diff options
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h')
-rw-r--r-- | src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h | 9046 |
1 files changed, 9046 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h b/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h new file mode 100644 index 00000000..15c75456 --- /dev/null +++ b/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h @@ -0,0 +1,9046 @@ +/* $Id: IEMAllCImpl.cpp.h $ */ +/** @file + * IEM - Instruction Implementation in C/C++ (code include). + */ + +/* + * Copyright (C) 2011-2020 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + +#include "IEMAllCImplSvmInstr.cpp.h" +#include "IEMAllCImplVmxInstr.cpp.h" + + +/** @name Misc Helpers + * @{ + */ + + +/** + * Worker function for iemHlpCheckPortIOPermission, don't call directly. + * + * @returns Strict VBox status code. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param u16Port The port number. + * @param cbOperand The operand size. + */ +static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand) +{ + /* The TSS bits we're interested in are the same on 386 and AMD64. */ + AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY); + AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL); + AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap); + AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64)); + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR); + + /* + * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap. + */ + Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType); + if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY + && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL)) + { + Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n", + u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Read the bitmap offset (may #PF). + */ + uint16_t offBitmap; + VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX, + pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap)); + if (rcStrict != VINF_SUCCESS) + { + Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* + * The bit range from u16Port to (u16Port + cbOperand - 1), however intel + * describes the CPU actually reading two bytes regardless of whether the + * bit range crosses a byte boundrary. Thus the + 1 in the test below. + */ + uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap; + /** @todo check if real CPUs ensures that offBitmap has a minimum value of + * for instance sizeof(X86TSS32). */ + if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */ + { + Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n", + offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Read the necessary bits. + */ + /** @todo Test the assertion in the intel manual that the CPU reads two + * bytes. The question is how this works wrt to #PF and #GP on the + * 2nd byte when it's not required. */ + uint16_t bmBytes = UINT16_MAX; + rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit); + if (rcStrict != VINF_SUCCESS) + { + Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* + * Perform the check. + */ + uint16_t fPortMask = (1 << cbOperand) - 1; + bmBytes >>= (u16Port & 7); + if (bmBytes & fPortMask) + { + Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n", + u16Port, cbOperand, bmBytes, fPortMask)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + return VINF_SUCCESS; +} + + +/** + * Checks if we are allowed to access the given I/O port, raising the + * appropriate exceptions if we aren't (or if the I/O bitmap is not + * accessible). + * + * @returns Strict VBox status code. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param u16Port The port number. + * @param cbOperand The operand size. + */ +DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand) +{ + X86EFLAGS Efl; + Efl.u = IEMMISC_GET_EFL(pVCpu); + if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) + && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL + || Efl.Bits.u1VM) ) + return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand); + return VINF_SUCCESS; +} + + +#if 0 +/** + * Calculates the parity bit. + * + * @returns true if the bit is set, false if not. + * @param u8Result The least significant byte of the result. + */ +static bool iemHlpCalcParityFlag(uint8_t u8Result) +{ + /* + * Parity is set if the number of bits in the least significant byte of + * the result is even. + */ + uint8_t cBits; + cBits = u8Result & 1; /* 0 */ + u8Result >>= 1; + cBits += u8Result & 1; + u8Result >>= 1; + cBits += u8Result & 1; + u8Result >>= 1; + cBits += u8Result & 1; + u8Result >>= 1; + cBits += u8Result & 1; /* 4 */ + u8Result >>= 1; + cBits += u8Result & 1; + u8Result >>= 1; + cBits += u8Result & 1; + u8Result >>= 1; + cBits += u8Result & 1; + return !(cBits & 1); +} +#endif /* not used */ + + +/** + * Updates the specified flags according to a 8-bit result. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param u8Result The result to set the flags according to. + * @param fToUpdate The flags to update. + * @param fUndefined The flags that are specified as undefined. + */ +static void iemHlpUpdateArithEFlagsU8(PVMCPUCC pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined) +{ + uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u; + iemAImpl_test_u8(&u8Result, u8Result, &fEFlags); + pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined); + pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags; +} + + +/** + * Updates the specified flags according to a 16-bit result. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param u16Result The result to set the flags according to. + * @param fToUpdate The flags to update. + * @param fUndefined The flags that are specified as undefined. + */ +static void iemHlpUpdateArithEFlagsU16(PVMCPUCC pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined) +{ + uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u; + iemAImpl_test_u16(&u16Result, u16Result, &fEFlags); + pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined); + pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags; +} + + +/** + * Helper used by iret. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param uCpl The new CPL. + * @param pSReg Pointer to the segment register. + */ +static void iemHlpAdjustSelectorForNewCpl(PVMCPUCC pVCpu, uint8_t uCpl, PCPUMSELREG pSReg) +{ + Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg)); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK); + + if ( uCpl > pSReg->Attr.n.u2Dpl + && pSReg->Attr.n.u1DescType /* code or data, not system */ + && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) + != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */ + iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0); +} + + +/** + * Indicates that we have modified the FPU state. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + */ +DECLINLINE(void) iemHlpUsedFpu(PVMCPUCC pVCpu) +{ + CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM); +} + +/** @} */ + +/** @name C Implementations + * @{ + */ + +/** + * Implements a 16-bit popa. + */ +IEM_CIMPL_DEF_0(iemCImpl_popa_16) +{ + RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu); + RTGCPTR GCPtrLast = GCPtrStart + 15; + VBOXSTRICTRC rcStrict; + + /* + * The docs are a bit hard to comprehend here, but it looks like we wrap + * around in real mode as long as none of the individual "popa" crosses the + * end of the stack segment. In protected mode we check the whole access + * in one go. For efficiency, only do the word-by-word thing if we're in + * danger of wrapping around. + */ + /** @todo do popa boundary / wrap-around checks. */ + if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu) + && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */ + { + /* word-by-word */ + RTUINT64U TmpRsp; + TmpRsp.u = pVCpu->cpum.GstCtx.rsp; + rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + { + iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */ + rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp); + } + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.rsp = TmpRsp.u; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + else + { + uint16_t const *pa16Mem = NULL; + rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R); + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI]; + pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI]; + pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP]; + /* skip sp */ + pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX]; + pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX]; + pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX]; + pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX]; + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R); + if (rcStrict == VINF_SUCCESS) + { + iemRegAddToRsp(pVCpu, 16); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + } + return rcStrict; +} + + +/** + * Implements a 32-bit popa. + */ +IEM_CIMPL_DEF_0(iemCImpl_popa_32) +{ + RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu); + RTGCPTR GCPtrLast = GCPtrStart + 31; + VBOXSTRICTRC rcStrict; + + /* + * The docs are a bit hard to comprehend here, but it looks like we wrap + * around in real mode as long as none of the individual "popa" crosses the + * end of the stack segment. In protected mode we check the whole access + * in one go. For efficiency, only do the word-by-word thing if we're in + * danger of wrapping around. + */ + /** @todo do popa boundary / wrap-around checks. */ + if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu) + && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */ + { + /* word-by-word */ + RTUINT64U TmpRsp; + TmpRsp.u = pVCpu->cpum.GstCtx.rsp; + rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + { + iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */ + rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp); + } + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + { +#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */ + pVCpu->cpum.GstCtx.rdi &= UINT32_MAX; + pVCpu->cpum.GstCtx.rsi &= UINT32_MAX; + pVCpu->cpum.GstCtx.rbp &= UINT32_MAX; + pVCpu->cpum.GstCtx.rbx &= UINT32_MAX; + pVCpu->cpum.GstCtx.rdx &= UINT32_MAX; + pVCpu->cpum.GstCtx.rcx &= UINT32_MAX; + pVCpu->cpum.GstCtx.rax &= UINT32_MAX; +#endif + pVCpu->cpum.GstCtx.rsp = TmpRsp.u; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + else + { + uint32_t const *pa32Mem; + rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R); + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI]; + pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI]; + pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP]; + /* skip esp */ + pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX]; + pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX]; + pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX]; + pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX]; + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R); + if (rcStrict == VINF_SUCCESS) + { + iemRegAddToRsp(pVCpu, 32); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + } + return rcStrict; +} + + +/** + * Implements a 16-bit pusha. + */ +IEM_CIMPL_DEF_0(iemCImpl_pusha_16) +{ + RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu); + RTGCPTR GCPtrBottom = GCPtrTop - 15; + VBOXSTRICTRC rcStrict; + + /* + * The docs are a bit hard to comprehend here, but it looks like we wrap + * around in real mode as long as none of the individual "pushd" crosses the + * end of the stack segment. In protected mode we check the whole access + * in one go. For efficiency, only do the word-by-word thing if we're in + * danger of wrapping around. + */ + /** @todo do pusha boundary / wrap-around checks. */ + if (RT_UNLIKELY( GCPtrBottom > GCPtrTop + && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) ) + { + /* word-by-word */ + RTUINT64U TmpRsp; + TmpRsp.u = pVCpu->cpum.GstCtx.rsp; + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.rsp = TmpRsp.u; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + else + { + GCPtrBottom--; + uint16_t *pa16Mem = NULL; + rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W); + if (rcStrict == VINF_SUCCESS) + { + pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di; + pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si; + pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp; + pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp; + pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx; + pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx; + pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx; + pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax; + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W); + if (rcStrict == VINF_SUCCESS) + { + iemRegSubFromRsp(pVCpu, 16); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + } + return rcStrict; +} + + +/** + * Implements a 32-bit pusha. + */ +IEM_CIMPL_DEF_0(iemCImpl_pusha_32) +{ + RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu); + RTGCPTR GCPtrBottom = GCPtrTop - 31; + VBOXSTRICTRC rcStrict; + + /* + * The docs are a bit hard to comprehend here, but it looks like we wrap + * around in real mode as long as none of the individual "pusha" crosses the + * end of the stack segment. In protected mode we check the whole access + * in one go. For efficiency, only do the word-by-word thing if we're in + * danger of wrapping around. + */ + /** @todo do pusha boundary / wrap-around checks. */ + if (RT_UNLIKELY( GCPtrBottom > GCPtrTop + && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) ) + { + /* word-by-word */ + RTUINT64U TmpRsp; + TmpRsp.u = pVCpu->cpum.GstCtx.rsp; + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.rsp = TmpRsp.u; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + else + { + GCPtrBottom--; + uint32_t *pa32Mem; + rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W); + if (rcStrict == VINF_SUCCESS) + { + pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi; + pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi; + pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp; + pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp; + pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx; + pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx; + pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx; + pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax; + rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W); + if (rcStrict == VINF_SUCCESS) + { + iemRegSubFromRsp(pVCpu, 32); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + } + return rcStrict; +} + + +/** + * Implements pushf. + * + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize) +{ + VBOXSTRICTRC rcStrict; + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF)) + { + Log2(("pushf: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * If we're in V8086 mode some care is required (which is why we're in + * doing this in a C implementation). + */ + uint32_t fEfl = IEMMISC_GET_EFL(pVCpu); + if ( (fEfl & X86_EFL_VM) + && X86_EFL_GET_IOPL(fEfl) != 3 ) + { + Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE); + if ( enmEffOpSize != IEMMODE_16BIT + || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)) + return iemRaiseGeneralProtectionFault0(pVCpu); + fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */ + fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9); + rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl); + } + else + { + + /* + * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags. + */ + fEfl &= ~(X86_EFL_RF | X86_EFL_VM); + + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186); + if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186) + fEfl |= UINT16_C(0xf000); + rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl); + break; + case IEMMODE_32BIT: + rcStrict = iemMemStackPushU32(pVCpu, fEfl); + break; + case IEMMODE_64BIT: + rcStrict = iemMemStackPushU64(pVCpu, fEfl); + break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + } + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements popf. + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize) +{ + uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu); + VBOXSTRICTRC rcStrict; + uint32_t fEflNew; + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF)) + { + Log2(("popf: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * V8086 is special as usual. + */ + if (fEflOld & X86_EFL_VM) + { + /* + * Almost anything goes if IOPL is 3. + */ + if (X86_EFL_GET_IOPL(fEflOld) == 3) + { + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + { + uint16_t u16Value; + rcStrict = iemMemStackPopU16(pVCpu, &u16Value); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000)); + break; + } + case IEMMODE_32BIT: + rcStrict = iemMemStackPopU32(pVCpu, &fEflNew); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + + const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386 + ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386; + fEflNew &= fPopfBits & ~(X86_EFL_IOPL); + fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld; + } + /* + * Interrupt flag virtualization with CR4.VME=1. + */ + else if ( enmEffOpSize == IEMMODE_16BIT + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) ) + { + uint16_t u16Value; + RTUINT64U TmpRsp; + TmpRsp.u = pVCpu->cpum.GstCtx.rsp; + rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP + * or before? */ + if ( ( (u16Value & X86_EFL_IF) + && (fEflOld & X86_EFL_VIP)) + || (u16Value & X86_EFL_TF) ) + return iemRaiseGeneralProtectionFault0(pVCpu); + + fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF); + fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9); + fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF); + fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld; + + pVCpu->cpum.GstCtx.rsp = TmpRsp.u; + } + else + return iemRaiseGeneralProtectionFault0(pVCpu); + + } + /* + * Not in V8086 mode. + */ + else + { + /* Pop the flags. */ + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + { + uint16_t u16Value; + rcStrict = iemMemStackPopU16(pVCpu, &u16Value); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000)); + + /* + * Ancient CPU adjustments: + * - 8086, 80186, V20/30: + * Fixed bits 15:12 bits are not kept correctly internally, mostly for + * practical reasons (masking below). We add them when pushing flags. + * - 80286: + * The NT and IOPL flags cannot be popped from real mode and are + * therefore always zero (since a 286 can never exit from PM and + * their initial value is zero). This changed on a 386 and can + * therefore be used to detect 286 or 386 CPU in real mode. + */ + if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286 + && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) ) + fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL); + break; + } + case IEMMODE_32BIT: + rcStrict = iemMemStackPopU32(pVCpu, &fEflNew); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + break; + case IEMMODE_64BIT: + { + uint64_t u64Value; + rcStrict = iemMemStackPopU64(pVCpu, &u64Value); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */ + break; + } + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + + /* Merge them with the current flags. */ + const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386 + ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386; + if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF)) + || pVCpu->iem.s.uCpl == 0) + { + fEflNew &= fPopfBits; + fEflNew |= ~fPopfBits & fEflOld; + } + else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld)) + { + fEflNew &= fPopfBits & ~(X86_EFL_IOPL); + fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld; + } + else + { + fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF); + fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld; + } + } + + /* + * Commit the flags. + */ + Assert(fEflNew & RT_BIT_32(1)); + IEMMISC_SET_EFL(pVCpu, fEflNew); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + + return VINF_SUCCESS; +} + + +/** + * Implements an indirect call. + * + * @param uNewPC The new program counter (RIP) value (loaded from the + * operand). + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC) +{ + uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr; + if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit) + return iemRaiseGeneralProtectionFault0(pVCpu); + + VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + pVCpu->cpum.GstCtx.rip = uNewPC; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + +#ifndef IEM_WITH_CODE_TLB + /* Flush the prefetch buffer. */ + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return VINF_SUCCESS; +} + + +/** + * Implements a 16-bit relative call. + * + * @param offDisp The displacment offset. + */ +IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp) +{ + uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr; + uint16_t uNewPC = uOldPC + offDisp; + if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit) + return iemRaiseGeneralProtectionFault0(pVCpu); + + VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + pVCpu->cpum.GstCtx.rip = uNewPC; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + +#ifndef IEM_WITH_CODE_TLB + /* Flush the prefetch buffer. */ + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return VINF_SUCCESS; +} + + +/** + * Implements a 32-bit indirect call. + * + * @param uNewPC The new program counter (RIP) value (loaded from the + * operand). + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC) +{ + uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr; + if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit) + return iemRaiseGeneralProtectionFault0(pVCpu); + + VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + pVCpu->cpum.GstCtx.rip = uNewPC; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + +#ifndef IEM_WITH_CODE_TLB + /* Flush the prefetch buffer. */ + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return VINF_SUCCESS; +} + + +/** + * Implements a 32-bit relative call. + * + * @param offDisp The displacment offset. + */ +IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp) +{ + uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr; + uint32_t uNewPC = uOldPC + offDisp; + if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit) + return iemRaiseGeneralProtectionFault0(pVCpu); + + VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + pVCpu->cpum.GstCtx.rip = uNewPC; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + +#ifndef IEM_WITH_CODE_TLB + /* Flush the prefetch buffer. */ + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return VINF_SUCCESS; +} + + +/** + * Implements a 64-bit indirect call. + * + * @param uNewPC The new program counter (RIP) value (loaded from the + * operand). + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC) +{ + uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr; + if (!IEM_IS_CANONICAL(uNewPC)) + return iemRaiseGeneralProtectionFault0(pVCpu); + + VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + pVCpu->cpum.GstCtx.rip = uNewPC; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + +#ifndef IEM_WITH_CODE_TLB + /* Flush the prefetch buffer. */ + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return VINF_SUCCESS; +} + + +/** + * Implements a 64-bit relative call. + * + * @param offDisp The displacment offset. + */ +IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp) +{ + uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr; + uint64_t uNewPC = uOldPC + offDisp; + if (!IEM_IS_CANONICAL(uNewPC)) + return iemRaiseNotCanonical(pVCpu); + + VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + pVCpu->cpum.GstCtx.rip = uNewPC; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + +#ifndef IEM_WITH_CODE_TLB + /* Flush the prefetch buffer. */ + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Implements far jumps and calls thru task segments (TSS). + * + * @param uSel The selector. + * @param enmBranch The kind of branching we're performing. + * @param enmEffOpSize The effective operand size. + * @param pDesc The descriptor corresponding to @a uSel. The type is + * task gate. + */ +IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) +{ +#ifndef IEM_IMPLEMENTS_TASKSWITCH + IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); +#else + Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); + Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL + || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL); + RT_NOREF_PV(enmEffOpSize); + IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK); + + if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl + || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL)) + { + Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl, + pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL))); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); + } + + /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not + * far calls (see iemCImpl_callf). Most likely in both cases it should be + * checked here, need testcases. */ + if (!pDesc->Legacy.Gen.u1Present) + { + Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); + } + + uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr; + return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL, + uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc); +#endif +} + + +/** + * Implements far jumps and calls thru task gates. + * + * @param uSel The selector. + * @param enmBranch The kind of branching we're performing. + * @param enmEffOpSize The effective operand size. + * @param pDesc The descriptor corresponding to @a uSel. The type is + * task gate. + */ +IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) +{ +#ifndef IEM_IMPLEMENTS_TASKSWITCH + IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); +#else + Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); + RT_NOREF_PV(enmEffOpSize); + IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK); + + if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl + || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL)) + { + Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl, + pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL))); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); + } + + /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not + * far calls (see iemCImpl_callf). Most likely in both cases it should be + * checked here, need testcases. */ + if (!pDesc->Legacy.Gen.u1Present) + { + Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); + } + + /* + * Fetch the new TSS descriptor from the GDT. + */ + RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel; + if (uSelTss & X86_SEL_LDT) + { + Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); + } + + IEMSELDESC TssDesc; + VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK) + { + Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss, + TssDesc.Legacy.Gate.