summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h')
-rw-r--r--src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h9046
1 files changed, 9046 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h b/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h
new file mode 100644
index 00000000..15c75456
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h
@@ -0,0 +1,9046 @@
+/* $Id: IEMAllCImpl.cpp.h $ */
+/** @file
+ * IEM - Instruction Implementation in C/C++ (code include).
+ */
+
+/*
+ * Copyright (C) 2011-2020 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+#include "IEMAllCImplSvmInstr.cpp.h"
+#include "IEMAllCImplVmxInstr.cpp.h"
+
+
+/** @name Misc Helpers
+ * @{
+ */
+
+
+/**
+ * Worker function for iemHlpCheckPortIOPermission, don't call directly.
+ *
+ * @returns Strict VBox status code.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param u16Port The port number.
+ * @param cbOperand The operand size.
+ */
+static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
+{
+ /* The TSS bits we're interested in are the same on 386 and AMD64. */
+ AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
+ AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
+ AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
+ AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
+
+ /*
+ * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
+ */
+ Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
+ if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
+ && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
+ {
+ Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
+ u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Read the bitmap offset (may #PF).
+ */
+ uint16_t offBitmap;
+ VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
+ pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /*
+ * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
+ * describes the CPU actually reading two bytes regardless of whether the
+ * bit range crosses a byte boundrary. Thus the + 1 in the test below.
+ */
+ uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
+ /** @todo check if real CPUs ensures that offBitmap has a minimum value of
+ * for instance sizeof(X86TSS32). */
+ if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
+ {
+ Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
+ offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Read the necessary bits.
+ */
+ /** @todo Test the assertion in the intel manual that the CPU reads two
+ * bytes. The question is how this works wrt to #PF and #GP on the
+ * 2nd byte when it's not required. */
+ uint16_t bmBytes = UINT16_MAX;
+ rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /*
+ * Perform the check.
+ */
+ uint16_t fPortMask = (1 << cbOperand) - 1;
+ bmBytes >>= (u16Port & 7);
+ if (bmBytes & fPortMask)
+ {
+ Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
+ u16Port, cbOperand, bmBytes, fPortMask));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks if we are allowed to access the given I/O port, raising the
+ * appropriate exceptions if we aren't (or if the I/O bitmap is not
+ * accessible).
+ *
+ * @returns Strict VBox status code.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param u16Port The port number.
+ * @param cbOperand The operand size.
+ */
+DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
+{
+ X86EFLAGS Efl;
+ Efl.u = IEMMISC_GET_EFL(pVCpu);
+ if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
+ && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
+ || Efl.Bits.u1VM) )
+ return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
+ return VINF_SUCCESS;
+}
+
+
+#if 0
+/**
+ * Calculates the parity bit.
+ *
+ * @returns true if the bit is set, false if not.
+ * @param u8Result The least significant byte of the result.
+ */
+static bool iemHlpCalcParityFlag(uint8_t u8Result)
+{
+ /*
+ * Parity is set if the number of bits in the least significant byte of
+ * the result is even.
+ */
+ uint8_t cBits;
+ cBits = u8Result & 1; /* 0 */
+ u8Result >>= 1;
+ cBits += u8Result & 1;
+ u8Result >>= 1;
+ cBits += u8Result & 1;
+ u8Result >>= 1;
+ cBits += u8Result & 1;
+ u8Result >>= 1;
+ cBits += u8Result & 1; /* 4 */
+ u8Result >>= 1;
+ cBits += u8Result & 1;
+ u8Result >>= 1;
+ cBits += u8Result & 1;
+ u8Result >>= 1;
+ cBits += u8Result & 1;
+ return !(cBits & 1);
+}
+#endif /* not used */
+
+
+/**
+ * Updates the specified flags according to a 8-bit result.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param u8Result The result to set the flags according to.
+ * @param fToUpdate The flags to update.
+ * @param fUndefined The flags that are specified as undefined.
+ */
+static void iemHlpUpdateArithEFlagsU8(PVMCPUCC pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
+{
+ uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
+ iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
+ pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
+ pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
+}
+
+
+/**
+ * Updates the specified flags according to a 16-bit result.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param u16Result The result to set the flags according to.
+ * @param fToUpdate The flags to update.
+ * @param fUndefined The flags that are specified as undefined.
+ */
+static void iemHlpUpdateArithEFlagsU16(PVMCPUCC pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
+{
+ uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
+ iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
+ pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
+ pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
+}
+
+
+/**
+ * Helper used by iret.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param uCpl The new CPL.
+ * @param pSReg Pointer to the segment register.
+ */
+static void iemHlpAdjustSelectorForNewCpl(PVMCPUCC pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
+{
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
+
+ if ( uCpl > pSReg->Attr.n.u2Dpl
+ && pSReg->Attr.n.u1DescType /* code or data, not system */
+ && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
+ != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
+ iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
+}
+
+
+/**
+ * Indicates that we have modified the FPU state.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ */
+DECLINLINE(void) iemHlpUsedFpu(PVMCPUCC pVCpu)
+{
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
+}
+
+/** @} */
+
+/** @name C Implementations
+ * @{
+ */
+
+/**
+ * Implements a 16-bit popa.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_popa_16)
+{
+ RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
+ RTGCPTR GCPtrLast = GCPtrStart + 15;
+ VBOXSTRICTRC rcStrict;
+
+ /*
+ * The docs are a bit hard to comprehend here, but it looks like we wrap
+ * around in real mode as long as none of the individual "popa" crosses the
+ * end of the stack segment. In protected mode we check the whole access
+ * in one go. For efficiency, only do the word-by-word thing if we're in
+ * danger of wrapping around.
+ */
+ /** @todo do popa boundary / wrap-around checks. */
+ if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
+ && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
+ {
+ /* word-by-word */
+ RTUINT64U TmpRsp;
+ TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
+ }
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ else
+ {
+ uint16_t const *pa16Mem = NULL;
+ rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
+ pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
+ pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
+ /* skip sp */
+ pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
+ pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
+ pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
+ pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegAddToRsp(pVCpu, 16);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements a 32-bit popa.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_popa_32)
+{
+ RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
+ RTGCPTR GCPtrLast = GCPtrStart + 31;
+ VBOXSTRICTRC rcStrict;
+
+ /*
+ * The docs are a bit hard to comprehend here, but it looks like we wrap
+ * around in real mode as long as none of the individual "popa" crosses the
+ * end of the stack segment. In protected mode we check the whole access
+ * in one go. For efficiency, only do the word-by-word thing if we're in
+ * danger of wrapping around.
+ */
+ /** @todo do popa boundary / wrap-around checks. */
+ if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
+ && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
+ {
+ /* word-by-word */
+ RTUINT64U TmpRsp;
+ TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
+ }
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ {
+#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
+ pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
+ pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
+ pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
+ pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
+ pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
+ pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
+ pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
+#endif
+ pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ else
+ {
+ uint32_t const *pa32Mem;
+ rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
+ pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
+ pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
+ /* skip esp */
+ pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
+ pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
+ pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
+ pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegAddToRsp(pVCpu, 32);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements a 16-bit pusha.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
+{
+ RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
+ RTGCPTR GCPtrBottom = GCPtrTop - 15;
+ VBOXSTRICTRC rcStrict;
+
+ /*
+ * The docs are a bit hard to comprehend here, but it looks like we wrap
+ * around in real mode as long as none of the individual "pushd" crosses the
+ * end of the stack segment. In protected mode we check the whole access
+ * in one go. For efficiency, only do the word-by-word thing if we're in
+ * danger of wrapping around.
+ */
+ /** @todo do pusha boundary / wrap-around checks. */
+ if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
+ && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
+ {
+ /* word-by-word */
+ RTUINT64U TmpRsp;
+ TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ else
+ {
+ GCPtrBottom--;
+ uint16_t *pa16Mem = NULL;
+ rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
+ pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
+ pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
+ pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
+ pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
+ pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
+ pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
+ pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegSubFromRsp(pVCpu, 16);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements a 32-bit pusha.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
+{
+ RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
+ RTGCPTR GCPtrBottom = GCPtrTop - 31;
+ VBOXSTRICTRC rcStrict;
+
+ /*
+ * The docs are a bit hard to comprehend here, but it looks like we wrap
+ * around in real mode as long as none of the individual "pusha" crosses the
+ * end of the stack segment. In protected mode we check the whole access
+ * in one go. For efficiency, only do the word-by-word thing if we're in
+ * danger of wrapping around.
+ */
+ /** @todo do pusha boundary / wrap-around checks. */
+ if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
+ && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
+ {
+ /* word-by-word */
+ RTUINT64U TmpRsp;
+ TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ else
+ {
+ GCPtrBottom--;
+ uint32_t *pa32Mem;
+ rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
+ pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
+ pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
+ pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
+ pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
+ pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
+ pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
+ pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegSubFromRsp(pVCpu, 32);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements pushf.
+ *
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
+{
+ VBOXSTRICTRC rcStrict;
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
+ {
+ Log2(("pushf: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * If we're in V8086 mode some care is required (which is why we're in
+ * doing this in a C implementation).
+ */
+ uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
+ if ( (fEfl & X86_EFL_VM)
+ && X86_EFL_GET_IOPL(fEfl) != 3 )
+ {
+ Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
+ if ( enmEffOpSize != IEMMODE_16BIT
+ || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
+ fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
+ rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
+ }
+ else
+ {
+
+ /*
+ * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
+ */
+ fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
+
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
+ if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
+ fEfl |= UINT16_C(0xf000);
+ rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
+ break;
+ case IEMMODE_32BIT:
+ rcStrict = iemMemStackPushU32(pVCpu, fEfl);
+ break;
+ case IEMMODE_64BIT:
+ rcStrict = iemMemStackPushU64(pVCpu, fEfl);
+ break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ }
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements popf.
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
+{
+ uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
+ VBOXSTRICTRC rcStrict;
+ uint32_t fEflNew;
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
+ {
+ Log2(("popf: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * V8086 is special as usual.
+ */
+ if (fEflOld & X86_EFL_VM)
+ {
+ /*
+ * Almost anything goes if IOPL is 3.
+ */
+ if (X86_EFL_GET_IOPL(fEflOld) == 3)
+ {
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ {
+ uint16_t u16Value;
+ rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
+ break;
+ }
+ case IEMMODE_32BIT:
+ rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+
+ const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
+ ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
+ fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
+ fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
+ }
+ /*
+ * Interrupt flag virtualization with CR4.VME=1.
+ */
+ else if ( enmEffOpSize == IEMMODE_16BIT
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
+ {
+ uint16_t u16Value;
+ RTUINT64U TmpRsp;
+ TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
+ * or before? */
+ if ( ( (u16Value & X86_EFL_IF)
+ && (fEflOld & X86_EFL_VIP))
+ || (u16Value & X86_EFL_TF) )
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
+ fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
+ fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
+ fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
+
+ pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
+ }
+ else
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ }
+ /*
+ * Not in V8086 mode.
+ */
+ else
+ {
+ /* Pop the flags. */
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ {
+ uint16_t u16Value;
+ rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
+
+ /*
+ * Ancient CPU adjustments:
+ * - 8086, 80186, V20/30:
+ * Fixed bits 15:12 bits are not kept correctly internally, mostly for
+ * practical reasons (masking below). We add them when pushing flags.
+ * - 80286:
+ * The NT and IOPL flags cannot be popped from real mode and are
+ * therefore always zero (since a 286 can never exit from PM and
+ * their initial value is zero). This changed on a 386 and can
+ * therefore be used to detect 286 or 386 CPU in real mode.
+ */
+ if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
+ && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
+ fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
+ break;
+ }
+ case IEMMODE_32BIT:
+ rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ break;
+ case IEMMODE_64BIT:
+ {
+ uint64_t u64Value;
+ rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
+ break;
+ }
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+
+ /* Merge them with the current flags. */
+ const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
+ ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
+ if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
+ || pVCpu->iem.s.uCpl == 0)
+ {
+ fEflNew &= fPopfBits;
+ fEflNew |= ~fPopfBits & fEflOld;
+ }
+ else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
+ {
+ fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
+ fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
+ }
+ else
+ {
+ fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
+ fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
+ }
+ }
+
+ /*
+ * Commit the flags.
+ */
+ Assert(fEflNew & RT_BIT_32(1));
+ IEMMISC_SET_EFL(pVCpu, fEflNew);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements an indirect call.
+ *
+ * @param uNewPC The new program counter (RIP) value (loaded from the
+ * operand).
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
+{
+ uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
+ if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ pVCpu->cpum.GstCtx.rip = uNewPC;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+#ifndef IEM_WITH_CODE_TLB
+ /* Flush the prefetch buffer. */
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements a 16-bit relative call.
+ *
+ * @param offDisp The displacment offset.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
+{
+ uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
+ uint16_t uNewPC = uOldPC + offDisp;
+ if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ pVCpu->cpum.GstCtx.rip = uNewPC;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+#ifndef IEM_WITH_CODE_TLB
+ /* Flush the prefetch buffer. */
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements a 32-bit indirect call.
+ *
+ * @param uNewPC The new program counter (RIP) value (loaded from the
+ * operand).
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
+{
+ uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
+ if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ pVCpu->cpum.GstCtx.rip = uNewPC;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+#ifndef IEM_WITH_CODE_TLB
+ /* Flush the prefetch buffer. */
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements a 32-bit relative call.
+ *
+ * @param offDisp The displacment offset.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
+{
+ uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
+ uint32_t uNewPC = uOldPC + offDisp;
+ if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ pVCpu->cpum.GstCtx.rip = uNewPC;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+#ifndef IEM_WITH_CODE_TLB
+ /* Flush the prefetch buffer. */
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements a 64-bit indirect call.
+ *
+ * @param uNewPC The new program counter (RIP) value (loaded from the
+ * operand).
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
+{
+ uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
+ if (!IEM_IS_CANONICAL(uNewPC))
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ pVCpu->cpum.GstCtx.rip = uNewPC;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+#ifndef IEM_WITH_CODE_TLB
+ /* Flush the prefetch buffer. */
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements a 64-bit relative call.
+ *
+ * @param offDisp The displacment offset.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
+{
+ uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
+ uint64_t uNewPC = uOldPC + offDisp;
+ if (!IEM_IS_CANONICAL(uNewPC))
+ return iemRaiseNotCanonical(pVCpu);
+
+ VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ pVCpu->cpum.GstCtx.rip = uNewPC;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+#ifndef IEM_WITH_CODE_TLB
+ /* Flush the prefetch buffer. */
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements far jumps and calls thru task segments (TSS).
+ *
+ * @param uSel The selector.
+ * @param enmBranch The kind of branching we're performing.
+ * @param enmEffOpSize The effective operand size.
+ * @param pDesc The descriptor corresponding to @a uSel. The type is
+ * task gate.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
+{
+#ifndef IEM_IMPLEMENTS_TASKSWITCH
+ IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
+#else
+ Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
+ Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
+ || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
+ RT_NOREF_PV(enmEffOpSize);
+ IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
+
+ if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
+ || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
+ {
+ Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
+ pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
+ }
+
+ /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
+ * far calls (see iemCImpl_callf). Most likely in both cases it should be
+ * checked here, need testcases. */
+ if (!pDesc->Legacy.Gen.u1Present)
+ {
+ Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
+ }
+
+ uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
+ return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
+ uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
+#endif
+}
+
+
+/**
+ * Implements far jumps and calls thru task gates.
+ *
+ * @param uSel The selector.
+ * @param enmBranch The kind of branching we're performing.
+ * @param enmEffOpSize The effective operand size.
+ * @param pDesc The descriptor corresponding to @a uSel. The type is
+ * task gate.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
+{
+#ifndef IEM_IMPLEMENTS_TASKSWITCH
+ IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
+#else
+ Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
+ RT_NOREF_PV(enmEffOpSize);
+ IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
+
+ if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
+ || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
+ {
+ Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
+ pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
+ }
+
+ /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
+ * far calls (see iemCImpl_callf). Most likely in both cases it should be
+ * checked here, need testcases. */
+ if (!pDesc->Legacy.Gen.u1Present)
+ {
+ Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
+ }
+
+ /*
+ * Fetch the new TSS descriptor from the GDT.
+ */
+ RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
+ if (uSelTss & X86_SEL_LDT)
+ {
+ Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
+ }
+
+ IEMSELDESC TssDesc;
+ VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
+ {
+ Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
+ TssDesc.Legacy.Gate.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
+ }
+
+ if (!TssDesc.Legacy.Gate.u1Present)
+ {
+ Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
+ }
+
+ uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
+ return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
+ uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
+#endif
+}
+
+
+/**
+ * Implements far jumps and calls thru call gates.
+ *
+ * @param uSel The selector.
+ * @param enmBranch The kind of branching we're performing.
+ * @param enmEffOpSize The effective operand size.
+ * @param pDesc The descriptor corresponding to @a uSel. The type is
+ * call gate.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
+{
+#define IEM_IMPLEMENTS_CALLGATE
+#ifndef IEM_IMPLEMENTS_CALLGATE
+ IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
+#else
+ RT_NOREF_PV(enmEffOpSize);
+ IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
+
+ /* NB: Far jumps can only do intra-privilege transfers. Far calls support
+ * inter-privilege calls and are much more complex.
+ *
+ * NB: 64-bit call gate has the same type as a 32-bit call gate! If
+ * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
+ * must be 16-bit or 32-bit.
+ */
+ /** @todo: effective operand size is probably irrelevant here, only the
+ * call gate bitness matters??
+ */
+ VBOXSTRICTRC rcStrict;
+ RTPTRUNION uPtrRet;
+ uint64_t uNewRsp;
+ uint64_t uNewRip;
+ uint64_t u64Base;
+ uint32_t cbLimit;
+ RTSEL uNewCS;
+ IEMSELDESC DescCS;
+
+ AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
+ Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
+ Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
+ || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
+
+ /* Determine the new instruction pointer from the gate descriptor. */
+ uNewRip = pDesc->Legacy.Gate.u16OffsetLow
+ | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
+ | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
+
+ /* Perform DPL checks on the gate descriptor. */
+ if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
+ || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
+ {
+ Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
+ pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+
+ /** @todo does this catch NULL selectors, too? */
+ if (!pDesc->Legacy.Gen.u1Present)
+ {
+ Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
+ }
+
+ /*
+ * Fetch the target CS descriptor from the GDT or LDT.
