summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/PGM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR3/PGM.cpp')
-rw-r--r--src/VBox/VMM/VMMR3/PGM.cpp2782
1 files changed, 2782 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/PGM.cpp b/src/VBox/VMM/VMMR3/PGM.cpp
new file mode 100644
index 00000000..70b68d9a
--- /dev/null
+++ b/src/VBox/VMM/VMMR3/PGM.cpp
@@ -0,0 +1,2782 @@
+/* $Id: PGM.cpp $ */
+/** @file
+ * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
+ */
+
+/*
+ * Copyright (C) 2006-2020 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/** @page pg_pgm PGM - The Page Manager and Monitor
+ *
+ * @sa @ref grp_pgm
+ * @subpage pg_pgm_pool
+ * @subpage pg_pgm_phys
+ *
+ *
+ * @section sec_pgm_modes Paging Modes
+ *
+ * There are three memory contexts: Host Context (HC), Guest Context (GC)
+ * and intermediate context. When talking about paging HC can also be referred
+ * to as "host paging", and GC referred to as "shadow paging".
+ *
+ * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
+ * is defined by the host operating system. The mode used in the shadow paging mode
+ * depends on the host paging mode and what the mode the guest is currently in. The
+ * following relation between the two is defined:
+ *
+ * @verbatim
+ Host > 32-bit | PAE | AMD64 |
+ Guest | | | |
+ ==v================================
+ 32-bit 32-bit PAE PAE
+ -------|--------|--------|--------|
+ PAE PAE PAE PAE
+ -------|--------|--------|--------|
+ AMD64 AMD64 AMD64 AMD64
+ -------|--------|--------|--------| @endverbatim
+ *
+ * All configuration except those in the diagonal (upper left) are expected to
+ * require special effort from the switcher (i.e. a bit slower).
+ *
+ *
+ *
+ *
+ * @section sec_pgm_shw The Shadow Memory Context
+ *
+ *
+ * [..]
+ *
+ * Because of guest context mappings requires PDPT and PML4 entries to allow
+ * writing on AMD64, the two upper levels will have fixed flags whatever the
+ * guest is thinking of using there. So, when shadowing the PD level we will
+ * calculate the effective flags of PD and all the higher levels. In legacy
+ * PAE mode this only applies to the PWT and PCD bits (the rest are
+ * ignored/reserved/MBZ). We will ignore those bits for the present.
+ *
+ *
+ *
+ * @section sec_pgm_int The Intermediate Memory Context
+ *
+ * The world switch goes thru an intermediate memory context which purpose it is
+ * to provide different mappings of the switcher code. All guest mappings are also
+ * present in this context.
+ *
+ * The switcher code is mapped at the same location as on the host, at an
+ * identity mapped location (physical equals virtual address), and at the
+ * hypervisor location. The identity mapped location is for when the world
+ * switches that involves disabling paging.
+ *
+ * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
+ * simplifies switching guest CPU mode and consistency at the cost of more
+ * code to do the work. All memory use for those page tables is located below
+ * 4GB (this includes page tables for guest context mappings).
+ *
+ * Note! The intermediate memory context is also used for 64-bit guest
+ * execution on 32-bit hosts. Because we need to load 64-bit registers
+ * prior to switching to guest context, we need to be in 64-bit mode
+ * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
+ * invoked via the special world switcher code in LegacyToAMD64.asm.
+ *
+ *
+ * @subsection subsec_pgm_int_gc Guest Context Mappings
+ *
+ * During assignment and relocation of a guest context mapping the intermediate
+ * memory context is used to verify the new location.
+ *
+ * Guest context mappings are currently restricted to below 4GB, for reasons
+ * of simplicity. This may change when we implement AMD64 support.
+ *
+ *
+ *
+ *
+ * @section sec_pgm_misc Misc
+ *
+ *
+ * @subsection sec_pgm_misc_A20 The A20 Gate
+ *
+ * PGM implements the A20 gate masking when translating a virtual guest address
+ * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
+ * the code reading the guest page table entries during shadowing. The masking
+ * is done consistenly for all CPU modes, paged ones included. Large pages are
+ * also masked correctly. (On current CPUs, experiments indicates that AMD does
+ * not apply A20M in paged modes and intel only does it for the 2nd MB of
+ * memory.)
+ *
+ * The A20 gate implementation is per CPU core. It can be configured on a per
+ * core basis via the keyboard device and PC architecture device. This is
+ * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
+ * guest OSes try pushing things anyway, so who cares. (On current real systems
+ * the A20M signal is probably only sent to the boot CPU and it affects all
+ * thread and probably all cores in that package.)
+ *
+ * The keyboard device and the PC architecture device doesn't OR their A20
+ * config bits together, rather they are currently implemented such that they
+ * mirror the CPU state. So, flipping the bit in either of them will change the
+ * A20 state. (On real hardware the bits of the two devices should probably be
+ * ORed together to indicate enabled, i.e. both needs to be cleared to disable
+ * A20 masking.)