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); + } + + if (!TssDesc.Legacy.Gate.u1Present) + { + Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL); + } + + uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr; + return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL, + uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc); +#endif +} + + +/** + * Implements far jumps and calls thru call gates. + * + * @param uSel The selector. + * @param enmBranch The kind of branching we're performing. + * @param enmEffOpSize The effective operand size. + * @param pDesc The descriptor corresponding to @a uSel. The type is + * call gate. + */ +IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) +{ +#define IEM_IMPLEMENTS_CALLGATE +#ifndef IEM_IMPLEMENTS_CALLGATE + IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); +#else + RT_NOREF_PV(enmEffOpSize); + IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK); + + /* NB: Far jumps can only do intra-privilege transfers. Far calls support + * inter-privilege calls and are much more complex. + * + * NB: 64-bit call gate has the same type as a 32-bit call gate! If + * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate + * must be 16-bit or 32-bit. + */ + /** @todo: effective operand size is probably irrelevant here, only the + * call gate bitness matters?? + */ + VBOXSTRICTRC rcStrict; + RTPTRUNION uPtrRet; + uint64_t uNewRsp; + uint64_t uNewRip; + uint64_t u64Base; + uint32_t cbLimit; + RTSEL uNewCS; + IEMSELDESC DescCS; + + AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE); + Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); + Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE + || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE); + + /* Determine the new instruction pointer from the gate descriptor. */ + uNewRip = pDesc->Legacy.Gate.u16OffsetLow + | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16) + | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32); + + /* Perform DPL checks on the gate descriptor. */ + if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl + || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL)) + { + Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl, + pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL))); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + + /** @todo does this catch NULL selectors, too? */ + if (!pDesc->Legacy.Gen.u1Present) + { + Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); + } + + /* + * Fetch the target CS descriptor from the GDT or LDT. + */ + uNewCS = pDesc->Legacy.Gate.u16Sel; + rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Target CS must be a code selector. */ + if ( !DescCS.Legacy.Gen.u1DescType + || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) ) + { + Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n", + uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); + } + + /* Privilege checks on target CS. */ + if (enmBranch == IEMBRANCH_JUMP) + { + if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) + { + if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl) + { + Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n", + uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); + } + } + else + { + if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl) + { + Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n", + uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); + } + } + } + else + { + Assert(enmBranch == IEMBRANCH_CALL); + if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl) + { + Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n", + uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL); + } + } + + /* Additional long mode checks. */ + if (IEM_IS_LONG_MODE(pVCpu)) + { + if (!DescCS.Legacy.Gen.u1Long) + { + Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); + } + + /* L vs D. */ + if ( DescCS.Legacy.Gen.u1Long + && DescCS.Legacy.Gen.u1DefBig) + { + Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); + } + } + + if (!DescCS.Legacy.Gate.u1Present) + { + Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS); + } + + if (enmBranch == IEMBRANCH_JUMP) + { + /** @todo: This is very similar to regular far jumps; merge! */ + /* Jumps are fairly simple... */ + + /* Chop the high bits off if 16-bit gate (Intel says so). */ + if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE) + uNewRip = (uint16_t)uNewRip; + + /* Limit check for non-long segments. */ + cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy); + if (DescCS.Legacy.Gen.u1Long) + u64Base = 0; + else + { + if (uNewRip > cbLimit) + { + Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0); + } + u64Base = X86DESC_BASE(&DescCS.Legacy); + } + + /* Canonical address check. */ + if (!IEM_IS_CANONICAL(uNewRip)) + { + Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip)); + return iemRaiseNotCanonical(pVCpu); + } + + /* + * Ok, everything checked out fine. Now set the accessed bit before + * committing the result into CS, CSHID and RIP. + */ + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* commit */ + pVCpu->cpum.GstCtx.rip = uNewRip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL; + pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */ + pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit; + pVCpu->cpum.GstCtx.cs.u64Base = u64Base; + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + } + else + { + Assert(enmBranch == IEMBRANCH_CALL); + /* Calls are much more complicated. */ + + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl)) + { + uint16_t offNewStack; /* Offset of new stack in TSS. */ + uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */ + uint8_t uNewCSDpl; + uint8_t cbWords; + RTSEL uNewSS; + RTSEL uOldSS; + uint64_t uOldRsp; + IEMSELDESC DescSS; + RTPTRUNION uPtrTSS; + RTGCPTR GCPtrTSS; + RTPTRUNION uPtrParmWds; + RTGCPTR GCPtrParmWds; + + /* More privilege. This is the fun part. */ + Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */ + + /* + * Determine new SS:rSP from the TSS. + */ + Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType); + + /* Figure out where the new stack pointer is stored in the TSS. */ + uNewCSDpl = DescCS.Legacy.Gen.u2Dpl; + if (!IEM_IS_LONG_MODE(pVCpu)) + { + if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY) + { + offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8; + cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0); + } + else + { + Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY); + offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4; + cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0); + } + } + else + { + Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY); + offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0); + cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0); + } + + /* Check against TSS limit. */ + if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit) + { + Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit)); + return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel); + } + + GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack; + rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + if (!IEM_IS_LONG_MODE(pVCpu)) + { + if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY) + { + uNewRsp = uPtrTSS.pu32[0]; + uNewSS = uPtrTSS.pu16[2]; + } + else + { + Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY); + uNewRsp = uPtrTSS.pu16[0]; + uNewSS = uPtrTSS.pu16[1]; + } + } + else + { + Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY); + /* SS will be a NULL selector, but that's valid. */ + uNewRsp = uPtrTSS.pu64[0]; + uNewSS = uNewCSDpl; + } + + /* Done with the TSS now. */ + rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Only used outside of long mode. */ + cbWords = pDesc->Legacy.Gate.u5ParmCount; + + /* If EFER.LMA is 0, there's extra work to do. */ + if (!IEM_IS_LONG_MODE(pVCpu)) + { + if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0) + { + Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n")); + return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS); + } + + /* Grab the new SS descriptor. */ + rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Ensure that CS.DPL == SS.RPL == SS.DPL. */ + if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL)) + || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl)) + { + Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n", + uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl)); + return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS); + } + + /* Ensure new SS is a writable data segment. */ + if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE) + { + Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type)); + return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS); + } + + if (!DescSS.Legacy.Gen.u1Present) + { + Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS)); + return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS); + } + if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE) + cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords); + else + cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords); + } + else + { + /* Just grab the new (NULL) SS descriptor. */ + /** @todo testcase: Check whether the zero GDT entry is actually loaded here + * like we do... */ + rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + cbNewStack = sizeof(uint64_t) * 4; + } + + /** @todo: According to Intel, new stack is checked for enough space first, + * then switched. According to AMD, the stack is switched first and + * then pushes might fault! + * NB: OS/2 Warp 3/4 actively relies on the fact that possible + * incoming stack #PF happens before actual stack switch. AMD is + * either lying or implicitly assumes that new state is committed + * only if and when an instruction doesn't fault. + */ + + /** @todo: According to AMD, CS is loaded first, then SS. + * According to Intel, it's the other way around!? + */ + + /** @todo: Intel and AMD disagree on when exactly the CPL changes! */ + + /* Set the accessed bit before committing new SS. */ + if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* Remember the old SS:rSP and their linear address. */ + uOldSS = pVCpu->cpum.GstCtx.ss.Sel; + uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp; + + GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp; + + /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS) + or #PF, the former is not implemented in this workaround. */ + /** @todo Proper fix callgate target stack exceptions. */ + /** @todo testcase: Cover callgates with partially or fully inaccessible + * target stacks. */ + void *pvNewFrame; + RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack; + rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Commit new SS:rSP. */ + pVCpu->cpum.GstCtx.ss.Sel = uNewSS; + pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS; + pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy); + pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy); + pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy); + pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.rsp = uNewRsp; + pVCpu->iem.s.uCpl = uNewCSDpl; + Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss)); + CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); + + /* At this point the stack access must not fail because new state was already committed. */ + /** @todo this can still fail due to SS.LIMIT not check. */ + rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack, + &uPtrRet.pv, &uNewRsp); + AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)), + VERR_INTERNAL_ERROR_5); + + if (!IEM_IS_LONG_MODE(pVCpu)) + { + if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE) + { + /* Push the old CS:rIP. */ + uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr; + uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */ + + if (cbWords) + { + /* Map the relevant chunk of the old stack. */ + rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Copy the parameter (d)words. */ + for (int i = 0; i < cbWords; ++i) + uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i]; + + /* Unmap the old stack. */ + rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } + + /* Push the old SS:rSP. */ + uPtrRet.pu32[2 + cbWords + 0] = uOldRsp; + uPtrRet.pu32[2 + cbWords + 1] = uOldSS; + } + else + { + Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE); + + /* Push the old CS:rIP. */ + uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr; + uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel; + + if (cbWords) + { + /* Map the relevant chunk of the old stack. */ + rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Copy the parameter words. */ + for (int i = 0; i < cbWords; ++i) + uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i]; + + /* Unmap the old stack. */ + rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } + + /* Push the old SS:rSP. */ + uPtrRet.pu16[2 + cbWords + 0] = uOldRsp; + uPtrRet.pu16[2 + cbWords + 1] = uOldSS; + } + } + else + { + Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE); + + /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */ + uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr; + uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */ + uPtrRet.pu64[2] = uOldRsp; + uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */ + } + + rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); + if (rcStrict != VINF_SUCCESS) + { + Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Chop the high bits off if 16-bit gate (Intel says so). */ + if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE) + uNewRip = (uint16_t)uNewRip; + + /* Limit / canonical check. */ + cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy); + if (!IEM_IS_LONG_MODE(pVCpu)) + { + if (uNewRip > cbLimit) + { + Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0); + } + u64Base = X86DESC_BASE(&DescCS.Legacy); + } + else + { + Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE); + if (!IEM_IS_CANONICAL(uNewRip)) + { + Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip)); + return iemRaiseNotCanonical(pVCpu); + } + u64Base = 0; + } + + /* + * Now set the accessed bit before + * writing the return address to the stack and committing the result into + * CS, CSHID and RIP. + */ + /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* Commit new CS:rIP. */ + pVCpu->cpum.GstCtx.rip = uNewRip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL; + pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; + pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit; + pVCpu->cpum.GstCtx.cs.u64Base = u64Base; + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + } + else + { + /* Same privilege. */ + /** @todo: This is very similar to regular far calls; merge! */ + + /* Check stack first - may #SS(0). */ + /** @todo check how gate size affects pushing of CS! Does callf 16:32 in + * 16-bit code cause a two or four byte CS to be pushed? */ + rcStrict = iemMemStackPushBeginSpecial(pVCpu, + IEM_IS_LONG_MODE(pVCpu) ? 8+8 + : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2, + &uPtrRet.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Chop the high bits off if 16-bit gate (Intel says so). */ + if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE) + uNewRip = (uint16_t)uNewRip; + + /* Limit / canonical check. */ + cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy); + if (!IEM_IS_LONG_MODE(pVCpu)) + { + if (uNewRip > cbLimit) + { + Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0); + } + u64Base = X86DESC_BASE(&DescCS.Legacy); + } + else + { + if (!IEM_IS_CANONICAL(uNewRip)) + { + Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip)); + return iemRaiseNotCanonical(pVCpu); + } + u64Base = 0; + } + + /* + * Now set the accessed bit before + * writing the return address to the stack and committing the result into + * CS, CSHID and RIP. + */ + /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* stack */ + if (!IEM_IS_LONG_MODE(pVCpu)) + { + if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE) + { + uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr; + uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */ + } + else + { + Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE); + uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr; + uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel; + } + } + else + { + Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE); + uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr; + uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */ + } + + rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* commit */ + pVCpu->cpum.GstCtx.rip = uNewRip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL; + pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; + pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit; + pVCpu->cpum.GstCtx.cs.u64Base = u64Base; + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + } + } + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + + /* Flush the prefetch buffer. */ +# ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +# else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +# endif + return VINF_SUCCESS; +#endif +} + + +/** + * Implements far jumps and calls thru system selectors. + * + * @param uSel The selector. + * @param enmBranch The kind of branching we're performing. + * @param enmEffOpSize The effective operand size. + * @param pDesc The descriptor corresponding to @a uSel. + */ +IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) +{ + Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); + Assert((uSel & X86_SEL_MASK_OFF_RPL)); + IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK); + + if (IEM_IS_LONG_MODE(pVCpu)) + switch (pDesc->Legacy.Gen.u4Type) + { + case AMD64_SEL_TYPE_SYS_CALL_GATE: + return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc); + + default: + case AMD64_SEL_TYPE_SYS_LDT: + case AMD64_SEL_TYPE_SYS_TSS_BUSY: + case AMD64_SEL_TYPE_SYS_TSS_AVAIL: + case AMD64_SEL_TYPE_SYS_TRAP_GATE: + case AMD64_SEL_TYPE_SYS_INT_GATE: + Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + + switch (pDesc->Legacy.Gen.u4Type) + { + case X86_SEL_TYPE_SYS_286_CALL_GATE: + case X86_SEL_TYPE_SYS_386_CALL_GATE: + return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc); + + case X86_SEL_TYPE_SYS_TASK_GATE: + return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc); + + case X86_SEL_TYPE_SYS_286_TSS_AVAIL: + case X86_SEL_TYPE_SYS_386_TSS_AVAIL: + return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc); + + case X86_SEL_TYPE_SYS_286_TSS_BUSY: + Log(("branch %04x -> busy 286 TSS\n", uSel)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + + case X86_SEL_TYPE_SYS_386_TSS_BUSY: + Log(("branch %04x -> busy 386 TSS\n", uSel)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + + default: + case X86_SEL_TYPE_SYS_LDT: + case X86_SEL_TYPE_SYS_286_INT_GATE: + case X86_SEL_TYPE_SYS_286_TRAP_GATE: + case X86_SEL_TYPE_SYS_386_INT_GATE: + case X86_SEL_TYPE_SYS_386_TRAP_GATE: + Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } +} + + +/** + * Implements far jumps. + * + * @param uSel The selector. + * @param offSeg The segment offset. + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize) +{ + NOREF(cbInstr); + Assert(offSeg <= UINT32_MAX); + + /* + * Real mode and V8086 mode are easy. The only snag seems to be that + * CS.limit doesn't change and the limit check is done against the current + * limit. + */ + /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August + * 1998) that up to and including the Intel 486, far control + * transfers in real mode set default CS attributes (0x93) and also + * set a 64K segment limit. Starting with the Pentium, the + * attributes and limit are left alone but the access rights are + * ignored. We only implement the Pentium+ behavior. + * */ + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT); + if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit) + { + Log(("iemCImpl_FarJmp: 16-bit limit\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */ + pVCpu->cpum.GstCtx.rip = offSeg; + else + pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX; + pVCpu->cpum.GstCtx.cs.Sel = uSel; + pVCpu->cpum.GstCtx.cs.ValidSel = uSel; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + return VINF_SUCCESS; + } + + /* + * Protected mode. Need to parse the specified descriptor... + */ + if (!(uSel & X86_SEL_MASK_OFF_RPL)) + { + Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Fetch the descriptor. */ + IEMSELDESC Desc; + VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Is it there? */ + if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */ + { + Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); + } + + /* + * Deal with it according to its type. We do the standard code selectors + * here and dispatch the system selectors to worker functions. + */ + if (!Desc.Legacy.Gen.u1DescType) + return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc); + + /* Only code segments. */ + if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) + { + Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + + /* L vs D. */ + if ( Desc.Legacy.Gen.u1Long + && Desc.Legacy.Gen.u1DefBig + && IEM_IS_LONG_MODE(pVCpu)) + { + Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + + /* DPL/RPL/CPL check, where conforming segments makes a difference. */ + if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) + { + if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl) + { + Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n", + uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + } + else + { + if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl) + { + Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl) + { + Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + } + + /* Chop the high bits if 16-bit (Intel says so). */ + if (enmEffOpSize == IEMMODE_16BIT) + offSeg &= UINT16_MAX; + + /* Limit check. (Should alternatively check for non-canonical addresses + here, but that is ruled out by offSeg being 32-bit, right?) */ + uint64_t u64Base; + uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy); + if (Desc.Legacy.Gen.u1Long) + u64Base = 0; + else + { + if (offSeg > cbLimit) + { + Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit)); + /** @todo: Intel says this is #GP(0)! */ + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + u64Base = X86DESC_BASE(&Desc.Legacy); + } + + /* + * Ok, everything checked out fine. Now set the accessed bit before + * committing the result into CS, CSHID and RIP. + */ + if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* commit */ + pVCpu->cpum.GstCtx.rip = offSeg; + pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL; + pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */ + pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit; + pVCpu->cpum.GstCtx.cs.u64Base = u64Base; + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + /** @todo check if the hidden bits are loaded correctly for 64-bit + * mode. */ + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Implements far calls. + * + * This very similar to iemCImpl_FarJmp. + * + * @param uSel The selector. + * @param offSeg The segment offset. + * @param enmEffOpSize The operand size (in case we need it). + */ +IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize) +{ + VBOXSTRICTRC rcStrict; + uint64_t uNewRsp; + RTPTRUNION uPtrRet; + + /* + * Real mode and V8086 mode are easy. The only snag seems to be that + * CS.limit doesn't change and the limit check is done against the current + * limit. + */ + /** @todo See comment for similar code in iemCImpl_FarJmp */ + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT); + + /* Check stack first - may #SS(0). */ + rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2, + &uPtrRet.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Check the target address range. */ + if (offSeg > UINT32_MAX) + return iemRaiseGeneralProtectionFault0(pVCpu); + + /* Everything is fine, push the return address. */ + if (enmEffOpSize == IEMMODE_16BIT) + { + uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr; + uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel; + } + else + { + uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr; + uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel; + } + rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Branch. */ + pVCpu->cpum.GstCtx.rip = offSeg; + pVCpu->cpum.GstCtx.cs.Sel = uSel; + pVCpu->cpum.GstCtx.cs.ValidSel = uSel; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + return VINF_SUCCESS; + } + + /* + * Protected mode. Need to parse the specified descriptor... + */ + if (!(uSel & X86_SEL_MASK_OFF_RPL)) + { + Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Fetch the descriptor. */ + IEMSELDESC Desc; + rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Deal with it according to its type. We do the standard code selectors + * here and dispatch the system selectors to worker functions. + */ + if (!Desc.Legacy.Gen.u1DescType) + return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc); + + /* Only code segments. */ + if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) + { + Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + + /* L vs D. */ + if ( Desc.Legacy.Gen.u1Long + && Desc.Legacy.Gen.u1DefBig + && IEM_IS_LONG_MODE(pVCpu)) + { + Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + + /* DPL/RPL/CPL check, where conforming segments makes a difference. */ + if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) + { + if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl) + { + Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n", + uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + } + else + { + if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl) + { + Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl) + { + Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + } + + /* Is it there? */ + if (!Desc.Legacy.Gen.u1Present) + { + Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); + } + + /* Check stack first - may #SS(0). */ + /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in + * 16-bit code cause a two or four byte CS to be pushed? */ + rcStrict = iemMemStackPushBeginSpecial(pVCpu, + enmEffOpSize == IEMMODE_64BIT ? 8+8 + : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2, + &uPtrRet.