+ */
+ uNewCS = pDesc->Legacy.Gate.u16Sel;
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Target CS must be a code selector. */
+ if ( !DescCS.Legacy.Gen.u1DescType
+ || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
+ {
+ Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
+ uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
+ }
+
+ /* Privilege checks on target CS. */
+ if (enmBranch == IEMBRANCH_JUMP)
+ {
+ if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
+ {
+ if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
+ {
+ Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
+ uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
+ }
+ }
+ else
+ {
+ if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
+ {
+ Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
+ uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
+ }
+ }
+ }
+ else
+ {
+ Assert(enmBranch == IEMBRANCH_CALL);
+ if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
+ {
+ Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
+ uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
+ }
+ }
+
+ /* Additional long mode checks. */
+ if (IEM_IS_LONG_MODE(pVCpu))
+ {
+ if (!DescCS.Legacy.Gen.u1Long)
+ {
+ Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
+ }
+
+ /* L vs D. */
+ if ( DescCS.Legacy.Gen.u1Long
+ && DescCS.Legacy.Gen.u1DefBig)
+ {
+ Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
+ }
+ }
+
+ if (!DescCS.Legacy.Gate.u1Present)
+ {
+ Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
+ }
+
+ if (enmBranch == IEMBRANCH_JUMP)
+ {
+ /** @todo: This is very similar to regular far jumps; merge! */
+ /* Jumps are fairly simple... */
+
+ /* Chop the high bits off if 16-bit gate (Intel says so). */
+ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
+ uNewRip = (uint16_t)uNewRip;
+
+ /* Limit check for non-long segments. */
+ cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
+ if (DescCS.Legacy.Gen.u1Long)
+ u64Base = 0;
+ else
+ {
+ if (uNewRip > cbLimit)
+ {
+ Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
+ }
+ u64Base = X86DESC_BASE(&DescCS.Legacy);
+ }
+
+ /* Canonical address check. */
+ if (!IEM_IS_CANONICAL(uNewRip))
+ {
+ Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
+ return iemRaiseNotCanonical(pVCpu);
+ }
+
+ /*
+ * Ok, everything checked out fine. Now set the accessed bit before
+ * committing the result into CS, CSHID and RIP.
+ */
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* commit */
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
+ pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
+ pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
+ pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ }
+ else
+ {
+ Assert(enmBranch == IEMBRANCH_CALL);
+ /* Calls are much more complicated. */
+
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
+ {
+ uint16_t offNewStack; /* Offset of new stack in TSS. */
+ uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
+ uint8_t uNewCSDpl;
+ uint8_t cbWords;
+ RTSEL uNewSS;
+ RTSEL uOldSS;
+ uint64_t uOldRsp;
+ IEMSELDESC DescSS;
+ RTPTRUNION uPtrTSS;
+ RTGCPTR GCPtrTSS;
+ RTPTRUNION uPtrParmWds;
+ RTGCPTR GCPtrParmWds;
+
+ /* More privilege. This is the fun part. */
+ Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
+
+ /*
+ * Determine new SS:rSP from the TSS.
+ */
+ Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
+
+ /* Figure out where the new stack pointer is stored in the TSS. */
+ uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ {
+ if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
+ {
+ offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
+ cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
+ }
+ else
+ {
+ Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
+ offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
+ cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
+ }
+ }
+ else
+ {
+ Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
+ offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
+ cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
+ }
+
+ /* Check against TSS limit. */
+ if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
+ {
+ Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
+ return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
+ }
+
+ GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
+ rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ {
+ if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
+ {
+ uNewRsp = uPtrTSS.pu32[0];
+ uNewSS = uPtrTSS.pu16[2];
+ }
+ else
+ {
+ Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
+ uNewRsp = uPtrTSS.pu16[0];
+ uNewSS = uPtrTSS.pu16[1];
+ }
+ }
+ else
+ {
+ Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
+ /* SS will be a NULL selector, but that's valid. */
+ uNewRsp = uPtrTSS.pu64[0];
+ uNewSS = uNewCSDpl;
+ }
+
+ /* Done with the TSS now. */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Only used outside of long mode. */
+ cbWords = pDesc->Legacy.Gate.u5ParmCount;
+
+ /* If EFER.LMA is 0, there's extra work to do. */
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ {
+ if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
+ {
+ Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
+ return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
+ }
+
+ /* Grab the new SS descriptor. */
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
+ if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
+ || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
+ {
+ Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
+ uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
+ return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
+ }
+
+ /* Ensure new SS is a writable data segment. */
+ if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
+ {
+ Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
+ return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
+ }
+
+ if (!DescSS.Legacy.Gen.u1Present)
+ {
+ Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
+ return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
+ }
+ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
+ cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
+ else
+ cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
+ }
+ else
+ {
+ /* Just grab the new (NULL) SS descriptor. */
+ /** @todo testcase: Check whether the zero GDT entry is actually loaded here
+ * like we do... */
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ cbNewStack = sizeof(uint64_t) * 4;
+ }
+
+ /** @todo: According to Intel, new stack is checked for enough space first,
+ * then switched. According to AMD, the stack is switched first and
+ * then pushes might fault!
+ * NB: OS/2 Warp 3/4 actively relies on the fact that possible
+ * incoming stack #PF happens before actual stack switch. AMD is
+ * either lying or implicitly assumes that new state is committed
+ * only if and when an instruction doesn't fault.
+ */
+
+ /** @todo: According to AMD, CS is loaded first, then SS.
+ * According to Intel, it's the other way around!?
+ */
+
+ /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
+
+ /* Set the accessed bit before committing new SS. */
+ if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* Remember the old SS:rSP and their linear address. */
+ uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
+ uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
+
+ GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
+
+ /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
+ or #PF, the former is not implemented in this workaround. */
+ /** @todo Proper fix callgate target stack exceptions. */
+ /** @todo testcase: Cover callgates with partially or fully inaccessible
+ * target stacks. */
+ void *pvNewFrame;
+ RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
+ rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Commit new SS:rSP. */
+ pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
+ pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
+ pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
+ pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
+ pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
+ pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.rsp = uNewRsp;
+ pVCpu->iem.s.uCpl = uNewCSDpl;
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
+
+ /* At this point the stack access must not fail because new state was already committed. */
+ /** @todo this can still fail due to SS.LIMIT not check. */
+ rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
+ &uPtrRet.pv, &uNewRsp);
+ AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
+ VERR_INTERNAL_ERROR_5);
+
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ {
+ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
+ {
+ /* Push the old CS:rIP. */
+ uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
+ uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
+
+ if (cbWords)
+ {
+ /* Map the relevant chunk of the old stack. */
+ rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Copy the parameter (d)words. */
+ for (int i = 0; i < cbWords; ++i)
+ uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
+
+ /* Unmap the old stack. */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+
+ /* Push the old SS:rSP. */
+ uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
+ uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
+ }
+ else
+ {
+ Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
+
+ /* Push the old CS:rIP. */
+ uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
+ uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
+
+ if (cbWords)
+ {
+ /* Map the relevant chunk of the old stack. */
+ rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Copy the parameter words. */
+ for (int i = 0; i < cbWords; ++i)
+ uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
+
+ /* Unmap the old stack. */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+
+ /* Push the old SS:rSP. */
+ uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
+ uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
+ }
+ }
+ else
+ {
+ Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
+
+ /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
+ uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
+ uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
+ uPtrRet.pu64[2] = uOldRsp;
+ uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
+ }
+
+ rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Chop the high bits off if 16-bit gate (Intel says so). */
+ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
+ uNewRip = (uint16_t)uNewRip;
+
+ /* Limit / canonical check. */
+ cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ {
+ if (uNewRip > cbLimit)
+ {
+ Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
+ }
+ u64Base = X86DESC_BASE(&DescCS.Legacy);
+ }
+ else
+ {
+ Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
+ if (!IEM_IS_CANONICAL(uNewRip))
+ {
+ Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
+ return iemRaiseNotCanonical(pVCpu);
+ }
+ u64Base = 0;
+ }
+
+ /*
+ * Now set the accessed bit before
+ * writing the return address to the stack and committing the result into
+ * CS, CSHID and RIP.
+ */
+ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* Commit new CS:rIP. */
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
+ pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
+ pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
+ pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ }
+ else
+ {
+ /* Same privilege. */
+ /** @todo: This is very similar to regular far calls; merge! */
+
+ /* Check stack first - may #SS(0). */
+ /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
+ * 16-bit code cause a two or four byte CS to be pushed? */
+ rcStrict = iemMemStackPushBeginSpecial(pVCpu,
+ IEM_IS_LONG_MODE(pVCpu) ? 8+8
+ : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
+ &uPtrRet.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Chop the high bits off if 16-bit gate (Intel says so). */
+ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
+ uNewRip = (uint16_t)uNewRip;
+
+ /* Limit / canonical check. */
+ cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ {
+ if (uNewRip > cbLimit)
+ {
+ Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
+ }
+ u64Base = X86DESC_BASE(&DescCS.Legacy);
+ }
+ else
+ {
+ if (!IEM_IS_CANONICAL(uNewRip))
+ {
+ Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
+ return iemRaiseNotCanonical(pVCpu);
+ }
+ u64Base = 0;
+ }
+
+ /*
+ * Now set the accessed bit before
+ * writing the return address to the stack and committing the result into
+ * CS, CSHID and RIP.
+ */
+ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* stack */
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ {
+ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
+ {
+ uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
+ uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
+ }
+ else
+ {
+ Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
+ uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
+ uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
+ }
+ }
+ else
+ {
+ Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
+ uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
+ uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
+ }
+
+ rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* commit */
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
+ pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
+ pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
+ pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ }
+ }
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+ /* Flush the prefetch buffer. */
+# ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+# else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+# endif
+ return VINF_SUCCESS;
+#endif
+}
+
+
+/**
+ * Implements far jumps and calls thru system selectors.
+ *
+ * @param uSel The selector.
+ * @param enmBranch The kind of branching we're performing.
+ * @param enmEffOpSize The effective operand size.
+ * @param pDesc The descriptor corresponding to @a uSel.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
+{
+ Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
+ Assert((uSel & X86_SEL_MASK_OFF_RPL));
+ IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
+
+ if (IEM_IS_LONG_MODE(pVCpu))
+ switch (pDesc->Legacy.Gen.u4Type)
+ {
+ case AMD64_SEL_TYPE_SYS_CALL_GATE:
+ return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
+
+ default:
+ case AMD64_SEL_TYPE_SYS_LDT:
+ case AMD64_SEL_TYPE_SYS_TSS_BUSY:
+ case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
+ case AMD64_SEL_TYPE_SYS_TRAP_GATE:
+ case AMD64_SEL_TYPE_SYS_INT_GATE:
+ Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+
+ switch (pDesc->Legacy.Gen.u4Type)
+ {
+ case X86_SEL_TYPE_SYS_286_CALL_GATE:
+ case X86_SEL_TYPE_SYS_386_CALL_GATE:
+ return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
+
+ case X86_SEL_TYPE_SYS_TASK_GATE:
+ return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
+
+ case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
+ case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
+ return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
+
+ case X86_SEL_TYPE_SYS_286_TSS_BUSY:
+ Log(("branch %04x -> busy 286 TSS\n", uSel));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+
+ case X86_SEL_TYPE_SYS_386_TSS_BUSY:
+ Log(("branch %04x -> busy 386 TSS\n", uSel));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+
+ default:
+ case X86_SEL_TYPE_SYS_LDT:
+ case X86_SEL_TYPE_SYS_286_INT_GATE:
+ case X86_SEL_TYPE_SYS_286_TRAP_GATE:
+ case X86_SEL_TYPE_SYS_386_INT_GATE:
+ case X86_SEL_TYPE_SYS_386_TRAP_GATE:
+ Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+}
+
+
+/**
+ * Implements far jumps.
+ *
+ * @param uSel The selector.
+ * @param offSeg The segment offset.
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
+{
+ NOREF(cbInstr);
+ Assert(offSeg <= UINT32_MAX);
+
+ /*
+ * Real mode and V8086 mode are easy. The only snag seems to be that
+ * CS.limit doesn't change and the limit check is done against the current
+ * limit.
+ */
+ /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
+ * 1998) that up to and including the Intel 486, far control
+ * transfers in real mode set default CS attributes (0x93) and also
+ * set a 64K segment limit. Starting with the Pentium, the
+ * attributes and limit are left alone but the access rights are
+ * ignored. We only implement the Pentium+ behavior.
+ * */
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
+ if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
+ {
+ Log(("iemCImpl_FarJmp: 16-bit limit\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
+ pVCpu->cpum.GstCtx.rip = offSeg;
+ else
+ pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
+ pVCpu->cpum.GstCtx.cs.Sel = uSel;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Protected mode. Need to parse the specified descriptor...
+ */
+ if (!(uSel & X86_SEL_MASK_OFF_RPL))
+ {
+ Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Fetch the descriptor. */
+ IEMSELDESC Desc;
+ VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Is it there? */
+ if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
+ {
+ Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
+ }
+
+ /*
+ * Deal with it according to its type. We do the standard code selectors
+ * here and dispatch the system selectors to worker functions.
+ */
+ if (!Desc.Legacy.Gen.u1DescType)
+ return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
+
+ /* Only code segments. */
+ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
+ {
+ Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+
+ /* L vs D. */
+ if ( Desc.Legacy.Gen.u1Long
+ && Desc.Legacy.Gen.u1DefBig
+ && IEM_IS_LONG_MODE(pVCpu))
+ {
+ Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+
+ /* DPL/RPL/CPL check, where conforming segments makes a difference. */
+ if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
+ {
+ if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
+ {
+ Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
+ uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ }
+ else
+ {
+ if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
+ {
+ Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
+ {
+ Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ }
+
+ /* Chop the high bits if 16-bit (Intel says so). */
+ if (enmEffOpSize == IEMMODE_16BIT)
+ offSeg &= UINT16_MAX;
+
+ /* Limit check. (Should alternatively check for non-canonical addresses
+ here, but that is ruled out by offSeg being 32-bit, right?) */
+ uint64_t u64Base;
+ uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
+ if (Desc.Legacy.Gen.u1Long)
+ u64Base = 0;
+ else
+ {
+ if (offSeg > cbLimit)
+ {
+ Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
+ /** @todo: Intel says this is #GP(0)! */
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ u64Base = X86DESC_BASE(&Desc.Legacy);
+ }
+
+ /*
+ * Ok, everything checked out fine. Now set the accessed bit before
+ * committing the result into CS, CSHID and RIP.
+ */
+ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* commit */
+ pVCpu->cpum.GstCtx.rip = offSeg;
+ pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
+ pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
+ pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
+ pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+ /** @todo check if the hidden bits are loaded correctly for 64-bit
+ * mode. */
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements far calls.
+ *
+ * This very similar to iemCImpl_FarJmp.
+ *
+ * @param uSel The selector.
+ * @param offSeg The segment offset.
+ * @param enmEffOpSize The operand size (in case we need it).
+ */
+IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
+{
+ VBOXSTRICTRC rcStrict;
+ uint64_t uNewRsp;
+ RTPTRUNION uPtrRet;
+
+ /*
+ * Real mode and V8086 mode are easy. The only snag seems to be that
+ * CS.limit doesn't change and the limit check is done against the current
+ * limit.
+ */
+ /** @todo See comment for similar code in iemCImpl_FarJmp */
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
+
+ /* Check stack first - may #SS(0). */
+ rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
+ &uPtrRet.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Check the target address range. */
+ if (offSeg > UINT32_MAX)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ /* Everything is fine, push the return address. */
+ if (enmEffOpSize == IEMMODE_16BIT)
+ {
+ uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
+ uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
+ }
+ else
+ {
+ uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
+ uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
+ }
+ rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Branch. */
+ pVCpu->cpum.GstCtx.rip = offSeg;
+ pVCpu->cpum.GstCtx.cs.Sel = uSel;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Protected mode. Need to parse the specified descriptor...
+ */
+ if (!(uSel & X86_SEL_MASK_OFF_RPL))
+ {
+ Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Fetch the descriptor. */
+ IEMSELDESC Desc;
+ rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Deal with it according to its type. We do the standard code selectors
+ * here and dispatch the system selectors to worker functions.
+ */
+ if (!Desc.Legacy.Gen.u1DescType)
+ return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
+
+ /* Only code segments. */
+ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
+ {
+ Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+
+ /* L vs D. */
+ if ( Desc.Legacy.Gen.u1Long
+ && Desc.Legacy.Gen.u1DefBig
+ && IEM_IS_LONG_MODE(pVCpu))
+ {
+ Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+
+ /* DPL/RPL/CPL check, where conforming segments makes a difference. */
+ if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
+ {
+ if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
+ {
+ Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
+ uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ }
+ else
+ {
+ if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
+ {
+ Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
+ {
+ Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ }
+
+ /* Is it there? */
+ if (!Desc.Legacy.Gen.u1Present)
+ {
+ Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
+ }
+
+ /* Check stack first - may #SS(0). */
+ /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
+ * 16-bit code cause a two or four byte CS to be pushed? */
+ rcStrict = iemMemStackPushBeginSpecial(pVCpu,
+ enmEffOpSize == IEMMODE_64BIT ? 8+8
+ : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
+ &uPtrRet.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Chop the high bits if 16-bit (Intel says so). */
+ if (enmEffOpSize == IEMMODE_16BIT)
+ offSeg &= UINT16_MAX;
+
+ /* Limit / canonical check. */
+ uint64_t u64Base;
+ uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ {
+ if (!IEM_IS_CANONICAL(offSeg))
+ {
+ Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
+ return iemRaiseNotCanonical(pVCpu);
+ }
+ u64Base = 0;
+ }
+ else
+ {
+ if (offSeg > cbLimit)
+ {
+ Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
+ /** @todo: Intel says this is #GP(0)! */
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ u64Base = X86DESC_BASE(&Desc.Legacy);
+ }
+
+ /*
+ * Now set the accessed bit before
+ * writing the return address to the stack and committing the result into
+ * CS, CSHID and RIP.
+ */
+ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
+ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* stack */
+ if (enmEffOpSize == IEMMODE_16BIT)
+ {
+ uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
+ uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
+ }
+ else if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
+ uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
+ }
+ else
+ {
+ uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
+ uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
+ }
+ rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* commit */
+ pVCpu->cpum.GstCtx.rip = offSeg;
+ pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
+ pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
+ pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
+ pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+ /** @todo check if the hidden bits are loaded correctly for 64-bit
+ * mode. */
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements retf.
+ *
+ * @param enmEffOpSize The effective operand size.
+ * @param cbPop The amount of arguments to pop from the stack
+ * (bytes).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
+{
+ VBOXSTRICTRC rcStrict;
+ RTCPTRUNION uPtrFrame;
+ uint64_t uNewRsp;
+ uint64_t uNewRip;
+ uint16_t uNewCs;
+ NOREF(cbInstr);
+
+ /*
+ * Read the stack values first.
+ */
+ uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
+ : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ if (enmEffOpSize == IEMMODE_16BIT)
+ {
+ uNewRip = uPtrFrame.pu16[0];
+ uNewCs = uPtrFrame.pu16[1];
+ }
+ else if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ uNewRip = uPtrFrame.pu32[0];
+ uNewCs = uPtrFrame.pu16[2];
+ }
+ else
+ {
+ uNewRip = uPtrFrame.pu64[0];
+ uNewCs = uPtrFrame.pu16[4];
+ }
+ rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* extremely likely */ }
+ else
+ return rcStrict;
+
+ /*
+ * Real mode and V8086 mode are easy.
+ */
+ /** @todo See comment for similar code in iemCImpl_FarJmp */
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
+ /** @todo check how this is supposed to work if sp=0xfffe. */
+
+ /* Check the limit of the new EIP. */
+ /** @todo Intel pseudo code only does the limit check for 16-bit
+ * operands, AMD does not make any distinction. What is right? */
+ if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
+ return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
+
+ /* commit the operation. */
+ pVCpu->cpum.GstCtx.rsp = uNewRsp;
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+ if (cbPop)
+ iemRegAddToRsp(pVCpu, cbPop);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Protected mode is complicated, of course.