+ *
+ * The A20 state will change immediately, transmeta fashion. There is no delays
+ * due to buses, wiring or other physical stuff. (On real hardware there are
+ * normally delays, the delays differs between the two devices and probably also
+ * between chipsets and CPU generations. Note that it's said that transmeta CPUs
+ * does the change immediately like us, they apparently intercept/handles the
+ * port accesses in microcode. Neat.)
+ *
+ * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
+ *
+ *
+ * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
+ *
+ * The differences between legacy PAE and long mode PAE are:
+ * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
+ * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
+ * usual meanings while 6 is ignored (AMD). This means that upon switching to
+ * legacy PAE mode we'll have to clear these bits and when going to long mode
+ * they must be set. This applies to both intermediate and shadow contexts,
+ * however we don't need to do it for the intermediate one since we're
+ * executing with CR0.WP at that time.
+ * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
+ * a page aligned one is required.
+ *
+ *
+ * @section sec_pgm_handlers Access Handlers
+ *
+ * Placeholder.
+ *
+ *
+ * @subsection sec_pgm_handlers_phys Physical Access Handlers
+ *
+ * Placeholder.
+ *
+ *
+ * @subsection sec_pgm_handlers_virt Virtual Access Handlers (obsolete)
+ *
+ * We currently implement three types of virtual access handlers: ALL, WRITE
+ * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
+ *
+ * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
+ * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
+ * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
+ * rest of this section is going to be about these handlers.
+ *
+ * We'll go thru the life cycle of a handler and try make sense of it all, don't know
+ * how successful this is gonna be...
+ *
+ * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
+ * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
+ * and create a new node that is inserted into the AVL tree (range key). Then
+ * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
+ *
+ * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
+ *
+ * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
+ * via the current guest CR3 and update the physical page -> virtual handler
+ * translation. Needless to say, this doesn't exactly scale very well. If any changes
+ * are detected, it will flag a virtual bit update just like we did on registration.
+ * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
+ *
+ * 2b. The virtual bit update process will iterate all the pages covered by all the
+ * virtual handlers and update the PGMPAGE virtual handler state to the max of all
+ * virtual handlers on that page.
+ *
+ * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
+ * we don't miss any alias mappings of the monitored pages.
+ *
+ * 2d. SyncCR3 will then proceed with syncing the CR3 table.
+ *
+ * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
+ * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
+ * will call the handlers like in the next step. If the physical mapping has
+ * changed we will - some time in the future - perform a handler callback
+ * (optional) and update the physical -> virtual handler cache.
+ *
+ * 4. \#PF(,write) on a page in the range. This will cause the handler to
+ * be invoked.
+ *
+ * 5. The guest invalidates the page and changes the physical backing or
+ * unmaps it. This should cause the invalidation callback to be invoked
+ * (it might not yet be 100% perfect). Exactly what happens next... is
+ * this where we mess up and end up out of sync for a while?
+ *
+ * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
+ * We will then set all PGMPAGEs in the physical -> virtual handler cache for
+ * this handler to NONE and trigger a full PGM resync (basically the same
+ * as int step 1). Which means 2 is executed again.
+ *
+ *
+ * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
+ *
+ * There is a bunch of things that needs to be done to make the virtual handlers
+ * work 100% correctly and work more efficiently.
+ *
+ * The first bit hasn't been implemented yet because it's going to slow the
+ * whole mess down even more, and besides it seems to be working reliably for
+ * our current uses. OTOH, some of the optimizations might end up more or less
+ * implementing the missing bits, so we'll see.
+ *
+ * On the optimization side, the first thing to do is to try avoid unnecessary
+ * cache flushing. Then try team up with the shadowing code to track changes
+ * in mappings by means of access to them (shadow in), updates to shadows pages,
+ * invlpg, and shadow PT discarding (perhaps).
+ *
+ * Some idea that have popped up for optimization for current and new features:
+ * - bitmap indicating where there are virtual handlers installed.
+ * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
+ * - Further optimize this by min/max (needs min/max avl getters).
+ * - Shadow page table entry bit (if any left)?
+ *
+ */
+
+
+/** @page pg_pgm_phys PGM Physical Guest Memory Management
+ *
+ *
+ * Objectives:
+ * - Guest RAM over-commitment using memory ballooning,
+ * zero pages and general page sharing.
+ * - Moving or mirroring a VM onto a different physical machine.
+ *
+ *
+ * @section sec_pgmPhys_Definitions Definitions
+ *
+ * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
+ * machinery associated with it.
+ *
+ *
+ *
+ *
+ * @section sec_pgmPhys_AllocPage Allocating a page.
+ *
+ * Initially we map *all* guest memory to the (per VM) zero page, which
+ * means that none of the read functions will cause pages to be allocated.
+ *
+ * Exception, access bit in page tables that have been shared. This must
+ * be handled, but we must also make sure PGMGst*Modify doesn't make
+ * unnecessary modifications.
+ *
+ * Allocation points:
+ * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
+ * - Replacing a zero page mapping at \#PF.
+ * - Replacing a shared page mapping at \#PF.