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Chop the high bits if 16-bit (Intel says so). */ + if (enmEffOpSize == IEMMODE_16BIT) + offSeg &= UINT16_MAX; + + /* Limit / canonical check. */ + uint64_t u64Base; + uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy); + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + { + if (!IEM_IS_CANONICAL(offSeg)) + { + Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg)); + return iemRaiseNotCanonical(pVCpu); + } + u64Base = 0; + } + else + { + if (offSeg > cbLimit) + { + Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit)); + /** @todo: Intel says this is #GP(0)! */ + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + u64Base = X86DESC_BASE(&Desc.Legacy); + } + + /* + * Now set the accessed bit before + * writing the return address to the stack and committing the result into + * CS, CSHID and RIP. + */ + /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ + if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* stack */ + if (enmEffOpSize == IEMMODE_16BIT) + { + uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr; + uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel; + } + else if (enmEffOpSize == IEMMODE_32BIT) + { + uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr; + uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */ + } + else + { + uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr; + uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */ + } + rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* commit */ + pVCpu->cpum.GstCtx.rip = offSeg; + pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL; + pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; + pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit; + pVCpu->cpum.GstCtx.cs.u64Base = u64Base; + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + /** @todo check if the hidden bits are loaded correctly for 64-bit + * mode. */ + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return VINF_SUCCESS; +} + + +/** + * Implements retf. + * + * @param enmEffOpSize The effective operand size. + * @param cbPop The amount of arguments to pop from the stack + * (bytes). + */ +IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop) +{ + VBOXSTRICTRC rcStrict; + RTCPTRUNION uPtrFrame; + uint64_t uNewRsp; + uint64_t uNewRip; + uint16_t uNewCs; + NOREF(cbInstr); + + /* + * Read the stack values first. + */ + uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2 + : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8; + rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + if (enmEffOpSize == IEMMODE_16BIT) + { + uNewRip = uPtrFrame.pu16[0]; + uNewCs = uPtrFrame.pu16[1]; + } + else if (enmEffOpSize == IEMMODE_32BIT) + { + uNewRip = uPtrFrame.pu32[0]; + uNewCs = uPtrFrame.pu16[2]; + } + else + { + uNewRip = uPtrFrame.pu64[0]; + uNewCs = uPtrFrame.pu16[4]; + } + rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { /* extremely likely */ } + else + return rcStrict; + + /* + * Real mode and V8086 mode are easy. + */ + /** @todo See comment for similar code in iemCImpl_FarJmp */ + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); + /** @todo check how this is supposed to work if sp=0xfffe. */ + + /* Check the limit of the new EIP. */ + /** @todo Intel pseudo code only does the limit check for 16-bit + * operands, AMD does not make any distinction. What is right? */ + if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit) + return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION); + + /* commit the operation. */ + pVCpu->cpum.GstCtx.rsp = uNewRsp; + pVCpu->cpum.GstCtx.rip = uNewRip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + if (cbPop) + iemRegAddToRsp(pVCpu, cbPop); + return VINF_SUCCESS; + } + + /* + * Protected mode is complicated, of course. + */ + if (!(uNewCs & X86_SEL_MASK_OFF_RPL)) + { + Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR); + + /* Fetch the descriptor. */ + IEMSELDESC DescCs; + rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Can only return to a code selector. */ + if ( !DescCs.Legacy.Gen.u1DescType + || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) ) + { + Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n", + uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + + /* L vs D. */ + if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */ + && DescCs.Legacy.Gen.u1DefBig + && IEM_IS_LONG_MODE(pVCpu)) + { + Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + + /* DPL/RPL/CPL checks. */ + if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl) + { + Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + + if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) + { + if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl) + { + Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n", + uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL))); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + } + else + { + if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl) + { + Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n", + uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL))); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + } + + /* Is it there? */ + if (!DescCs.Legacy.Gen.u1Present) + { + Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); + } + + /* + * Return to outer privilege? (We'll typically have entered via a call gate.) + */ + if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl) + { + /* Read the outer stack pointer stored *after* the parameters. */ + rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + uPtrFrame.pu8 += cbPop; /* Skip the parameters. */ + + uint16_t uNewOuterSs; + uint64_t uNewOuterRsp; + if (enmEffOpSize == IEMMODE_16BIT) + { + uNewOuterRsp = uPtrFrame.pu16[0]; + uNewOuterSs = uPtrFrame.pu16[1]; + } + else if (enmEffOpSize == IEMMODE_32BIT) + { + uNewOuterRsp = uPtrFrame.pu32[0]; + uNewOuterSs = uPtrFrame.pu16[2]; + } + else + { + uNewOuterRsp = uPtrFrame.pu64[0]; + uNewOuterSs = uPtrFrame.pu16[4]; + } + uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */ + rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { /* extremely likely */ } + else + return rcStrict; + + /* Check for NULL stack selector (invalid in ring-3 and non-long mode) + and read the selector. */ + IEMSELDESC DescSs; + if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL)) + { + if ( !DescCs.Legacy.Gen.u1Long + || (uNewOuterSs & X86_SEL_RPL) == 3) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n", + uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */ + iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL)); + } + else + { + /* Fetch the descriptor for the new stack segment. */ + rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + + /* Check that RPL of stack and code selectors match. */ + if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL)) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); + } + + /* Must be a writable data segment. */ + if ( !DescSs.Legacy.Gen.u1DescType + || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) + || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) ) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n", + uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); + } + + /* L vs D. (Not mentioned by intel.) */ + if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */ + && DescSs.Legacy.Gen.u1DefBig + && IEM_IS_LONG_MODE(pVCpu)) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n", + uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); + } + + /* DPL/RPL/CPL checks. */ + if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL)) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n", + uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); + } + + /* Is it there? */ + if (!DescSs.Legacy.Gen.u1Present) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); + } + + /* Calc SS limit.*/ + uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy); + + /* Is RIP canonical or within CS.limit? */ + uint64_t u64Base; + uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy); + + /** @todo Testcase: Is this correct? */ + if ( DescCs.Legacy.Gen.u1Long + && IEM_IS_LONG_MODE(pVCpu) ) + { + if (!IEM_IS_CANONICAL(uNewRip)) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); + return iemRaiseNotCanonical(pVCpu); + } + u64Base = 0; + } + else + { + if (uNewRip > cbLimitCs) + { + Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n", + uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs)); + /** @todo: Intel says this is #GP(0)! */ + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + u64Base = X86DESC_BASE(&DescCs.Legacy); + } + + /* + * Now set the accessed bit before + * writing the return address to the stack and committing the result into + * CS, CSHID and RIP. + */ + /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */ + if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */ + if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* commit */ + if (enmEffOpSize == IEMMODE_16BIT) + pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */ + else + pVCpu->cpum.GstCtx.rip = uNewRip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs; + pVCpu->cpum.GstCtx.cs.u64Base = u64Base; + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs; + pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs; + pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy); + pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs; + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + pVCpu->cpum.GstCtx.ss.u64Base = 0; + else + pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy); + if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig) + pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp; + else + pVCpu->cpum.GstCtx.rsp = uNewOuterRsp; + + pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs); + + /** @todo check if the hidden bits are loaded correctly for 64-bit + * mode. */ + + if (cbPop) + iemRegAddToRsp(pVCpu, cbPop); + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + + /* Done! */ + } + /* + * Return to the same privilege level + */ + else + { + /* Limit / canonical check. */ + uint64_t u64Base; + uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy); + + /** @todo Testcase: Is this correct? */ + if ( DescCs.Legacy.Gen.u1Long + && IEM_IS_LONG_MODE(pVCpu) ) + { + if (!IEM_IS_CANONICAL(uNewRip)) + { + Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip)); + return iemRaiseNotCanonical(pVCpu); + } + u64Base = 0; + } + else + { + if (uNewRip > cbLimitCs) + { + Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs)); + /** @todo: Intel says this is #GP(0)! */ + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + u64Base = X86DESC_BASE(&DescCs.Legacy); + } + + /* + * Now set the accessed bit before + * writing the return address to the stack and committing the result into + * CS, CSHID and RIP. + */ + /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ + if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + /** @todo check what VT-x and AMD-V does. */ + DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* commit */ + if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig) + pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp; + else + pVCpu->cpum.GstCtx.rsp = uNewRsp; + if (enmEffOpSize == IEMMODE_16BIT) + pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */ + else + pVCpu->cpum.GstCtx.rip = uNewRip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs; + pVCpu->cpum.GstCtx.cs.u64Base = u64Base; + /** @todo check if the hidden bits are loaded correctly for 64-bit + * mode. */ + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + if (cbPop) + iemRegAddToRsp(pVCpu, cbPop); + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + } + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return VINF_SUCCESS; +} + + +/** + * Implements retn. + * + * We're doing this in C because of the \#GP that might be raised if the popped + * program counter is out of bounds. + * + * @param enmEffOpSize The effective operand size. + * @param cbPop The amount of arguments to pop from the stack + * (bytes). + */ +IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop) +{ + NOREF(cbInstr); + + /* Fetch the RSP from the stack. */ + VBOXSTRICTRC rcStrict; + RTUINT64U NewRip; + RTUINT64U NewRsp; + NewRsp.u = pVCpu->cpum.GstCtx.rsp; + + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + NewRip.u = 0; + rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp); + break; + case IEMMODE_32BIT: + NewRip.u = 0; + rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp); + break; + case IEMMODE_64BIT: + rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp); + break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Check the new RSP before loading it. */ + /** @todo Should test this as the intel+amd pseudo code doesn't mention half + * of it. The canonical test is performed here and for call. */ + if (enmEffOpSize != IEMMODE_64BIT) + { + if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit) + { + Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit)); + return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION); + } + } + else + { + if (!IEM_IS_CANONICAL(NewRip.u)) + { + Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u)); + return iemRaiseNotCanonical(pVCpu); + } + } + + /* Apply cbPop */ + if (cbPop) + iemRegAddToRspEx(pVCpu, &NewRsp, cbPop); + + /* Commit it. */ + pVCpu->cpum.GstCtx.rip = NewRip.u; + pVCpu->cpum.GstCtx.rsp = NewRsp.u; + pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0; + + /* Flush the prefetch buffer. */ +#ifndef IEM_WITH_CODE_TLB + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Implements enter. + * + * We're doing this in C because the instruction is insane, even for the + * u8NestingLevel=0 case dealing with the stack is tedious. + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters) +{ + /* Push RBP, saving the old value in TmpRbp. */ + RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp; + RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp; + RTUINT64U NewRbp; + VBOXSTRICTRC rcStrict; + if (enmEffOpSize == IEMMODE_64BIT) + { + rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp); + NewRbp = NewRsp; + } + else if (enmEffOpSize == IEMMODE_32BIT) + { + rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp); + NewRbp = NewRsp; + } + else + { + rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp); + NewRbp = TmpRbp; + NewRbp.Words.w0 = NewRsp.Words.w0; + } + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Copy the parameters (aka nesting levels by Intel). */ + cParameters &= 0x1f; + if (cParameters > 0) + { + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig) + TmpRbp.DWords.dw0 -= 2; + else + TmpRbp.Words.w0 -= 2; + do + { + uint16_t u16Tmp; + rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp); + if (rcStrict != VINF_SUCCESS) + break; + rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp); + } while (--cParameters > 0 && rcStrict == VINF_SUCCESS); + break; + + case IEMMODE_32BIT: + if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig) + TmpRbp.DWords.dw0 -= 4; + else + TmpRbp.Words.w0 -= 4; + do + { + uint32_t u32Tmp; + rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp); + if (rcStrict != VINF_SUCCESS) + break; + rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp); + } while (--cParameters > 0 && rcStrict == VINF_SUCCESS); + break; + + case IEMMODE_64BIT: + TmpRbp.u -= 8; + do + { + uint64_t u64Tmp; + rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp); + if (rcStrict != VINF_SUCCESS) + break; + rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp); + } while (--cParameters > 0 && rcStrict == VINF_SUCCESS); + break; + + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + if (rcStrict != VINF_SUCCESS) + return VINF_SUCCESS; + + /* Push the new RBP */ + if (enmEffOpSize == IEMMODE_64BIT) + rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp); + else if (enmEffOpSize == IEMMODE_32BIT) + rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp); + else + rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + } + + /* Recalc RSP. */ + iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame); + + /** @todo Should probe write access at the new RSP according to AMD. */ + + /* Commit it. */ + pVCpu->cpum.GstCtx.rbp = NewRbp.u; + pVCpu->cpum.GstCtx.rsp = NewRsp.u; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + + return VINF_SUCCESS; +} + + + +/** + * Implements leave. + * + * We're doing this in C because messing with the stack registers is annoying + * since they depends on SS attributes. + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize) +{ + /* Calculate the intermediate RSP from RBP and the stack attributes. */ + RTUINT64U NewRsp; + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + NewRsp.u = pVCpu->cpum.GstCtx.rbp; + else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig) + NewRsp.u = pVCpu->cpum.GstCtx.ebp; + else + { + /** @todo Check that LEAVE actually preserve the high EBP bits. */ + NewRsp.u = pVCpu->cpum.GstCtx.rsp; + NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp; + } + + /* Pop RBP according to the operand size. */ + VBOXSTRICTRC rcStrict; + RTUINT64U NewRbp; + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + NewRbp.u = pVCpu->cpum.GstCtx.rbp; + rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp); + break; + case IEMMODE_32BIT: + NewRbp.u = 0; + rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp); + break; + case IEMMODE_64BIT: + rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp); + break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + + /* Commit it. */ + pVCpu->cpum.GstCtx.rbp = NewRbp.u; + pVCpu->cpum.GstCtx.rsp = NewRsp.u; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + + return VINF_SUCCESS; +} + + +/** + * Implements int3 and int XX. + * + * @param u8Int The interrupt vector number. + * @param enmInt The int instruction type. + */ +IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt) +{ + Assert(pVCpu->iem.s.cXcptRecursions == 0); + return iemRaiseXcptOrInt(pVCpu, + cbInstr, + u8Int, + IEM_XCPT_FLAGS_T_SOFT_INT | enmInt, + 0, + 0); +} + + +/** + * Implements iret for real mode and V8086 mode. + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize) +{ + X86EFLAGS Efl; + Efl.u = IEMMISC_GET_EFL(pVCpu); + NOREF(cbInstr); + + /* + * iret throws an exception if VME isn't enabled. + */ + if ( Efl.Bits.u1VM + && Efl.Bits.u2IOPL != 3 + && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)) + return iemRaiseGeneralProtectionFault0(pVCpu); + + /* + * Do the stack bits, but don't commit RSP before everything checks + * out right. + */ + Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); + VBOXSTRICTRC rcStrict; + RTCPTRUNION uFrame; + uint16_t uNewCs; + uint32_t uNewEip; + uint32_t uNewFlags; + uint64_t uNewRsp; + if (enmEffOpSize == IEMMODE_32BIT) + { + rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewEip = uFrame.pu32[0]; + if (uNewEip > UINT16_MAX) + return iemRaiseGeneralProtectionFault0(pVCpu); + + uNewCs = (uint16_t)uFrame.pu32[1]; + uNewFlags = uFrame.pu32[2]; + uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF + | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT + | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/ + | X86_EFL_ID; + if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) + uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP); + uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1); + } + else + { + rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewEip = uFrame.pu16[0]; + uNewCs = uFrame.pu16[1]; + uNewFlags = uFrame.pu16[2]; + uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF + | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT; + uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF); + /** @todo The intel pseudo code does not indicate what happens to + * reserved flags. We just ignore them. */ + /* Ancient CPU adjustments: See iemCImpl_popf. */ + if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286) + uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL); + } + rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { /* extremely likely */ } + else + return rcStrict; + + /** @todo Check how this is supposed to work if sp=0xfffe. */ + Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n", + uNewCs, uNewEip, uNewFlags, uNewRsp)); + + /* + * Check the limit of the new EIP. + */ + /** @todo Only the AMD pseudo code check the limit here, what's + * right? */ + if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit) + return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION); + + /* + * V8086 checks and flag adjustments + */ + if (Efl.Bits.u1VM) + { + if (Efl.Bits.u2IOPL == 3) + { + /* Preserve IOPL and clear RF. */ + uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF); + uNewFlags |= Efl.u & (X86_EFL_IOPL); + } + else if ( enmEffOpSize == IEMMODE_16BIT + && ( !(uNewFlags & X86_EFL_IF) + || !Efl.Bits.u1VIP ) + && !(uNewFlags & X86_EFL_TF) ) + { + /* Move IF to VIF, clear RF and preserve IF and IOPL.*/ + uNewFlags &= ~X86_EFL_VIF; + uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9); + uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF); + uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL); + } + else + return iemRaiseGeneralProtectionFault0(pVCpu); + Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags)); + } + + /* + * Commit the operation. + */ +#ifdef DBGFTRACE_ENABLED + RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx", + pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp); +#endif + pVCpu->cpum.GstCtx.rsp = uNewRsp; + pVCpu->cpum.GstCtx.rip = uNewEip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4; + /** @todo do we load attribs and limit as well? */ + Assert(uNewFlags & X86_EFL_1); + IEMMISC_SET_EFL(pVCpu, uNewFlags); + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Loads a segment register when entering V8086 mode. + * + * @param pSReg The segment register. + * @param uSeg The segment to load. + */ +static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg) +{ + pSReg->Sel = uSeg; + pSReg->ValidSel = uSeg; + pSReg->fFlags = CPUMSELREG_FLAGS_VALID; + pSReg->u64Base = (uint32_t)uSeg << 4; + pSReg->u32Limit = 0xffff; + pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */ + /** @todo Testcase: Check if VT-x really needs this and what it does itself when + * IRET'ing to V8086. */ +} + + +/** + * Implements iret for protected mode returning to V8086 mode. + * + * @param uNewEip The new EIP. + * @param uNewCs The new CS. + * @param uNewFlags The new EFLAGS. + * @param uNewRsp The RSP after the initial IRET frame. + * + * @note This can only be a 32-bit iret du to the X86_EFL_VM position. + */ +IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp) +{ + RT_NOREF_PV(cbInstr); + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK); + + /* + * Pop the V8086 specific frame bits off the stack. + */ + VBOXSTRICTRC rcStrict; + RTCPTRUNION uFrame; + rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uint32_t uNewEsp = uFrame.pu32[0]; + uint16_t uNewSs = uFrame.pu32[1]; + uint16_t uNewEs = uFrame.pu32[2]; + uint16_t uNewDs = uFrame.pu32[3]; + uint16_t uNewFs = uFrame.pu32[4]; + uint16_t uNewGs = uFrame.pu32[5]; + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */ + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Commit the operation. + */ + uNewFlags &= X86_EFL_LIVE_MASK; + uNewFlags |= X86_EFL_RA1_MASK; +#ifdef DBGFTRACE_ENABLED + RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x", + pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp); +#endif + Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp)); + + IEMMISC_SET_EFL(pVCpu, uNewFlags); + iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs); + iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs); + iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs); + iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs); + iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs); + iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs); + pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip; + pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */ + pVCpu->iem.s.uCpl = 3; + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Implements iret for protected mode returning via a nested task. + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize) +{ + Log7(("iemCImpl_iret_prot_NestedTask:\n")); +#ifndef IEM_IMPLEMENTS_TASKSWITCH + IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); +#else + RT_NOREF_PV(enmEffOpSize); + + /* + * Read the segment selector in the link-field of the current TSS. + */ + RTSEL uSelRet; + VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Fetch the returning task's TSS descriptor from the GDT. + */ + if (uSelRet & X86_SEL_LDT) + { + Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet)); + return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet); + } + + IEMSELDESC TssDesc; + rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + if (TssDesc.Legacy.Gate.u1DescType) + { + Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet)); + return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL); + } + + if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY + && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY) + { + Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type)); + return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL); + } + + if (!TssDesc.Legacy.Gate.u1Present) + { + Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL); + } + + uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr; + return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */, + 0 /* uCr2 */, uSelRet, &TssDesc); +#endif +} + + +/** + * Implements iret for protected mode + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize) +{ + NOREF(cbInstr); + Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); + + /* + * Nested task return. + */ + if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT) + return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize); + + /* + * Normal return. + * + * Do the stack bits, but don't commit RSP before everything checks + * out right. + */ + Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); + VBOXSTRICTRC rcStrict; + RTCPTRUNION uFrame; + uint16_t uNewCs; + uint32_t uNewEip; + uint32_t uNewFlags; + uint64_t uNewRsp; + if (enmEffOpSize == IEMMODE_32BIT) + { + rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewEip = uFrame.pu32[0]; + uNewCs = (uint16_t)uFrame.pu32[1]; + uNewFlags = uFrame.pu32[2]; + } + else + { + rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewEip = uFrame.pu16[0]; + uNewCs = uFrame.pu16[1]; + uNewFlags = uFrame.pu16[2]; + } + rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */ + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { /* extremely likely */ } + else + return rcStrict; + Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl)); + + /* + * We're hopefully not returning to V8086 mode... + */ + if ( (uNewFlags & X86_EFL_VM) + && pVCpu->iem.s.uCpl == 0) + { + Assert(enmEffOpSize == IEMMODE_32BIT); + return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp); + } + + /* + * Protected mode. + */ + /* Read the CS descriptor. */ + if (!(uNewCs & X86_SEL_MASK_OFF_RPL)) + { + Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + IEMSELDESC DescCS; + rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + { + Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Must be a code descriptor. */ + if (!DescCS.Legacy.Gen.u1DescType) + { + Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) + { + Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + + /* Privilege checks. */ + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)) + { + if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl) + { + Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + } + else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl) + { + Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl) + { + Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + + /* Present? */ + if (!DescCS.Legacy.Gen.u1Present) + { + Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); + } + + uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy); + + /* + * Return to outer level? + */ + if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl) + { + uint16_t uNewSS; + uint32_t uNewESP; + if (enmEffOpSize == IEMMODE_32BIT) + { + rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; +/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether + * 16-bit or 32-bit are being loaded into SP depends on the D/B + * bit of the popped SS selector it turns out. */ + uNewESP = uFrame.pu32[0]; + uNewSS = (uint16_t)uFrame.pu32[1]; + } + else + { + rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewESP = uFrame.pu16[0]; + uNewSS = uFrame.pu16[1]; + } + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP)); + + /* Read the SS descriptor. */ + if (!