPU_OFFLINE : VERR_CPU_IPE_1;
+ }
+ return rc;
+
+#else
+ /*
+ * Initialize the argument package and the objects within it.
+ * The package is referenced counted to avoid unnecessary spinning to
+ * synchronize cleanup and prevent stack corruption.
+ */
+ PRTMPNTONSPECIFICARGS pArgs = (PRTMPNTONSPECIFICARGS)RTMemAllocZ(sizeof(*pArgs));
+ if (!pArgs)
+ return VERR_NO_MEMORY;
+ pArgs->cRefs = 2;
+ pArgs->fExecuting = false;
+ pArgs->fDone = false;
+ pArgs->CallbackArgs.pfnWorker = pfnWorker;
+ pArgs->CallbackArgs.pvUser1 = pvUser1;
+ pArgs->CallbackArgs.pvUser2 = pvUser2;
+ pArgs->CallbackArgs.idCpu = idCpu;
+ pArgs->CallbackArgs.cHits = 0;
+ pArgs->CallbackArgs.cRefs = 2;
+ KeInitializeEvent(&pArgs->DoneEvt, SynchronizationEvent, FALSE /* not signalled */);
+ KeInitializeDpc(&pArgs->Dpc, rtMpNtOnSpecificDpcWrapper, pArgs);
+ if (g_pfnrtKeSetImportanceDpc)
+ g_pfnrtKeSetImportanceDpc(&pArgs->Dpc, HighImportance);
+ rc = rtMpNtSetTargetProcessorDpc(&pArgs->Dpc, idCpu);
+ if (RT_FAILURE(rc))
+ {
+ RTMemFree(pArgs);
+ return rc;
+ }
+
+ /*
+ * Disable preemption while we check the current processor and inserts the DPC.
+ */
+ KIRQL bOldIrql;
+ KeRaiseIrql(DISPATCH_LEVEL, &bOldIrql);
+ ASMCompilerBarrier(); /* paranoia */
+
+ if (RTMpCpuId() == idCpu)
+ {
+ /* Just execute the callback on the current CPU. */
+ pfnWorker(idCpu, pvUser1, pvUser2);
+ KeLowerIrql(bOldIrql);
+
+ RTMemFree(pArgs);
+ return VINF_SUCCESS;
+ }
+
+ /* Different CPU, so queue it if the CPU is still online. */
+ if (RTMpIsCpuOnline(idCpu))
+ {
+ BOOLEAN fRc = KeInsertQueueDpc(&pArgs->Dpc, 0, 0);
+ Assert(fRc); NOREF(fRc);
+ KeLowerIrql(bOldIrql);
+
+ uint64_t const nsRealWaitTS = RTTimeNanoTS();
+
+ /*
+ * Wait actively for a while in case the CPU/thread responds quickly.
+ */
+ uint32_t cLoopsLeft = 0x20000;
+ while (cLoopsLeft-- > 0)
+ {
+ if (pArgs->fDone)
+ {
+ rtMpNtOnSpecificRelease(pArgs);
+ return VINF_SUCCESS;
+ }
+ ASMNopPause();
+ }
+
+ /*
+ * It didn't respond, so wait on the event object, poking the CPU if it's slow.
+ */
+ LARGE_INTEGER Timeout;
+ Timeout.QuadPart = -10000; /* 1ms */
+ NTSTATUS rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
+ if (rcNt == STATUS_SUCCESS)
+ {
+ rtMpNtOnSpecificRelease(pArgs);
+ return VINF_SUCCESS;
+ }
+
+ /* If it hasn't respondend yet, maybe poke it and wait some more. */
+ if (rcNt == STATUS_TIMEOUT)
+ {
+ if ( !pArgs->fExecuting
+ && ( g_pfnrtMpPokeCpuWorker == rtMpPokeCpuUsingHalRequestIpiW7Plus
+ || g_pfnrtMpPokeCpuWorker == rtMpPokeCpuUsingHalRequestIpiPreW7))
+ RTMpPokeCpu(idCpu);
+
+ Timeout.QuadPart = -1280000; /* 128ms */
+ rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
+ if (rcNt == STATUS_SUCCESS)
+ {
+ rtMpNtOnSpecificRelease(pArgs);
+ return VINF_SUCCESS;
+ }
+ }
+
+ /*
+ * Something weird is happening, try bail out.
+ */
+ if (KeRemoveQueueDpc(&pArgs->Dpc))
+ {
+ RTMemFree(pArgs); /* DPC was still queued, so we can return without further ado. */
+ LogRel(("RTMpOnSpecific(%#x): Not processed after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
+ }
+ else
+ {
+ /* DPC is running, wait a good while for it to complete. */
+ LogRel(("RTMpOnSpecific(%#x): Still running after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
+
+ Timeout.QuadPart = -30*1000*1000*10; /* 30 seconds */
+ rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
+ if (rcNt != STATUS_SUCCESS)
+ LogRel(("RTMpOnSpecific(%#x): Giving up on running worker after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
+ }
+ rc = RTErrConvertFromNtStatus(rcNt);
+ }
+ else
+ {
+ /* CPU is offline.*/
+ KeLowerIrql(bOldIrql);
+ rc = !RTMpIsCpuPossible(idCpu) ? VERR_CPU_NOT_FOUND : VERR_CPU_OFFLINE;
+ }
+
+ rtMpNtOnSpecificRelease(pArgs);
+ return rc;
+#endif
+}
+
+
+
+
+static VOID rtMpNtPokeCpuDummy(IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
+{
+ NOREF(Dpc);
+ NOREF(DeferredContext);
+ NOREF(SystemArgument1);
+ NOREF(SystemArgument2);
+}
+
+
+/** Callback used by rtMpPokeCpuUsingBroadcastIpi. */
+static ULONG_PTR rtMpIpiGenericCall(ULONG_PTR Argument)
+{
+ NOREF(Argument);
+ return 0;
+}
+
+
+/**
+ * RTMpPokeCpu worker that uses broadcast IPIs for doing the work.