+ * - ROM registration (currently MMR3RomRegister).
+ * - VM restore (pgmR3Load).
+ *
+ * For the first three it would make sense to keep a few pages handy
+ * until we've reached the max memory commitment for the VM.
+ *
+ * For the ROM registration, we know exactly how many pages we need
+ * and will request these from ring-0. For restore, we will save
+ * the number of non-zero pages in the saved state and allocate
+ * them up front. This would allow the ring-0 component to refuse
+ * the request if the isn't sufficient memory available for VM use.
+ *
+ * Btw. for both ROM and restore allocations we won't be requiring
+ * zeroed pages as they are going to be filled instantly.
+ *
+ *
+ * @section sec_pgmPhys_FreePage Freeing a page
+ *
+ * There are a few points where a page can be freed:
+ * - After being replaced by the zero page.
+ * - After being replaced by a shared page.
+ * - After being ballooned by the guest additions.
+ * - At reset.
+ * - At restore.
+ *
+ * When freeing one or more pages they will be returned to the ring-0
+ * component and replaced by the zero page.
+ *
+ * The reasoning for clearing out all the pages on reset is that it will
+ * return us to the exact same state as on power on, and may thereby help
+ * us reduce the memory load on the system. Further it might have a
+ * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
+ *
+ * On restore, as mention under the allocation topic, pages should be
+ * freed / allocated depending on how many is actually required by the
+ * new VM state. The simplest approach is to do like on reset, and free
+ * all non-ROM pages and then allocate what we need.
+ *
+ * A measure to prevent some fragmentation, would be to let each allocation
+ * chunk have some affinity towards the VM having allocated the most pages
+ * from it. Also, try make sure to allocate from allocation chunks that
+ * are almost full. Admittedly, both these measures might work counter to
+ * our intentions and its probably not worth putting a lot of effort,
+ * cpu time or memory into this.
+ *
+ *
+ * @section sec_pgmPhys_SharePage Sharing a page
+ *
+ * The basic idea is that there there will be a idle priority kernel
+ * thread walking the non-shared VM pages hashing them and looking for
+ * pages with the same checksum. If such pages are found, it will compare
+ * them byte-by-byte to see if they actually are identical. If found to be
+ * identical it will allocate a shared page, copy the content, check that
+ * the page didn't change while doing this, and finally request both the
+ * VMs to use the shared page instead. If the page is all zeros (special
+ * checksum and byte-by-byte check) it will request the VM that owns it
+ * to replace it with the zero page.
+ *
+ * To make this efficient, we will have to make sure not to try share a page
+ * that will change its contents soon. This part requires the most work.
+ * A simple idea would be to request the VM to write monitor the page for
+ * a while to make sure it isn't modified any time soon. Also, it may
+ * make sense to skip pages that are being write monitored since this
+ * information is readily available to the thread if it works on the
+ * per-VM guest memory structures (presently called PGMRAMRANGE).
+ *
+ *
+ * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
+ *
+ * The pages are organized in allocation chunks in ring-0, this is a necessity
+ * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
+ * could easily work on a page-by-page basis if we liked. Whether this is possible
+ * or efficient on NT I don't quite know.) Fragmentation within these chunks may
+ * become a problem as part of the idea here is that we wish to return memory to
+ * the host system.
+ *
+ * For instance, starting two VMs at the same time, they will both allocate the
+ * guest memory on-demand and if permitted their page allocations will be
+ * intermixed. Shut down one of the two VMs and it will be difficult to return
+ * any memory to the host system because the page allocation for the two VMs are
+ * mixed up in the same allocation chunks.
+ *
+ * To further complicate matters, when pages are freed because they have been
+ * ballooned or become shared/zero the whole idea is that the page is supposed
+ * to be reused by another VM or returned to the host system. This will cause
+ * allocation chunks to contain pages belonging to different VMs and prevent
+ * returning memory to the host when one of those VM shuts down.
+ *
+ * The only way to really deal with this problem is to move pages. This can
+ * either be done at VM shutdown and or by the idle priority worker thread
+ * that will be responsible for finding sharable/zero pages. The mechanisms
+ * involved for coercing a VM to move a page (or to do it for it) will be
+ * the same as when telling it to share/zero a page.
+ *
+ *
+ * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
+ *
+ * There's a difficult balance between keeping the per-page tracking structures
+ * (global and guest page) easy to use and keeping them from eating too much
+ * memory. We have limited virtual memory resources available when operating in
+ * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
+ * tracking structures will be attempted designed such that we can deal with up
+ * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
+ *
+ *
+ * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
+ *
+ * @see pg_GMM
+ *
+ * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
+ *
+ * Fixed info is the physical address of the page (HCPhys) and the page id
+ * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
+ * Today we've restricting ourselves to 40(-12) bits because this is the current
+ * restrictions of all AMD64 implementations (I think Barcelona will up this
+ * to 48(-12) bits, not that it really matters) and I needed the bits for
+ * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
+ * decent range for the page id: 2^(28+12) = 1024TB.