+ */
+ if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
+ {
+ Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
+
+ /* Fetch the descriptor. */
+ IEMSELDESC DescCs;
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Can only return to a code selector. */
+ if ( !DescCs.Legacy.Gen.u1DescType
+ || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
+ {
+ Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
+ uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+
+ /* L vs D. */
+ if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
+ && DescCs.Legacy.Gen.u1DefBig
+ && IEM_IS_LONG_MODE(pVCpu))
+ {
+ Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+
+ /* DPL/RPL/CPL checks. */
+ if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
+ {
+ Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+
+ if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
+ {
+ if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
+ {
+ Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
+ uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ }
+ else
+ {
+ if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
+ {
+ Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
+ uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ }
+
+ /* Is it there? */
+ if (!DescCs.Legacy.Gen.u1Present)
+ {
+ Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
+ }
+
+ /*
+ * Return to outer privilege? (We'll typically have entered via a call gate.)
+ */
+ if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
+ {
+ /* Read the outer stack pointer stored *after* the parameters. */
+ rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
+
+ uint16_t uNewOuterSs;
+ uint64_t uNewOuterRsp;
+ if (enmEffOpSize == IEMMODE_16BIT)
+ {
+ uNewOuterRsp = uPtrFrame.pu16[0];
+ uNewOuterSs = uPtrFrame.pu16[1];
+ }
+ else if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ uNewOuterRsp = uPtrFrame.pu32[0];
+ uNewOuterSs = uPtrFrame.pu16[2];
+ }
+ else
+ {
+ uNewOuterRsp = uPtrFrame.pu64[0];
+ uNewOuterSs = uPtrFrame.pu16[4];
+ }
+ uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
+ rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* extremely likely */ }
+ else
+ return rcStrict;
+
+ /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
+ and read the selector. */
+ IEMSELDESC DescSs;
+ if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
+ {
+ if ( !DescCs.Legacy.Gen.u1Long
+ || (uNewOuterSs & X86_SEL_RPL) == 3)
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
+ uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
+ iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
+ }
+ else
+ {
+ /* Fetch the descriptor for the new stack segment. */
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+
+ /* Check that RPL of stack and code selectors match. */
+ if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
+ }
+
+ /* Must be a writable data segment. */
+ if ( !DescSs.Legacy.Gen.u1DescType
+ || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
+ || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
+ uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
+ }
+
+ /* L vs D. (Not mentioned by intel.) */
+ if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
+ && DescSs.Legacy.Gen.u1DefBig
+ && IEM_IS_LONG_MODE(pVCpu))
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
+ uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
+ }
+
+ /* DPL/RPL/CPL checks. */
+ if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
+ uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
+ }
+
+ /* Is it there? */
+ if (!DescSs.Legacy.Gen.u1Present)
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
+ }
+
+ /* Calc SS limit.*/
+ uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
+
+ /* Is RIP canonical or within CS.limit? */
+ uint64_t u64Base;
+ uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
+
+ /** @todo Testcase: Is this correct? */
+ if ( DescCs.Legacy.Gen.u1Long
+ && IEM_IS_LONG_MODE(pVCpu) )
+ {
+ if (!IEM_IS_CANONICAL(uNewRip))
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
+ return iemRaiseNotCanonical(pVCpu);
+ }
+ u64Base = 0;
+ }
+ else
+ {
+ if (uNewRip > cbLimitCs)
+ {
+ Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
+ uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
+ /** @todo: Intel says this is #GP(0)! */
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ u64Base = X86DESC_BASE(&DescCs.Legacy);
+ }
+
+ /*
+ * Now set the accessed bit before
+ * writing the return address to the stack and committing the result into
+ * CS, CSHID and RIP.
+ */
+ /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
+ if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+ /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
+ if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* commit */
+ if (enmEffOpSize == IEMMODE_16BIT)
+ pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
+ else
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
+ pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
+ pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
+ pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
+ pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ pVCpu->cpum.GstCtx.ss.u64Base = 0;
+ else
+ pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
+ if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
+ pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
+ else
+ pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
+
+ pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
+
+ /** @todo check if the hidden bits are loaded correctly for 64-bit
+ * mode. */
+
+ if (cbPop)
+ iemRegAddToRsp(pVCpu, cbPop);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+ /* Done! */
+ }
+ /*
+ * Return to the same privilege level
+ */
+ else
+ {
+ /* Limit / canonical check. */
+ uint64_t u64Base;
+ uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
+
+ /** @todo Testcase: Is this correct? */
+ if ( DescCs.Legacy.Gen.u1Long
+ && IEM_IS_LONG_MODE(pVCpu) )
+ {
+ if (!IEM_IS_CANONICAL(uNewRip))
+ {
+ Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
+ return iemRaiseNotCanonical(pVCpu);
+ }
+ u64Base = 0;
+ }
+ else
+ {
+ if (uNewRip > cbLimitCs)
+ {
+ Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
+ /** @todo: Intel says this is #GP(0)! */
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ u64Base = X86DESC_BASE(&DescCs.Legacy);
+ }
+
+ /*
+ * Now set the accessed bit before
+ * writing the return address to the stack and committing the result into
+ * CS, CSHID and RIP.
+ */
+ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
+ if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ /** @todo check what VT-x and AMD-V does. */
+ DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* commit */
+ if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
+ pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
+ else
+ pVCpu->cpum.GstCtx.rsp = uNewRsp;
+ if (enmEffOpSize == IEMMODE_16BIT)
+ pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
+ else
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
+ pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
+ /** @todo check if the hidden bits are loaded correctly for 64-bit
+ * mode. */
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ if (cbPop)
+ iemRegAddToRsp(pVCpu, cbPop);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+ }
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements retn.
+ *
+ * We're doing this in C because of the \#GP that might be raised if the popped
+ * program counter is out of bounds.
+ *
+ * @param enmEffOpSize The effective operand size.
+ * @param cbPop The amount of arguments to pop from the stack
+ * (bytes).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
+{
+ NOREF(cbInstr);
+
+ /* Fetch the RSP from the stack. */
+ VBOXSTRICTRC rcStrict;
+ RTUINT64U NewRip;
+ RTUINT64U NewRsp;
+ NewRsp.u = pVCpu->cpum.GstCtx.rsp;
+
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ NewRip.u = 0;
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
+ break;
+ case IEMMODE_32BIT:
+ NewRip.u = 0;
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
+ break;
+ case IEMMODE_64BIT:
+ rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
+ break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Check the new RSP before loading it. */
+ /** @todo Should test this as the intel+amd pseudo code doesn't mention half
+ * of it. The canonical test is performed here and for call. */
+ if (enmEffOpSize != IEMMODE_64BIT)
+ {
+ if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
+ {
+ Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
+ return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
+ }
+ }
+ else
+ {
+ if (!IEM_IS_CANONICAL(NewRip.u))
+ {
+ Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
+ return iemRaiseNotCanonical(pVCpu);
+ }
+ }
+
+ /* Apply cbPop */
+ if (cbPop)
+ iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
+
+ /* Commit it. */
+ pVCpu->cpum.GstCtx.rip = NewRip.u;
+ pVCpu->cpum.GstCtx.rsp = NewRsp.u;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
+
+ /* Flush the prefetch buffer. */
+#ifndef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements enter.
+ *
+ * We're doing this in C because the instruction is insane, even for the
+ * u8NestingLevel=0 case dealing with the stack is tedious.
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
+{
+ /* Push RBP, saving the old value in TmpRbp. */
+ RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
+ RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
+ RTUINT64U NewRbp;
+ VBOXSTRICTRC rcStrict;
+ if (enmEffOpSize == IEMMODE_64BIT)
+ {
+ rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
+ NewRbp = NewRsp;
+ }
+ else if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
+ NewRbp = NewRsp;
+ }
+ else
+ {
+ rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
+ NewRbp = TmpRbp;
+ NewRbp.Words.w0 = NewRsp.Words.w0;
+ }
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Copy the parameters (aka nesting levels by Intel). */
+ cParameters &= 0x1f;
+ if (cParameters > 0)
+ {
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
+ TmpRbp.DWords.dw0 -= 2;
+ else
+ TmpRbp.Words.w0 -= 2;
+ do
+ {
+ uint16_t u16Tmp;
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+ rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
+ } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
+ break;
+
+ case IEMMODE_32BIT:
+ if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
+ TmpRbp.DWords.dw0 -= 4;
+ else
+ TmpRbp.Words.w0 -= 4;
+ do
+ {
+ uint32_t u32Tmp;
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+ rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
+ } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
+ break;
+
+ case IEMMODE_64BIT:
+ TmpRbp.u -= 8;
+ do
+ {
+ uint64_t u64Tmp;
+ rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+ rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
+ } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
+ break;
+
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ if (rcStrict != VINF_SUCCESS)
+ return VINF_SUCCESS;
+
+ /* Push the new RBP */
+ if (enmEffOpSize == IEMMODE_64BIT)
+ rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
+ else if (enmEffOpSize == IEMMODE_32BIT)
+ rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
+ else
+ rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ }
+
+ /* Recalc RSP. */
+ iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
+
+ /** @todo Should probe write access at the new RSP according to AMD. */
+
+ /* Commit it. */
+ pVCpu->cpum.GstCtx.rbp = NewRbp.u;
+ pVCpu->cpum.GstCtx.rsp = NewRsp.u;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+
+ return VINF_SUCCESS;
+}
+
+
+
+/**
+ * Implements leave.
+ *
+ * We're doing this in C because messing with the stack registers is annoying
+ * since they depends on SS attributes.
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
+{
+ /* Calculate the intermediate RSP from RBP and the stack attributes. */
+ RTUINT64U NewRsp;
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ NewRsp.u = pVCpu->cpum.GstCtx.rbp;
+ else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
+ NewRsp.u = pVCpu->cpum.GstCtx.ebp;
+ else
+ {
+ /** @todo Check that LEAVE actually preserve the high EBP bits. */
+ NewRsp.u = pVCpu->cpum.GstCtx.rsp;
+ NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
+ }
+
+ /* Pop RBP according to the operand size. */
+ VBOXSTRICTRC rcStrict;
+ RTUINT64U NewRbp;
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ NewRbp.u = pVCpu->cpum.GstCtx.rbp;
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
+ break;
+ case IEMMODE_32BIT:
+ NewRbp.u = 0;
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
+ break;
+ case IEMMODE_64BIT:
+ rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
+ break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+
+ /* Commit it. */
+ pVCpu->cpum.GstCtx.rbp = NewRbp.u;
+ pVCpu->cpum.GstCtx.rsp = NewRsp.u;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements int3 and int XX.
+ *
+ * @param u8Int The interrupt vector number.
+ * @param enmInt The int instruction type.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
+{
+ Assert(pVCpu->iem.s.cXcptRecursions == 0);
+ return iemRaiseXcptOrInt(pVCpu,
+ cbInstr,
+ u8Int,
+ IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
+ 0,
+ 0);
+}
+
+
+/**
+ * Implements iret for real mode and V8086 mode.
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
+{
+ X86EFLAGS Efl;
+ Efl.u = IEMMISC_GET_EFL(pVCpu);
+ NOREF(cbInstr);
+
+ /*
+ * iret throws an exception if VME isn't enabled.
+ */
+ if ( Efl.Bits.u1VM
+ && Efl.Bits.u2IOPL != 3
+ && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ /*
+ * Do the stack bits, but don't commit RSP before everything checks
+ * out right.
+ */
+ Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
+ VBOXSTRICTRC rcStrict;
+ RTCPTRUNION uFrame;
+ uint16_t uNewCs;
+ uint32_t uNewEip;
+ uint32_t uNewFlags;
+ uint64_t uNewRsp;
+ if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewEip = uFrame.pu32[0];
+ if (uNewEip > UINT16_MAX)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ uNewCs = (uint16_t)uFrame.pu32[1];
+ uNewFlags = uFrame.pu32[2];
+ uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
+ | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
+ | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
+ | X86_EFL_ID;
+ if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
+ uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
+ uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
+ }
+ else
+ {
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewEip = uFrame.pu16[0];
+ uNewCs = uFrame.pu16[1];
+ uNewFlags = uFrame.pu16[2];
+ uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
+ | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
+ uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
+ /** @todo The intel pseudo code does not indicate what happens to
+ * reserved flags. We just ignore them. */
+ /* Ancient CPU adjustments: See iemCImpl_popf. */
+ if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
+ uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
+ }
+ rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* extremely likely */ }
+ else
+ return rcStrict;
+
+ /** @todo Check how this is supposed to work if sp=0xfffe. */
+ Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
+ uNewCs, uNewEip, uNewFlags, uNewRsp));
+
+ /*
+ * Check the limit of the new EIP.
+ */
+ /** @todo Only the AMD pseudo code check the limit here, what's
+ * right? */
+ if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
+ return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
+
+ /*
+ * V8086 checks and flag adjustments
+ */
+ if (Efl.Bits.u1VM)
+ {
+ if (Efl.Bits.u2IOPL == 3)
+ {
+ /* Preserve IOPL and clear RF. */
+ uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
+ uNewFlags |= Efl.u & (X86_EFL_IOPL);
+ }
+ else if ( enmEffOpSize == IEMMODE_16BIT
+ && ( !(uNewFlags & X86_EFL_IF)
+ || !Efl.Bits.u1VIP )
+ && !(uNewFlags & X86_EFL_TF) )
+ {
+ /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
+ uNewFlags &= ~X86_EFL_VIF;
+ uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
+ uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
+ uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
+ }
+ else
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
+ }
+
+ /*
+ * Commit the operation.
+ */
+#ifdef DBGFTRACE_ENABLED
+ RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
+#endif
+ pVCpu->cpum.GstCtx.rsp = uNewRsp;
+ pVCpu->cpum.GstCtx.rip = uNewEip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
+ /** @todo do we load attribs and limit as well? */
+ Assert(uNewFlags & X86_EFL_1);
+ IEMMISC_SET_EFL(pVCpu, uNewFlags);
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Loads a segment register when entering V8086 mode.
+ *
+ * @param pSReg The segment register.
+ * @param uSeg The segment to load.
+ */
+static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
+{
+ pSReg->Sel = uSeg;
+ pSReg->ValidSel = uSeg;
+ pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ pSReg->u64Base = (uint32_t)uSeg << 4;
+ pSReg->u32Limit = 0xffff;
+ pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
+ /** @todo Testcase: Check if VT-x really needs this and what it does itself when
+ * IRET'ing to V8086. */
+}
+
+
+/**
+ * Implements iret for protected mode returning to V8086 mode.
+ *
+ * @param uNewEip The new EIP.
+ * @param uNewCs The new CS.
+ * @param uNewFlags The new EFLAGS.
+ * @param uNewRsp The RSP after the initial IRET frame.
+ *
+ * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
+{
+ RT_NOREF_PV(cbInstr);
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
+
+ /*
+ * Pop the V8086 specific frame bits off the stack.
+ */
+ VBOXSTRICTRC rcStrict;
+ RTCPTRUNION uFrame;
+ rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uint32_t uNewEsp = uFrame.pu32[0];
+ uint16_t uNewSs = uFrame.pu32[1];
+ uint16_t uNewEs = uFrame.pu32[2];
+ uint16_t uNewDs = uFrame.pu32[3];
+ uint16_t uNewFs = uFrame.pu32[4];
+ uint16_t uNewGs = uFrame.pu32[5];
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Commit the operation.
+ */
+ uNewFlags &= X86_EFL_LIVE_MASK;
+ uNewFlags |= X86_EFL_RA1_MASK;
+#ifdef DBGFTRACE_ENABLED
+ RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
+#endif
+ Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
+
+ IEMMISC_SET_EFL(pVCpu, uNewFlags);
+ iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
+ iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
+ iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
+ iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
+ iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
+ iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
+ pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
+ pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
+ pVCpu->iem.s.uCpl = 3;
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements iret for protected mode returning via a nested task.
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
+{
+ Log7(("iemCImpl_iret_prot_NestedTask:\n"));
+#ifndef IEM_IMPLEMENTS_TASKSWITCH
+ IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
+#else
+ RT_NOREF_PV(enmEffOpSize);
+
+ /*
+ * Read the segment selector in the link-field of the current TSS.
+ */
+ RTSEL uSelRet;
+ VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Fetch the returning task's TSS descriptor from the GDT.
+ */
+ if (uSelRet & X86_SEL_LDT)
+ {
+ Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
+ return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
+ }
+
+ IEMSELDESC TssDesc;
+ rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ if (TssDesc.Legacy.Gate.u1DescType)
+ {
+ Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
+ return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
+ }
+
+ if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
+ && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
+ {
+ Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
+ return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
+ }
+
+ if (!TssDesc.Legacy.Gate.u1Present)
+ {
+ Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
+ }
+
+ uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
+ return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
+ 0 /* uCr2 */, uSelRet, &TssDesc);
+#endif
+}
+
+
+/**
+ * Implements iret for protected mode
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
+{
+ NOREF(cbInstr);
+ Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
+
+ /*
+ * Nested task return.
+ */
+ if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
+ return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
+
+ /*
+ * Normal return.
+ *
+ * Do the stack bits, but don't commit RSP before everything checks
+ * out right.
+ */
+ Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
+ VBOXSTRICTRC rcStrict;
+ RTCPTRUNION uFrame;
+ uint16_t uNewCs;
+ uint32_t uNewEip;
+ uint32_t uNewFlags;
+ uint64_t uNewRsp;
+ if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewEip = uFrame.pu32[0];
+ uNewCs = (uint16_t)uFrame.pu32[1];
+ uNewFlags = uFrame.pu32[2];
+ }
+ else
+ {
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewEip = uFrame.pu16[0];
+ uNewCs = uFrame.pu16[1];
+ uNewFlags = uFrame.pu16[2];
+ }
+ rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* extremely likely */ }
+ else
+ return rcStrict;
+ Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
+
+ /*
+ * We're hopefully not returning to V8086 mode...
+ */
+ if ( (uNewFlags & X86_EFL_VM)
+ && pVCpu->iem.s.uCpl == 0)
+ {
+ Assert(enmEffOpSize == IEMMODE_32BIT);
+ return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
+ }
+
+ /*
+ * Protected mode.
+ */
+ /* Read the CS descriptor. */
+ if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
+ {
+ Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ IEMSELDESC DescCS;
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Must be a code descriptor. */
+ if (!DescCS.Legacy.Gen.u1DescType)
+ {
+ Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
+ {
+ Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+
+ /* Privilege checks. */
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
+ {
+ if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
+ {
+ Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ }
+ else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
+ {
+ Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
+ {
+ Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+
+ /* Present? */
+ if (!DescCS.Legacy.Gen.u1Present)
+ {
+ Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
+ }
+
+ uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
+
+ /*
+ * Return to outer level?
+ */
+ if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
+ {
+ uint16_t uNewSS;
+ uint32_t uNewESP;
+ if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
+ * 16-bit or 32-bit are being loaded into SP depends on the D/B
+ * bit of the popped SS selector it turns out. */
+ uNewESP = uFrame.pu32[0];
+ uNewSS = (uint16_t)uFrame.pu32[1];
+ }
+ else
+ {
+ rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewESP = uFrame.pu16[0];
+ uNewSS = uFrame.pu16[1];
+ }
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
+
+ /* Read the SS descriptor. */
+ if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
+ {
+ Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ IEMSELDESC DescSS;
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
+ uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Privilege checks. */
+ if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
+ {
+ Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
+ }
+ if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
+ {
+ Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
+ uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
+ }
+
+ /* Must be a writeable data segment descriptor. */
+ if (!DescSS.Legacy.Gen.u1DescType)
+ {
+ Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
+ uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
+ }
+ if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
+ {
+ Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
+ uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
+ }
+
+ /* Present? */
+ if (!DescSS.Legacy.Gen.u1Present)
+ {
+ Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
+ return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
+ }
+
+ uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
+
+ /* Check EIP. */
+ if (uNewEip > cbLimitCS)
+ {
+ Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
+ uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
+ /** @todo: Which is it, #GP(0) or #GP(sel)? */
+ return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
+ }
+
+ /*
+ * Commit the changes, marking CS and SS accessed first since
+ * that may fail.