+ *
+ * @returns VINF_SUCCESS
+ * @param idCpu The CPU identifier.
+ */
+int rtMpPokeCpuUsingBroadcastIpi(RTCPUID idCpu)
+{
+ NOREF(idCpu);
+ g_pfnrtKeIpiGenericCall(rtMpIpiGenericCall, 0);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * RTMpPokeCpu worker that uses the Windows 7 and later version of
+ * HalRequestIpip to get the job done.
+ *
+ * @returns VINF_SUCCESS
+ * @param idCpu The CPU identifier.
+ */
+int rtMpPokeCpuUsingHalRequestIpiW7Plus(RTCPUID idCpu)
+{
+ /* idCpu is an HAL processor index, so we can use it directly. */
+ PKAFFINITY_EX pTarget = (PKAFFINITY_EX)alloca(g_cbRtMpNtKaffinityEx);
+ pTarget->Size = g_cRtMpNtKaffinityExEntries; /* (just in case KeInitializeAffinityEx starts using it) */
+ g_pfnrtKeInitializeAffinityEx(pTarget);
+ g_pfnrtKeAddProcessorAffinityEx(pTarget, idCpu);
+
+ g_pfnrtHalRequestIpiW7Plus(0, pTarget);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * RTMpPokeCpu worker that uses the Vista and earlier version of HalRequestIpip
+ * to get the job done.
+ *
+ * @returns VINF_SUCCESS
+ * @param idCpu The CPU identifier.
+ */
+int rtMpPokeCpuUsingHalRequestIpiPreW7(RTCPUID idCpu)
+{
+ __debugbreak(); /** @todo this code needs testing!! */
+ KAFFINITY Target = 1;
+ Target <<= idCpu;
+ g_pfnrtHalRequestIpiPreW7(Target);
+ return VINF_SUCCESS;
+}
+
+
+int rtMpPokeCpuUsingFailureNotSupported(RTCPUID idCpu)
+{
+ NOREF(idCpu);
+ return VERR_NOT_SUPPORTED;
+}
+
+
+int rtMpPokeCpuUsingDpc(RTCPUID idCpu)
+{
+ Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
+
+ /*
+ * APC fallback.
+ */
+ static KDPC s_aPokeDpcs[RTCPUSET_MAX_CPUS] = {0};
+ static bool s_fPokeDPCsInitialized = false;
+
+ if (!s_fPokeDPCsInitialized)
+ {
+ for (unsigned i = 0; i < g_cRtMpNtMaxCpus; i++)
+ {
+ KeInitializeDpc(&s_aPokeDpcs[i], rtMpNtPokeCpuDummy, NULL);
+ if (g_pfnrtKeSetImportanceDpc)
+ g_pfnrtKeSetImportanceDpc(&s_aPokeDpcs[i], HighImportance);
+ int rc = rtMpNtSetTargetProcessorDpc(&s_aPokeDpcs[i], idCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ s_fPokeDPCsInitialized = true;
+ }
+
+ /* Raise the IRQL to DISPATCH_LEVEL so we can't be rescheduled to another cpu.
+ KeInsertQueueDpc must also be executed at IRQL >= DISPATCH_LEVEL. */
+ KIRQL oldIrql;
+ KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
+
+ if (g_pfnrtKeSetImportanceDpc)
+ g_pfnrtKeSetImportanceDpc(&s_aPokeDpcs[idCpu], HighImportance);
+ g_pfnrtKeSetTargetProcessorDpc(&s_aPokeDpcs[idCpu], (int)idCpu);
+
+ /* Assuming here that high importance DPCs will be delivered immediately; or at least an IPI will be sent immediately.
+ Note! Not true on at least Vista & Windows 7 */
+ BOOLEAN fRet = KeInsertQueueDpc(&s_aPokeDpcs[idCpu], 0, 0);
+
+ KeLowerIrql(oldIrql);
+ return fRet == TRUE ? VINF_SUCCESS : VERR_ACCESS_DENIED /* already queued */;
+}
+
+
+RTDECL(int) RTMpPokeCpu(RTCPUID idCpu)
+{
+ if (!RTMpIsCpuOnline(idCpu))
+ return !RTMpIsCpuPossible(idCpu)
+ ? VERR_CPU_NOT_FOUND
+ : VERR_CPU_OFFLINE;
+ /* Calls rtMpPokeCpuUsingDpc, rtMpPokeCpuUsingHalRequestIpiW7Plus or rtMpPokeCpuUsingBroadcastIpi. */
+ return g_pfnrtMpPokeCpuWorker(idCpu);
+}
+
+
+RTDECL(bool) RTMpOnAllIsConcurrentSafe(void)
+{
+ return false;
+}
+