+ *
+ * In additions to these, we'll have to keep maintaining the page flags as we
+ * currently do. Although it wouldn't harm to optimize these quite a bit, like
+ * for instance the ROM shouldn't depend on having a write handler installed
+ * in order for it to become read-only. A RO/RW bit should be considered so
+ * that the page syncing code doesn't have to mess about checking multiple
+ * flag combinations (ROM || RW handler || write monitored) in order to
+ * figure out how to setup a shadow PTE. But this of course, is second
+ * priority at present. Current this requires 12 bits, but could probably
+ * be optimized to ~8.
+ *
+ * Then there's the 24 bits used to track which shadow page tables are
+ * currently mapping a page for the purpose of speeding up physical
+ * access handlers, and thereby the page pool cache. More bit for this
+ * purpose wouldn't hurt IIRC.
+ *
+ * Then there is a new bit in which we need to record what kind of page
+ * this is, shared, zero, normal or write-monitored-normal. This'll
+ * require 2 bits. One bit might be needed for indicating whether a
+ * write monitored page has been written to. And yet another one or
+ * two for tracking migration status. 3-4 bits total then.
+ *
+ * Whatever is left will can be used to record the sharabilitiy of a
+ * page. The page checksum will not be stored in the per-VM table as
+ * the idle thread will not be permitted to do modifications to it.
+ * It will instead have to keep its own working set of potentially
+ * shareable pages and their check sums and stuff.
+ *
+ * For the present we'll keep the current packing of the
+ * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
+ * we'll have to change it to a struct with a total of 128-bits at
+ * our disposal.
+ *
+ * The initial layout will be like this:
+ * @verbatim
+ RTHCPHYS HCPhys; The current stuff.
+ 63:40 Current shadow PT tracking stuff.
+ 39:12 The physical page frame number.
+ 11:0 The current flags.
+ uint32_t u28PageId : 28; The page id.
+ uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
+ uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
+ uint32_t u1Reserved : 1; Reserved for later.
+ uint32_t u32Reserved; Reserved for later, mostly sharing stats.
+ @endverbatim
+ *
+ * The final layout will be something like this:
+ * @verbatim
+ RTHCPHYS HCPhys; The current stuff.
+ 63:48 High page id (12+).
+ 47:12 The physical page frame number.
+ 11:0 Low page id.
+ uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
+ uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
+ uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
+ uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
+ uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
+ uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
+ uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
+ uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
+ @endverbatim
+ *
+ * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
+ * around that I'm afraid. It means that the cost of dealing out 32GB of memory
+ * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
+ * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
+ *
+ * A couple of cost examples for the total cost per-VM + kernel.
+ * 32-bit Windows and 32-bit linux:
+ * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
+ * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
+ * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
+ * 64-bit Windows and 64-bit linux:
+ * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
+ * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
+ * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
+ *
+ * UPDATE - 2007-09-27:
+ * Will need a ballooned flag/state too because we cannot
+ * trust the guest 100% and reporting the same page as ballooned more
+ * than once will put the GMM off balance.
+ *
+ *
+ * @section sec_pgmPhys_Serializing Serializing Access
+ *
+ * Initially, we'll try a simple scheme:
+ *
+ * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
+ * by the EMT thread of that VM while in the pgm critsect.
+ * - Other threads in the VM process that needs to make reliable use of
+ * the per-VM RAM tracking structures will enter the critsect.
+ * - No process external thread or kernel thread will ever try enter
+ * the pgm critical section, as that just won't work.
+ * - The idle thread (and similar threads) doesn't not need 100% reliable
+ * data when performing it tasks as the EMT thread will be the one to
+ * do the actual changes later anyway. So, as long as it only accesses
+ * the main ram range, it can do so by somehow preventing the VM from
+ * being destroyed while it works on it...
+ *
+ * - The over-commitment management, including the allocating/freeing
+ * chunks, is serialized by a ring-0 mutex lock (a fast one since the
+ * more mundane mutex implementation is broken on Linux).
+ * - A separate mutex is protecting the set of allocation chunks so
+ * that pages can be shared or/and freed up while some other VM is
+ * allocating more chunks. This mutex can be take from under the other
+ * one, but not the other way around.
+ *
+ *
+ * @section sec_pgmPhys_Request VM Request interface
+ *
+ * When in ring-0 it will become necessary to send requests to a VM so it can
+ * for instance move a page while defragmenting during VM destroy. The idle
+ * thread will make use of this interface to request VMs to setup shared
+ * pages and to perform write monitoring of pages.
+ *
+ * I would propose an interface similar to the current VMReq interface, similar
+ * in that it doesn't require locking and that the one sending the request may
+ * wait for completion if it wishes to. This shouldn't be very difficult to
+ * realize.
+ *
+ * The requests themselves are also pretty simple. They are basically:
+ * -# Check that some precondition is still true.
+ * -# Do the update.
+ * -# Update all shadow page tables involved with the page.