(uNewSS & X86_SEL_MASK_OFF_RPL)) + { + Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + IEMSELDESC DescSS; + rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */ + if (rcStrict != VINF_SUCCESS) + { + Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n", + uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Privilege checks. */ + if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL)) + { + Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); + } + if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL)) + { + Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n", + uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); + } + + /* Must be a writeable data segment descriptor. */ + if (!DescSS.Legacy.Gen.u1DescType) + { + Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n", + uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); + } + if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE) + { + Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n", + uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); + } + + /* Present? */ + if (!DescSS.Legacy.Gen.u1Present) + { + Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP)); + return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS); + } + + uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy); + + /* Check EIP. */ + if (uNewEip > cbLimitCS) + { + Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n", + uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS)); + /** @todo: Which is it, #GP(0) or #GP(sel)? */ + return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); + } + + /* + * Commit the changes, marking CS and SS accessed first since + * that may fail. + */ + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF + | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT; + if (enmEffOpSize != IEMMODE_16BIT) + fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID; + if (pVCpu->iem.s.uCpl == 0) + fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */ + else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL) + fEFlagsMask |= X86_EFL_IF; + if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) + fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP); + uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu); + fEFlagsNew &= ~fEFlagsMask; + fEFlagsNew |= uNewFlags & fEFlagsMask; +#ifdef DBGFTRACE_ENABLED + RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x", + pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, + uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP); +#endif + + IEMMISC_SET_EFL(pVCpu, fEFlagsNew); + pVCpu->cpum.GstCtx.rip = uNewEip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS; + pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy); + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + + pVCpu->cpum.GstCtx.ss.Sel = uNewSS; + pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS; + pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy); + pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs; + pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy); + if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig) + pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP; + else + pVCpu->cpum.GstCtx.rsp = uNewESP; + + pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL; + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs); + + /* Done! */ + + } + /* + * Return to the same level. + */ + else + { + /* Check EIP. */ + if (uNewEip > cbLimitCS) + { + Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS)); + /** @todo: Which is it, #GP(0) or #GP(sel)? */ + return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); + } + + /* + * Commit the changes, marking CS first since it may fail. + */ + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + X86EFLAGS NewEfl; + NewEfl.u = IEMMISC_GET_EFL(pVCpu); + uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF + | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT; + if (enmEffOpSize != IEMMODE_16BIT) + fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID; + if (pVCpu->iem.s.uCpl == 0) + fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */ + else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL) + fEFlagsMask |= X86_EFL_IF; + if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) + fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP); + NewEfl.u &= ~fEFlagsMask; + NewEfl.u |= fEFlagsMask & uNewFlags; +#ifdef DBGFTRACE_ENABLED + RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx", + pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, + uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp); +#endif + + IEMMISC_SET_EFL(pVCpu, NewEfl.u); + pVCpu->cpum.GstCtx.rip = uNewEip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS; + pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy); + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig) + pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp; + else + pVCpu->cpum.GstCtx.rsp = uNewRsp; + /* Done! */ + } + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Implements iret for long mode + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize) +{ + NOREF(cbInstr); + + /* + * Nested task return is not supported in long mode. + */ + if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT) + { + Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Normal return. + * + * Do the stack bits, but don't commit RSP before everything checks + * out right. + */ + VBOXSTRICTRC rcStrict; + RTCPTRUNION uFrame; + uint64_t uNewRip; + uint16_t uNewCs; + uint16_t uNewSs; + uint32_t uNewFlags; + uint64_t uNewRsp; + if (enmEffOpSize == IEMMODE_64BIT) + { + rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewRip = uFrame.pu64[0]; + uNewCs = (uint16_t)uFrame.pu64[1]; + uNewFlags = (uint32_t)uFrame.pu64[2]; + uNewRsp = uFrame.pu64[3]; + uNewSs = (uint16_t)uFrame.pu64[4]; + } + else if (enmEffOpSize == IEMMODE_32BIT) + { + rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewRip = uFrame.pu32[0]; + uNewCs = (uint16_t)uFrame.pu32[1]; + uNewFlags = uFrame.pu32[2]; + uNewRsp = uFrame.pu32[3]; + uNewSs = (uint16_t)uFrame.pu32[4]; + } + else + { + Assert(enmEffOpSize == IEMMODE_16BIT); + rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + uNewRip = uFrame.pu16[0]; + uNewCs = uFrame.pu16[1]; + uNewFlags = uFrame.pu16[2]; + uNewRsp = uFrame.pu16[3]; + uNewSs = uFrame.pu16[4]; + } + rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */ + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { /* extremely like */ } + else + return rcStrict; + Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp)); + + /* + * Check stuff. + */ + /* Read the CS descriptor. */ + if (!(uNewCs & X86_SEL_MASK_OFF_RPL)) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + IEMSELDESC DescCS; + rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP); + if (rcStrict != VINF_SUCCESS) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n", + uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* Must be a code descriptor. */ + if ( !DescCS.Legacy.Gen.u1DescType + || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n", + uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + + /* Privilege checks. */ + uint8_t const uNewCpl = uNewCs & X86_SEL_RPL; + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)) + { + if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl) + { + Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + } + else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl) + { + Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl) + { + Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); + } + + /* Present? */ + if (!DescCS.Legacy.Gen.u1Present) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); + } + + uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy); + + /* Read the SS descriptor. */ + IEMSELDESC DescSS; + if (!(uNewSs & X86_SEL_MASK_OFF_RPL)) + { + if ( !DescCS.Legacy.Gen.u1Long + || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */ + || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */ + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + DescSS.Legacy.u = 0; + } + else + { + rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */ + if (rcStrict != VINF_SUCCESS) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n", + uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } + + /* Privilege checks. */ + if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL)) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); + } + + uint32_t cbLimitSs; + if (!(uNewSs & X86_SEL_MASK_OFF_RPL)) + cbLimitSs = UINT32_MAX; + else + { + if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL)) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n", + uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); + } + + /* Must be a writeable data segment descriptor. */ + if (!DescSS.Legacy.Gen.u1DescType) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n", + uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); + } + if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n", + uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); + } + + /* Present? */ + if (!DescSS.Legacy.Gen.u1Present) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp)); + return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs); + } + cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy); + } + + /* Check EIP. */ + if (DescCS.Legacy.Gen.u1Long) + { + if (!IEM_IS_CANONICAL(uNewRip)) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n", + uNewCs, uNewRip, uNewSs, uNewRsp)); + return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); + } + } + else + { + if (uNewRip > cbLimitCS) + { + Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n", + uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS)); + /** @todo: Which is it, #GP(0) or #GP(sel)? */ + return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); + } + } + + /* + * Commit the changes, marking CS and SS accessed first since + * that may fail. + */ + /** @todo where exactly are these actually marked accessed by a real CPU? */ + if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF + | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT; + if (enmEffOpSize != IEMMODE_16BIT) + fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID; + if (pVCpu->iem.s.uCpl == 0) + fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */ + else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL) + fEFlagsMask |= X86_EFL_IF; + uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu); + fEFlagsNew &= ~fEFlagsMask; + fEFlagsNew |= uNewFlags & fEFlagsMask; +#ifdef DBGFTRACE_ENABLED + RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx", + pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp); +#endif + + IEMMISC_SET_EFL(pVCpu, fEFlagsNew); + pVCpu->cpum.GstCtx.rip = uNewRip; + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); + pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS; + pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy); + pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu); + if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig) + pVCpu->cpum.GstCtx.rsp = uNewRsp; + else + pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp; + pVCpu->cpum.GstCtx.ss.Sel = uNewSs; + pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs; + if (!(uNewSs & X86_SEL_MASK_OFF_RPL)) + { + pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT); + pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX; + pVCpu->cpum.GstCtx.ss.u64Base = 0; + Log2(("iretq new SS: NULL\n")); + } + else + { + pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy); + pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs; + pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy); + Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u)); + } + + if (pVCpu->iem.s.uCpl != uNewCpl) + { + pVCpu->iem.s.uCpl = uNewCpl; + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs); + iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs); + } + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Implements iret. + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize) +{ + bool fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + /* + * Record whether NMI (or virtual-NMI) blocking is in effect during the execution + * of this IRET instruction. We need to provide this information as part of some + * VM-exits. + * + * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events". + */ + if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI)) + pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking; + else + pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi; + + /* + * If "NMI exiting" is set, IRET does not affect blocking of NMIs. + * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation". + */ + if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT)) + fBlockingNmi = false; + + /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */ + pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false; + } +#endif + + /* + * The SVM nested-guest intercept for IRET takes priority over all exceptions, + * The NMI is still held pending (which I assume means blocking of further NMIs + * is in effect). + * + * See AMD spec. 15.9 "Instruction Intercepts". + * See AMD spec. 15.21.9 "NMI Support". + */ + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET)) + { + Log(("iret: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Clear NMI blocking, if any, before causing any further exceptions. + * See Intel spec. 6.7.1 "Handling Multiple NMIs". + */ + if (fBlockingNmi) + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS); + + /* + * Call a mode specific worker. + */ + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize); + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR); + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize); + return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize); +} + + +static void iemLoadallSetSelector(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel) +{ + PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg); + + pHid->Sel = uSel; + pHid->ValidSel = uSel; + pHid->fFlags = CPUMSELREG_FLAGS_VALID; +} + + +static void iemLoadall286SetDescCache(PVMCPUCC pVCpu, uint8_t iSegReg, uint8_t const *pbMem) +{ + PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg); + + /* The base is in the first three bytes. */ + pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16); + /* The attributes are in the fourth byte. */ + pHid->Attr.u = pbMem[3]; + /* The limit is in the last two bytes. */ + pHid->u32Limit = pbMem[4] + (pbMem[5] << 8); +} + + +/** + * Implements 286 LOADALL (286 CPUs only). + */ +IEM_CIMPL_DEF_0(iemCImpl_loadall286) +{ + NOREF(cbInstr); + + /* Data is loaded from a buffer at 800h. No checks are done on the + * validity of loaded state. + * + * LOADALL only loads the internal CPU state, it does not access any + * GDT, LDT, or similar tables. + */ + + if (pVCpu->iem.s.uCpl != 0) + { + Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + uint8_t const *pbMem = NULL; + uint16_t const *pa16Mem; + uint8_t const *pa8Mem; + RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */ + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* The MSW is at offset 0x06. */ + pa16Mem = (uint16_t const *)(pbMem + 0x06); + /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */ + uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); + uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); + uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0; + + CPUMSetGuestCR0(pVCpu, uNewCr0); + Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0); + + /* Inform PGM if mode changed. */ + if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE)) + { + int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */); + AssertRCReturn(rc, rc); + /* ignore informational status codes */ + } + rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER); + + /* TR selector is at offset 0x16. */ + pa16Mem = (uint16_t const *)(pbMem + 0x16); + pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0]; + pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0]; + pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID; + + /* Followed by FLAGS... */ + pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1; + pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */ + + /* LDT is at offset 0x1C. */ + pa16Mem = (uint16_t const *)(pbMem + 0x1C); + pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0]; + pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0]; + pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; + + /* Segment registers are at offset 0x1E. */ + pa16Mem = (uint16_t const *)(pbMem + 0x1E); + iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]); + iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]); + iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]); + iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]); + + /* GPRs are at offset 0x26. */ + pa16Mem = (uint16_t const *)(pbMem + 0x26); + pVCpu->cpum.GstCtx.di = pa16Mem[0]; + pVCpu->cpum.GstCtx.si = pa16Mem[1]; + pVCpu->cpum.GstCtx.bp = pa16Mem[2]; + pVCpu->cpum.GstCtx.sp = pa16Mem[3]; + pVCpu->cpum.GstCtx.bx = pa16Mem[4]; + pVCpu->cpum.GstCtx.dx = pa16Mem[5]; + pVCpu->cpum.GstCtx.cx = pa16Mem[6]; + pVCpu->cpum.GstCtx.ax = pa16Mem[7]; + + /* Descriptor caches are at offset 0x36, 6 bytes per entry. */ + iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36); + iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C); + iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42); + iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48); + + /* GDTR contents are at offset 0x4E, 6 bytes. */ + RTGCPHYS GCPtrBase; + uint16_t cbLimit; + pa8Mem = pbMem + 0x4E; + /* NB: Fourth byte "should be zero"; we are ignoring it. */ + GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16); + cbLimit = pa8Mem[4] + (pa8Mem[5] << 8); + CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit); + + /* IDTR contents are at offset 0x5A, 6 bytes. */ + pa8Mem = pbMem + 0x5A; + GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16); + cbLimit = pa8Mem[4] + (pa8Mem[5] << 8); + CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit); + + Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt)); + Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u)); + Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u)); + Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u)); + Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u)); + Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx)); + + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* The CPL may change. It is taken from the "DPL fields of the SS and CS + * descriptor caches" but there is no word as to what happens if those are + * not identical (probably bad things). + */ + pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl; + + CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR); + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + return rcStrict; +} + + +/** + * Implements SYSCALL (AMD and Intel64). + * + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_0(iemCImpl_syscall) +{ + /** @todo hack, LOADALL should be decoded as such on a 286. */ + if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286)) + return iemCImpl_loadall286(pVCpu, cbInstr); + + /* + * Check preconditions. + * + * Note that CPUs described in the documentation may load a few odd values + * into CS and SS than we allow here. This has yet to be checked on real + * hardware. + */ + if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE)) + { + Log(("syscall: Not enabled in EFER -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)) + { + Log(("syscall: Protected mode is required -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) + { + Log(("syscall: Only available in long mode on intel -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS); + + /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */ + /** @todo what about LDT selectors? Shouldn't matter, really. */ + uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL; + uint16_t uNewSs = uNewCs + 8; + if (uNewCs == 0 || uNewSs == 0) + { + Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Long mode and legacy mode differs. */ + if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) + { + uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR; + + /* This test isn't in the docs, but I'm not trusting the guys writing + the MSRs to have validated the values as canonical like they should. */ + if (!IEM_IS_CANONICAL(uNewRip)) + { + Log(("syscall: Only available in long mode on intel -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + + /* + * Commit it. + */ + Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip)); + pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr; + pVCpu->cpum.GstCtx.rip = uNewRip; + + pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF; + pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u; + pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK; + pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1; + + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC; + pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC; + } + else + { + /* + * Commit it. + */ + Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", + pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK))); + pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr; + pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK; + pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF); + + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC; + pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC; + } + pVCpu->cpum.GstCtx.cs.Sel = uNewCs; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs; + pVCpu->cpum.GstCtx.cs.u64Base = 0; + pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + + pVCpu->cpum.GstCtx.ss.Sel = uNewSs; + pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs; + pVCpu->cpum.GstCtx.ss.u64Base = 0; + pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX; + pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID; + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Implements SYSRET (AMD and Intel64). + */ +IEM_CIMPL_DEF_0(iemCImpl_sysret) + +{ + RT_NOREF_PV(cbInstr); + + /* + * Check preconditions. + * + * Note that CPUs described in the documentation may load a few odd values + * into CS and SS than we allow here. This has yet to be checked on real + * hardware. + */ + if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE)) + { + Log(("sysret: Not enabled in EFER -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) + { + Log(("sysret: Only available in long mode on intel -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)) + { + Log(("sysret: Protected mode is required -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + if (pVCpu->iem.s.uCpl != 0) + { + Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS); + + /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */ + uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL; + uint16_t uNewSs = uNewCs + 8; + if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT) + uNewCs += 16; + if (uNewCs == 0 || uNewSs == 0) + { + Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Commit it. + */ + if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) + { + if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT) + { + Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n", + pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11)); + /* Note! We disregard intel manual regarding the RCX cananonical + check, ask intel+xen why AMD doesn't do it. */ + pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC + | (3 << X86DESCATTR_DPL_SHIFT); + } + else + { + Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n", + pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11)); + pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC + | (3 << X86DESCATTR_DPL_SHIFT); + } + /** @todo testcase: See what kind of flags we can make SYSRET restore and + * what it really ignores. RF and VM are hinted at being zero, by AMD. */ + pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP); + pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1; + } + else + { + Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx)); + pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx; + pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF; + pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC + | (3 << X86DESCATTR_DPL_SHIFT); + } + pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3; + pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3; + pVCpu->cpum.GstCtx.cs.u64Base = 0; + pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX; + pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID; + + pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3; + pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3; + pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID; + /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */ + pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT); + /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged + * on sysret. */ + + /* Flush the prefetch buffer. */ +#ifdef IEM_WITH_CODE_TLB + pVCpu->iem.s.pbInstrBuf = NULL; +#else + pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; +#endif + + return VINF_SUCCESS; +} + + +/** + * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'. + * + * @param iSegReg The segment register number (valid). + * @param uSel The new selector value. + */ +IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel) +{ + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg)); + uint16_t *pSel = iemSRegRef(pVCpu, iSegReg); + PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg); + + Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS); + + /* + * Real mode and V8086 mode are easy. + */ + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + *pSel = uSel; + pHid->u64Base = (uint32_t)uSel << 4; + pHid->ValidSel = uSel; + pHid->fFlags = CPUMSELREG_FLAGS_VALID; +#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */ + /** @todo Does the CPU actually load limits and attributes in the + * real/V8086 mode segment load case? It doesn't for CS in far + * jumps... Affects unreal mode. */ + pHid->u32Limit = 0xffff; + pHid->Attr.u = 0; + pHid->Attr.n.u1Present = 1; + pHid->Attr.n.u1DescType = 1; + pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS + ? X86_SEL_TYPE_RW + : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE; +#endif + CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* + * Protected mode. + * + * Check if it's a null segment selector value first, that's OK for DS, ES, + * FS and GS. If not null, then we have to load and parse the descriptor. + */ + if (!(uSel & X86_SEL_MASK_OFF_RPL)) + { + Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */ + if (iSegReg == X86_SREG_SS) + { + /* In 64-bit kernel mode, the stack can be 0 because of the way + interrupts are dispatched. AMD seems to have a slighly more + relaxed relationship to SS.RPL than intel does. */ + /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */ + if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT + || pVCpu->iem.s.uCpl > 2 + || ( uSel != pVCpu->iem.s.uCpl + && !IEM_IS_GUEST_CPU_AMD(pVCpu)) ) + { + Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + *pSel = uSel; /* Not RPL, remember :-) */ + iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel); + if (iSegReg == X86_SREG_SS) + pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT; + + Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid)); + CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Fetch the descriptor. */ + IEMSELDESC Desc; + VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */ + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Check GPs first. */ + if (!Desc.Legacy.Gen.u1DescType) + { + Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + if (iSegReg == X86_SREG_SS) /* SS gets different treatment */ + { + if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) + || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) ) + { + Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl) + { + Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl) + { + Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + } + else + { + if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE) + { + Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) + != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) + { +#if 0 /* this is what intel says. */ + if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl + && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) + { + Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n", + iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } +#else /* this is what makes more sense. */ + if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl) + { + Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n", + iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } + if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) + { + Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n", + iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); + } +#endif + } + } + + /* Is it there? */ + if (!Desc.Legacy.Gen.u1Present) + { + Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); + } + + /* The base and limit. */ + uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy); + uint64_t u64Base = X86DESC_BASE(&Desc.Legacy); + + /* + * Ok, everything checked out fine. Now set the accessed bit before + * committing the result into the registers. + */ + if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) + { + rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; + } + + /* commit */ + *pSel = uSel; + pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); + pHid->u32Limit = cbLimit; + pHid->u64Base = u64Base; + pHid->ValidSel = uSel; + pHid->fFlags = CPUMSELREG_FLAGS_VALID; + + /** @todo check if the hidden bits are loaded correctly for 64-bit + * mode. */ + Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid)); + + CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'mov SReg, r/m'. + * + * @param iSegReg The segment register number (valid). + * @param uSel The new selector value. + */ +IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel) +{ + VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel); + if (rcStrict == VINF_SUCCESS) + { + if (iSegReg == X86_SREG_SS) + EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip); + } + return rcStrict; +} + + +/** + * Implements 'pop SReg'. + * + * @param iSegReg The segment register number (valid). + * @param enmEffOpSize The efficient operand size (valid). + */ +IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize) +{ + VBOXSTRICTRC rcStrict; + + /* + * Read the selector off the stack and join paths with mov ss, reg. + */ + RTUINT64U TmpRsp; + TmpRsp.u = pVCpu->cpum.GstCtx.rsp; + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + { + uint16_t uSel; + rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel); + break; + } + + case IEMMODE_32BIT: + { + uint32_t u32Value; + rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value); + break; + } + + case IEMMODE_64BIT: + { + uint64_t u64Value; + rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp); + if (rcStrict == VINF_SUCCESS) + rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value); + break; + } + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + + /* + * Commit the stack on success. + */ + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.rsp = TmpRsp.u; + if (iSegReg == X86_SREG_SS) + EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip); + } + return rcStrict; +} + + +/** + * Implements lgs, lfs, les, lds & lss. + */ +IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg, + uint16_t, uSel, + uint64_t, offSeg, + uint8_t, iSegReg, + uint8_t, iGReg, + IEMMODE, enmEffOpSize) +{ + /* + * Use iemCImpl_LoadSReg to do the tricky segment register loading. + */ + /** @todo verify and test that mov, pop and lXs works the segment + * register loading in the exact same way. */ + VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel); + if (rcStrict == VINF_SUCCESS) + { + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg; + break; + case IEMMODE_32BIT: + *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg; + break; + case IEMMODE_64BIT: + *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg; + break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + } + + return rcStrict; +} + + +/** + * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory. + * + * @retval VINF_SUCCESS on success. + * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok. + * @retval iemMemFetchSysU64 return value. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param uSel The selector value. + * @param fAllowSysDesc Whether system descriptors are OK or not. + * @param pDesc Where to return the descriptor on success. + */ +static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPUCC pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc) +{ + pDesc->Long.au64[0] = 0; + pDesc->Long.au64[1] = 0; + + if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */ + return VINF_IEM_SELECTOR_NOT_OK; + + /* Within the table limits? */ + RTGCPTR GCPtrBase; + if (uSel & X86_SEL_LDT) + { + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR); + if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present + || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit ) + return VINF_IEM_SELECTOR_NOT_OK; + GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base; + } + else + { + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR); + if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt) + return VINF_IEM_SELECTOR_NOT_OK; + GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt; + } + + /* Fetch the descriptor. */ + VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK)); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + if (!pDesc->Legacy.Gen.u1DescType) + { + if (!fAllowSysDesc) + return VINF_IEM_SELECTOR_NOT_OK; + if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) + { + rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + + } + + return VINF_SUCCESS; +} + + +/** + * Implements verr (fWrite = false) and verw (fWrite = true). + */ +IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite) +{ + Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu)); + + /** @todo figure whether the accessed bit is set or not. */ + + bool fAccessible = true; + IEMSELDESC Desc; + VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc); + if (rcStrict == VINF_SUCCESS) + { + /* Check the descriptor, order doesn't matter much here. */ + if ( !Desc.Legacy.Gen.u1DescType + || !Desc.Legacy.Gen.u1Present) + fAccessible = false; + else + { + if ( fWrite + ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE + : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE) + fAccessible = false; + + /** @todo testcase for the conforming behavior. */ + if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) + != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) + { + if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl) + fAccessible = false; + else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) + fAccessible = false; + } + } + + } + else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK) + fAccessible = false; + else + return rcStrict; + + /* commit */ + pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements LAR and LSL with 64-bit operand size. + * + * @returns VINF_SUCCESS. + * @param pu16Dst Pointer to the destination register. + * @param uSel The selector to load details for. + * @param fIsLar true = LAR, false = LSL. + */ +IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar) +{ + Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu)); + + /** @todo figure whether the accessed bit is set or not. */ + + bool fDescOk = true; + IEMSELDESC Desc; + VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc); + if (rcStrict == VINF_SUCCESS) + { + /* + * Check the descriptor type. + */ + if (!Desc.Legacy.Gen.u1DescType) + { + if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) + { + if (Desc.Long.Gen.u5Zeros) + fDescOk = false; + else + switch (Desc.Long.Gen.u4Type) + { + /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */ + case AMD64_SEL_TYPE_SYS_TSS_AVAIL: + case AMD64_SEL_TYPE_SYS_TSS_BUSY: + case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */ + break; + case AMD64_SEL_TYPE_SYS_CALL_GATE: + fDescOk = fIsLar; + break; + default: + fDescOk = false; + break; + } + } + else + { + switch (Desc.Long.Gen.u4Type) + { + case X86_SEL_TYPE_SYS_286_TSS_AVAIL: + case X86_SEL_TYPE_SYS_286_TSS_BUSY: + case X86_SEL_TYPE_SYS_386_TSS_AVAIL: + case X86_SEL_TYPE_SYS_386_TSS_BUSY: + case X86_SEL_TYPE_SYS_LDT: + break; + case X86_SEL_TYPE_SYS_286_CALL_GATE: + case X86_SEL_TYPE_SYS_TASK_GATE: + case X86_SEL_TYPE_SYS_386_CALL_GATE: + fDescOk = fIsLar; + break; + default: + fDescOk = false; + break; + } + } + } + if (fDescOk) + { + /* + * Check the RPL/DPL/CPL interaction.. + */ + /** @todo testcase for the conforming behavior. */ + if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) + || !Desc.Legacy.Gen.u1DescType) + { + if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl) + fDescOk = false; + else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) + fDescOk = false; + } + } + + if (fDescOk) + { + /* + * All fine, start committing the result. + */ + if (fIsLar) + *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00); + else + *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy); + } + + } + else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK) + fDescOk = false; + else + return rcStrict; + + /* commit flags value and advance rip. */ + pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + + return VINF_SUCCESS; +} + + +/** + * Implements LAR and LSL with 16-bit operand size. + * + * @returns VINF_SUCCESS. + * @param pu16Dst Pointer to the destination register. + * @param u16Sel The selector to load details for. + * @param fIsLar true = LAR, false = LSL. + */ +IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar) +{ + uint64_t u64TmpDst = *pu16Dst; + IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar); + *pu16Dst = u64TmpDst; + return VINF_SUCCESS; +} + + +/** + * Implements lgdt. + * + * @param iEffSeg The segment of the new gdtr contents + * @param GCPtrEffSrc The address of the new gdtr contents. + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize) +{ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT)) + { + Log(("lgdt: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr); + } + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES)) + { + Log(("lgdt: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Fetch the limit and base address. + */ + uint16_t cbLimit; + RTGCPTR GCPtrBase; + VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize); + if (rcStrict == VINF_SUCCESS) + { + if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT + || X86_IS_CANONICAL(GCPtrBase)) + { + rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit); + if (rcStrict == VINF_SUCCESS) + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + else + { + Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + return rcStrict; +} + + +/** + * Implements sgdt. + * + * @param iEffSeg The segment where to store the gdtr content. + * @param GCPtrEffDst The address where to store the gdtr content. + */ +IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) +{ + /* + * Join paths with sidt. + * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if + * you really must know. + */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT)) + { + Log(("sgdt: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr); + } + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS)) + { + Log(("sgdt: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR); + VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst); + if (rcStrict == VINF_SUCCESS) + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; +} + + +/** + * Implements lidt. + * + * @param iEffSeg The segment of the new idtr contents + * @param GCPtrEffSrc The address of the new idtr contents. + * @param enmEffOpSize The effective operand size. + */ +IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize) +{ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES)) + { + Log(("lidt: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Fetch the limit and base address. + */ + uint16_t cbLimit; + RTGCPTR GCPtrBase; + VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize); + if (rcStrict == VINF_SUCCESS) + { + if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT + || X86_IS_CANONICAL(GCPtrBase)) + { + CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + else + { + Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + return rcStrict; +} + + +/** + * Implements sidt. + * + * @param iEffSeg The segment where to store the idtr content. + * @param GCPtrEffDst The address where to store the idtr content. + */ +IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) +{ + /* + * Join paths with sgdt. + * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if + * you really must know. + */ + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS)) + { + Log(("sidt: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR); + VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst); + if (rcStrict == VINF_SUCCESS) + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; +} + + +/** + * Implements lldt. + * + * @param uNewLdt The new LDT selector value. + */ +IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt) +{ + /* + * Check preconditions. + */ + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt)); + return iemRaiseUndefinedOpcode(pVCpu); + } + if (pVCpu->iem.s.uCpl != 0) + { + Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + /* Nested-guest VMX intercept. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT)) + { + Log(("lldt: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr); + } + if (uNewLdt & X86_SEL_LDT) + { + Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt); + } + + /* + * Now, loading a NULL selector is easy. + */ + if (!(uNewLdt & X86_SEL_MASK_OFF_RPL)) + { + /* Nested-guest SVM intercept. */ + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES)) + { + Log(("lldt: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + Log(("lldt %04x: Loading NULL selector.\n", uNewLdt)); + pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR; + CPUMSetGuestLDTR(pVCpu, uNewLdt); + pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt; + pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; + if (IEM_IS_GUEST_CPU_AMD(pVCpu)) + { + /* AMD-V seems to leave the base and limit alone. */ + pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE; + } + else + { + /* VT-x (Intel 3960x) seems to be doing the following. */ + pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D; + pVCpu->cpum.GstCtx.ldtr.u64Base = 0; + pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX; + } + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* + * Read the descriptor. + */ + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR); + IEMSELDESC Desc; + VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */ + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Check GPs first. */ + if (Desc.Legacy.Gen.u1DescType) + { + Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); + } + if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT) + { + Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); + } + uint64_t u64Base; + if (!IEM_IS_LONG_MODE(pVCpu)) + u64Base = X86DESC_BASE(&Desc.Legacy); + else + { + if (Desc.Long.Gen.u5Zeros) + { + Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); + } + + u64Base = X86DESC64_BASE(&Desc.Long); + if (!IEM_IS_CANONICAL(u64Base)) + { + Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); + } + } + + /* NP */ + if (!Desc.Legacy.Gen.u1Present) + { + Log(("lldt %#x - segment not present -> #NP\n", uNewLdt)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt); + } + + /* Nested-guest SVM intercept. */ + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES)) + { + Log(("lldt: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * It checks out alright, update the registers. + */ +/** @todo check if the actual value is loaded or if the RPL is dropped */ + CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); + pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL; + pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); + pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy); + pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements sldt GReg + * + * @param iGReg The general register to store the CRx value in. + * @param enmEffOpSize The operand size. + */ +IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize) +{ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT)) + { + Log(("sldt: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr); + } + + IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0); + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR); + switch (enmEffOpSize) + { + case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break; + case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break; + case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements sldt mem. + * + * @param iGReg The general register to store the CRx value in. + * @param iEffSeg The effective segment register to use with @a GCPtrMem. + * @param GCPtrEffDst Where to store the 16-bit CR0 value. + */ +IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) +{ + IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0); + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR); + VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel); + if (rcStrict == VINF_SUCCESS) + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; +} + + +/** + * Implements ltr. + * + * @param uNewTr The new TSS selector value. + */ +IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr) +{ + /* + * Check preconditions. + */ + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr)); + return iemRaiseUndefinedOpcode(pVCpu); + } + if (pVCpu->iem.s.uCpl != 0) + { + Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT)) + { + Log(("ltr: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr); + } + if (uNewTr & X86_SEL_LDT) + { + Log(("ltr %04x - LDT selector -> #GP\n", uNewTr)); + return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr); + } + if (!(uNewTr & X86_SEL_MASK_OFF_RPL)) + { + Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES)) + { + Log(("ltr: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Read the descriptor. + */ + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR); + IEMSELDESC Desc; + VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */ + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Check GPs first. */ + if (Desc.Legacy.Gen.u1DescType) + { + Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); + } + if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */ + && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL + || IEM_IS_LONG_MODE(pVCpu)) ) + { + Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); + } + uint64_t u64Base; + if (!IEM_IS_LONG_MODE(pVCpu)) + u64Base = X86DESC_BASE(&Desc.Legacy); + else + { + if (Desc.Long.Gen.u5Zeros) + { + Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); + } + + u64Base = X86DESC64_BASE(&Desc.Long); + if (!IEM_IS_CANONICAL(u64Base)) + { + Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base)); + return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); + } + } + + /* NP */ + if (!Desc.Legacy.Gen.u1Present) + { + Log(("ltr %#x - segment not present -> #NP\n", uNewTr)); + return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr); + } + + /* + * Set it busy. + * Note! Intel says this should lock down the whole descriptor, but we'll + * restrict our selves to 32-bit for now due to lack of inline + * assembly and such. + */ + void *pvDesc; + rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + switch ((uintptr_t)pvDesc & 3) + { + case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break; + case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break; + case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break; + case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break; + } + rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK; + + /* + * It checks out alright, update the registers. + */ +/** @todo check if the actual value is loaded or if the RPL is dropped */ + CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); + pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL; + pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); + pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy); + pVCpu->cpum.GstCtx.tr.u64Base = u64Base; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements str GReg + * + * @param iGReg The general register to store the CRx value in. + * @param enmEffOpSize The operand size. + */ +IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize) +{ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT)) + { + Log(("str_reg: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr); + } + + IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0); + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR); + switch (enmEffOpSize) + { + case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break; + case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break; + case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements str mem. + * + * @param iGReg The general register to store the CRx value in. + * @param iEffSeg The effective segment register to use with @a GCPtrMem. + * @param GCPtrEffDst Where to store the 16-bit CR0 value. + */ +IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) +{ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT)) + { + Log(("str_mem: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr); + } + + IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0); + + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR); + VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel); + if (rcStrict == VINF_SUCCESS) + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; +} + + +/** + * Implements mov GReg,CRx. + * + * @param iGReg The general register to store the CRx value in. + * @param iCrReg The CRx register to read (valid). + */ +IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg) +{ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + + if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg)) + { + Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg); + } + + /* Read it. */ + uint64_t crX; + switch (iCrReg) + { + case 0: + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + crX = pVCpu->cpum.GstCtx.cr0; + if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) + crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */ + break; + case 2: + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2); + crX = pVCpu->cpum.GstCtx.cr2; + break; + case 3: + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3); + crX = pVCpu->cpum.GstCtx.cr3; + break; + case 4: + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + crX = pVCpu->cpum.GstCtx.cr4; + break; + case 8: + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR); +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + + /* + * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied + * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand + * are cleared. + * + * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses" + */ + if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW)) + { + uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR); + crX = (uTpr >> 4) & 0xf; + break; + } + } +#endif +#ifdef VBOX_WITH_NESTED_HWVIRT_SVM + if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))) + { + PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; + if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu))) + { + crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf; + break; + } + } +#endif + uint8_t uTpr; + int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL); + if (RT_SUCCESS(rc)) + crX = uTpr >> 4; + else + crX = 0; + break; + } + IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */ + } + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + switch (iCrReg) + { + /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */ + case 0: crX = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcs->u64Cr0Mask.u); break; + case 4: crX = CPUMGetGuestVmxMaskedCr4(&pVCpu->cpum.GstCtx, pVmcs->u64Cr4Mask.u); break; + + case 3: + { + VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + break; + } + } + } +#endif + + /* Store it. */ + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX; + else + *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements smsw GReg. + * + * @param iGReg The general register to store the CRx value in. + * @param enmEffOpSize The operand size. + */ +IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize) +{ + IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + uint64_t u64MaskedCr0; + if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0; + else + { + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcs->u64Cr0Mask.u); + } + uint64_t const u64GuestCr0 = u64MaskedCr0; +#else + uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0; +#endif + + switch (enmEffOpSize) + { + case IEMMODE_16BIT: + if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386) + *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0; + else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386) + *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0; + else + *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0; + break; + + case IEMMODE_32BIT: + *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0; + break; + + case IEMMODE_64BIT: + *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0; + break; + + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements smsw mem. + * + * @param iGReg The general register to store the CR0 value in. + * @param iEffSeg The effective segment register to use with @a GCPtrMem. + * @param GCPtrEffDst Where to store the 16-bit CR0 value. + */ +IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) +{ + IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + uint64_t u64MaskedCr0; + if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0; + else + { + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcs->u64Cr0Mask.u); + } + uint64_t const u64GuestCr0 = u64MaskedCr0; +#else + uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0; +#endif + + uint16_t u16Value; + if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386) + u16Value = (uint16_t)u64GuestCr0; + else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386) + u16Value = (uint16_t)u64GuestCr0 | 0xffe0; + else + u16Value = (uint16_t)u64GuestCr0 | 0xfff0; + + VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value); + if (rcStrict == VINF_SUCCESS) + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; +} + + +/** + * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'. + * + * @param iCrReg The CRx register to write (valid). + * @param uNewCrX The new value. + * @param enmAccessCrx The instruction that caused the CrX load. + * @param iGReg The general register in case of a 'mov CRx,GReg' + * instruction. + */ +IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg) +{ + VBOXSTRICTRC rcStrict; + int rc; +#ifndef VBOX_WITH_NESTED_HWVIRT_SVM + RT_NOREF2(iGReg, enmAccessCrX); +#endif + + /* + * Try store it. + * Unfortunately, CPUM only does a tiny bit of the work. + */ + switch (iCrReg) + { + case 0: + { + /* + * Perform checks. + */ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + + uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0; + uint32_t const fValid = CPUMGetGuestCR0ValidMask(); + + /* ET is hardcoded on 486 and later. */ + if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486) + uNewCrX |= X86_CR0_ET; + /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */ + else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486) + { + uNewCrX &= fValid; + uNewCrX |= X86_CR0_ET; + } + else + uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET; + + /* Check for reserved bits. */ + if (uNewCrX & ~(uint64_t)fValid) + { + Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Check for invalid combinations. */ + if ( (uNewCrX & X86_CR0_PG) + && !