+ */
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+ if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
+ | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
+ if (enmEffOpSize != IEMMODE_16BIT)
+ fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
+ if (pVCpu->iem.s.uCpl == 0)
+ fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
+ else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
+ fEFlagsMask |= X86_EFL_IF;
+ if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
+ fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
+ uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
+ fEFlagsNew &= ~fEFlagsMask;
+ fEFlagsNew |= uNewFlags & fEFlagsMask;
+#ifdef DBGFTRACE_ENABLED
+ RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
+ pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
+ uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
+#endif
+
+ IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
+ pVCpu->cpum.GstCtx.rip = uNewEip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
+ pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+
+ pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
+ pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
+ pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
+ pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
+ pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
+ if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
+ pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
+ else
+ pVCpu->cpum.GstCtx.rsp = uNewESP;
+
+ pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
+
+ /* Done! */
+
+ }
+ /*
+ * Return to the same level.
+ */
+ else
+ {
+ /* Check EIP. */
+ if (uNewEip > cbLimitCS)
+ {
+ Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
+ /** @todo: Which is it, #GP(0) or #GP(sel)? */
+ return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
+ }
+
+ /*
+ * Commit the changes, marking CS first since it may fail.
+ */
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ X86EFLAGS NewEfl;
+ NewEfl.u = IEMMISC_GET_EFL(pVCpu);
+ uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
+ | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
+ if (enmEffOpSize != IEMMODE_16BIT)
+ fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
+ if (pVCpu->iem.s.uCpl == 0)
+ fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
+ else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
+ fEFlagsMask |= X86_EFL_IF;
+ if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
+ fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
+ NewEfl.u &= ~fEFlagsMask;
+ NewEfl.u |= fEFlagsMask & uNewFlags;
+#ifdef DBGFTRACE_ENABLED
+ RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
+ pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
+ uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
+#endif
+
+ IEMMISC_SET_EFL(pVCpu, NewEfl.u);
+ pVCpu->cpum.GstCtx.rip = uNewEip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
+ pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
+ pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
+ else
+ pVCpu->cpum.GstCtx.rsp = uNewRsp;
+ /* Done! */
+ }
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements iret for long mode
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
+{
+ NOREF(cbInstr);
+
+ /*
+ * Nested task return is not supported in long mode.
+ */
+ if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
+ {
+ Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Normal return.
+ *
+ * Do the stack bits, but don't commit RSP before everything checks
+ * out right.
+ */
+ VBOXSTRICTRC rcStrict;
+ RTCPTRUNION uFrame;
+ uint64_t uNewRip;
+ uint16_t uNewCs;
+ uint16_t uNewSs;
+ uint32_t uNewFlags;
+ uint64_t uNewRsp;
+ if (enmEffOpSize == IEMMODE_64BIT)
+ {
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewRip = uFrame.pu64[0];
+ uNewCs = (uint16_t)uFrame.pu64[1];
+ uNewFlags = (uint32_t)uFrame.pu64[2];
+ uNewRsp = uFrame.pu64[3];
+ uNewSs = (uint16_t)uFrame.pu64[4];
+ }
+ else if (enmEffOpSize == IEMMODE_32BIT)
+ {
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewRip = uFrame.pu32[0];
+ uNewCs = (uint16_t)uFrame.pu32[1];
+ uNewFlags = uFrame.pu32[2];
+ uNewRsp = uFrame.pu32[3];
+ uNewSs = (uint16_t)uFrame.pu32[4];
+ }
+ else
+ {
+ Assert(enmEffOpSize == IEMMODE_16BIT);
+ rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ uNewRip = uFrame.pu16[0];
+ uNewCs = uFrame.pu16[1];
+ uNewFlags = uFrame.pu16[2];
+ uNewRsp = uFrame.pu16[3];
+ uNewSs = uFrame.pu16[4];
+ }
+ rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* extremely like */ }
+ else
+ return rcStrict;
+ Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
+
+ /*
+ * Check stuff.
+ */
+ /* Read the CS descriptor. */
+ if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ IEMSELDESC DescCS;
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* Must be a code descriptor. */
+ if ( !DescCS.Legacy.Gen.u1DescType
+ || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+
+ /* Privilege checks. */
+ uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
+ {
+ if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
+ {
+ Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ }
+ else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
+ {
+ Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+ if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
+ {
+ Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
+ }
+
+ /* Present? */
+ if (!DescCS.Legacy.Gen.u1Present)
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
+ }
+
+ uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
+
+ /* Read the SS descriptor. */
+ IEMSELDESC DescSS;
+ if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
+ {
+ if ( !DescCS.Legacy.Gen.u1Long
+ || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
+ || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ DescSS.Legacy.u = 0;
+ }
+ else
+ {
+ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+
+ /* Privilege checks. */
+ if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
+ }
+
+ uint32_t cbLimitSs;
+ if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
+ cbLimitSs = UINT32_MAX;
+ else
+ {
+ if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
+ }
+
+ /* Must be a writeable data segment descriptor. */
+ if (!DescSS.Legacy.Gen.u1DescType)
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
+ }
+ if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
+ }
+
+ /* Present? */
+ if (!DescSS.Legacy.Gen.u1Present)
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
+ return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
+ }
+ cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
+ }
+
+ /* Check EIP. */
+ if (DescCS.Legacy.Gen.u1Long)
+ {
+ if (!IEM_IS_CANONICAL(uNewRip))
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp));
+ return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
+ }
+ }
+ else
+ {
+ if (uNewRip > cbLimitCS)
+ {
+ Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
+ uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
+ /** @todo: Which is it, #GP(0) or #GP(sel)? */
+ return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
+ }
+ }
+
+ /*
+ * Commit the changes, marking CS and SS accessed first since
+ * that may fail.
+ */
+ /** @todo where exactly are these actually marked accessed by a real CPU? */
+ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+ if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
+ | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
+ if (enmEffOpSize != IEMMODE_16BIT)
+ fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
+ if (pVCpu->iem.s.uCpl == 0)
+ fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
+ else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
+ fEFlagsMask |= X86_EFL_IF;
+ uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
+ fEFlagsNew &= ~fEFlagsMask;
+ fEFlagsNew |= uNewFlags & fEFlagsMask;
+#ifdef DBGFTRACE_ENABLED
+ RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
+ pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
+#endif
+
+ IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
+ pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
+ pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
+ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
+ if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
+ pVCpu->cpum.GstCtx.rsp = uNewRsp;
+ else
+ pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
+ pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
+ pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
+ if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
+ {
+ pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
+ pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
+ pVCpu->cpum.GstCtx.ss.u64Base = 0;
+ Log2(("iretq new SS: NULL\n"));
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
+ pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
+ pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
+ Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
+ }
+
+ if (pVCpu->iem.s.uCpl != uNewCpl)
+ {
+ pVCpu->iem.s.uCpl = uNewCpl;
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
+ iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
+ }
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements iret.
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
+{
+ bool fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ /*
+ * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
+ * of this IRET instruction. We need to provide this information as part of some
+ * VM-exits.
+ *
+ * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
+ */
+ if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
+ else
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
+
+ /*
+ * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
+ * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
+ */
+ if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
+ fBlockingNmi = false;
+
+ /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
+ }
+#endif
+
+ /*
+ * The SVM nested-guest intercept for IRET takes priority over all exceptions,
+ * The NMI is still held pending (which I assume means blocking of further NMIs
+ * is in effect).
+ *
+ * See AMD spec. 15.9 "Instruction Intercepts".
+ * See AMD spec. 15.21.9 "NMI Support".
+ */
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
+ {
+ Log(("iret: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Clear NMI blocking, if any, before causing any further exceptions.
+ * See Intel spec. 6.7.1 "Handling Multiple NMIs".
+ */
+ if (fBlockingNmi)
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
+
+ /*
+ * Call a mode specific worker.
+ */
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
+ return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
+}
+
+
+static void iemLoadallSetSelector(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
+{
+ PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
+
+ pHid->Sel = uSel;
+ pHid->ValidSel = uSel;
+ pHid->fFlags = CPUMSELREG_FLAGS_VALID;
+}
+
+
+static void iemLoadall286SetDescCache(PVMCPUCC pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
+{
+ PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
+
+ /* The base is in the first three bytes. */
+ pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
+ /* The attributes are in the fourth byte. */
+ pHid->Attr.u = pbMem[3];
+ /* The limit is in the last two bytes. */
+ pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
+}
+
+
+/**
+ * Implements 286 LOADALL (286 CPUs only).
+ */
+IEM_CIMPL_DEF_0(iemCImpl_loadall286)
+{
+ NOREF(cbInstr);
+
+ /* Data is loaded from a buffer at 800h. No checks are done on the
+ * validity of loaded state.
+ *
+ * LOADALL only loads the internal CPU state, it does not access any
+ * GDT, LDT, or similar tables.
+ */
+
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ uint8_t const *pbMem = NULL;
+ uint16_t const *pa16Mem;
+ uint8_t const *pa8Mem;
+ RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* The MSW is at offset 0x06. */
+ pa16Mem = (uint16_t const *)(pbMem + 0x06);
+ /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
+ uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
+ uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
+ uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
+
+ CPUMSetGuestCR0(pVCpu, uNewCr0);
+ Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
+
+ /* Inform PGM if mode changed. */
+ if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
+ {
+ int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
+ AssertRCReturn(rc, rc);
+ /* ignore informational status codes */
+ }
+ rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
+
+ /* TR selector is at offset 0x16. */
+ pa16Mem = (uint16_t const *)(pbMem + 0x16);
+ pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
+ pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
+ pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
+
+ /* Followed by FLAGS... */
+ pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
+ pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
+
+ /* LDT is at offset 0x1C. */
+ pa16Mem = (uint16_t const *)(pbMem + 0x1C);
+ pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
+ pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
+ pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+
+ /* Segment registers are at offset 0x1E. */
+ pa16Mem = (uint16_t const *)(pbMem + 0x1E);
+ iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
+ iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
+ iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
+ iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
+
+ /* GPRs are at offset 0x26. */
+ pa16Mem = (uint16_t const *)(pbMem + 0x26);
+ pVCpu->cpum.GstCtx.di = pa16Mem[0];
+ pVCpu->cpum.GstCtx.si = pa16Mem[1];
+ pVCpu->cpum.GstCtx.bp = pa16Mem[2];
+ pVCpu->cpum.GstCtx.sp = pa16Mem[3];
+ pVCpu->cpum.GstCtx.bx = pa16Mem[4];
+ pVCpu->cpum.GstCtx.dx = pa16Mem[5];
+ pVCpu->cpum.GstCtx.cx = pa16Mem[6];
+ pVCpu->cpum.GstCtx.ax = pa16Mem[7];
+
+ /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
+ iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
+ iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
+ iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
+ iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
+
+ /* GDTR contents are at offset 0x4E, 6 bytes. */
+ RTGCPHYS GCPtrBase;
+ uint16_t cbLimit;
+ pa8Mem = pbMem + 0x4E;
+ /* NB: Fourth byte "should be zero"; we are ignoring it. */
+ GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
+ cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
+ CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
+
+ /* IDTR contents are at offset 0x5A, 6 bytes. */
+ pa8Mem = pbMem + 0x5A;
+ GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
+ cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
+ CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
+
+ Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
+ Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
+ Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
+ Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
+ Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
+ Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* The CPL may change. It is taken from the "DPL fields of the SS and CS
+ * descriptor caches" but there is no word as to what happens if those are
+ * not identical (probably bad things).
+ */
+ pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
+
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+ return rcStrict;
+}
+
+
+/**
+ * Implements SYSCALL (AMD and Intel64).
+ *
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_syscall)
+{
+ /** @todo hack, LOADALL should be decoded as such on a 286. */
+ if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
+ return iemCImpl_loadall286(pVCpu, cbInstr);
+
+ /*
+ * Check preconditions.
+ *
+ * Note that CPUs described in the documentation may load a few odd values
+ * into CS and SS than we allow here. This has yet to be checked on real
+ * hardware.
+ */
+ if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
+ {
+ Log(("syscall: Not enabled in EFER -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
+ {
+ Log(("syscall: Protected mode is required -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
+ {
+ Log(("syscall: Only available in long mode on intel -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
+
+ /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
+ /** @todo what about LDT selectors? Shouldn't matter, really. */
+ uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
+ uint16_t uNewSs = uNewCs + 8;
+ if (uNewCs == 0 || uNewSs == 0)
+ {
+ Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Long mode and legacy mode differs. */
+ if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
+ {
+ uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
+
+ /* This test isn't in the docs, but I'm not trusting the guys writing
+ the MSRs to have validated the values as canonical like they should. */
+ if (!IEM_IS_CANONICAL(uNewRip))
+ {
+ Log(("syscall: Only available in long mode on intel -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+
+ /*
+ * Commit it.
+ */
+ Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
+ pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
+ pVCpu->cpum.GstCtx.rip = uNewRip;
+
+ pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
+ pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
+ pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
+ pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
+
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
+ pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
+ }
+ else
+ {
+ /*
+ * Commit it.
+ */
+ Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
+ pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
+ pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
+ pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
+ pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
+
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
+ pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
+ }
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
+ pVCpu->cpum.GstCtx.cs.u64Base = 0;
+ pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+
+ pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
+ pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
+ pVCpu->cpum.GstCtx.ss.u64Base = 0;
+ pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
+ pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements SYSRET (AMD and Intel64).
+ */
+IEM_CIMPL_DEF_0(iemCImpl_sysret)
+
+{
+ RT_NOREF_PV(cbInstr);
+
+ /*
+ * Check preconditions.
+ *
+ * Note that CPUs described in the documentation may load a few odd values
+ * into CS and SS than we allow here. This has yet to be checked on real
+ * hardware.
+ */
+ if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
+ {
+ Log(("sysret: Not enabled in EFER -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
+ {
+ Log(("sysret: Only available in long mode on intel -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
+ {
+ Log(("sysret: Protected mode is required -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
+
+ /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
+ uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
+ uint16_t uNewSs = uNewCs + 8;
+ if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
+ uNewCs += 16;
+ if (uNewCs == 0 || uNewSs == 0)
+ {
+ Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Commit it.
+ */
+ if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
+ {
+ if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
+ {
+ Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
+ pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
+ /* Note! We disregard intel manual regarding the RCX cananonical
+ check, ask intel+xen why AMD doesn't do it. */
+ pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
+ | (3 << X86DESCATTR_DPL_SHIFT);
+ }
+ else
+ {
+ Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
+ pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
+ pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
+ | (3 << X86DESCATTR_DPL_SHIFT);
+ }
+ /** @todo testcase: See what kind of flags we can make SYSRET restore and
+ * what it really ignores. RF and VM are hinted at being zero, by AMD. */
+ pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
+ pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
+ }
+ else
+ {
+ Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
+ pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
+ pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
+ pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
+ | (3 << X86DESCATTR_DPL_SHIFT);
+ }
+ pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
+ pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
+ pVCpu->cpum.GstCtx.cs.u64Base = 0;
+ pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
+ pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
+
+ pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
+ pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
+ pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
+ /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
+ pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
+ /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
+ * on sysret. */
+
+ /* Flush the prefetch buffer. */
+#ifdef IEM_WITH_CODE_TLB
+ pVCpu->iem.s.pbInstrBuf = NULL;
+#else
+ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
+ *
+ * @param iSegReg The segment register number (valid).
+ * @param uSel The new selector value.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
+{
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
+ uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
+ PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
+
+ Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
+
+ /*
+ * Real mode and V8086 mode are easy.
+ */
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ *pSel = uSel;
+ pHid->u64Base = (uint32_t)uSel << 4;
+ pHid->ValidSel = uSel;
+ pHid->fFlags = CPUMSELREG_FLAGS_VALID;
+#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
+ /** @todo Does the CPU actually load limits and attributes in the
+ * real/V8086 mode segment load case? It doesn't for CS in far
+ * jumps... Affects unreal mode. */
+ pHid->u32Limit = 0xffff;
+ pHid->Attr.u = 0;
+ pHid->Attr.n.u1Present = 1;
+ pHid->Attr.n.u1DescType = 1;
+ pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
+ ? X86_SEL_TYPE_RW
+ : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
+#endif
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Protected mode.
+ *
+ * Check if it's a null segment selector value first, that's OK for DS, ES,
+ * FS and GS. If not null, then we have to load and parse the descriptor.
+ */
+ if (!(uSel & X86_SEL_MASK_OFF_RPL))
+ {
+ Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
+ if (iSegReg == X86_SREG_SS)
+ {
+ /* In 64-bit kernel mode, the stack can be 0 because of the way
+ interrupts are dispatched. AMD seems to have a slighly more
+ relaxed relationship to SS.RPL than intel does. */
+ /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
+ if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
+ || pVCpu->iem.s.uCpl > 2
+ || ( uSel != pVCpu->iem.s.uCpl
+ && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
+ {
+ Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ *pSel = uSel; /* Not RPL, remember :-) */
+ iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
+ if (iSegReg == X86_SREG_SS)
+ pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
+
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Fetch the descriptor. */
+ IEMSELDESC Desc;
+ VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Check GPs first. */
+ if (!Desc.Legacy.Gen.u1DescType)
+ {
+ Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
+ {
+ if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
+ || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
+ {
+ Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
+ {
+ Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
+ {
+ Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ }
+ else
+ {
+ if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
+ {
+ Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
+ != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
+ {
+#if 0 /* this is what intel says. */
+ if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
+ && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
+ {
+ Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
+ iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+#else /* this is what makes more sense. */
+ if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
+ {
+ Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
+ iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+ if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
+ {
+ Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
+ iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
+ }
+#endif
+ }
+ }
+
+ /* Is it there? */
+ if (!Desc.Legacy.Gen.u1Present)
+ {
+ Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
+ }
+
+ /* The base and limit. */
+ uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
+ uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
+
+ /*
+ * Ok, everything checked out fine. Now set the accessed bit before
+ * committing the result into the registers.
+ */
+ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
+ {
+ rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
+ }
+
+ /* commit */
+ *pSel = uSel;
+ pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
+ pHid->u32Limit = cbLimit;
+ pHid->u64Base = u64Base;
+ pHid->ValidSel = uSel;
+ pHid->fFlags = CPUMSELREG_FLAGS_VALID;
+
+ /** @todo check if the hidden bits are loaded correctly for 64-bit
+ * mode. */
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
+
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'mov SReg, r/m'.
+ *
+ * @param iSegReg The segment register number (valid).
+ * @param uSel The new selector value.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
+{
+ VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if (iSegReg == X86_SREG_SS)
+ EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements 'pop SReg'.
+ *
+ * @param iSegReg The segment register number (valid).
+ * @param enmEffOpSize The efficient operand size (valid).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
+{
+ VBOXSTRICTRC rcStrict;
+
+ /*
+ * Read the selector off the stack and join paths with mov ss, reg.