+ *
+ * The 3rd step is identical to what we're already doing when updating a
+ * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
+ *
+ *
+ *
+ * @section sec_pgmPhys_MappingCaches Mapping Caches
+ *
+ * In order to be able to map in and out memory and to be able to support
+ * guest with more RAM than we've got virtual address space, we'll employing
+ * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
+ * however on 32-bit darwin the ring-0 code is running in a different memory
+ * context and therefore needs a separate cache. In raw-mode context we also
+ * need a separate cache. The 32-bit darwin mapping cache and the one for
+ * raw-mode context share a lot of code, see PGMRZDYNMAP.
+ *
+ *
+ * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
+ *
+ * We've considered implementing the ring-3 mapping cache page based but found
+ * that this was bother some when one had to take into account TLBs+SMP and
+ * portability (missing the necessary APIs on several platforms). There were
+ * also some performance concerns with this approach which hadn't quite been
+ * worked out.
+ *
+ * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
+ * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
+ * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
+ * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
+ * costly than a single page, although how much more costly is uncertain. We'll
+ * try address this by using a very big cache, preferably bigger than the actual
+ * VM RAM size if possible. The current VM RAM sizes should give some idea for
+ * 32-bit boxes, while on 64-bit we can probably get away with employing an
+ * unlimited cache.
+ *
+ * The cache have to parts, as already indicated, the ring-3 side and the
+ * ring-0 side.
+ *
+ * The ring-0 will be tied to the page allocator since it will operate on the
+ * memory objects it contains. It will therefore require the first ring-0 mutex
+ * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
+ * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
+ * track of mapping relations
+ *
+ * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
+ * require anyone that desires to do changes to the mapping cache to do that
+ * from within this critsect. Alternatively, we could employ a separate critsect
+ * for serializing changes to the mapping cache as this would reduce potential
+ * contention with other threads accessing mappings unrelated to the changes
+ * that are in process. We can see about this later, contention will show
+ * up in the statistics anyway, so it'll be simple to tell.
+ *
+ * The organization of the ring-3 part will be very much like how the allocation
+ * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
+ * having to walk the tree all the time, we'll have a couple of lookaside entries
+ * like in we do for I/O ports and MMIO in IOM.
+ *
+ * The simplified flow of a PGMPhysRead/Write function:
+ * -# Enter the PGM critsect.
+ * -# Lookup GCPhys in the ram ranges and get the Page ID.
+ * -# Calc the Allocation Chunk ID from the Page ID.
+ * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
+ * If not found in cache:
+ * -# Call ring-0 and request it to be mapped and supply
+ * a chunk to be unmapped if the cache is maxed out already.
+ * -# Insert the new mapping into the AVL tree (id + R3 address).
+ * -# Update the relevant lookaside entry and return the mapping address.
+ * -# Do the read/write according to monitoring flags and everything.
+ * -# Leave the critsect.
+ *
+ *
+ * @section sec_pgmPhys_Fallback Fallback
+ *
+ * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
+ * API and thus require a fallback.
+ *
+ * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
+ * will return to the ring-3 caller (and later ring-0) and asking it to seed
+ * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
+ * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
+ * "SeededAllocPages" call to ring-0.
+ *
+ * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
+ * all page sharing (zero page detection will continue). It will also force
+ * all allocations to come from the VM which seeded the page. Both these
+ * measures are taken to make sure that there will never be any need for
+ * mapping anything into ring-3 - everything will be mapped already.
+ *
+ * Whether we'll continue to use the current MM locked memory management
+ * for this I don't quite know (I'd prefer not to and just ditch that all
+ * together), we'll see what's simplest to do.
+ *
+ *
+ *
+ * @section sec_pgmPhys_Changes Changes
+ *
+ * Breakdown of the changes involved?
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_PGM
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/pgm.h>
+#include <VBox/vmm/cpum.h>
+#include <VBox/vmm/iom.h>
+#include <VBox/sup.h>
+#include <VBox/vmm/mm.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/stam.h>
+#include <VBox/vmm/selm.h>
+#include <VBox/vmm/ssm.h>
+#include <VBox/vmm/hm.h>
+#include "PGMInternal.h"
+#include <VBox/vmm/vm.h>
+#include <VBox/vmm/uvm.h>
+#include "PGMInline.h"
+
+#include <VBox/dbg.h>
+#include <VBox/param.h>
+#include <VBox/err.h>
+
+#include <iprt/asm.h>
+#include <iprt/asm-amd64-x86.h>
+#include <iprt/assert.h>
+#include <iprt/env.h>
+#include <iprt/mem.h>
+#include <iprt/file.h>
+#include <iprt/string.h>
+#include <iprt/thread.h>
+#ifdef RT_OS_LINUX
+# include <iprt/linux/sysfs.h>
+#endif
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+/**
+ * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
+ * pgmR3RelocateHyperVirtHandler.