(uNewCrX & X86_CR0_PE) ) + { + Log(("Trying to set CR0.PG without CR0.PE\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + if ( !(uNewCrX & X86_CR0_CD) + && (uNewCrX & X86_CR0_NW) ) + { + Log(("Trying to clear CR0.CD while leaving CR0.NW set\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + if ( !(uNewCrX & X86_CR0_PG) + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)) + { + Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Long mode consistency checks. */ + if ( (uNewCrX & X86_CR0_PG) + && !(uOldCrX & X86_CR0_PG) + && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) ) + { + if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)) + { + Log(("Trying to enabled long mode paging without CR4.PAE set\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long) + { + Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + /* Check for bits that must remain set or cleared in VMX operation, + see Intel spec. 23.8 "Restrictions on VMX operation". */ + if (IEM_VMX_IS_ROOT_MODE(pVCpu)) + { + uint32_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0; + if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0) + { + Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + uint32_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1; + if (uNewCrX & ~uCr0Fixed1) + { + Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + /** @todo check reserved PDPTR bits as AMD states. */ + + /* + * SVM nested-guest CR0 write intercepts. + */ + if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg)) + { + Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg); + } + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE)) + { + /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */ + if ( enmAccessCrX == IEMACCESSCRX_LMSW + || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP))) + { + Assert(enmAccessCrX != IEMACCESSCRX_CLTS); + Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg); + } + } + + /* + * Change CR0. + */ + CPUMSetGuestCR0(pVCpu, uNewCrX); + Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX); + + /* + * Change EFER.LMA if entering or leaving long mode. + */ + if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG) + && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) ) + { + uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER; + if (uNewCrX & X86_CR0_PG) + NewEFER |= MSR_K6_EFER_LMA; + else + NewEFER &= ~MSR_K6_EFER_LMA; + + CPUMSetGuestEFER(pVCpu, NewEFER); + Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER); + } + + /* + * Inform PGM. + */ + if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) + != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) ) + { + rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */); + AssertRCReturn(rc, rc); + /* ignore informational status codes */ + } + rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER); + break; + } + + /* + * CR2 can be changed without any restrictions. + */ + case 2: + { + if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2)) + { + Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg); + } + pVCpu->cpum.GstCtx.cr2 = uNewCrX; + pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2; + rcStrict = VINF_SUCCESS; + break; + } + + /* + * CR3 is relatively simple, although AMD and Intel have different + * accounts of how setting reserved bits are handled. We take intel's + * word for the lower bits and AMD's for the high bits (63:52). The + * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies + * on this. + */ + /** @todo Testcase: Setting reserved bits in CR3, especially before + * enabling paging. */ + case 3: + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3); + + /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */ + if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE) + && (uNewCrX & RT_BIT_64(63))) + { + /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10 + * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see + * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and + * Paging-Structure Caches". */ + uNewCrX &= ~RT_BIT_64(63); + } + + /* Check / mask the value. */ + if (uNewCrX & UINT64_C(0xfff0000000000000)) + { + Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + uint64_t fValid; + if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE) + && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME)) + fValid = UINT64_C(0x000fffffffffffff); + else + fValid = UINT64_C(0xffffffff); + if (uNewCrX & ~fValid) + { + Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n", + uNewCrX, uNewCrX & ~fValid)); + uNewCrX &= fValid; + } + + if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3)) + { + Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg); + } + + /** @todo If we're in PAE mode we should check the PDPTRs for + * invalid bits. */ + + /* Make the change. */ + rc = CPUMSetGuestCR3(pVCpu, uNewCrX); + AssertRCSuccessReturn(rc, rc); + + /* Inform PGM. */ + if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG) + { + rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE)); + AssertRCReturn(rc, rc); + /* ignore informational status codes */ + } + rcStrict = VINF_SUCCESS; + break; + } + + /* + * CR4 is a bit more tedious as there are bits which cannot be cleared + * under some circumstances and such. + */ + case 4: + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4; + + /* Reserved bits. */ + uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM)); + if (uNewCrX & ~(uint64_t)fValid) + { + Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + bool const fPcide = !(uOldCrX & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE); + bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)); + + /* PCIDE check. */ + if ( fPcide + && ( !fLongMode + || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff)))) + { + Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff)))); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* PAE check. */ + if ( fLongMode + && (uOldCrX & X86_CR4_PAE) + && !(uNewCrX & X86_CR4_PAE)) + { + Log(("Trying to set clear CR4.PAE while long mode is active\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4)) + { + Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg); + } + + /* Check for bits that must remain set or cleared in VMX operation, + see Intel spec. 23.8 "Restrictions on VMX operation". */ + if (IEM_VMX_IS_ROOT_MODE(pVCpu)) + { + uint32_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0; + if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0) + { + Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + uint32_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1; + if (uNewCrX & ~uCr4Fixed1) + { + Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + /* + * Change it. + */ + rc = CPUMSetGuestCR4(pVCpu, uNewCrX); + AssertRCSuccessReturn(rc, rc); + Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX); + + /* + * Notify SELM and PGM. + */ + /* SELM - VME may change things wrt to the TSS shadowing. */ + if ((uNewCrX ^ uOldCrX) & X86_CR4_VME) + Log(("iemCImpl_load_CrX: VME %d -> %d\n", RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) )); + + /* PGM - flushing and mode. */ + if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */)) + { + rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */); + AssertRCReturn(rc, rc); + /* ignore informational status codes */ + } + rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER); + break; + } + + /* + * CR8 maps to the APIC TPR. + */ + case 8: + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR); + if (uNewCrX & ~(uint64_t)0xf) + { + Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW)) + { + /* + * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand + * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are + * cleared. Following this the processor performs TPR virtualization. + * + * However, we should not perform TPR virtualization immediately here but + * after this instruction has completed. + * + * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses" + * See Intel spec. 27.1 "Architectural State Before A VM-exit" + */ + uint32_t const uTpr = (uNewCrX & 0xf) << 4; + Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr)); + iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr); + iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR); + rcStrict = VINF_SUCCESS; + break; + } +#endif + +#ifdef VBOX_WITH_NESTED_HWVIRT_SVM + if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))) + { + if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8)) + { + Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg); + } + + PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; + pVmcbCtrl->IntCtrl.n.u8VTPR = uNewCrX; + if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu))) + { + rcStrict = VINF_SUCCESS; + break; + } + } +#endif + uint8_t const u8Tpr = (uint8_t)uNewCrX << 4; + APICSetTpr(pVCpu, u8Tpr); + rcStrict = VINF_SUCCESS; + break; + } + + IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */ + } + + /* + * Advance the RIP on success. + */ + if (RT_SUCCESS(rcStrict)) + { + if (rcStrict != VINF_SUCCESS) + rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + + return rcStrict; +} + + +/** + * Implements mov CRx,GReg. + * + * @param iCrReg The CRx register to write (valid). + * @param iGReg The general register to load the CRx value from. + */ +IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg) +{ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + + /* + * Read the new value from the source register and call common worker. + */ + uint64_t uNewCrX; + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + uNewCrX = iemGRegFetchU64(pVCpu, iGReg); + else + uNewCrX = iemGRegFetchU32(pVCpu, iGReg); + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE; + switch (iCrReg) + { + case 0: + case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break; + case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break; + case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break; + } + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#endif + + return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg); +} + + +/** + * Implements 'LMSW r/m16' + * + * @param u16NewMsw The new value. + * @param GCPtrEffDst The guest-linear address of the source operand in case + * of a memory operand. For register operand, pass + * NIL_RTGCPTR. + */ +IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst) +{ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#else + RT_NOREF_PV(GCPtrEffDst); +#endif + + /* + * Compose the new CR0 value and call common worker. + */ + uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); + uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); + return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */); +} + + +/** + * Implements 'CLTS'. + */ +IEM_CIMPL_DEF_0(iemCImpl_clts) +{ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0; + uNewCr0 &= ~X86_CR0_TS; + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr); + if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR) + uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS); + else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#endif + + return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */); +} + + +/** + * Implements mov GReg,DRx. + * + * @param iGReg The general register to store the DRx value in. + * @param iDrReg The DRx register to read (0-7). + */ +IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg) +{ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* + * Check nested-guest VMX intercept. + * Unlike most other intercepts, the Mov DRx intercept takes preceedence + * over CPL and CR4.DE and even DR4/DR5 checks. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#endif + + /* + * Check preconditions. + */ + /* Raise GPs. */ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0); + + if ( (iDrReg == 4 || iDrReg == 5) + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) ) + { + Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Raise #DB if general access detect is enabled. */ + if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD) + { + Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg)); + return iemRaiseDebugException(pVCpu); + } + + /* + * Read the debug register and store it in the specified general register. + */ + uint64_t drX; + switch (iDrReg) + { + case 0: + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + drX = pVCpu->cpum.GstCtx.dr[0]; + break; + case 1: + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + drX = pVCpu->cpum.GstCtx.dr[1]; + break; + case 2: + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + drX = pVCpu->cpum.GstCtx.dr[2]; + break; + case 3: + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + drX = pVCpu->cpum.GstCtx.dr[3]; + break; + case 6: + case 4: + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6); + drX = pVCpu->cpum.GstCtx.dr[6]; + drX |= X86_DR6_RA1_MASK; + drX &= ~X86_DR6_RAZ_MASK; + break; + case 7: + case 5: + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7); + drX = pVCpu->cpum.GstCtx.dr[7]; + drX |=X86_DR7_RA1_MASK; + drX &= ~X86_DR7_RAZ_MASK; + break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */ + } + + /** @todo SVM nested-guest intercept for DR8-DR15? */ + /* + * Check for any SVM nested-guest intercepts for the DRx read. + */ + if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg)) + { + Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf), + IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */); + } + + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX; + else + *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements mov DRx,GReg. + * + * @param iDrReg The DRx register to write (valid). + * @param iGReg The general register to load the DRx value from. + */ +IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg) +{ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* + * Check nested-guest VMX intercept. + * Unlike most other intercepts, the Mov DRx intercept takes preceedence + * over CPL and CR4.DE and even DR4/DR5 checks. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#endif + + /* + * Check preconditions. + */ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4); + + if (iDrReg == 4 || iDrReg == 5) + { + if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) + { + Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + iDrReg += 2; + } + + /* Raise #DB if general access detect is enabled. */ + /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6 + * \#GP? */ + if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD) + { + Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg)); + return iemRaiseDebugException(pVCpu); + } + + /* + * Read the new value from the source register. + */ + uint64_t uNewDrX; + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + uNewDrX = iemGRegFetchU64(pVCpu, iGReg); + else + uNewDrX = iemGRegFetchU32(pVCpu, iGReg); + + /* + * Adjust it. + */ + switch (iDrReg) + { + case 0: + case 1: + case 2: + case 3: + /* nothing to adjust */ + break; + + case 6: + if (uNewDrX & X86_DR6_MBZ_MASK) + { + Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + uNewDrX |= X86_DR6_RA1_MASK; + uNewDrX &= ~X86_DR6_RAZ_MASK; + break; + + case 7: + if (uNewDrX & X86_DR7_MBZ_MASK) + { + Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + uNewDrX |= X86_DR7_RA1_MASK; + uNewDrX &= ~X86_DR7_RAZ_MASK; + break; + + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + + /** @todo SVM nested-guest intercept for DR8-DR15? */ + /* + * Check for any SVM nested-guest intercepts for the DRx write. + */ + if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg)) + { + Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf), + IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */); + } + + /* + * Do the actual setting. + */ + if (iDrReg < 4) + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + else if (iDrReg == 6) + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6); + + int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX); + AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'INVLPG m'. + * + * @param GCPtrPage The effective address of the page to invalidate. + * @remarks Updates the RIP. + */ +IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage) +{ + /* ring-0 only. */ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER); + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT)) + { + Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage)); + return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr); + } +#endif + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG)) + { + Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage)); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG, + IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */); + } + + int rc = PGMInvalidatePage(pVCpu, GCPtrPage); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + + if (rc == VINF_SUCCESS) + return VINF_SUCCESS; + if (rc == VINF_PGM_SYNC_CR3) + return iemSetPassUpStatus(pVCpu, rc); + + AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc)); + Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc)); + return rc; +} + + +/** + * Implements INVPCID. + * + * @param iEffSeg The segment of the invpcid descriptor. + * @param GCPtrInvpcidDesc The address of invpcid descriptor. + * @param uInvpcidType The invalidation type. + * @remarks Updates the RIP. + */ +IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType) +{ + /* + * Check preconditions. + */ + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid) + return iemRaiseUndefinedOpcode(pVCpu); + + /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID)) + { + Log(("invpcid: Not enabled for nested-guest execution -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + + if (pVCpu->iem.s.uCpl != 0) + { + Log(("invpcid: CPL != 0 -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + if (IEM_IS_V86_MODE(pVCpu)) + { + Log(("invpcid: v8086 mode -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Check nested-guest intercept. + * + * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are + * both set. We have already checked the former earlier in this function. + * + * CPL and virtual-8086 mode checks take priority over this VM-exit. + * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits". + */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT)) + { + Log(("invpcid: Guest intercept -> #VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr); + } + + if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID) + { + Log(("invpcid: invalid/unrecognized invpcid type %#RX64 -> #GP(0)\n", uInvpcidType)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER); + + /* + * Fetch the invpcid descriptor from guest memory. + */ + RTUINT128U uDesc; + VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc); + if (rcStrict == VINF_SUCCESS) + { + /* + * Validate the descriptor. + */ + if (uDesc.s.Lo > 0xfff) + { + Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi; + uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff); + uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4; + uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3; + switch (uInvpcidType) + { + case X86_INVPCID_TYPE_INDV_ADDR: + { + if (!IEM_IS_CANONICAL(GCPtrInvAddr)) + { + Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + if ( !(uCr4 & X86_CR4_PCIDE) + && uPcid != 0) + { + Log(("invpcid: invalid pcid %#x\n", uPcid)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Invalidate mappings for the linear address tagged with PCID except global translations. */ + PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */); + break; + } + + case X86_INVPCID_TYPE_SINGLE_CONTEXT: + { + if ( !(uCr4 & X86_CR4_PCIDE) + && uPcid != 0) + { + Log(("invpcid: invalid pcid %#x\n", uPcid)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + /* Invalidate all mappings associated with PCID except global translations. */ + PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */); + break; + } + + case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL: + { + PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */); + break; + } + + case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL: + { + PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */); + break; + } + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + return rcStrict; +} + + +/** + * Implements INVD. + */ +IEM_CIMPL_DEF_0(iemCImpl_invd) +{ + if (pVCpu->iem.s.uCpl != 0) + { + Log(("invd: CPL != 0 -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr); + + IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0); + + /* We currently take no action here. */ + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements WBINVD. + */ +IEM_CIMPL_DEF_0(iemCImpl_wbinvd) +{ + if (pVCpu->iem.s.uCpl != 0) + { + Log(("wbinvd: CPL != 0 -> #GP(0)\n")); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr); + + IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0); + + /* We currently take no action here. */ + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** Opcode 0x0f 0xaa. */ +IEM_CIMPL_DEF_0(iemCImpl_rsm) +{ + IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0); + NOREF(cbInstr); + return iemRaiseUndefinedOpcode(pVCpu); +} + + +/** + * Implements RDTSC. + */ +IEM_CIMPL_DEF_0(iemCImpl_rdtsc) +{ + /* + * Check preconditions. + */ + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc) + return iemRaiseUndefinedOpcode(pVCpu); + + if (pVCpu->iem.s.uCpl != 0) + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD) + { + Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT)) + { + Log(("rdtsc: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr); + } + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC)) + { + Log(("rdtsc: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Do the job. + */ + uint64_t uTicks = TMCpuTickGet(pVCpu); +#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX) + uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks); +#endif + pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks); + pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks); + pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */ + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements RDTSC. + */ +IEM_CIMPL_DEF_0(iemCImpl_rdtscp) +{ + /* + * Check preconditions. + */ + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP) + return iemRaiseUndefinedOpcode(pVCpu); + + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP)) + { + Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + + if (pVCpu->iem.s.uCpl != 0) + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD) + { + Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT)) + { + Log(("rdtscp: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr); + } + else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP)) + { + Log(("rdtscp: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Do the job. + * Query the MSR first in case of trips to ring-3. + */ + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX); + VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx); + if (rcStrict == VINF_SUCCESS) + { + /* Low dword of the TSC_AUX msr only. */ + pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff); + + uint64_t uTicks = TMCpuTickGet(pVCpu); +#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX) + uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks); +#endif + pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks); + pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks); + pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */ + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + return rcStrict; +} + + +/** + * Implements RDPMC. + */ +IEM_CIMPL_DEF_0(iemCImpl_rdpmc) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + + if ( pVCpu->iem.s.uCpl != 0 + && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE)) + return iemRaiseGeneralProtectionFault0(pVCpu); + + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT)) + { + Log(("rdpmc: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr); + } + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC)) + { + Log(("rdpmc: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /** @todo Emulate performance counters, for now just return 0. */ + pVCpu->cpum.GstCtx.rax = 0; + pVCpu->cpum.GstCtx.rdx = 0; + pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); + /** @todo We should trigger a \#GP here if the CPU doesn't support the index in + * ecx but see @bugref{3472}! */ + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements RDMSR. + */ +IEM_CIMPL_DEF_0(iemCImpl_rdmsr) +{ + /* + * Check preconditions. + */ + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr) + return iemRaiseUndefinedOpcode(pVCpu); + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + + /* + * Check nested-guest intercepts. + */ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx)) + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr); + } +#endif + +#ifdef VBOX_WITH_NESTED_HWVIRT_SVM + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT)) + { + VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */); + if (rcStrict == VINF_SVM_VMEXIT) + return VINF_SUCCESS; + if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE) + { + Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } +#endif + + /* + * Do the job. + */ + RTUINT64U uValue; + /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */ + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS); + + VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u); + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.rax = uValue.s.Lo; + pVCpu->cpum.GstCtx.rdx = uValue.s.Hi; + pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + +#ifndef IN_RING3 + /* Deferred to ring-3. */ + if (rcStrict == VINF_CPUM_R3_MSR_READ) + { + Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx)); + return rcStrict; + } +#endif + + /* Often a unimplemented MSR or MSR bit, so worth logging. */ + if (pVCpu->iem.s.cLogRelRdMsr < 32) + { + pVCpu->iem.s.cLogRelRdMsr++; + LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx)); + } + else + Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx)); + AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS); + return iemRaiseGeneralProtectionFault0(pVCpu); +} + + +/** + * Implements WRMSR. + */ +IEM_CIMPL_DEF_0(iemCImpl_wrmsr) +{ + /* + * Check preconditions. + */ + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr) + return iemRaiseUndefinedOpcode(pVCpu); + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + + RTUINT64U uValue; + uValue.s.Lo = pVCpu->cpum.GstCtx.eax; + uValue.s.Hi = pVCpu->cpum.GstCtx.edx; + + uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; + + /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */ + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS); + + /* + * Check nested-guest intercepts. + */ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr)) + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr); + } +#endif + +#ifdef VBOX_WITH_NESTED_HWVIRT_SVM + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT)) + { + VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */); + if (rcStrict == VINF_SVM_VMEXIT) + return VINF_SUCCESS; + if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE) + { + Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } +#endif + + /* + * Do the job. + */ + VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u); + if (rcStrict == VINF_SUCCESS) + { + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + +#ifndef IN_RING3 + /* Deferred to ring-3. */ + if (rcStrict == VINF_CPUM_R3_MSR_WRITE) + { + Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr)); + return rcStrict; + } +#endif + + /* Often a unimplemented MSR or MSR bit, so worth logging. */ + if (pVCpu->iem.s.cLogRelWrMsr < 32) + { + pVCpu->iem.s.cLogRelWrMsr++; + LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo)); + } + else + Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo)); + AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS); + return iemRaiseGeneralProtectionFault0(pVCpu); +} + + +/** + * Implements 'IN eAX, port'. + * + * @param u16Port The source port. + * @param fImm Whether the port was specified through an immediate operand + * or the implicit DX register. + * @param cbReg The register size. + */ +IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg) +{ + /* + * CPL check + */ + VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Check VMX nested-guest IO intercept. + */ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#else + RT_NOREF(fImm); +#endif + + /* + * Check SVM nested-guest IO intercept. + */ +#ifdef VBOX_WITH_NESTED_HWVIRT_SVM + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT)) + { + uint8_t cAddrSizeBits; + switch (pVCpu->iem.s.enmEffAddrMode) + { + case IEMMODE_16BIT: cAddrSizeBits = 16; break; + case IEMMODE_32BIT: cAddrSizeBits = 32; break; + case IEMMODE_64BIT: cAddrSizeBits = 64; break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */, + false /* fRep */, false /* fStrIo */, cbInstr); + if (rcStrict == VINF_SVM_VMEXIT) + return VINF_SUCCESS; + if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE) + { + Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg, + VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } +#endif + + /* + * Perform the I/O. + */ + uint32_t u32Value = 0; + rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg); + if (IOM_SUCCESS(rcStrict)) + { + switch (cbReg) + { + case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break; + case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break; + case 4: pVCpu->cpum.GstCtx.rax = u32Value; break; + default: AssertFailedReturn(VERR_IEM_IPE_3); + } + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + pVCpu->iem.s.cPotentialExits++; + if (rcStrict != VINF_SUCCESS) + rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); + Assert(rcStrict == VINF_SUCCESS); /* assumed below */ + + /* + * Check for I/O breakpoints. + */ + uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7]; + if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK) + && X86_DR7_ANY_RW_IO(uDr7) + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)) + || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM)))) + { + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6); + rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg); + if (rcStrict == VINF_EM_RAW_GUEST_TRAP) + rcStrict = iemRaiseDebugException(pVCpu); + } + } + + return rcStrict; +} + + +/** + * Implements 'IN eAX, DX'. + * + * @param cbReg The register size. + */ +IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg) +{ + return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg); +} + + +/** + * Implements 'OUT port, eAX'. + * + * @param u16Port The destination port. + * @param fImm Whether the port was specified through an immediate operand + * or the implicit DX register. + * @param cbReg The register size. + */ +IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg) +{ + /* + * CPL check + */ + VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Check VMX nested-guest I/O intercept. + */ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#else + RT_NOREF(fImm); +#endif + + /* + * Check SVM nested-guest I/O intercept. + */ +#ifdef VBOX_WITH_NESTED_HWVIRT_SVM + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT)) + { + uint8_t cAddrSizeBits; + switch (pVCpu->iem.s.enmEffAddrMode) + { + case IEMMODE_16BIT: cAddrSizeBits = 16; break; + case IEMMODE_32BIT: cAddrSizeBits = 32; break; + case IEMMODE_64BIT: cAddrSizeBits = 64; break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */, + false /* fRep */, false /* fStrIo */, cbInstr); + if (rcStrict == VINF_SVM_VMEXIT) + return VINF_SUCCESS; + if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE) + { + Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg, + VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } +#endif + + /* + * Perform the I/O. + */ + uint32_t u32Value; + switch (cbReg) + { + case 1: u32Value = pVCpu->cpum.GstCtx.al; break; + case 2: u32Value = pVCpu->cpum.GstCtx.ax; break; + case 4: u32Value = pVCpu->cpum.GstCtx.eax; break; + default: AssertFailedReturn(VERR_IEM_IPE_4); + } + rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg); + if (IOM_SUCCESS(rcStrict)) + { + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + pVCpu->iem.s.cPotentialExits++; + if (rcStrict != VINF_SUCCESS) + rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); + Assert(rcStrict == VINF_SUCCESS); /* assumed below */ + + /* + * Check for I/O breakpoints. + */ + uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7]; + if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK) + && X86_DR7_ANY_RW_IO(uDr7) + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)) + || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM)))) + { + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6); + rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg); + if (rcStrict == VINF_EM_RAW_GUEST_TRAP) + rcStrict = iemRaiseDebugException(pVCpu); + } + } + return rcStrict; +} + + +/** + * Implements 'OUT DX, eAX'. + * + * @param cbReg The register size. + */ +IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg) +{ + return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg); +} + + +/** + * Implements 'CLI'. + */ +IEM_CIMPL_DEF_0(iemCImpl_cli) +{ + uint32_t fEfl = IEMMISC_GET_EFL(pVCpu); + uint32_t const fEflOld = fEfl; + + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4); + if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) + { + uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl); + if (!(fEfl & X86_EFL_VM)) + { + if (pVCpu->iem.s.uCpl <= uIopl) + fEfl &= ~X86_EFL_IF; + else if ( pVCpu->iem.s.uCpl == 3 + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) ) + fEfl &= ~X86_EFL_VIF; + else + return iemRaiseGeneralProtectionFault0(pVCpu); + } + /* V8086 */ + else if (uIopl == 3) + fEfl &= ~X86_EFL_IF; + else if ( uIopl < 3 + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) ) + fEfl &= ~X86_EFL_VIF; + else + return iemRaiseGeneralProtectionFault0(pVCpu); + } + /* real mode */ + else + fEfl &= ~X86_EFL_IF; + + /* Commit. */ + IEMMISC_SET_EFL(pVCpu, fEfl); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld); + return VINF_SUCCESS; +} + + +/** + * Implements 'STI'. + */ +IEM_CIMPL_DEF_0(iemCImpl_sti) +{ + uint32_t fEfl = IEMMISC_GET_EFL(pVCpu); + uint32_t const fEflOld = fEfl; + + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4); + if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) + { + uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl); + if (!(fEfl & X86_EFL_VM)) + { + if (pVCpu->iem.s.uCpl <= uIopl) + fEfl |= X86_EFL_IF; + else if ( pVCpu->iem.s.uCpl == 3 + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) + && !(fEfl & X86_EFL_VIP) ) + fEfl |= X86_EFL_VIF; + else + return iemRaiseGeneralProtectionFault0(pVCpu); + } + /* V8086 */ + else if (uIopl == 3) + fEfl |= X86_EFL_IF; + else if ( uIopl < 3 + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) + && !(fEfl & X86_EFL_VIP) ) + fEfl |= X86_EFL_VIF; + else + return iemRaiseGeneralProtectionFault0(pVCpu); + } + /* real mode */ + else + fEfl |= X86_EFL_IF; + + /* Commit. */ + IEMMISC_SET_EFL(pVCpu, fEfl); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF)) + EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip); + Log2(("STI: %#x -> %#x\n", fEflOld, fEfl)); + return VINF_SUCCESS; +} + + +/** + * Implements 'HLT'. + */ +IEM_CIMPL_DEF_0(iemCImpl_hlt) +{ + if (pVCpu->iem.s.uCpl != 0) + return iemRaiseGeneralProtectionFault0(pVCpu); + + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT)) + { + Log2(("hlt: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr); + } + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT)) + { + Log2(("hlt: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_EM_HALT; +} + + +/** + * Implements 'MONITOR'. + */ +IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg) +{ + /* + * Permission checks. + */ + if (pVCpu->iem.s.uCpl != 0) + { + Log2(("monitor: CPL != 0\n")); + return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */ + } + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait) + { + Log2(("monitor: Not in CPUID\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + + /* + * Check VMX guest-intercept. + * This should be considered a fault-like VM-exit. + * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits". + */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT)) + { + Log2(("monitor: Guest intercept -> #VMEXIT\n")); + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr); + } + + /* + * Gather the operands and validate them. + */ + RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax; + uint32_t uEcx = pVCpu->cpum.GstCtx.ecx; + uint32_t uEdx = pVCpu->cpum.GstCtx.edx; +/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or + * \#GP first. */ + if (uEcx != 0) + { + Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + RTGCPHYS GCPhysMem; + rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS)) + { + /* + * MONITOR does not access the memory, just monitors the address. However, + * if the address falls in the APIC-access page, the address monitored must + * instead be the corresponding address in the virtual-APIC page. + * + * See Intel spec. 29.4.4 "Instruction-Specific Considerations". + */ + rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem); + if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE + && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR) + return rcStrict; + } +#endif + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR)) + { + Log2(("monitor: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Call EM to prepare the monitor/wait. + */ + rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem); + Assert(rcStrict == VINF_SUCCESS); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; +} + + +/** + * Implements 'MWAIT'. + */ +IEM_CIMPL_DEF_0(iemCImpl_mwait) +{ + /* + * Permission checks. + */ + if (pVCpu->iem.s.uCpl != 0) + { + Log2(("mwait: CPL != 0\n")); + /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check + * EFLAGS.VM then.) */ + return iemRaiseUndefinedOpcode(pVCpu); + } + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait) + { + Log2(("mwait: Not in CPUID\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + + /* Check VMX nested-guest intercept. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT)) + IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr); + + /* + * Gather the operands and validate them. + */ + uint32_t const uEax = pVCpu->cpum.GstCtx.eax; + uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx; + if (uEcx != 0) + { + /* Only supported extension is break on IRQ when IF=0. */ + if (uEcx > 1) + { + Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + uint32_t fMWaitFeatures = 0; + uint32_t uIgnore = 0; + CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore); + if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0)) + != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0)) + { + Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* + * If the interrupt-window exiting control is set or a virtual-interrupt is pending + * for delivery; and interrupts are disabled the processor does not enter its + * mwait state but rather passes control to the next instruction. + * + * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation". + */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF) + { + if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT) + || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) + { + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + } +#endif + } + + /* + * Check SVM nested-guest mwait intercepts. + */ + if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED) + && EMMonitorIsArmed(pVCpu)) + { + Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT)) + { + Log2(("mwait: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + /* + * Call EM to prepare the monitor/wait. + */ + VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; +} + + +/** + * Implements 'SWAPGS'. + */ +IEM_CIMPL_DEF_0(iemCImpl_swapgs) +{ + Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */ + + /* + * Permission checks. + */ + if (pVCpu->iem.s.uCpl != 0) + { + Log2(("swapgs: CPL != 0\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + + /* + * Do the job. + */ + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS); + uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE; + pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base; + pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'CPUID'. + */ +IEM_CIMPL_DEF_0(iemCImpl_cpuid) +{ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + Log2(("cpuid: Guest intercept -> VM-exit\n")); + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr); + } + + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID)) + { + Log2(("cpuid: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, + &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx); + pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff); + pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff); + pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff); + pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff); + pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + pVCpu->iem.s.cPotentialExits++; + return VINF_SUCCESS; +} + + +/** + * Implements 'AAD'. + * + * @param bImm The immediate operand. + */ +IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm) +{ + uint16_t const ax = pVCpu->cpum.GstCtx.ax; + uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm; + pVCpu->cpum.GstCtx.ax = al; + iemHlpUpdateArithEFlagsU8(pVCpu, al, + X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, + X86_EFL_OF | X86_EFL_AF | X86_EFL_CF); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'AAM'. + * + * @param bImm The immediate operand. Cannot be 0. + */ +IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm) +{ + Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */ + + uint16_t const ax = pVCpu->cpum.GstCtx.ax; + uint8_t const al = (uint8_t)ax % bImm; + uint8_t const ah = (uint8_t)ax / bImm; + pVCpu->cpum.GstCtx.ax = (ah << 8) + al; + iemHlpUpdateArithEFlagsU8(pVCpu, al, + X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, + X86_EFL_OF | X86_EFL_AF | X86_EFL_CF); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'DAA'. + */ +IEM_CIMPL_DEF_0(iemCImpl_daa) +{ + uint8_t const al = pVCpu->cpum.GstCtx.al; + bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF; + + if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF + || (al & 0xf) >= 10) + { + pVCpu->cpum.GstCtx.al = al + 6; + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1; + } + else + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0; + + if (al >= 0x9a || fCarry) + { + pVCpu->cpum.GstCtx.al += 0x60; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1; + } + else + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0; + + iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'DAS'. + */ +IEM_CIMPL_DEF_0(iemCImpl_das) +{ + uint8_t const uInputAL = pVCpu->cpum.GstCtx.al; + bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF; + + if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF + || (uInputAL & 0xf) >= 10) + { + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1; + if (uInputAL < 6) + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1; + pVCpu->cpum.GstCtx.al = uInputAL - 6; + } + else + { + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0; + } + + if (uInputAL >= 0x9a || fCarry) + { + pVCpu->cpum.GstCtx.al -= 0x60; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1; + } + + iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'AAA'. + */ +IEM_CIMPL_DEF_0(iemCImpl_aaa) +{ + if (IEM_IS_GUEST_CPU_AMD(pVCpu)) + { + if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF + || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10) + { + iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32); + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1; + } + else + { + iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0; + } + pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f); + } + else + { + if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF + || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10) + { + pVCpu->cpum.GstCtx.ax += UINT16_C(0x106); + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1; + } + else + { + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0; + } + pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f); + iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); + } + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'AAS'. + */ +IEM_CIMPL_DEF_0(iemCImpl_aas) +{ + if (IEM_IS_GUEST_CPU_AMD(pVCpu)) + { + if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF + || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10) + { + iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32); + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1; + } + else + { + iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0; + } + pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f); + } + else + { + if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF + || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10) + { + pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106); + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1; + } + else + { + pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0; + pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0; + } + pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f); + iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); + } + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements the 16-bit version of 'BOUND'. + * + * @note We have separate 16-bit and 32-bit variants of this function due to + * the decoder using unsigned parameters, whereas we want signed one to + * do the job. This is significant for a recompiler. + */ +IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound) +{ + /* + * Check if the index is inside the bounds, otherwise raise #BR. + */ + if ( idxArray >= idxLowerBound + && idxArray <= idxUpperBound) + { + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + return iemRaiseBoundRangeExceeded(pVCpu); +} + + +/** + * Implements the 32-bit version of 'BOUND'. + */ +IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound) +{ + /* + * Check if the index is inside the bounds, otherwise raise #BR. + */ + if ( idxArray >= idxLowerBound + && idxArray <= idxUpperBound) + { + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + return iemRaiseBoundRangeExceeded(pVCpu); +} + + + +/* + * Instantiate the various string operation combinations. + */ +#define OP_SIZE 8 +#define ADDR_SIZE 16 +#include "IEMAllCImplStrInstr.cpp.h" +#define OP_SIZE 8 +#define ADDR_SIZE 32 +#include "IEMAllCImplStrInstr.cpp.h" +#define OP_SIZE 8 +#define ADDR_SIZE 64 +#include "IEMAllCImplStrInstr.cpp.h" + +#define OP_SIZE 16 +#define ADDR_SIZE 16 +#include "IEMAllCImplStrInstr.cpp.h" +#define OP_SIZE 16 +#define ADDR_SIZE 32 +#include "IEMAllCImplStrInstr.cpp.h" +#define OP_SIZE 16 +#define ADDR_SIZE 64 +#include "IEMAllCImplStrInstr.cpp.h" + +#define OP_SIZE 32 +#define ADDR_SIZE 16 +#include "IEMAllCImplStrInstr.cpp.h" +#define OP_SIZE 32 +#define ADDR_SIZE 32 +#include "IEMAllCImplStrInstr.cpp.h" +#define OP_SIZE 32 +#define ADDR_SIZE 64 +#include "IEMAllCImplStrInstr.cpp.h" + +#define OP_SIZE 64 +#define ADDR_SIZE 32 +#include "IEMAllCImplStrInstr.cpp.h" +#define OP_SIZE 64 +#define ADDR_SIZE 64 +#include "IEMAllCImplStrInstr.cpp.h" + + +/** + * Implements 'XGETBV'. + */ +IEM_CIMPL_DEF_0(iemCImpl_xgetbv) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) + { + uint32_t uEcx = pVCpu->cpum.GstCtx.ecx; + switch (uEcx) + { + case 0: + break; + + case 1: /** @todo Implement XCR1 support. */ + default: + Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx)); + return iemRaiseGeneralProtectionFault0(pVCpu); + + } + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx); + pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]); + pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]); + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + Log(("xgetbv CR4.OSXSAVE=0 -> UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); +} + + +/** + * Implements 'XSETBV'. + */ +IEM_CIMPL_DEF_0(iemCImpl_xsetbv) +{ + if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) + { + if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV)) + { + Log2(("xsetbv: Guest intercept -> #VMEXIT\n")); + IEM_SVM_UPDATE_NRIP(pVCpu); + IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); + } + + if (pVCpu->iem.s.uCpl == 0) + { + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx); + + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr); + + uint32_t uEcx = pVCpu->cpum.GstCtx.ecx; + uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx); + switch (uEcx) + { + case 0: + { + int rc = CPUMSetGuestXcr0(pVCpu, uNewValue); + if (rc == VINF_SUCCESS) + break; + Assert(rc == VERR_CPUM_RAISE_GP_0); + Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + case 1: /** @todo Implement XCR1 support. */ + default: + Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue)); + return iemRaiseGeneralProtectionFault0(pVCpu); + + } + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + Log(("xsetbv CR4.OSXSAVE=0 -> UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); +} + +#ifdef IN_RING3 + +/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */ +struct IEMCIMPLCX16ARGS +{ + PRTUINT128U pu128Dst; + PRTUINT128U pu128RaxRdx; + PRTUINT128U pu128RbxRcx; + uint32_t *pEFlags; +# ifdef VBOX_STRICT + uint32_t cCalls; +# endif +}; + +/** + * @callback_method_impl{FNVMMEMTRENDEZVOUS, + * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous} + */ +static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPUCC pVCpu, void *pvUser) +{ + RT_NOREF(pVM, pVCpu); + struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser; +# ifdef VBOX_STRICT + Assert(pArgs->cCalls == 0); + pArgs->cCalls++; +# endif + + iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags); + return VINF_SUCCESS; +} + +#endif /* IN_RING3 */ + +/** + * Implements 'CMPXCHG16B' fallback using rendezvous. + */ +IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx, + PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags) +{ +#ifdef IN_RING3 + struct IEMCIMPLCX16ARGS Args; + Args.pu128Dst = pu128Dst; + Args.pu128RaxRdx = pu128RaxRdx; + Args.pu128RbxRcx = pu128RbxRcx; + Args.pEFlags = pEFlags; +# ifdef VBOX_STRICT + Args.cCalls = 0; +# endif + VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, + iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args); + Assert(Args.cCalls == 1); + if (rcStrict == VINF_SUCCESS) + { + /* Duplicated tail code. */ + rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW); + if (rcStrict == VINF_SUCCESS) + { + pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */ + if (!