+ */
+ RTUINT64U TmpRsp;
+ TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ {
+ uint16_t uSel;
+ rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
+ break;
+ }
+
+ case IEMMODE_32BIT:
+ {
+ uint32_t u32Value;
+ rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
+ break;
+ }
+
+ case IEMMODE_64BIT:
+ {
+ uint64_t u64Value;
+ rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
+ break;
+ }
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+
+ /*
+ * Commit the stack on success.
+ */
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
+ if (iSegReg == X86_SREG_SS)
+ EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements lgs, lfs, les, lds & lss.
+ */
+IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
+ uint16_t, uSel,
+ uint64_t, offSeg,
+ uint8_t, iSegReg,
+ uint8_t, iGReg,
+ IEMMODE, enmEffOpSize)
+{
+ /*
+ * Use iemCImpl_LoadSReg to do the tricky segment register loading.
+ */
+ /** @todo verify and test that mov, pop and lXs works the segment
+ * register loading in the exact same way. */
+ VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
+ break;
+ case IEMMODE_32BIT:
+ *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
+ break;
+ case IEMMODE_64BIT:
+ *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
+ break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ }
+
+ return rcStrict;
+}
+
+
+/**
+ * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
+ *
+ * @retval VINF_SUCCESS on success.
+ * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
+ * @retval iemMemFetchSysU64 return value.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param uSel The selector value.
+ * @param fAllowSysDesc Whether system descriptors are OK or not.
+ * @param pDesc Where to return the descriptor on success.
+ */
+static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPUCC pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
+{
+ pDesc->Long.au64[0] = 0;
+ pDesc->Long.au64[1] = 0;
+
+ if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
+ return VINF_IEM_SELECTOR_NOT_OK;
+
+ /* Within the table limits? */
+ RTGCPTR GCPtrBase;
+ if (uSel & X86_SEL_LDT)
+ {
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
+ if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
+ || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
+ return VINF_IEM_SELECTOR_NOT_OK;
+ GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
+ }
+ else
+ {
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
+ if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
+ return VINF_IEM_SELECTOR_NOT_OK;
+ GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
+ }
+
+ /* Fetch the descriptor. */
+ VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ if (!pDesc->Legacy.Gen.u1DescType)
+ {
+ if (!fAllowSysDesc)
+ return VINF_IEM_SELECTOR_NOT_OK;
+ if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
+ {
+ rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements verr (fWrite = false) and verw (fWrite = true).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
+{
+ Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
+
+ /** @todo figure whether the accessed bit is set or not. */
+
+ bool fAccessible = true;
+ IEMSELDESC Desc;
+ VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /* Check the descriptor, order doesn't matter much here. */
+ if ( !Desc.Legacy.Gen.u1DescType
+ || !Desc.Legacy.Gen.u1Present)
+ fAccessible = false;
+ else
+ {
+ if ( fWrite
+ ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
+ : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
+ fAccessible = false;
+
+ /** @todo testcase for the conforming behavior. */
+ if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
+ != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
+ {
+ if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
+ fAccessible = false;
+ else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
+ fAccessible = false;
+ }
+ }
+
+ }
+ else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
+ fAccessible = false;
+ else
+ return rcStrict;
+
+ /* commit */
+ pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements LAR and LSL with 64-bit operand size.
+ *
+ * @returns VINF_SUCCESS.
+ * @param pu16Dst Pointer to the destination register.
+ * @param uSel The selector to load details for.
+ * @param fIsLar true = LAR, false = LSL.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
+{
+ Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
+
+ /** @todo figure whether the accessed bit is set or not. */
+
+ bool fDescOk = true;
+ IEMSELDESC Desc;
+ VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /*
+ * Check the descriptor type.
+ */
+ if (!Desc.Legacy.Gen.u1DescType)
+ {
+ if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
+ {
+ if (Desc.Long.Gen.u5Zeros)
+ fDescOk = false;
+ else
+ switch (Desc.Long.Gen.u4Type)
+ {
+ /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
+ case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
+ case AMD64_SEL_TYPE_SYS_TSS_BUSY:
+ case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
+ break;
+ case AMD64_SEL_TYPE_SYS_CALL_GATE:
+ fDescOk = fIsLar;
+ break;
+ default:
+ fDescOk = false;
+ break;
+ }
+ }
+ else
+ {
+ switch (Desc.Long.Gen.u4Type)
+ {
+ case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
+ case X86_SEL_TYPE_SYS_286_TSS_BUSY:
+ case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
+ case X86_SEL_TYPE_SYS_386_TSS_BUSY:
+ case X86_SEL_TYPE_SYS_LDT:
+ break;
+ case X86_SEL_TYPE_SYS_286_CALL_GATE:
+ case X86_SEL_TYPE_SYS_TASK_GATE:
+ case X86_SEL_TYPE_SYS_386_CALL_GATE:
+ fDescOk = fIsLar;
+ break;
+ default:
+ fDescOk = false;
+ break;
+ }
+ }
+ }
+ if (fDescOk)
+ {
+ /*
+ * Check the RPL/DPL/CPL interaction..
+ */
+ /** @todo testcase for the conforming behavior. */
+ if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
+ || !Desc.Legacy.Gen.u1DescType)
+ {
+ if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
+ fDescOk = false;
+ else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
+ fDescOk = false;
+ }
+ }
+
+ if (fDescOk)
+ {
+ /*
+ * All fine, start committing the result.
+ */
+ if (fIsLar)
+ *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
+ else
+ *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
+ }
+
+ }
+ else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
+ fDescOk = false;
+ else
+ return rcStrict;
+
+ /* commit flags value and advance rip. */
+ pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements LAR and LSL with 16-bit operand size.
+ *
+ * @returns VINF_SUCCESS.
+ * @param pu16Dst Pointer to the destination register.
+ * @param u16Sel The selector to load details for.
+ * @param fIsLar true = LAR, false = LSL.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
+{
+ uint64_t u64TmpDst = *pu16Dst;
+ IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
+ *pu16Dst = u64TmpDst;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements lgdt.
+ *
+ * @param iEffSeg The segment of the new gdtr contents
+ * @param GCPtrEffSrc The address of the new gdtr contents.
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
+ {
+ Log(("lgdt: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
+ {
+ Log(("lgdt: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Fetch the limit and base address.
+ */
+ uint16_t cbLimit;
+ RTGCPTR GCPtrBase;
+ VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
+ || X86_IS_CANONICAL(GCPtrBase))
+ {
+ rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ else
+ {
+ Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements sgdt.
+ *
+ * @param iEffSeg The segment where to store the gdtr content.
+ * @param GCPtrEffDst The address where to store the gdtr content.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
+{
+ /*
+ * Join paths with sidt.
+ * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
+ * you really must know.
+ */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
+ {
+ Log(("sgdt: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
+ {
+ Log(("sgdt: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
+ VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+}
+
+
+/**
+ * Implements lidt.
+ *
+ * @param iEffSeg The segment of the new idtr contents
+ * @param GCPtrEffSrc The address of the new idtr contents.
+ * @param enmEffOpSize The effective operand size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
+ {
+ Log(("lidt: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Fetch the limit and base address.
+ */
+ uint16_t cbLimit;
+ RTGCPTR GCPtrBase;
+ VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
+ || X86_IS_CANONICAL(GCPtrBase))
+ {
+ CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ else
+ {
+ Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements sidt.
+ *
+ * @param iEffSeg The segment where to store the idtr content.
+ * @param GCPtrEffDst The address where to store the idtr content.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
+{
+ /*
+ * Join paths with sgdt.
+ * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
+ * you really must know.
+ */
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
+ {
+ Log(("sidt: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
+ VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+}
+
+
+/**
+ * Implements lldt.
+ *
+ * @param uNewLdt The new LDT selector value.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
+{
+ /*
+ * Check preconditions.
+ */
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ /* Nested-guest VMX intercept. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
+ {
+ Log(("lldt: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
+ }
+ if (uNewLdt & X86_SEL_LDT)
+ {
+ Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
+ }
+
+ /*
+ * Now, loading a NULL selector is easy.
+ */
+ if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
+ {
+ /* Nested-guest SVM intercept. */
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
+ {
+ Log(("lldt: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
+ CPUMSetGuestLDTR(pVCpu, uNewLdt);
+ pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
+ pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+ if (IEM_IS_GUEST_CPU_AMD(pVCpu))
+ {
+ /* AMD-V seems to leave the base and limit alone. */
+ pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
+ }
+ else
+ {
+ /* VT-x (Intel 3960x) seems to be doing the following. */
+ pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
+ pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
+ pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
+ }
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Read the descriptor.
+ */
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
+ IEMSELDESC Desc;
+ VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Check GPs first. */
+ if (Desc.Legacy.Gen.u1DescType)
+ {
+ Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
+ }
+ if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
+ {
+ Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
+ }
+ uint64_t u64Base;
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ u64Base = X86DESC_BASE(&Desc.Legacy);
+ else
+ {
+ if (Desc.Long.Gen.u5Zeros)
+ {
+ Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
+ }
+
+ u64Base = X86DESC64_BASE(&Desc.Long);
+ if (!IEM_IS_CANONICAL(u64Base))
+ {
+ Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
+ }
+ }
+
+ /* NP */
+ if (!Desc.Legacy.Gen.u1Present)
+ {
+ Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
+ }
+
+ /* Nested-guest SVM intercept. */
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
+ {
+ Log(("lldt: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * It checks out alright, update the registers.
+ */
+/** @todo check if the actual value is loaded or if the RPL is dropped */
+ CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
+ pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
+ pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
+ pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
+ pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements sldt GReg
+ *
+ * @param iGReg The general register to store the CRx value in.
+ * @param enmEffOpSize The operand size.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
+{
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
+ {
+ Log(("sldt: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
+ }
+
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
+ case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
+ case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements sldt mem.
+ *
+ * @param iGReg The general register to store the CRx value in.
+ * @param iEffSeg The effective segment register to use with @a GCPtrMem.
+ * @param GCPtrEffDst Where to store the 16-bit CR0 value.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
+{
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
+ VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+}
+
+
+/**
+ * Implements ltr.
+ *
+ * @param uNewTr The new TSS selector value.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
+{
+ /*
+ * Check preconditions.
+ */
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
+ {
+ Log(("ltr: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
+ }
+ if (uNewTr & X86_SEL_LDT)
+ {
+ Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
+ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
+ }
+ if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
+ {
+ Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
+ {
+ Log(("ltr: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Read the descriptor.
+ */
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
+ IEMSELDESC Desc;
+ VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Check GPs first. */
+ if (Desc.Legacy.Gen.u1DescType)
+ {
+ Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
+ }
+ if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
+ && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
+ || IEM_IS_LONG_MODE(pVCpu)) )
+ {
+ Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
+ }
+ uint64_t u64Base;
+ if (!IEM_IS_LONG_MODE(pVCpu))
+ u64Base = X86DESC_BASE(&Desc.Legacy);
+ else
+ {
+ if (Desc.Long.Gen.u5Zeros)
+ {
+ Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
+ }
+
+ u64Base = X86DESC64_BASE(&Desc.Long);
+ if (!IEM_IS_CANONICAL(u64Base))
+ {
+ Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
+ return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
+ }
+ }
+
+ /* NP */
+ if (!Desc.Legacy.Gen.u1Present)
+ {
+ Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
+ return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
+ }
+
+ /*
+ * Set it busy.
+ * Note! Intel says this should lock down the whole descriptor, but we'll
+ * restrict our selves to 32-bit for now due to lack of inline
+ * assembly and such.
+ */
+ void *pvDesc;
+ rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ switch ((uintptr_t)pvDesc & 3)
+ {
+ case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
+ case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
+ case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
+ case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
+ }
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
+
+ /*
+ * It checks out alright, update the registers.
+ */
+/** @todo check if the actual value is loaded or if the RPL is dropped */
+ CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
+ pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
+ pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
+ pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
+ pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements str GReg
+ *
+ * @param iGReg The general register to store the CRx value in.
+ * @param enmEffOpSize The operand size.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
+{
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
+ {
+ Log(("str_reg: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
+ }
+
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
+ case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
+ case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements str mem.
+ *
+ * @param iGReg The general register to store the CRx value in.
+ * @param iEffSeg The effective segment register to use with @a GCPtrMem.
+ * @param GCPtrEffDst Where to store the 16-bit CR0 value.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
+{
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
+ {
+ Log(("str_mem: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
+ }
+
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
+
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
+ VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+}
+
+
+/**
+ * Implements mov GReg,CRx.
+ *
+ * @param iGReg The general register to store the CRx value in.
+ * @param iCrReg The CRx register to read (valid).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+
+ if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
+ {
+ Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
+ }
+
+ /* Read it. */
+ uint64_t crX;
+ switch (iCrReg)
+ {
+ case 0:
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
+ crX = pVCpu->cpum.GstCtx.cr0;
+ if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
+ crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
+ break;
+ case 2:
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
+ crX = pVCpu->cpum.GstCtx.cr2;
+ break;
+ case 3:
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
+ crX = pVCpu->cpum.GstCtx.cr3;
+ break;
+ case 4:
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+ crX = pVCpu->cpum.GstCtx.cr4;
+ break;
+ case 8:
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+
+ /*
+ * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
+ * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
+ * are cleared.
+ *
+ * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
+ */
+ if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
+ {
+ uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
+ crX = (uTpr >> 4) & 0xf;
+ break;
+ }
+ }
+#endif
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
+ {
+ PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
+ if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
+ {
+ crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
+ break;
+ }
+ }
+#endif
+ uint8_t uTpr;
+ int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
+ if (RT_SUCCESS(rc))
+ crX = uTpr >> 4;
+ else
+ crX = 0;
+ break;
+ }
+ IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
+ }
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ switch (iCrReg)
+ {
+ /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
+ case 0: crX = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcs->u64Cr0Mask.u); break;
+ case 4: crX = CPUMGetGuestVmxMaskedCr4(&pVCpu->cpum.GstCtx, pVmcs->u64Cr4Mask.u); break;
+
+ case 3:
+ {
+ VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ break;
+ }
+ }
+ }
+#endif
+
+ /* Store it. */
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
+ else
+ *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements smsw GReg.
+ *
+ * @param iGReg The general register to store the CRx value in.
+ * @param enmEffOpSize The operand size.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
+{
+ IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ uint64_t u64MaskedCr0;
+ if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
+ else
+ {
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcs->u64Cr0Mask.u);
+ }
+ uint64_t const u64GuestCr0 = u64MaskedCr0;
+#else
+ uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
+#endif
+
+ switch (enmEffOpSize)
+ {
+ case IEMMODE_16BIT:
+ if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
+ *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
+ else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
+ *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
+ else
+ *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
+ break;
+
+ case IEMMODE_32BIT:
+ *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
+ break;
+
+ case IEMMODE_64BIT:
+ *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
+ break;
+
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements smsw mem.
+ *
+ * @param iGReg The general register to store the CR0 value in.
+ * @param iEffSeg The effective segment register to use with @a GCPtrMem.
+ * @param GCPtrEffDst Where to store the 16-bit CR0 value.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
+{
+ IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ uint64_t u64MaskedCr0;
+ if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
+ else
+ {
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcs->u64Cr0Mask.u);
+ }
+ uint64_t const u64GuestCr0 = u64MaskedCr0;
+#else
+ uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
+#endif
+
+ uint16_t u16Value;
+ if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
+ u16Value = (uint16_t)u64GuestCr0;
+ else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
+ u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
+ else
+ u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
+
+ VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+}
+
+
+/**
+ * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
+ *
+ * @param iCrReg The CRx register to write (valid).
+ * @param uNewCrX The new value.
+ * @param enmAccessCrx The instruction that caused the CrX load.
+ * @param iGReg The general register in case of a 'mov CRx,GReg'
+ * instruction.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
+{
+ VBOXSTRICTRC rcStrict;
+ int rc;
+#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
+ RT_NOREF2(iGReg, enmAccessCrX);
+#endif
+
+ /*
+ * Try store it.
+ * Unfortunately, CPUM only does a tiny bit of the work.
+ */
+ switch (iCrReg)
+ {
+ case 0:
+ {
+ /*
+ * Perform checks.
+ */
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
+
+ uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
+ uint32_t const fValid = CPUMGetGuestCR0ValidMask();
+
+ /* ET is hardcoded on 486 and later. */
+ if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
+ uNewCrX |= X86_CR0_ET;
+ /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
+ else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
+ {
+ uNewCrX &= fValid;
+ uNewCrX |= X86_CR0_ET;
+ }
+ else
+ uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
+
+ /* Check for reserved bits. */
+ if (uNewCrX & ~(uint64_t)fValid)
+ {
+ Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Check for invalid combinations. */
+ if ( (uNewCrX & X86_CR0_PG)
+ && !(uNewCrX & X86_CR0_PE) )
+ {
+ Log(("Trying to set CR0.PG without CR0.PE\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if ( !(uNewCrX & X86_CR0_CD)
+ && (uNewCrX & X86_CR0_NW) )
+ {
+ Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if ( !(uNewCrX & X86_CR0_PG)
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
+ {
+ Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Long mode consistency checks. */
+ if ( (uNewCrX & X86_CR0_PG)
+ && !(uOldCrX & X86_CR0_PG)
+ && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
+ {
+ if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
+ {
+ Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
+ {
+ Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ /* Check for bits that must remain set or cleared in VMX operation,
+ see Intel spec. 23.8 "Restrictions on VMX operation". */
+ if (IEM_VMX_IS_ROOT_MODE(pVCpu))
+ {
+ uint32_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
+ if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
+ {
+ Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ uint32_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
+ if (uNewCrX & ~uCr0Fixed1)
+ {
+ Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ /** @todo check reserved PDPTR bits as AMD states. */
+
+ /*
+ * SVM nested-guest CR0 write intercepts.
+ */
+ if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
+ {
+ Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
+ }
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
+ {
+ /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
+ if ( enmAccessCrX == IEMACCESSCRX_LMSW
+ || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
+ {
+ Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
+ Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
+ }
+ }
+
+ /*
+ * Change CR0.
+ */
+ CPUMSetGuestCR0(pVCpu, uNewCrX);
+ Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
+
+ /*
+ * Change EFER.LMA if entering or leaving long mode.
+ */
+ if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
+ && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
+ {
+ uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
+ if (uNewCrX & X86_CR0_PG)
+ NewEFER |= MSR_K6_EFER_LMA;
+ else
+ NewEFER &= ~MSR_K6_EFER_LMA;
+
+ CPUMSetGuestEFER(pVCpu, NewEFER);
+ Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
+ }
+
+ /*
+ * Inform PGM.
+ */
+ if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
+ != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
+ {
+ rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
+ AssertRCReturn(rc, rc);
+ /* ignore informational status codes */
+ }
+ rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
+ break;
+ }
+
+ /*
+ * CR2 can be changed without any restrictions.
+ */
+ case 2:
+ {
+ if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
+ {
+ Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
+ }
+ pVCpu->cpum.GstCtx.cr2 = uNewCrX;
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
+ rcStrict = VINF_SUCCESS;
+ break;
+ }
+
+ /*
+ * CR3 is relatively simple, although AMD and Intel have different
+ * accounts of how setting reserved bits are handled. We take intel's
+ * word for the lower bits and AMD's for the high bits (63:52). The
+ * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
+ * on this.