+ */
+typedef struct PGMRELOCHANDLERARGS
+{
+ RTGCINTPTR offDelta;
+ PVM pVM;
+} PGMRELOCHANDLERARGS;
+/** Pointer to a page access handlere relocation argument package. */
+typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static int pgmR3InitPaging(PVM pVM);
+static int pgmR3InitStats(PVM pVM);
+static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+#ifdef VBOX_STRICT
+static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
+#endif
+
+#ifdef VBOX_WITH_DEBUGGER
+static FNDBGCCMD pgmR3CmdError;
+static FNDBGCCMD pgmR3CmdSync;
+static FNDBGCCMD pgmR3CmdSyncAlways;
+# ifdef VBOX_STRICT
+static FNDBGCCMD pgmR3CmdAssertCR3;
+# endif
+static FNDBGCCMD pgmR3CmdPhysToFile;
+#endif
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+#ifdef VBOX_WITH_DEBUGGER
+/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
+static const DBGCVARDESC g_aPgmErrorArgs[] =
+{
+ /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
+ { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
+};
+
+static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
+{
+ /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
+ { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
+ { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
+};
+
+# ifdef DEBUG_sandervl
+static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
+{
+ /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
+ { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
+ { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
+};
+# endif
+
+/** Command descriptors. */
+static const DBGCCMD g_aCmds[] =
+{
+ /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
+ { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
+ { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
+ { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
+# ifdef VBOX_STRICT
+ { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
+# ifdef VBOX_WITH_PAGE_SHARING
+ { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
+ { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
+# endif
+# endif
+ { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
+ { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
+};
+#endif
+
+
+
+
+/**
+ * Initiates the paging of VM.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3Init(PVM pVM)
+{
+ LogFlow(("PGMR3Init:\n"));
+ PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
+ int rc;
+
+ /*
+ * Assert alignment and sizes.
+ */
+ AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
+ AssertCompile(sizeof(pVM->apCpusR3[0]->pgm.s) <= sizeof(pVM->apCpusR3[0]->pgm.padding));
+ AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
+
+ /*
+ * Init the structure.
+ */
+ pVM->pgm.s.offVM = RT_UOFFSETOF(VM, pgm.s);
+ pVM->pgm.s.offVCpuPGM = RT_UOFFSETOF(VMCPU, pgm.s);
+ /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
+
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
+ {
+ pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
+ pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
+ pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
+ }
+
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
+ {
+ pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
+ pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
+ pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
+ }
+
+ /* Init the per-CPU part. */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+ PPGMCPU pPGM = &pVCpu->pgm.s;
+
+ pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
+ pPGM->offVCpu = RT_UOFFSETOF(VMCPU, pgm.s);
+ pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
+
+ pPGM->enmShadowMode = PGMMODE_INVALID;
+ pPGM->enmGuestMode = PGMMODE_INVALID;
+ pPGM->idxGuestModeData = UINT8_MAX;
+ pPGM->idxShadowModeData = UINT8_MAX;
+ pPGM->idxBothModeData = UINT8_MAX;
+
+ pPGM->GCPhysCR3 = NIL_RTGCPHYS;
+
+ pPGM->pGst32BitPdR3 = NULL;
+ pPGM->pGstPaePdptR3 = NULL;
+ pPGM->pGstAmd64Pml4R3 = NULL;
+#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
+ pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
+ pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
+ pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
+#endif
+ for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
+ {
+ pPGM->apGstPaePDsR3[i] = NULL;
+#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
+ pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
+#endif
+ pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
+ pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
+ pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
+ }
+
+ pPGM->fA20Enabled = true;
+ pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
+ }
+
+ pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
+ pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
+ pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
+
+ rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
+#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
+ true
+#else
+ false
+#endif
+ );
+ AssertLogRelRCReturn(rc, rc);
+
+#if HC_ARCH_BITS == 32
+# ifdef RT_OS_DARWIN
+ rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
+# else
+ rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
+# endif
+#else
+ rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
+#endif
+ AssertLogRelRCReturn(rc, rc);
+ for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
+ pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
+
+ /*
+ * Get the configured RAM size - to estimate saved state size.
+ */
+ uint64_t cbRam;
+ rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ cbRam = 0;
+ else if (RT_SUCCESS(rc))
+ {
+ if (cbRam < PAGE_SIZE)
+ cbRam = 0;
+ cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
+ }
+ else
+ {
+ AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
+ return rc;
+ }
+
+ /*
+ * Check for PCI pass-through and other configurables.
+ */
+ rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
+ AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
+ AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
+
+ rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
+ AssertLogRelRCReturn(rc, rc);
+
+ /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
+ * Whether to clear RAM pages on (hard) reset. */
+ rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
+ AssertLogRelRCReturn(rc, rc);
+
+#ifdef VBOX_WITH_STATISTICS
+ /*
+ * Allocate memory for the statistics before someone tries to use them.
+ */
+ size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
+ void *pv;
+ rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
+ AssertRCReturn(rc, rc);
+
+ pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
+ pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
+ pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
+
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+ pVCpu->pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
+ pVCpu->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
+
+ pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
+ }
+#endif /* VBOX_WITH_STATISTICS */
+
+ /*
+ * Register callbacks, string formatters and the saved state data unit.