(*pEFlags & X86_EFL_ZF)) + { + pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo; + pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi; + } + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + } + } + return rcStrict; +#else + RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags); + return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */ +#endif +} + + +/** + * Implements 'CLFLUSH' and 'CLFLUSHOPT'. + * + * This is implemented in C because it triggers a load like behaviour without + * actually reading anything. Since that's not so common, it's implemented + * here. + * + * @param iEffSeg The effective segment. + * @param GCPtrEff The address of the image. + */ +IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) +{ + /* + * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap). + */ + VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff); + if (rcStrict == VINF_SUCCESS) + { + RTGCPHYS GCPhysMem; + rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem); + if (rcStrict == VINF_SUCCESS) + { +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS)) + { + /* + * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line + * that contains the address. However, if the address falls in the APIC-access + * page, the address flushed must instead be the corresponding address in the + * virtual-APIC page. + * + * See Intel spec. 29.4.4 "Instruction-Specific Considerations". + */ + rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem); + if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE + && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR) + return rcStrict; + } +#endif + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + } + + return rcStrict; +} + + +/** + * Implements 'FINIT' and 'FNINIT'. + * + * @param fCheckXcpts Whether to check for umasked pending exceptions or + * not. + */ +IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) + return iemRaiseDeviceNotAvailable(pVCpu); + + iemFpuActualizeStateForChange(pVCpu); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87); + + NOREF(fCheckXcpts); /** @todo trigger pending exceptions: + if (fCheckXcpts && TODO ) + return iemRaiseMathFault(pVCpu); + */ + + PX86XSAVEAREA pXState = pVCpu->cpum.GstCtx.CTX_SUFF(pXState); + pXState->x87.FCW = 0x37f; + pXState->x87.FSW = 0; + pXState->x87.FTW = 0x00; /* 0 - empty. */ + pXState->x87.FPUDP = 0; + pXState->x87.DS = 0; //?? + pXState->x87.Rsrvd2= 0; + pXState->x87.FPUIP = 0; + pXState->x87.CS = 0; //?? + pXState->x87.Rsrvd1= 0; + pXState->x87.FOP = 0; + + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'FXSAVE'. + * + * @param iEffSeg The effective segment. + * @param GCPtrEff The address of the image. + * @param enmEffOpSize The operand size (only REX.W really matters). + */ +IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX); + + /* + * Raise exceptions. + */ + if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) + return iemRaiseUndefinedOpcode(pVCpu); + if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM)) + return iemRaiseDeviceNotAvailable(pVCpu); + if (GCPtrEff & 15) + { + /** @todo CPU/VM detection possible! \#AC might not be signal for + * all/any misalignment sizes, intel says its an implementation detail. */ + if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM) + && pVCpu->cpum.GstCtx.eflags.Bits.u1AC + && pVCpu->iem.s.uCpl == 3) + return iemRaiseAlignmentCheckException(pVCpu); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Access the memory. + */ + void *pvMem512; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + PX86FXSTATE pDst = (PX86FXSTATE)pvMem512; + PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + + /* + * Store the registers. + */ + /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's + * implementation specific whether MXCSR and XMM0-XMM7 are saved. */ + + /* common for all formats */ + pDst->FCW = pSrc->FCW; + pDst->FSW = pSrc->FSW; + pDst->FTW = pSrc->FTW & UINT16_C(0xff); + pDst->FOP = pSrc->FOP; + pDst->MXCSR = pSrc->MXCSR; + pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); + for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++) + { + /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing + * them for now... */ + pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; + pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; + pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); + pDst->aRegs[i].au32[3] = 0; + } + + /* FPU IP, CS, DP and DS. */ + pDst->FPUIP = pSrc->FPUIP; + pDst->CS = pSrc->CS; + pDst->FPUDP = pSrc->FPUDP; + pDst->DS = pSrc->DS; + if (enmEffOpSize == IEMMODE_64BIT) + { + /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */ + pDst->Rsrvd1 = pSrc->Rsrvd1; + pDst->Rsrvd2 = pSrc->Rsrvd2; + pDst->au32RsrvdForSoftware[0] = 0; + } + else + { + pDst->Rsrvd1 = 0; + pDst->Rsrvd2 = 0; + pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC; + } + + /* XMM registers. */ + if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR) + || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT + || pVCpu->iem.s.uCpl != 0) + { + uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; + for (uint32_t i = 0; i < cXmmRegs; i++) + pDst->aXMM[i] = pSrc->aXMM[i]; + /** @todo Testcase: What happens to the reserved XMM registers? Untouched, + * right? */ + } + + /* + * Commit the memory. + */ + rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'FXRSTOR'. + * + * @param GCPtrEff The address of the image. + * @param enmEffOpSize The operand size (only REX.W really matters). + */ +IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX); + + /* + * Raise exceptions. + */ + if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) + return iemRaiseUndefinedOpcode(pVCpu); + if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM)) + return iemRaiseDeviceNotAvailable(pVCpu); + if (GCPtrEff & 15) + { + /** @todo CPU/VM detection possible! \#AC might not be signal for + * all/any misalignment sizes, intel says its an implementation detail. */ + if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM) + && pVCpu->cpum.GstCtx.eflags.Bits.u1AC + && pVCpu->iem.s.uCpl == 3) + return iemRaiseAlignmentCheckException(pVCpu); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Access the memory. + */ + void *pvMem512; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512; + PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + + /* + * Check the state for stuff which will #GP(0). + */ + uint32_t const fMXCSR = pSrc->MXCSR; + uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); + if (fMXCSR & ~fMXCSR_MASK) + { + Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Load the registers. + */ + /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's + * implementation specific whether MXCSR and XMM0-XMM7 are restored. */ + + /* common for all formats */ + pDst->FCW = pSrc->FCW; + pDst->FSW = pSrc->FSW; + pDst->FTW = pSrc->FTW & UINT16_C(0xff); + pDst->FOP = pSrc->FOP; + pDst->MXCSR = fMXCSR; + /* (MXCSR_MASK is read-only) */ + for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++) + { + pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; + pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; + pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); + pDst->aRegs[i].au32[3] = 0; + } + + /* FPU IP, CS, DP and DS. */ + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + { + pDst->FPUIP = pSrc->FPUIP; + pDst->CS = pSrc->CS; + pDst->Rsrvd1 = pSrc->Rsrvd1; + pDst->FPUDP = pSrc->FPUDP; + pDst->DS = pSrc->DS; + pDst->Rsrvd2 = pSrc->Rsrvd2; + } + else + { + pDst->FPUIP = pSrc->FPUIP; + pDst->CS = pSrc->CS; + pDst->Rsrvd1 = 0; + pDst->FPUDP = pSrc->FPUDP; + pDst->DS = pSrc->DS; + pDst->Rsrvd2 = 0; + } + + /* XMM registers. */ + if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR) + || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT + || pVCpu->iem.s.uCpl != 0) + { + uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; + for (uint32_t i = 0; i < cXmmRegs; i++) + pDst->aXMM[i] = pSrc->aXMM[i]; + } + + /* + * Commit the memory. + */ + rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'XSAVE'. + * + * @param iEffSeg The effective segment. + * @param GCPtrEff The address of the image. + * @param enmEffOpSize The operand size (only REX.W really matters). + */ +IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx); + + /* + * Raise exceptions. + */ + if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)) + return iemRaiseUndefinedOpcode(pVCpu); + /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS)) + { + Log(("xrstor: Not enabled for nested-guest execution -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) + return iemRaiseDeviceNotAvailable(pVCpu); + if (GCPtrEff & 63) + { + /** @todo CPU/VM detection possible! \#AC might not be signal for + * all/any misalignment sizes, intel says its an implementation detail. */ + if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM) + && pVCpu->cpum.GstCtx.eflags.Bits.u1AC + && pVCpu->iem.s.uCpl == 3) + return iemRaiseAlignmentCheckException(pVCpu); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* + * Calc the requested mask. + */ + uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0]; + AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED); + uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0]; + +/** @todo figure out the exact protocol for the memory access. Currently we + * just need this crap to work halfways to make it possible to test + * AVX instructions. */ +/** @todo figure out the XINUSE and XMODIFIED */ + + /* + * Access the x87 memory state. + */ + /* The x87+SSE state. */ + void *pvMem512; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + PX86FXSTATE pDst = (PX86FXSTATE)pvMem512; + PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + + /* The header. */ + PX86XSAVEHDR pHdr; + rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Store the X87 state. + */ + if (fReqComponents & XSAVE_C_X87) + { + /* common for all formats */ + pDst->FCW = pSrc->FCW; + pDst->FSW = pSrc->FSW; + pDst->FTW = pSrc->FTW & UINT16_C(0xff); + pDst->FOP = pSrc->FOP; + pDst->FPUIP = pSrc->FPUIP; + pDst->CS = pSrc->CS; + pDst->FPUDP = pSrc->FPUDP; + pDst->DS = pSrc->DS; + if (enmEffOpSize == IEMMODE_64BIT) + { + /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */ + pDst->Rsrvd1 = pSrc->Rsrvd1; + pDst->Rsrvd2 = pSrc->Rsrvd2; + pDst->au32RsrvdForSoftware[0] = 0; + } + else + { + pDst->Rsrvd1 = 0; + pDst->Rsrvd2 = 0; + pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC; + } + for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++) + { + /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing + * them for now... */ + pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; + pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; + pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); + pDst->aRegs[i].au32[3] = 0; + } + + } + + if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM)) + { + pDst->MXCSR = pSrc->MXCSR; + pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); + } + + if (fReqComponents & XSAVE_C_SSE) + { + /* XMM registers. */ + uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; + for (uint32_t i = 0; i < cXmmRegs; i++) + pDst->aXMM[i] = pSrc->aXMM[i]; + /** @todo Testcase: What happens to the reserved XMM registers? Untouched, + * right? */ + } + + /* Commit the x87 state bits. (probably wrong) */ + rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Store AVX state. + */ + if (fReqComponents & XSAVE_C_YMM) + { + /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */ + AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9); + PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI); + PX86XSAVEYMMHI pCompDst; + rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], + IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; + for (uint32_t i = 0; i < cXmmRegs; i++) + pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i]; + + rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + + /* + * Update the header. + */ + pHdr->bmXState = (pHdr->bmXState & ~fReqComponents) + | (fReqComponents & fXInUse); + + rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'XRSTOR'. + * + * @param iEffSeg The effective segment. + * @param GCPtrEff The address of the image. + * @param enmEffOpSize The operand size (only REX.W really matters). + */ +IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx); + + /* + * Raise exceptions. + */ + if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)) + return iemRaiseUndefinedOpcode(pVCpu); + /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS)) + { + Log(("xrstor: Not enabled for nested-guest execution -> #UD\n")); + return iemRaiseUndefinedOpcode(pVCpu); + } + if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) + return iemRaiseDeviceNotAvailable(pVCpu); + if (GCPtrEff & 63) + { + /** @todo CPU/VM detection possible! \#AC might not be signal for + * all/any misalignment sizes, intel says its an implementation detail. */ + if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM) + && pVCpu->cpum.GstCtx.eflags.Bits.u1AC + && pVCpu->iem.s.uCpl == 3) + return iemRaiseAlignmentCheckException(pVCpu); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + +/** @todo figure out the exact protocol for the memory access. Currently we + * just need this crap to work halfways to make it possible to test + * AVX instructions. */ +/** @todo figure out the XINUSE and XMODIFIED */ + + /* + * Access the x87 memory state. + */ + /* The x87+SSE state. */ + void *pvMem512; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512; + PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + + /* + * Calc the requested mask + */ + PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->Hdr; + PCX86XSAVEHDR pHdrSrc; + rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0]; + AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED); + //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0]; + uint64_t const fRstorMask = pHdrSrc->bmXState; + uint64_t const fCompMask = pHdrSrc->bmXComp; + + AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED); + + uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; + + /* We won't need this any longer. */ + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Store the X87 state. + */ + if (fReqComponents & XSAVE_C_X87) + { + if (fRstorMask & XSAVE_C_X87) + { + pDst->FCW = pSrc->FCW; + pDst->FSW = pSrc->FSW; + pDst->FTW = pSrc->FTW & UINT16_C(0xff); + pDst->FOP = pSrc->FOP; + pDst->FPUIP = pSrc->FPUIP; + pDst->CS = pSrc->CS; + pDst->FPUDP = pSrc->FPUDP; + pDst->DS = pSrc->DS; + if (enmEffOpSize == IEMMODE_64BIT) + { + /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */ + pDst->Rsrvd1 = pSrc->Rsrvd1; + pDst->Rsrvd2 = pSrc->Rsrvd2; + } + else + { + pDst->Rsrvd1 = 0; + pDst->Rsrvd2 = 0; + } + for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++) + { + pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; + pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; + pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); + pDst->aRegs[i].au32[3] = 0; + } + } + else + { + pDst->FCW = 0x37f; + pDst->FSW = 0; + pDst->FTW = 0x00; /* 0 - empty. */ + pDst->FPUDP = 0; + pDst->DS = 0; //?? + pDst->Rsrvd2= 0; + pDst->FPUIP = 0; + pDst->CS = 0; //?? + pDst->Rsrvd1= 0; + pDst->FOP = 0; + for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++) + { + pDst->aRegs[i].au32[0] = 0; + pDst->aRegs[i].au32[1] = 0; + pDst->aRegs[i].au32[2] = 0; + pDst->aRegs[i].au32[3] = 0; + } + } + pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */ + } + + /* MXCSR */ + if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM)) + { + if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM)) + pDst->MXCSR = pSrc->MXCSR; + else + pDst->MXCSR = 0x1f80; + } + + /* XMM registers. */ + if (fReqComponents & XSAVE_C_SSE) + { + if (fRstorMask & XSAVE_C_SSE) + { + for (uint32_t i = 0; i < cXmmRegs; i++) + pDst->aXMM[i] = pSrc->aXMM[i]; + /** @todo Testcase: What happens to the reserved XMM registers? Untouched, + * right? */ + } + else + { + for (uint32_t i = 0; i < cXmmRegs; i++) + { + pDst->aXMM[i].au64[0] = 0; + pDst->aXMM[i].au64[1] = 0; + } + } + pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */ + } + + /* Unmap the x87 state bits (so we've don't run out of mapping). */ + rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Restore AVX state. + */ + if (fReqComponents & XSAVE_C_YMM) + { + AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9); + PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI); + + if (fRstorMask & XSAVE_C_YMM) + { + /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */ + PCX86XSAVEYMMHI pCompSrc; + rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst), + iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + for (uint32_t i = 0; i < cXmmRegs; i++) + { + pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0]; + pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1]; + } + + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + else + { + for (uint32_t i = 0; i < cXmmRegs; i++) + { + pCompDst->aYmmHi[i].au64[0] = 0; + pCompDst->aYmmHi[i].au64[1] = 0; + } + } + pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */ + } + + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + + + +/** + * Implements 'STMXCSR'. + * + * @param GCPtrEff The address of the image. + */ +IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX); + + /* + * Raise exceptions. + */ + if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) + { + if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)) + { + /* + * Do the job. + */ + VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR); + if (rcStrict == VINF_SUCCESS) + { + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + return rcStrict; + } + return iemRaiseDeviceNotAvailable(pVCpu); + } + return iemRaiseUndefinedOpcode(pVCpu); +} + + +/** + * Implements 'VSTMXCSR'. + * + * @param GCPtrEff The address of the image. + */ +IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx); + + /* + * Raise exceptions. + */ + if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu) + ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM) + : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */ + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)) + { + if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)) + { + /* + * Do the job. + */ + VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR); + if (rcStrict == VINF_SUCCESS) + { + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + return rcStrict; + } + return iemRaiseDeviceNotAvailable(pVCpu); + } + return iemRaiseUndefinedOpcode(pVCpu); +} + + +/** + * Implements 'LDMXCSR'. + * + * @param GCPtrEff The address of the image. + */ +IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX); + + /* + * Raise exceptions. + */ + /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS + * happen after or before \#UD and \#EM? */ + if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) + && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) + { + if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)) + { + /* + * Do the job. + */ + uint32_t fNewMxCsr; + VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff); + if (rcStrict == VINF_SUCCESS) + { + uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); + if (!(fNewMxCsr & ~fMxCsrMask)) + { + pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n", + fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask)); + return iemRaiseGeneralProtectionFault0(pVCpu); + } + return rcStrict; + } + return iemRaiseDeviceNotAvailable(pVCpu); + } + return iemRaiseUndefinedOpcode(pVCpu); +} + + +/** + * Commmon routine for fnstenv and fnsave. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param enmEffOpSize The effective operand size. + * @param uPtr Where to store the state. + */ +static void iemCImplCommonFpuStoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87); + PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + if (enmEffOpSize == IEMMODE_16BIT) + { + uPtr.pu16[0] = pSrcX87->FCW; + uPtr.pu16[1] = pSrcX87->FSW; + uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87); + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + /** @todo Testcase: How does this work when the FPUIP/CS was saved in + * protected mode or long mode and we save it in real mode? And vice + * versa? And with 32-bit operand size? I think CPU is storing the + * effective address ((CS << 4) + IP) in the offset register and not + * doing any address calculations here. */ + uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP; + uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP; + uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP; + uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000); + } + else + { + uPtr.pu16[3] = pSrcX87->FPUIP; + uPtr.pu16[4] = pSrcX87->CS; + uPtr.pu16[5] = pSrcX87->FPUDP; + uPtr.pu16[6] = pSrcX87->DS; + } + } + else + { + /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */ + uPtr.pu16[0*2] = pSrcX87->FCW; + uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */ + uPtr.pu16[1*2] = pSrcX87->FSW; + uPtr.pu16[1*2+1] = 0xffff; + uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87); + uPtr.pu16[2*2+1] = 0xffff; + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP; + uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP; + uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP; + uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4; + } + else + { + uPtr.pu32[3] = pSrcX87->FPUIP; + uPtr.pu16[4*2] = pSrcX87->CS; + uPtr.pu16[4*2+1] = pSrcX87->FOP; + uPtr.pu32[5] = pSrcX87->FPUDP; + uPtr.pu16[6*2] = pSrcX87->DS; + uPtr.pu16[6*2+1] = 0xffff; + } + } +} + + +/** + * Commmon routine for fldenv and frstor + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param enmEffOpSize The effective operand size. + * @param uPtr Where to store the state. + */ +static void iemCImplCommonFpuRestoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87); + PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + if (enmEffOpSize == IEMMODE_16BIT) + { + pDstX87->FCW = uPtr.pu16[0]; + pDstX87->FSW = uPtr.pu16[1]; + pDstX87->FTW = uPtr.pu16[2]; + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4); + pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4); + pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff); + pDstX87->CS = 0; + pDstX87->Rsrvd1= 0; + pDstX87->DS = 0; + pDstX87->Rsrvd2= 0; + } + else + { + pDstX87->FPUIP = uPtr.pu16[3]; + pDstX87->CS = uPtr.pu16[4]; + pDstX87->Rsrvd1= 0; + pDstX87->FPUDP = uPtr.pu16[5]; + pDstX87->DS = uPtr.pu16[6]; + pDstX87->Rsrvd2= 0; + /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */ + } + } + else + { + pDstX87->FCW = uPtr.pu16[0*2]; + pDstX87->FSW = uPtr.pu16[1*2]; + pDstX87->FTW = uPtr.pu16[2*2]; + if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) + { + pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4); + pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff); + pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4); + pDstX87->CS = 0; + pDstX87->Rsrvd1= 0; + pDstX87->DS = 0; + pDstX87->Rsrvd2= 0; + } + else + { + pDstX87->FPUIP = uPtr.pu32[3]; + pDstX87->CS = uPtr.pu16[4*2]; + pDstX87->Rsrvd1= 0; + pDstX87->FOP = uPtr.pu16[4*2+1]; + pDstX87->FPUDP = uPtr.pu32[5]; + pDstX87->DS = uPtr.pu16[6*2]; + pDstX87->Rsrvd2= 0; + } + } + + /* Make adjustments. */ + pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW); + pDstX87->FCW &= ~X86_FCW_ZERO_MASK; + iemFpuRecalcExceptionStatus(pDstX87); + /** @todo Testcase: Check if ES and/or B are automatically cleared if no + * exceptions are pending after loading the saved state? */ +} + + +/** + * Implements 'FNSTENV'. + * + * @param enmEffOpSize The operand size (only REX.W really matters). + * @param iEffSeg The effective segment register for @a GCPtrEff. + * @param GCPtrEffDst The address of the image. + */ +IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) +{ + RTPTRUNION uPtr; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28, + iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr); + + rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */ + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'FNSAVE'. + * + * @param GCPtrEffDst The address of the image. + * @param enmEffOpSize The operand size. + */ +IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87); + + RTPTRUNION uPtr; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108, + iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr); + PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28)); + for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++) + { + paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0]; + paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1]; + paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4]; + } + + rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + /* + * Re-initialize the FPU context. + */ + pFpuCtx->FCW = 0x37f; + pFpuCtx->FSW = 0; + pFpuCtx->FTW = 0x00; /* 0 - empty */ + pFpuCtx->FPUDP = 0; + pFpuCtx->DS = 0; + pFpuCtx->Rsrvd2= 0; + pFpuCtx->FPUIP = 0; + pFpuCtx->CS = 0; + pFpuCtx->Rsrvd1= 0; + pFpuCtx->FOP = 0; + + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + + +/** + * Implements 'FLDENV'. + * + * @param enmEffOpSize The operand size (only REX.W really matters). + * @param iEffSeg The effective segment register for @a GCPtrEff. + * @param GCPtrEffSrc The address of the image. + */ +IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc) +{ + RTCPTRUNION uPtr; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28, + iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr); + + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'FRSTOR'. + * + * @param GCPtrEffSrc The address of the image. + * @param enmEffOpSize The operand size. + */ +IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc) +{ + RTCPTRUNION uPtr; + VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108, + iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr); + PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28)); + for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++) + { + pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0]; + pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1]; + pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4]; + pFpuCtx->aRegs[i].au32[3] = 0; + } + + rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'FLDCW'. + * + * @param u16Fcw The new FCW. + */ +IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87); + + /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */ + /** @todo Testcase: Try see what happens when trying to set undefined bits + * (other than 6 and 7). Currently ignoring them. */ + /** @todo Testcase: Test that it raises and loweres the FPU exception bits + * according to FSW. (This is was is currently implemented.) */ + PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK; + iemFpuRecalcExceptionStatus(pFpuCtx); + + /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */ + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + + +/** + * Implements the underflow case of fxch. + * + * @param iStReg The other stack register. + */ +IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg) +{ + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87); + + PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW); + unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK; + Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW)); + + /** @todo Testcase: fxch underflow. Making assumptions that underflowed + * registers are read as QNaN and then exchanged. This could be + * wrong... */ + if (pFpuCtx->FCW & X86_FCW_IM) + { + if (RT_BIT(iReg1) & pFpuCtx->FTW) + { + if (RT_BIT(iReg2) & pFpuCtx->FTW) + iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80); + else + pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80; + iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80); + } + else + { + pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80; + iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80); + } + pFpuCtx->FSW &= ~X86_FSW_C_MASK; + pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF; + } + else + { + /* raise underflow exception, don't change anything. */ + pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK); + pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B; + } + + iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx); + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'. + * + * @param cToAdd 1 or 7. + */ +IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop) +{ + Assert(iStReg < 8); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87); + + /* + * Raise exceptions. + */ + if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) + return iemRaiseDeviceNotAvailable(pVCpu); + + PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87; + uint16_t u16Fsw = pFpuCtx->FSW; + if (u16Fsw & X86_FSW_ES) + return iemRaiseMathFault(pVCpu); + + /* + * Check if any of the register accesses causes #SF + #IA. + */ + unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw); + unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK; + if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2))) + { + uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80); + NOREF(u32Eflags); + + pFpuCtx->FSW &= ~X86_FSW_C1; + pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK; + if ( !(u16Fsw & X86_FSW_IE) + || (pFpuCtx->FCW & X86_FCW_IM) ) + { + pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF); + pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF); + } + } + else if (pFpuCtx->FCW & X86_FCW_IM) + { + /* Masked underflow. */ + pFpuCtx->FSW &= ~X86_FSW_C1; + pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF; + pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF); + pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; + } + else + { + /* Raise underflow - don't touch EFLAGS or TOP. */ + pFpuCtx->FSW &= ~X86_FSW_C1; + pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B; + fPop = false; + } + + /* + * Pop if necessary. + */ + if (fPop) + { + pFpuCtx->FTW &= ~RT_BIT(iReg1); + pFpuCtx->FSW &= X86_FSW_TOP_MASK; + pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT; + } + + iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx); + iemHlpUsedFpu(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + +/** @} */ + |