+ */
+ /** @todo Testcase: Setting reserved bits in CR3, especially before
+ * enabling paging. */
+ case 3:
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
+
+ /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
+ if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
+ && (uNewCrX & RT_BIT_64(63)))
+ {
+ /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
+ * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
+ * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
+ * Paging-Structure Caches". */
+ uNewCrX &= ~RT_BIT_64(63);
+ }
+
+ /* Check / mask the value. */
+ if (uNewCrX & UINT64_C(0xfff0000000000000))
+ {
+ Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ uint64_t fValid;
+ if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
+ && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
+ fValid = UINT64_C(0x000fffffffffffff);
+ else
+ fValid = UINT64_C(0xffffffff);
+ if (uNewCrX & ~fValid)
+ {
+ Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
+ uNewCrX, uNewCrX & ~fValid));
+ uNewCrX &= fValid;
+ }
+
+ if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
+ {
+ Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
+ }
+
+ /** @todo If we're in PAE mode we should check the PDPTRs for
+ * invalid bits. */
+
+ /* Make the change. */
+ rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
+ AssertRCSuccessReturn(rc, rc);
+
+ /* Inform PGM. */
+ if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
+ {
+ rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
+ AssertRCReturn(rc, rc);
+ /* ignore informational status codes */
+ }
+ rcStrict = VINF_SUCCESS;
+ break;
+ }
+
+ /*
+ * CR4 is a bit more tedious as there are bits which cannot be cleared
+ * under some circumstances and such.
+ */
+ case 4:
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+ uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
+
+ /* Reserved bits. */
+ uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
+ if (uNewCrX & ~(uint64_t)fValid)
+ {
+ Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ bool const fPcide = !(uOldCrX & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
+ bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
+
+ /* PCIDE check. */
+ if ( fPcide
+ && ( !fLongMode
+ || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
+ {
+ Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* PAE check. */
+ if ( fLongMode
+ && (uOldCrX & X86_CR4_PAE)
+ && !(uNewCrX & X86_CR4_PAE))
+ {
+ Log(("Trying to set clear CR4.PAE while long mode is active\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
+ {
+ Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
+ }
+
+ /* Check for bits that must remain set or cleared in VMX operation,
+ see Intel spec. 23.8 "Restrictions on VMX operation". */
+ if (IEM_VMX_IS_ROOT_MODE(pVCpu))
+ {
+ uint32_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
+ if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
+ {
+ Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ uint32_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
+ if (uNewCrX & ~uCr4Fixed1)
+ {
+ Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ /*
+ * Change it.
+ */
+ rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
+ AssertRCSuccessReturn(rc, rc);
+ Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
+
+ /*
+ * Notify SELM and PGM.
+ */
+ /* SELM - VME may change things wrt to the TSS shadowing. */
+ if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
+ Log(("iemCImpl_load_CrX: VME %d -> %d\n", RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
+
+ /* PGM - flushing and mode. */
+ if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
+ {
+ rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
+ AssertRCReturn(rc, rc);
+ /* ignore informational status codes */
+ }
+ rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
+ break;
+ }
+
+ /*
+ * CR8 maps to the APIC TPR.
+ */
+ case 8:
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
+ if (uNewCrX & ~(uint64_t)0xf)
+ {
+ Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
+ {
+ /*
+ * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
+ * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
+ * cleared. Following this the processor performs TPR virtualization.
+ *
+ * However, we should not perform TPR virtualization immediately here but
+ * after this instruction has completed.
+ *
+ * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
+ * See Intel spec. 27.1 "Architectural State Before A VM-exit"
+ */
+ uint32_t const uTpr = (uNewCrX & 0xf) << 4;
+ Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
+ iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
+ iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
+ rcStrict = VINF_SUCCESS;
+ break;
+ }
+#endif
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
+ {
+ if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
+ {
+ Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
+ }
+
+ PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
+ pVmcbCtrl->IntCtrl.n.u8VTPR = uNewCrX;
+ if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
+ {
+ rcStrict = VINF_SUCCESS;
+ break;
+ }
+ }
+#endif
+ uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
+ APICSetTpr(pVCpu, u8Tpr);
+ rcStrict = VINF_SUCCESS;
+ break;
+ }
+
+ IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
+ }
+
+ /*
+ * Advance the RIP on success.
+ */
+ if (RT_SUCCESS(rcStrict))
+ {
+ if (rcStrict != VINF_SUCCESS)
+ rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+
+ return rcStrict;
+}
+
+
+/**
+ * Implements mov CRx,GReg.
+ *
+ * @param iCrReg The CRx register to write (valid).
+ * @param iGReg The general register to load the CRx value from.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+
+ /*
+ * Read the new value from the source register and call common worker.
+ */
+ uint64_t uNewCrX;
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
+ else
+ uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
+ switch (iCrReg)
+ {
+ case 0:
+ case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
+ case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
+ case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
+ }
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+#endif
+
+ return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
+}
+
+
+/**
+ * Implements 'LMSW r/m16'
+ *
+ * @param u16NewMsw The new value.
+ * @param GCPtrEffDst The guest-linear address of the source operand in case
+ * of a memory operand. For register operand, pass
+ * NIL_RTGCPTR.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+#else
+ RT_NOREF_PV(GCPtrEffDst);
+#endif
+
+ /*
+ * Compose the new CR0 value and call common worker.
+ */
+ uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
+ uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
+ return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
+}
+
+
+/**
+ * Implements 'CLTS'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_clts)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
+ uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
+ uNewCr0 &= ~X86_CR0_TS;
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
+ if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
+ uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
+ else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+#endif
+
+ return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
+}
+
+
+/**
+ * Implements mov GReg,DRx.
+ *
+ * @param iGReg The general register to store the DRx value in.
+ * @param iDrReg The DRx register to read (0-7).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
+{
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ /*
+ * Check nested-guest VMX intercept.
+ * Unlike most other intercepts, the Mov DRx intercept takes preceedence
+ * over CPL and CR4.DE and even DR4/DR5 checks.
+ *
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+#endif
+
+ /*
+ * Check preconditions.
+ */
+ /* Raise GPs. */
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
+
+ if ( (iDrReg == 4 || iDrReg == 5)
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
+ {
+ Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Raise #DB if general access detect is enabled. */
+ if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
+ {
+ Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
+ return iemRaiseDebugException(pVCpu);
+ }
+
+ /*
+ * Read the debug register and store it in the specified general register.
+ */
+ uint64_t drX;
+ switch (iDrReg)
+ {
+ case 0:
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ drX = pVCpu->cpum.GstCtx.dr[0];
+ break;
+ case 1:
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ drX = pVCpu->cpum.GstCtx.dr[1];
+ break;
+ case 2:
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ drX = pVCpu->cpum.GstCtx.dr[2];
+ break;
+ case 3:
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ drX = pVCpu->cpum.GstCtx.dr[3];
+ break;
+ case 6:
+ case 4:
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
+ drX = pVCpu->cpum.GstCtx.dr[6];
+ drX |= X86_DR6_RA1_MASK;
+ drX &= ~X86_DR6_RAZ_MASK;
+ break;
+ case 7:
+ case 5:
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
+ drX = pVCpu->cpum.GstCtx.dr[7];
+ drX |=X86_DR7_RA1_MASK;
+ drX &= ~X86_DR7_RAZ_MASK;
+ break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
+ }
+
+ /** @todo SVM nested-guest intercept for DR8-DR15? */
+ /*
+ * Check for any SVM nested-guest intercepts for the DRx read.
+ */
+ if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
+ {
+ Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
+ IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
+ }
+
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
+ else
+ *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements mov DRx,GReg.
+ *
+ * @param iDrReg The DRx register to write (valid).
+ * @param iGReg The general register to load the DRx value from.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
+{
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ /*
+ * Check nested-guest VMX intercept.
+ * Unlike most other intercepts, the Mov DRx intercept takes preceedence
+ * over CPL and CR4.DE and even DR4/DR5 checks.
+ *
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+#endif
+
+ /*
+ * Check preconditions.
+ */
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
+
+ if (iDrReg == 4 || iDrReg == 5)
+ {
+ if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
+ {
+ Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ iDrReg += 2;
+ }
+
+ /* Raise #DB if general access detect is enabled. */
+ /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
+ * \#GP? */
+ if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
+ {
+ Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
+ return iemRaiseDebugException(pVCpu);
+ }
+
+ /*
+ * Read the new value from the source register.
+ */
+ uint64_t uNewDrX;
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
+ else
+ uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
+
+ /*
+ * Adjust it.
+ */
+ switch (iDrReg)
+ {
+ case 0:
+ case 1:
+ case 2:
+ case 3:
+ /* nothing to adjust */
+ break;
+
+ case 6:
+ if (uNewDrX & X86_DR6_MBZ_MASK)
+ {
+ Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ uNewDrX |= X86_DR6_RA1_MASK;
+ uNewDrX &= ~X86_DR6_RAZ_MASK;
+ break;
+
+ case 7:
+ if (uNewDrX & X86_DR7_MBZ_MASK)
+ {
+ Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ uNewDrX |= X86_DR7_RA1_MASK;
+ uNewDrX &= ~X86_DR7_RAZ_MASK;
+ break;
+
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+
+ /** @todo SVM nested-guest intercept for DR8-DR15? */
+ /*
+ * Check for any SVM nested-guest intercepts for the DRx write.
+ */
+ if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
+ {
+ Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
+ IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Do the actual setting.
+ */
+ if (iDrReg < 4)
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ else if (iDrReg == 6)
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
+
+ int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
+ AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'INVLPG m'.
+ *
+ * @param GCPtrPage The effective address of the page to invalidate.
+ * @remarks Updates the RIP.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
+{
+ /* ring-0 only. */
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
+ {
+ Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
+ return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
+ }
+#endif
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
+ {
+ Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
+ IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
+ }
+
+ int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+
+ if (rc == VINF_SUCCESS)
+ return VINF_SUCCESS;
+ if (rc == VINF_PGM_SYNC_CR3)
+ return iemSetPassUpStatus(pVCpu, rc);
+
+ AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
+ Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
+ return rc;
+}
+
+
+/**
+ * Implements INVPCID.
+ *
+ * @param iEffSeg The segment of the invpcid descriptor.
+ * @param GCPtrInvpcidDesc The address of invpcid descriptor.
+ * @param uInvpcidType The invalidation type.
+ * @remarks Updates the RIP.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType)
+{
+ /*
+ * Check preconditions.
+ */
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
+ return iemRaiseUndefinedOpcode(pVCpu);
+
+ /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
+ {
+ Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log(("invpcid: CPL != 0 -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (IEM_IS_V86_MODE(pVCpu))
+ {
+ Log(("invpcid: v8086 mode -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Check nested-guest intercept.
+ *
+ * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
+ * both set. We have already checked the former earlier in this function.
+ *
+ * CPL and virtual-8086 mode checks take priority over this VM-exit.
+ * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
+ */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
+ {
+ Log(("invpcid: Guest intercept -> #VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
+ }
+
+ if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
+ {
+ Log(("invpcid: invalid/unrecognized invpcid type %#RX64 -> #GP(0)\n", uInvpcidType));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
+
+ /*
+ * Fetch the invpcid descriptor from guest memory.
+ */
+ RTUINT128U uDesc;
+ VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /*
+ * Validate the descriptor.
+ */
+ if (uDesc.s.Lo > 0xfff)
+ {
+ Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
+ uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
+ uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
+ uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
+ switch (uInvpcidType)
+ {
+ case X86_INVPCID_TYPE_INDV_ADDR:
+ {
+ if (!IEM_IS_CANONICAL(GCPtrInvAddr))
+ {
+ Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ if ( !(uCr4 & X86_CR4_PCIDE)
+ && uPcid != 0)
+ {
+ Log(("invpcid: invalid pcid %#x\n", uPcid));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Invalidate mappings for the linear address tagged with PCID except global translations. */
+ PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
+ break;
+ }
+
+ case X86_INVPCID_TYPE_SINGLE_CONTEXT:
+ {
+ if ( !(uCr4 & X86_CR4_PCIDE)
+ && uPcid != 0)
+ {
+ Log(("invpcid: invalid pcid %#x\n", uPcid));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ /* Invalidate all mappings associated with PCID except global translations. */
+ PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
+ break;
+ }
+
+ case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
+ {
+ PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
+ break;
+ }
+
+ case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
+ {
+ PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
+ break;
+ }
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements INVD.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_invd)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log(("invd: CPL != 0 -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
+
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
+
+ /* We currently take no action here. */
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements WBINVD.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
+
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
+
+ /* We currently take no action here. */
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/** Opcode 0x0f 0xaa. */
+IEM_CIMPL_DEF_0(iemCImpl_rsm)
+{
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
+ NOREF(cbInstr);
+ return iemRaiseUndefinedOpcode(pVCpu);
+}
+
+
+/**
+ * Implements RDTSC.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
+{
+ /*
+ * Check preconditions.
+ */
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
+ return iemRaiseUndefinedOpcode(pVCpu);
+
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+ if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
+ {
+ Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
+ {
+ Log(("rdtsc: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
+ {
+ Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Do the job.
+ */
+ uint64_t uTicks = TMCpuTickGet(pVCpu);
+#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
+ uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
+#endif
+ pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
+ pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements RDTSC.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
+{
+ /*
+ * Check preconditions.
+ */
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
+ return iemRaiseUndefinedOpcode(pVCpu);
+
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
+ {
+ Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+ if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
+ {
+ Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
+ {
+ Log(("rdtscp: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
+ }
+ else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
+ {
+ Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Do the job.
+ * Query the MSR first in case of trips to ring-3.
+ */
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
+ VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /* Low dword of the TSC_AUX msr only. */
+ pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
+
+ uint64_t uTicks = TMCpuTickGet(pVCpu);
+#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
+ uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
+#endif
+ pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
+ pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements RDPMC.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+
+ if ( pVCpu->iem.s.uCpl != 0
+ && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
+ {
+ Log(("rdpmc: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
+ {
+ Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /** @todo Emulate performance counters, for now just return 0. */
+ pVCpu->cpum.GstCtx.rax = 0;
+ pVCpu->cpum.GstCtx.rdx = 0;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
+ /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
+ * ecx but see @bugref{3472}! */
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements RDMSR.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
+{
+ /*
+ * Check preconditions.
+ */
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
+ return iemRaiseUndefinedOpcode(pVCpu);
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ /*
+ * Check nested-guest intercepts.
+ */
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
+ }
+#endif
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
+ {
+ VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
+ if (rcStrict == VINF_SVM_VMEXIT)
+ return VINF_SUCCESS;
+ if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
+ {
+ Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+#endif
+
+ /*
+ * Do the job.
+ */
+ RTUINT64U uValue;
+ /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
+
+ VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
+ pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+#ifndef IN_RING3
+ /* Deferred to ring-3. */
+ if (rcStrict == VINF_CPUM_R3_MSR_READ)
+ {
+ Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
+ return rcStrict;
+ }
+#endif
+
+ /* Often a unimplemented MSR or MSR bit, so worth logging. */
+ if (pVCpu->iem.s.cLogRelRdMsr < 32)
+ {
+ pVCpu->iem.s.cLogRelRdMsr++;
+ LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
+ }
+ else
+ Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
+ AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+}
+
+
+/**
+ * Implements WRMSR.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
+{
+ /*
+ * Check preconditions.
+ */
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
+ return iemRaiseUndefinedOpcode(pVCpu);
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ RTUINT64U uValue;
+ uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
+ uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
+
+ uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
+
+ /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
+
+ /*
+ * Check nested-guest intercepts.
+ */
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
+ }
+#endif
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
+ {
+ VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
+ if (rcStrict == VINF_SVM_VMEXIT)
+ return VINF_SUCCESS;
+ if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
+ {
+ Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+#endif
+
+ /*
+ * Do the job.
+ */
+ VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+#ifndef IN_RING3
+ /* Deferred to ring-3. */
+ if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
+ {
+ Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
+ return rcStrict;
+ }
+#endif
+
+ /* Often a unimplemented MSR or MSR bit, so worth logging. */
+ if (pVCpu->iem.s.cLogRelWrMsr < 32)
+ {
+ pVCpu->iem.s.cLogRelWrMsr++;
+ LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
+ }
+ else
+ Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
+ AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+}
+
+
+/**
+ * Implements 'IN eAX, port'.
+ *
+ * @param u16Port The source port.
+ * @param fImm Whether the port was specified through an immediate operand
+ * or the implicit DX register.
+ * @param cbReg The register size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
+{
+ /*
+ * CPL check
+ */
+ VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Check VMX nested-guest IO intercept.
+ */
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+#else
+ RT_NOREF(fImm);
+#endif
+
+ /*
+ * Check SVM nested-guest IO intercept.
+ */
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
+ {
+ uint8_t cAddrSizeBits;
+ switch (pVCpu->iem.s.enmEffAddrMode)
+ {
+ case IEMMODE_16BIT: cAddrSizeBits = 16; break;
+ case IEMMODE_32BIT: cAddrSizeBits = 32; break;
+ case IEMMODE_64BIT: cAddrSizeBits = 64; break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
+ false /* fRep */, false /* fStrIo */, cbInstr);
+ if (rcStrict == VINF_SVM_VMEXIT)
+ return VINF_SUCCESS;
+ if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
+ {
+ Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
+ VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+#endif
+
+ /*
+ * Perform the I/O.
+ */
+ uint32_t u32Value = 0;
+ rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
+ if (IOM_SUCCESS(rcStrict))
+ {
+ switch (cbReg)
+ {
+ case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
+ case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
+ case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
+ default: AssertFailedReturn(VERR_IEM_IPE_3);
+ }
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ pVCpu->iem.s.cPotentialExits++;
+ if (rcStrict != VINF_SUCCESS)
+ rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
+ Assert(rcStrict == VINF_SUCCESS); /* assumed below */
+
+ /*
+ * Check for I/O breakpoints.
+ */
+ uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
+ if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
+ && X86_DR7_ANY_RW_IO(uDr7)
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
+ || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
+ {
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
+ rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
+ if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
+ rcStrict = iemRaiseDebugException(pVCpu);
+ }
+ }
+
+ return rcStrict;
+}
+
+
+/**
+ * Implements 'IN eAX, DX'.
+ *
+ * @param cbReg The register size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
+{
+ return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
+}
+
+
+/**
+ * Implements 'OUT port, eAX'.
+ *
+ * @param u16Port The destination port.
+ * @param fImm Whether the port was specified through an immediate operand
+ * or the implicit DX register.
+ * @param cbReg The register size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
+{
+ /*
+ * CPL check
+ */
+ VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Check VMX nested-guest I/O intercept.
+ */
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+#else
+ RT_NOREF(fImm);
+#endif
+
+ /*
+ * Check SVM nested-guest I/O intercept.
+ */
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
+ {
+ uint8_t cAddrSizeBits;
+ switch (pVCpu->iem.s.enmEffAddrMode)
+ {
+ case IEMMODE_16BIT: cAddrSizeBits = 16; break;
+ case IEMMODE_32BIT: cAddrSizeBits = 32; break;
+ case IEMMODE_64BIT: cAddrSizeBits = 64; break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+ rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
+ false /* fRep */, false /* fStrIo */, cbInstr);
+ if (rcStrict == VINF_SVM_VMEXIT)
+ return VINF_SUCCESS;
+ if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
+ {
+ Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
+ VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+#endif
+
+ /*
+ * Perform the I/O.