+ */
+#ifdef VBOX_STRICT
+ VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
+#endif
+ PGMRegisterStringFormatTypes();
+
+ rc = pgmR3InitSavedState(pVM, cbRam);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Initialize the PGM critical section and flush the phys TLBs
+ */
+ rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
+ AssertRCReturn(rc, rc);
+
+ PGMR3PhysChunkInvalidateTLB(pVM);
+ pgmPhysInvalidatePageMapTLB(pVM);
+
+ /*
+ * For the time being we sport a full set of handy pages in addition to the base
+ * memory to simplify things.
+ */
+ rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Trees
+ */
+ rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
+ if (RT_SUCCESS(rc))
+ pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
+
+ /*
+ * Allocate the zero page.
+ */
+ if (RT_SUCCESS(rc))
+ {
+ rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
+ if (RT_SUCCESS(rc))
+ {
+ pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
+ pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
+ pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
+ AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
+ }
+ }
+
+ /*
+ * Allocate the invalid MMIO page.
+ * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
+ */
+ if (RT_SUCCESS(rc))
+ {
+ rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
+ if (RT_SUCCESS(rc))
+ {
+ ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
+ pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
+ AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
+ pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
+ }
+ }
+
+ /*
+ * Register the physical access handler protecting ROMs.
+ */
+ if (RT_SUCCESS(rc))
+ rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
+ pgmPhysRomWriteHandler,
+ NULL, NULL, "pgmPhysRomWritePfHandler",
+ NULL, NULL, "pgmPhysRomWritePfHandler",
+ "ROM write protection",
+ &pVM->pgm.s.hRomPhysHandlerType);
+
+ /*
+ * Init the paging.
+ */
+ if (RT_SUCCESS(rc))
+ rc = pgmR3InitPaging(pVM);
+
+ /*
+ * Init the page pool.
+ */
+ if (RT_SUCCESS(rc))
+ rc = pgmR3PoolInit(pVM);
+
+ if (RT_SUCCESS(rc))
+ {
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
+ if (RT_FAILURE(rc))
+ break;
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Info & statistics
+ */
+ DBGFR3InfoRegisterInternalEx(pVM, "mode",
+ "Shows the current paging mode. "
+ "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
+ pgmR3InfoMode,
+ DBGFINFO_FLAGS_ALL_EMTS);
+ DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
+ "Dumps all the entries in the top level paging table. No arguments.",
+ pgmR3InfoCr3);
+ DBGFR3InfoRegisterInternal(pVM, "phys",
+ "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
+ pgmR3PhysInfo);
+ DBGFR3InfoRegisterInternal(pVM, "handlers",
+ "Dumps physical, virtual and hyper virtual handlers. "
+ "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
+ "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
+ pgmR3InfoHandlers);
+#ifndef PGM_WITHOUT_MAPPINGS
+ DBGFR3InfoRegisterInternal(pVM, "mappings",
+ "Dumps guest mappings.",
+ pgmR3MapInfo);
+#endif
+
+ pgmR3InitStats(pVM);
+
+#ifdef VBOX_WITH_DEBUGGER
+ /*
+ * Debugger commands.
+ */
+ static bool s_fRegisteredCmds = false;
+ if (!s_fRegisteredCmds)
+ {
+ int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
+ if (RT_SUCCESS(rc2))
+ s_fRegisteredCmds = true;
+ }
+#endif
+
+#ifdef RT_OS_LINUX
+ /*
+ * Log the /proc/sys/vm/max_map_count value on linux as that is
+ * frequently giving us grief when too low.
+ */
+ int64_t const cGuessNeeded = MMR3PhysGetRamSize(pVM) / _2M + 16384 /*guesstimate*/;
+ int64_t cMaxMapCount = 0;
+ int rc2 = RTLinuxSysFsReadIntFile(10, &cMaxMapCount, "/proc/sys/vm/max_map_count");
+ LogRel(("PGM: /proc/sys/vm/max_map_count = %RI64 (rc2=%Rrc); cGuessNeeded=%RI64\n", cMaxMapCount, rc2, cGuessNeeded));
+ if (RT_SUCCESS(rc2) && cMaxMapCount < cGuessNeeded)
+ LogRel(("PGM: WARNING!!\n"
+ "PGM: WARNING!! Please increase /proc/sys/vm/max_map_count to at least %RI64 (or reduce the amount of RAM assigned to the VM)!\n"
+ "PGM: WARNING!!\n", cMaxMapCount));
+
+#endif
+
+ return VINF_SUCCESS;
+ }
+
+ /* Almost no cleanup necessary, MM frees all memory. */
+ PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
+
+ return rc;
+}
+
+
+/**
+ * Init paging.
+ *
+ * Since we need to check what mode the host is operating in before we can choose
+ * the right paging functions for the host we have to delay this until R0 has
+ * been initialized.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+static int pgmR3InitPaging(PVM pVM)
+{
+ /*
+ * Force a recalculation of modes and switcher so everyone gets notified.