+ */
+ uint32_t u32Value;
+ switch (cbReg)
+ {
+ case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
+ case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
+ case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
+ default: AssertFailedReturn(VERR_IEM_IPE_4);
+ }
+ rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
+ if (IOM_SUCCESS(rcStrict))
+ {
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ pVCpu->iem.s.cPotentialExits++;
+ if (rcStrict != VINF_SUCCESS)
+ rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
+ Assert(rcStrict == VINF_SUCCESS); /* assumed below */
+
+ /*
+ * Check for I/O breakpoints.
+ */
+ uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
+ if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
+ && X86_DR7_ANY_RW_IO(uDr7)
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
+ || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
+ {
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
+ rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
+ if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
+ rcStrict = iemRaiseDebugException(pVCpu);
+ }
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Implements 'OUT DX, eAX'.
+ *
+ * @param cbReg The register size.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
+{
+ return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
+}
+
+
+/**
+ * Implements 'CLI'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_cli)
+{
+ uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
+ uint32_t const fEflOld = fEfl;
+
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
+ if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
+ {
+ uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
+ if (!(fEfl & X86_EFL_VM))
+ {
+ if (pVCpu->iem.s.uCpl <= uIopl)
+ fEfl &= ~X86_EFL_IF;
+ else if ( pVCpu->iem.s.uCpl == 3
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
+ fEfl &= ~X86_EFL_VIF;
+ else
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ /* V8086 */
+ else if (uIopl == 3)
+ fEfl &= ~X86_EFL_IF;
+ else if ( uIopl < 3
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
+ fEfl &= ~X86_EFL_VIF;
+ else
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ /* real mode */
+ else
+ fEfl &= ~X86_EFL_IF;
+
+ /* Commit. */
+ IEMMISC_SET_EFL(pVCpu, fEfl);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'STI'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_sti)
+{
+ uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
+ uint32_t const fEflOld = fEfl;
+
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
+ if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
+ {
+ uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
+ if (!(fEfl & X86_EFL_VM))
+ {
+ if (pVCpu->iem.s.uCpl <= uIopl)
+ fEfl |= X86_EFL_IF;
+ else if ( pVCpu->iem.s.uCpl == 3
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
+ && !(fEfl & X86_EFL_VIP) )
+ fEfl |= X86_EFL_VIF;
+ else
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ /* V8086 */
+ else if (uIopl == 3)
+ fEfl |= X86_EFL_IF;
+ else if ( uIopl < 3
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
+ && !(fEfl & X86_EFL_VIP) )
+ fEfl |= X86_EFL_VIF;
+ else
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ /* real mode */
+ else
+ fEfl |= X86_EFL_IF;
+
+ /* Commit. */
+ IEMMISC_SET_EFL(pVCpu, fEfl);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
+ EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
+ Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'HLT'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_hlt)
+{
+ if (pVCpu->iem.s.uCpl != 0)
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
+ {
+ Log2(("hlt: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
+ {
+ Log2(("hlt: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_EM_HALT;
+}
+
+
+/**
+ * Implements 'MONITOR'.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
+{
+ /*
+ * Permission checks.
+ */
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log2(("monitor: CPL != 0\n"));
+ return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
+ }
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
+ {
+ Log2(("monitor: Not in CPUID\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+
+ /*
+ * Check VMX guest-intercept.
+ * This should be considered a fault-like VM-exit.
+ * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
+ */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
+ {
+ Log2(("monitor: Guest intercept -> #VMEXIT\n"));
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
+ }
+
+ /*
+ * Gather the operands and validate them.
+ */
+ RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
+ uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
+ uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
+/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
+ * \#GP first. */
+ if (uEcx != 0)
+ {
+ Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ RTGCPHYS GCPhysMem;
+ rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
+ {
+ /*
+ * MONITOR does not access the memory, just monitors the address. However,
+ * if the address falls in the APIC-access page, the address monitored must
+ * instead be the corresponding address in the virtual-APIC page.
+ *
+ * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
+ */
+ rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
+ if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
+ && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
+ return rcStrict;
+ }
+#endif
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
+ {
+ Log2(("monitor: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Call EM to prepare the monitor/wait.
+ */
+ rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
+ Assert(rcStrict == VINF_SUCCESS);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+}
+
+
+/**
+ * Implements 'MWAIT'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_mwait)
+{
+ /*
+ * Permission checks.
+ */
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log2(("mwait: CPL != 0\n"));
+ /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
+ * EFLAGS.VM then.) */
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
+ {
+ Log2(("mwait: Not in CPUID\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+
+ /* Check VMX nested-guest intercept. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
+ IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
+
+ /*
+ * Gather the operands and validate them.
+ */
+ uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
+ uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
+ if (uEcx != 0)
+ {
+ /* Only supported extension is break on IRQ when IF=0. */
+ if (uEcx > 1)
+ {
+ Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ uint32_t fMWaitFeatures = 0;
+ uint32_t uIgnore = 0;
+ CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
+ if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
+ != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
+ {
+ Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ /*
+ * If the interrupt-window exiting control is set or a virtual-interrupt is pending
+ * for delivery; and interrupts are disabled the processor does not enter its
+ * mwait state but rather passes control to the next instruction.
+ *
+ * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
+ */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
+ {
+ if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
+ || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
+ {
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ }
+#endif
+ }
+
+ /*
+ * Check SVM nested-guest mwait intercepts.
+ */
+ if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
+ && EMMonitorIsArmed(pVCpu))
+ {
+ Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
+ {
+ Log2(("mwait: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Call EM to prepare the monitor/wait.
+ */
+ VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+}
+
+
+/**
+ * Implements 'SWAPGS'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_swapgs)
+{
+ Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
+
+ /*
+ * Permission checks.
+ */
+ if (pVCpu->iem.s.uCpl != 0)
+ {
+ Log2(("swapgs: CPL != 0\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+
+ /*
+ * Do the job.
+ */
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
+ uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
+ pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
+ pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'CPUID'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_cpuid)
+{
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ Log2(("cpuid: Guest intercept -> VM-exit\n"));
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
+ {
+ Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
+ &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
+ pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
+ pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
+ pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
+ pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ pVCpu->iem.s.cPotentialExits++;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'AAD'.
+ *
+ * @param bImm The immediate operand.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
+{
+ uint16_t const ax = pVCpu->cpum.GstCtx.ax;
+ uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
+ pVCpu->cpum.GstCtx.ax = al;
+ iemHlpUpdateArithEFlagsU8(pVCpu, al,
+ X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
+ X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'AAM'.
+ *
+ * @param bImm The immediate operand. Cannot be 0.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
+{
+ Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
+
+ uint16_t const ax = pVCpu->cpum.GstCtx.ax;
+ uint8_t const al = (uint8_t)ax % bImm;
+ uint8_t const ah = (uint8_t)ax / bImm;
+ pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
+ iemHlpUpdateArithEFlagsU8(pVCpu, al,
+ X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
+ X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'DAA'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_daa)
+{
+ uint8_t const al = pVCpu->cpum.GstCtx.al;
+ bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
+
+ if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
+ || (al & 0xf) >= 10)
+ {
+ pVCpu->cpum.GstCtx.al = al + 6;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
+ }
+ else
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
+
+ if (al >= 0x9a || fCarry)
+ {
+ pVCpu->cpum.GstCtx.al += 0x60;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
+ }
+ else
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
+
+ iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'DAS'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_das)
+{
+ uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
+ bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
+
+ if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
+ || (uInputAL & 0xf) >= 10)
+ {
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
+ if (uInputAL < 6)
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
+ pVCpu->cpum.GstCtx.al = uInputAL - 6;
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
+ }
+
+ if (uInputAL >= 0x9a || fCarry)
+ {
+ pVCpu->cpum.GstCtx.al -= 0x60;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
+ }
+
+ iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'AAA'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_aaa)
+{
+ if (IEM_IS_GUEST_CPU_AMD(pVCpu))
+ {
+ if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
+ || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
+ {
+ iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
+ }
+ else
+ {
+ iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
+ }
+ pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
+ }
+ else
+ {
+ if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
+ || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
+ {
+ pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
+ }
+ pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
+ iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
+ }
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'AAS'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_aas)
+{
+ if (IEM_IS_GUEST_CPU_AMD(pVCpu))
+ {
+ if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
+ || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
+ {
+ iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
+ }
+ else
+ {
+ iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
+ }
+ pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
+ }
+ else
+ {
+ if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
+ || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
+ {
+ pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
+ }
+ pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
+ iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
+ }
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements the 16-bit version of 'BOUND'.
+ *
+ * @note We have separate 16-bit and 32-bit variants of this function due to
+ * the decoder using unsigned parameters, whereas we want signed one to
+ * do the job. This is significant for a recompiler.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
+{
+ /*
+ * Check if the index is inside the bounds, otherwise raise #BR.
+ */
+ if ( idxArray >= idxLowerBound
+ && idxArray <= idxUpperBound)
+ {
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ return iemRaiseBoundRangeExceeded(pVCpu);
+}
+
+
+/**
+ * Implements the 32-bit version of 'BOUND'.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
+{
+ /*
+ * Check if the index is inside the bounds, otherwise raise #BR.
+ */
+ if ( idxArray >= idxLowerBound
+ && idxArray <= idxUpperBound)
+ {
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ return iemRaiseBoundRangeExceeded(pVCpu);
+}
+
+
+
+/*
+ * Instantiate the various string operation combinations.
+ */
+#define OP_SIZE 8
+#define ADDR_SIZE 16
+#include "IEMAllCImplStrInstr.cpp.h"
+#define OP_SIZE 8
+#define ADDR_SIZE 32
+#include "IEMAllCImplStrInstr.cpp.h"
+#define OP_SIZE 8
+#define ADDR_SIZE 64
+#include "IEMAllCImplStrInstr.cpp.h"
+
+#define OP_SIZE 16
+#define ADDR_SIZE 16
+#include "IEMAllCImplStrInstr.cpp.h"
+#define OP_SIZE 16
+#define ADDR_SIZE 32
+#include "IEMAllCImplStrInstr.cpp.h"
+#define OP_SIZE 16
+#define ADDR_SIZE 64
+#include "IEMAllCImplStrInstr.cpp.h"
+
+#define OP_SIZE 32
+#define ADDR_SIZE 16
+#include "IEMAllCImplStrInstr.cpp.h"
+#define OP_SIZE 32
+#define ADDR_SIZE 32
+#include "IEMAllCImplStrInstr.cpp.h"
+#define OP_SIZE 32
+#define ADDR_SIZE 64
+#include "IEMAllCImplStrInstr.cpp.h"
+
+#define OP_SIZE 64
+#define ADDR_SIZE 32
+#include "IEMAllCImplStrInstr.cpp.h"
+#define OP_SIZE 64
+#define ADDR_SIZE 64
+#include "IEMAllCImplStrInstr.cpp.h"
+
+
+/**
+ * Implements 'XGETBV'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+ if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
+ {
+ uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
+ switch (uEcx)
+ {
+ case 0:
+ break;
+
+ case 1: /** @todo Implement XCR1 support. */
+ default:
+ Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ }
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
+ pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
+ pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+}
+
+
+/**
+ * Implements 'XSETBV'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
+{
+ if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
+ {
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
+ {
+ Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ if (pVCpu->iem.s.uCpl == 0)
+ {
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
+
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
+
+ uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
+ uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
+ switch (uEcx)
+ {
+ case 0:
+ {
+ int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
+ if (rc == VINF_SUCCESS)
+ break;
+ Assert(rc == VERR_CPUM_RAISE_GP_0);
+ Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ case 1: /** @todo Implement XCR1 support. */
+ default:
+ Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+
+ }
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+}
+
+#ifdef IN_RING3
+
+/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
+struct IEMCIMPLCX16ARGS
+{
+ PRTUINT128U pu128Dst;
+ PRTUINT128U pu128RaxRdx;
+ PRTUINT128U pu128RbxRcx;
+ uint32_t *pEFlags;
+# ifdef VBOX_STRICT
+ uint32_t cCalls;
+# endif
+};
+
+/**
+ * @callback_method_impl{FNVMMEMTRENDEZVOUS,
+ * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
+ */
+static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPUCC pVCpu, void *pvUser)
+{
+ RT_NOREF(pVM, pVCpu);
+ struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
+# ifdef VBOX_STRICT
+ Assert(pArgs->cCalls == 0);
+ pArgs->cCalls++;
+# endif
+
+ iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
+ return VINF_SUCCESS;
+}
+
+#endif /* IN_RING3 */
+
+/**
+ * Implements 'CMPXCHG16B' fallback using rendezvous.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
+ PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
+{
+#ifdef IN_RING3
+ struct IEMCIMPLCX16ARGS Args;
+ Args.pu128Dst = pu128Dst;
+ Args.pu128RaxRdx = pu128RaxRdx;
+ Args.pu128RbxRcx = pu128RbxRcx;
+ Args.pEFlags = pEFlags;
+# ifdef VBOX_STRICT
+ Args.cCalls = 0;
+# endif
+ VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
+ iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
+ Assert(Args.cCalls == 1);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /* Duplicated tail code. */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
+ if (!(*pEFlags & X86_EFL_ZF))
+ {
+ pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
+ pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
+ }
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ }
+ return rcStrict;
+#else
+ RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
+ return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
+#endif
+}
+
+
+/**
+ * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
+ *
+ * This is implemented in C because it triggers a load like behaviour without
+ * actually reading anything. Since that's not so common, it's implemented
+ * here.
+ *
+ * @param iEffSeg The effective segment.
+ * @param GCPtrEff The address of the image.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
+{
+ /*
+ * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
+ */
+ VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ RTGCPHYS GCPhysMem;
+ rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
+ if (rcStrict == VINF_SUCCESS)
+ {
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
+ {
+ /*
+ * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
+ * that contains the address. However, if the address falls in the APIC-access
+ * page, the address flushed must instead be the corresponding address in the
+ * virtual-APIC page.
+ *
+ * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
+ */
+ rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
+ if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
+ && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
+ return rcStrict;
+ }
+#endif
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ }
+
+ return rcStrict;
+}
+
+
+/**
+ * Implements 'FINIT' and 'FNINIT'.
+ *
+ * @param fCheckXcpts Whether to check for umasked pending exceptions or
+ * not.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
+ if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
+ return iemRaiseDeviceNotAvailable(pVCpu);
+
+ iemFpuActualizeStateForChange(pVCpu);
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
+
+ NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
+ if (fCheckXcpts && TODO )
+ return iemRaiseMathFault(pVCpu);
+ */
+
+ PX86XSAVEAREA pXState = pVCpu->cpum.GstCtx.CTX_SUFF(pXState);
+ pXState->x87.FCW = 0x37f;
+ pXState->x87.FSW = 0;
+ pXState->x87.FTW = 0x00; /* 0 - empty. */
+ pXState->x87.FPUDP = 0;
+ pXState->x87.DS = 0; //??
+ pXState->x87.Rsrvd2= 0;
+ pXState->x87.FPUIP = 0;
+ pXState->x87.CS = 0; //??
+ pXState->x87.Rsrvd1= 0;
+ pXState->x87.FOP = 0;
+
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'FXSAVE'.
+ *
+ * @param iEffSeg The effective segment.
+ * @param GCPtrEff The address of the image.
+ * @param enmEffOpSize The operand size (only REX.W really matters).
+ */
+IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
+
+ /*
+ * Raise exceptions.
+ */
+ if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
+ return iemRaiseUndefinedOpcode(pVCpu);
+ if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
+ return iemRaiseDeviceNotAvailable(pVCpu);
+ if (GCPtrEff & 15)
+ {
+ /** @todo CPU/VM detection possible! \#AC might not be signal for
+ * all/any misalignment sizes, intel says its an implementation detail. */
+ if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
+ && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
+ && pVCpu->iem.s.uCpl == 3)
+ return iemRaiseAlignmentCheckException(pVCpu);
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Access the memory.
+ */
+ void *pvMem512;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
+ PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+
+ /*
+ * Store the registers.
+ */
+ /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
+ * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
+
+ /* common for all formats */
+ pDst->FCW = pSrc->FCW;
+ pDst->FSW = pSrc->FSW;
+ pDst->FTW = pSrc->FTW & UINT16_C(0xff);
+ pDst->FOP = pSrc->FOP;
+ pDst->MXCSR = pSrc->MXCSR;
+ pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
+ for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
+ {
+ /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
+ * them for now... */
+ pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
+ pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
+ pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
+ pDst->aRegs[i].au32[3] = 0;
+ }
+
+ /* FPU IP, CS, DP and DS. */
+ pDst->FPUIP = pSrc->FPUIP;
+ pDst->CS = pSrc->CS;
+ pDst->FPUDP = pSrc->FPUDP;
+ pDst->DS = pSrc->DS;
+ if (enmEffOpSize == IEMMODE_64BIT)
+ {
+ /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
+ pDst->Rsrvd1 = pSrc->Rsrvd1;
+ pDst->Rsrvd2 = pSrc->Rsrvd2;
+ pDst->au32RsrvdForSoftware[0] = 0;
+ }
+ else
+ {
+ pDst->Rsrvd1 = 0;
+ pDst->Rsrvd2 = 0;
+ pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
+ }
+
+ /* XMM registers. */
+ if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
+ || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
+ || pVCpu->iem.s.uCpl != 0)
+ {
+ uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ pDst->aXMM[i] = pSrc->aXMM[i];
+ /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
+ * right? */
+ }
+
+ /*
+ * Commit the memory.
+ */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'FXRSTOR'.
+ *
+ * @param GCPtrEff The address of the image.
+ * @param enmEffOpSize The operand size (only REX.W really matters).
+ */
+IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
+
+ /*
+ * Raise exceptions.
+ */
+ if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
+ return iemRaiseUndefinedOpcode(pVCpu);
+ if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
+ return iemRaiseDeviceNotAvailable(pVCpu);
+ if (GCPtrEff & 15)
+ {
+ /** @todo CPU/VM detection possible! \#AC might not be signal for
+ * all/any misalignment sizes, intel says its an implementation detail. */
+ if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
+ && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
+ && pVCpu->iem.s.uCpl == 3)
+ return iemRaiseAlignmentCheckException(pVCpu);
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Access the memory.
+ */
+ void *pvMem512;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
+ PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+
+ /*
+ * Check the state for stuff which will #GP(0).
+ */
+ uint32_t const fMXCSR = pSrc->MXCSR;
+ uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
+ if (fMXCSR & ~fMXCSR_MASK)
+ {
+ Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Load the registers.
+ */
+ /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
+ * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
+
+ /* common for all formats */
+ pDst->FCW = pSrc->FCW;
+ pDst->FSW = pSrc->FSW;
+ pDst->FTW = pSrc->FTW & UINT16_C(0xff);
+ pDst->FOP = pSrc->FOP;
+ pDst->MXCSR = fMXCSR;
+ /* (MXCSR_MASK is read-only) */
+ for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
+ {
+ pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
+ pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
+ pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
+ pDst->aRegs[i].au32[3] = 0;
+ }
+
+ /* FPU IP, CS, DP and DS. */
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ {
+ pDst->FPUIP = pSrc->FPUIP;
+ pDst->CS = pSrc->CS;
+ pDst->Rsrvd1 = pSrc->Rsrvd1;
+ pDst->FPUDP = pSrc->FPUDP;
+ pDst->DS = pSrc->DS;
+ pDst->Rsrvd2 = pSrc->Rsrvd2;
+ }
+ else
+ {
+ pDst->FPUIP = pSrc->FPUIP;
+ pDst->CS = pSrc->CS;
+ pDst->Rsrvd1 = 0;
+ pDst->FPUDP = pSrc->FPUDP;
+ pDst->DS = pSrc->DS;
+ pDst->Rsrvd2 = 0;
+ }
+
+ /* XMM registers. */
+ if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
+ || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
+ || pVCpu->iem.s.uCpl != 0)
+ {
+ uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ pDst->aXMM[i] = pSrc->aXMM[i];
+ }
+
+ /*
+ * Commit the memory.
+ */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'XSAVE'.
+ *
+ * @param iEffSeg The effective segment.
+ * @param GCPtrEff The address of the image.
+ * @param enmEffOpSize The operand size (only REX.W really matters).
+ */
+IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
+
+ /*
+ * Raise exceptions.
+ */
+ if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
+ return iemRaiseUndefinedOpcode(pVCpu);
+ /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
+ {
+ Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
+ return iemRaiseDeviceNotAvailable(pVCpu);
+ if (GCPtrEff & 63)
+ {
+ /** @todo CPU/VM detection possible! \#AC might not be signal for
+ * all/any misalignment sizes, intel says its an implementation detail. */
+ if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
+ && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
+ && pVCpu->iem.s.uCpl == 3)
+ return iemRaiseAlignmentCheckException(pVCpu);
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /*
+ * Calc the requested mask.
+ */
+ uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
+ AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
+ uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
+
+/** @todo figure out the exact protocol for the memory access. Currently we
+ * just need this crap to work halfways to make it possible to test
+ * AVX instructions. */
+/** @todo figure out the XINUSE and XMODIFIED */
+
+ /*
+ * Access the x87 memory state.
+ */
+ /* The x87+SSE state. */
+ void *pvMem512;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
+ PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+
+ /* The header. */
+ PX86XSAVEHDR pHdr;
+ rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Store the X87 state.
+ */
+ if (fReqComponents & XSAVE_C_X87)
+ {
+ /* common for all formats */
+ pDst->FCW = pSrc->FCW;
+ pDst->FSW = pSrc->FSW;
+ pDst->FTW = pSrc->FTW & UINT16_C(0xff);
+ pDst->FOP = pSrc->FOP;
+ pDst->FPUIP = pSrc->FPUIP;
+ pDst->CS = pSrc->CS;
+ pDst->FPUDP = pSrc->FPUDP;
+ pDst->DS = pSrc->DS;
+ if (enmEffOpSize == IEMMODE_64BIT)
+ {
+ /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
+ pDst->Rsrvd1 = pSrc->Rsrvd1;
+ pDst->Rsrvd2 = pSrc->Rsrvd2;
+ pDst->au32RsrvdForSoftware[0] = 0;
+ }
+ else
+ {
+ pDst->Rsrvd1 = 0;
+ pDst->Rsrvd2 = 0;
+ pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
+ }
+ for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
+ {
+ /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
+ * them for now... */
+ pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
+ pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
+ pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
+ pDst->aRegs[i].au32[3] = 0;
+ }
+
+ }
+
+ if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
+ {
+ pDst->MXCSR = pSrc->MXCSR;
+ pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
+ }
+
+ if (fReqComponents & XSAVE_C_SSE)
+ {
+ /* XMM registers. */
+ uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ pDst->aXMM[i] = pSrc->aXMM[i];
+ /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
+ * right? */
+ }
+
+ /* Commit the x87 state bits. (probably wrong) */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Store AVX state.
+ */
+ if (fReqComponents & XSAVE_C_YMM)
+ {
+ /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
+ AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
+ PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
+ PX86XSAVEYMMHI pCompDst;
+ rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
+ IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+
+ /*
+ * Update the header.
+ */
+ pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
+ | (fReqComponents & fXInUse);
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'XRSTOR'.
+ *
+ * @param iEffSeg The effective segment.
+ * @param GCPtrEff The address of the image.
+ * @param enmEffOpSize The operand size (only REX.W really matters).
+ */
+IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
+
+ /*
+ * Raise exceptions.
+ */
+ if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
+ return iemRaiseUndefinedOpcode(pVCpu);
+ /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
+ {
+ Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
+ return iemRaiseUndefinedOpcode(pVCpu);
+ }
+ if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
+ return iemRaiseDeviceNotAvailable(pVCpu);
+ if (GCPtrEff & 63)
+ {
+ /** @todo CPU/VM detection possible! \#AC might not be signal for
+ * all/any misalignment sizes, intel says its an implementation detail. */
+ if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
+ && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
+ && pVCpu->iem.s.uCpl == 3)
+ return iemRaiseAlignmentCheckException(pVCpu);
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+/** @todo figure out the exact protocol for the memory access. Currently we
+ * just need this crap to work halfways to make it possible to test
+ * AVX instructions. */
+/** @todo figure out the XINUSE and XMODIFIED */
+
+ /*
+ * Access the x87 memory state.
+ */
+ /* The x87+SSE state. */
+ void *pvMem512;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
+ PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+
+ /*
+ * Calc the requested mask
+ */
+ PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->Hdr;
+ PCX86XSAVEHDR pHdrSrc;
+ rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
+ AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
+ //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
+ uint64_t const fRstorMask = pHdrSrc->bmXState;
+ uint64_t const fCompMask = pHdrSrc->bmXComp;
+
+ AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
+
+ uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
+
+ /* We won't need this any longer. */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Store the X87 state.
+ */
+ if (fReqComponents & XSAVE_C_X87)
+ {
+ if (fRstorMask & XSAVE_C_X87)
+ {
+ pDst->FCW = pSrc->FCW;
+ pDst->FSW = pSrc->FSW;
+ pDst->FTW = pSrc->FTW & UINT16_C(0xff);
+ pDst->FOP = pSrc->FOP;
+ pDst->FPUIP = pSrc->FPUIP;
+ pDst->CS = pSrc->CS;
+ pDst->FPUDP = pSrc->FPUDP;
+ pDst->DS = pSrc->DS;
+ if (enmEffOpSize == IEMMODE_64BIT)
+ {
+ /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
+ pDst->Rsrvd1 = pSrc->Rsrvd1;
+ pDst->Rsrvd2 = pSrc->Rsrvd2;
+ }
+ else
+ {
+ pDst->Rsrvd1 = 0;
+ pDst->Rsrvd2 = 0;
+ }
+ for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
+ {
+ pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
+ pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
+ pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
+ pDst->aRegs[i].au32[3] = 0;
+ }
+ }
+ else
+ {
+ pDst->FCW = 0x37f;
+ pDst->FSW = 0;
+ pDst->FTW = 0x00; /* 0 - empty. */
+ pDst->FPUDP = 0;
+ pDst->DS = 0; //??
+ pDst->Rsrvd2= 0;
+ pDst->FPUIP = 0;
+ pDst->CS = 0; //??
+ pDst->Rsrvd1= 0;
+ pDst->FOP = 0;
+ for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
+ {
+ pDst->aRegs[i].au32[0] = 0;
+ pDst->aRegs[i].au32[1] = 0;
+ pDst->aRegs[i].au32[2] = 0;
+ pDst->aRegs[i].au32[3] = 0;
+ }
+ }
+ pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
+ }
+
+ /* MXCSR */
+ if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
+ {
+ if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
+ pDst->MXCSR = pSrc->MXCSR;
+ else
+ pDst->MXCSR = 0x1f80;
+ }
+
+ /* XMM registers. */
+ if (fReqComponents & XSAVE_C_SSE)
+ {
+ if (fRstorMask & XSAVE_C_SSE)
+ {
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ pDst->aXMM[i] = pSrc->aXMM[i];
+ /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
+ * right? */
+ }
+ else
+ {
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ {
+ pDst->aXMM[i].au64[0] = 0;
+ pDst->aXMM[i].au64[1] = 0;
+ }
+ }
+ pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
+ }
+
+ /* Unmap the x87 state bits (so we've don't run out of mapping). */
+ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Restore AVX state.
+ */
+ if (fReqComponents & XSAVE_C_YMM)
+ {
+ AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
+ PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
+
+ if (fRstorMask & XSAVE_C_YMM)
+ {
+ /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
+ PCX86XSAVEYMMHI pCompSrc;
+ rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
+ iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ {
+ pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
+ pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
+ }
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+ else
+ {
+ for (uint32_t i = 0; i < cXmmRegs; i++)
+ {
+ pCompDst->aYmmHi[i].au64[0] = 0;
+ pCompDst->aYmmHi[i].au64[1] = 0;
+ }
+ }
+ pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
+ }
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+
+
+/**
+ * Implements 'STMXCSR'.
+ *
+ * @param GCPtrEff The address of the image.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
+
+ /*
+ * Raise exceptions.
+ */
+ if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
+ {
+ if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
+ {
+ /*
+ * Do the job.
+ */
+ VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ return rcStrict;
+ }
+ return iemRaiseDeviceNotAvailable(pVCpu);
+ }
+ return iemRaiseUndefinedOpcode(pVCpu);
+}
+
+
+/**
+ * Implements 'VSTMXCSR'.
+ *
+ * @param GCPtrEff The address of the image.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
+
+ /*
+ * Raise exceptions.
+ */
+ if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
+ ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
+ : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
+ {
+ if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
+ {
+ /*
+ * Do the job.
+ */
+ VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ return rcStrict;
+ }
+ return iemRaiseDeviceNotAvailable(pVCpu);
+ }
+ return iemRaiseUndefinedOpcode(pVCpu);
+}
+
+
+/**
+ * Implements 'LDMXCSR'.
+ *
+ * @param GCPtrEff The address of the image.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
+
+ /*
+ * Raise exceptions.
+ */
+ /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
+ * happen after or before \#UD and \#EM? */
+ if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
+ && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
+ {
+ if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
+ {
+ /*
+ * Do the job.
+ */
+ uint32_t fNewMxCsr;
+ VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
+ if (!(fNewMxCsr & ~fMxCsrMask))
+ {
+ pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
+ fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ return rcStrict;
+ }
+ return iemRaiseDeviceNotAvailable(pVCpu);
+ }
+ return iemRaiseUndefinedOpcode(pVCpu);
+}
+
+
+/**
+ * Commmon routine for fnstenv and fnsave.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param enmEffOpSize The effective operand size.
+ * @param uPtr Where to store the state.
+ */
+static void iemCImplCommonFpuStoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
+ PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+ if (enmEffOpSize == IEMMODE_16BIT)
+ {
+ uPtr.pu16[0] = pSrcX87->FCW;
+ uPtr.pu16[1] = pSrcX87->FSW;
+ uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ /** @todo Testcase: How does this work when the FPUIP/CS was saved in
+ * protected mode or long mode and we save it in real mode? And vice
+ * versa? And with 32-bit operand size? I think CPU is storing the
+ * effective address ((CS << 4) + IP) in the offset register and not
+ * doing any address calculations here. */
+ uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
+ uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
+ uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
+ uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
+ }
+ else
+ {
+ uPtr.pu16[3] = pSrcX87->FPUIP;
+ uPtr.pu16[4] = pSrcX87->CS;
+ uPtr.pu16[5] = pSrcX87->FPUDP;
+ uPtr.pu16[6] = pSrcX87->DS;
+ }
+ }
+ else
+ {
+ /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
+ uPtr.pu16[0*2] = pSrcX87->FCW;
+ uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
+ uPtr.pu16[1*2] = pSrcX87->FSW;
+ uPtr.pu16[1*2+1] = 0xffff;
+ uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
+ uPtr.pu16[2*2+1] = 0xffff;
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
+ uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
+ uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
+ uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
+ }
+ else
+ {
+ uPtr.pu32[3] = pSrcX87->FPUIP;
+ uPtr.pu16[4*2] = pSrcX87->CS;
+ uPtr.pu16[4*2+1] = pSrcX87->FOP;
+ uPtr.pu32[5] = pSrcX87->FPUDP;
+ uPtr.pu16[6*2] = pSrcX87->DS;
+ uPtr.pu16[6*2+1] = 0xffff;
+ }
+ }
+}
+
+
+/**
+ * Commmon routine for fldenv and frstor
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param enmEffOpSize The effective operand size.
+ * @param uPtr Where to store the state.
+ */
+static void iemCImplCommonFpuRestoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
+ PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+ if (enmEffOpSize == IEMMODE_16BIT)
+ {
+ pDstX87->FCW = uPtr.pu16[0];
+ pDstX87->FSW = uPtr.pu16[1];
+ pDstX87->FTW = uPtr.pu16[2];
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
+ pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
+ pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
+ pDstX87->CS = 0;
+ pDstX87->Rsrvd1= 0;
+ pDstX87->DS = 0;
+ pDstX87->Rsrvd2= 0;
+ }
+ else
+ {
+ pDstX87->FPUIP = uPtr.pu16[3];
+ pDstX87->CS = uPtr.pu16[4];
+ pDstX87->Rsrvd1= 0;
+ pDstX87->FPUDP = uPtr.pu16[5];
+ pDstX87->DS = uPtr.pu16[6];
+ pDstX87->Rsrvd2= 0;
+ /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
+ }
+ }
+ else
+ {
+ pDstX87->FCW = uPtr.pu16[0*2];
+ pDstX87->FSW = uPtr.pu16[1*2];
+ pDstX87->FTW = uPtr.pu16[2*2];
+ if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
+ {
+ pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
+ pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
+ pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
+ pDstX87->CS = 0;
+ pDstX87->Rsrvd1= 0;
+ pDstX87->DS = 0;
+ pDstX87->Rsrvd2= 0;
+ }
+ else
+ {
+ pDstX87->FPUIP = uPtr.pu32[3];
+ pDstX87->CS = uPtr.pu16[4*2];
+ pDstX87->Rsrvd1= 0;
+ pDstX87->FOP = uPtr.pu16[4*2+1];
+ pDstX87->FPUDP = uPtr.pu32[5];
+ pDstX87->DS = uPtr.pu16[6*2];
+ pDstX87->Rsrvd2= 0;
+ }
+ }
+
+ /* Make adjustments. */
+ pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
+ pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
+ iemFpuRecalcExceptionStatus(pDstX87);
+ /** @todo Testcase: Check if ES and/or B are automatically cleared if no
+ * exceptions are pending after loading the saved state? */
+}
+
+
+/**
+ * Implements 'FNSTENV'.
+ *
+ * @param enmEffOpSize The operand size (only REX.W really matters).
+ * @param iEffSeg The effective segment register for @a GCPtrEff.
+ * @param GCPtrEffDst The address of the image.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
+{
+ RTPTRUNION uPtr;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
+ iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'FNSAVE'.
+ *
+ * @param GCPtrEffDst The address of the image.
+ * @param enmEffOpSize The operand size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
+
+ RTPTRUNION uPtr;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
+ iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+ iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
+ PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
+ for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
+ {
+ paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
+ paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
+ paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
+ }
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Re-initialize the FPU context.
+ */
+ pFpuCtx->FCW = 0x37f;
+ pFpuCtx->FSW = 0;
+ pFpuCtx->FTW = 0x00; /* 0 - empty */
+ pFpuCtx->FPUDP = 0;
+ pFpuCtx->DS = 0;
+ pFpuCtx->Rsrvd2= 0;
+ pFpuCtx->FPUIP = 0;
+ pFpuCtx->CS = 0;
+ pFpuCtx->Rsrvd1= 0;
+ pFpuCtx->FOP = 0;
+
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+
+/**
+ * Implements 'FLDENV'.
+ *
+ * @param enmEffOpSize The operand size (only REX.W really matters).
+ * @param iEffSeg The effective segment register for @a GCPtrEff.
+ * @param GCPtrEffSrc The address of the image.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
+{
+ RTCPTRUNION uPtr;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
+ iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'FRSTOR'.
+ *
+ * @param GCPtrEffSrc The address of the image.
+ * @param enmEffOpSize The operand size.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
+{
+ RTCPTRUNION uPtr;
+ VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
+ iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+ iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
+ PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
+ for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
+ {
+ pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
+ pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
+ pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
+ pFpuCtx->aRegs[i].au32[3] = 0;
+ }
+
+ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'FLDCW'.
+ *
+ * @param u16Fcw The new FCW.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
+
+ /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
+ /** @todo Testcase: Try see what happens when trying to set undefined bits
+ * (other than 6 and 7). Currently ignoring them. */
+ /** @todo Testcase: Test that it raises and loweres the FPU exception bits
+ * according to FSW. (This is was is currently implemented.) */
+ PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+ pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
+ iemFpuRecalcExceptionStatus(pFpuCtx);
+
+ /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+
+/**
+ * Implements the underflow case of fxch.
+ *
+ * @param iStReg The other stack register.
+ */
+IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
+{
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
+
+ PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+ unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
+ unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
+ Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
+
+ /** @todo Testcase: fxch underflow. Making assumptions that underflowed
+ * registers are read as QNaN and then exchanged. This could be
+ * wrong... */
+ if (pFpuCtx->FCW & X86_FCW_IM)
+ {
+ if (RT_BIT(iReg1) & pFpuCtx->FTW)
+ {
+ if (RT_BIT(iReg2) & pFpuCtx->FTW)
+ iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
+ else
+ pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
+ iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
+ }
+ else
+ {
+ pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
+ iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
+ }
+ pFpuCtx->FSW &= ~X86_FSW_C_MASK;
+ pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
+ }
+ else
+ {
+ /* raise underflow exception, don't change anything. */
+ pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
+ pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
+ }
+
+ iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
+ *
+ * @param cToAdd 1 or 7.
+ */
+IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
+{
+ Assert(iStReg < 8);
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
+
+ /*
+ * Raise exceptions.
+ */
+ if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
+ return iemRaiseDeviceNotAvailable(pVCpu);
+
+ PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
+ uint16_t u16Fsw = pFpuCtx->FSW;
+ if (u16Fsw & X86_FSW_ES)
+ return iemRaiseMathFault(pVCpu);
+
+ /*
+ * Check if any of the register accesses causes #SF + #IA.
+ */
+ unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
+ unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
+ if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
+ {
+ uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
+ NOREF(u32Eflags);
+
+ pFpuCtx->FSW &= ~X86_FSW_C1;
+ pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
+ if ( !(u16Fsw & X86_FSW_IE)
+ || (pFpuCtx->FCW & X86_FCW_IM) )
+ {
+ pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
+ pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
+ }
+ }
+ else if (pFpuCtx->FCW & X86_FCW_IM)
+ {
+ /* Masked underflow. */
+ pFpuCtx->FSW &= ~X86_FSW_C1;
+ pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
+ pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
+ pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
+ }
+ else
+ {
+ /* Raise underflow - don't touch EFLAGS or TOP. */
+ pFpuCtx->FSW &= ~X86_FSW_C1;
+ pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
+ fPop = false;
+ }
+
+ /*
+ * Pop if necessary.
+ */
+ if (fPop)
+ {
+ pFpuCtx->FTW &= ~RT_BIT(iReg1);
+ pFpuCtx->FSW &= X86_FSW_TOP_MASK;
+ pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
+ }
+
+ iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
+ iemHlpUsedFpu(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+/** @} */
+