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+
+ pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
+ pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
+ pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
+ pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
+ pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
+ }
+
+ pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
+
+#ifndef PGM_WITHOUT_MAPPINGS
+ /*
+ * Allocate static mapping space for whatever the cr3 register
+ * points to and in the case of PAE mode to the 4 PDs.
+ */
+ int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
+ if (RT_FAILURE(rc))
+ {
+ AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
+ return rc;
+ }
+ MMR3HyperReserveFence(pVM);
+#endif
+
+#if 0
+ /*
+ * Allocate pages for the three possible intermediate contexts
+ * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
+ * for the sake of simplicity. The AMD64 uses the PAE for the
+ * lower levels, making the total number of pages 11 (3 + 7 + 1).
+ *
+ * We assume that two page tables will be enought for the core code
+ * mappings (HC virtual and identity).
+ */
+ pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
+ pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
+
+ pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
+ AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
+ pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
+ AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
+ pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
+ AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
+
+ /*
+ * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
+ */
+ ASMMemZeroPage(pVM->pgm.s.pInterPD);
+ ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
+ ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
+
+ ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
+ ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
+
+ ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
+ {
+ ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
+ pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
+ | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
+ }
+
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
+ {
+ const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
+ pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
+ | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
+ }
+
+ RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
+ pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
+ | HCPhysInterPaePDPT64;
+#endif
+
+ /*
+ * Initialize paging workers and mode from current host mode
+ * and the guest running in real mode.
+ */
+ pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
+ switch (pVM->pgm.s.enmHostMode)
+ {
+ case SUPPAGINGMODE_32_BIT:
+ case SUPPAGINGMODE_32_BIT_GLOBAL:
+ case SUPPAGINGMODE_PAE:
+ case SUPPAGINGMODE_PAE_GLOBAL:
+ case SUPPAGINGMODE_PAE_NX:
+ case SUPPAGINGMODE_PAE_GLOBAL_NX:
+ break;
+
+ case SUPPAGINGMODE_AMD64:
+ case SUPPAGINGMODE_AMD64_GLOBAL:
+ case SUPPAGINGMODE_AMD64_NX:
+ case SUPPAGINGMODE_AMD64_GLOBAL_NX:
+ if (ARCH_BITS != 64)
+ {
+ AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
+ LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
+ return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
+ }
+ break;
+ default:
+ AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
+ return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
+ }
+
+ LogFlow(("pgmR3InitPaging: returns successfully\n"));
+#if HC_ARCH_BITS == 64 && 0
+ LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
+ pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
+ LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
+ MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
+ MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
+ MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
+ MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
+#endif
+
+ /*
+ * Log the host paging mode. It may come in handy.
+ */
+ const char *pszHostMode;
+ switch (pVM->pgm.s.enmHostMode)
+ {
+ case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
+ case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
+ case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
+ case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
+ case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
+ case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
+ case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
+ case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
+ case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
+ case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
+ default: pszHostMode = "???"; break;
+ }
+ LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Init statistics
+ * @returns VBox status code.
+ */
+static int pgmR3InitStats(PVM pVM)
+{
+ PPGM pPGM = &pVM->pgm.s;
+ int rc;
+
+ /*
+ * Release statistics.
+ */
+ /* Common - misc variables */
+ STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
+ STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
+ STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
+ STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
+ STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
+ STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
+ STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
+ STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
+ STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
+ STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
+ STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
+ STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
+ STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
+ STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
+ STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
+ STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
+ STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
+ STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
+ STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
+
+ STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
+ STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
+ STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
+
+ STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
+
+ /* Live save */
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
+ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
+
+#ifdef VBOX_WITH_STATISTICS
+
+# define PGM_REG_COUNTER(a, b, c) \
+ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
+ AssertRC(rc);
+
+# define PGM_REG_COUNTER_BYTES(a, b, c) \
+ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
+ AssertRC(rc);
+
+# define PGM_REG_PROFILE(a, b, c) \
+ rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
+ AssertRC(rc);
+
+ PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
+
+ PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
+ PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
+ PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
+ PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
+ PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
+
+ PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
+ PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
+ PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
+ PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
+ PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
+ PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
+
+ PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
+ PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
+ PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
+ PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
+ PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
+ PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
+
+ PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
+ PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
+ PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
+ PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
+ PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
+ PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
+ PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
+ PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
+
+ PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
+ PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
+ PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
+ PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
+
+ PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
+ PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
+ PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
+ PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
+ PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
+ PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
+
+ PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
+ PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
+/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
+ PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
+ PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
+/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
+
+ PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
+ PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
+ PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
+ PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
+
+ /* GC only: */
+ PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
+ PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
+
+ PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
+ PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
+ PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
+ PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
+ PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
+
+ PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
+ PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
+ PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
+ PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
+ PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
+ PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
+ PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
+
+# undef PGM_REG_COUNTER
+# undef PGM_REG_PROFILE
+#endif
+
+ /*
+ * Note! The layout below matches the member layout exactly!
+ */
+
+ /*
+ * Common - stats
+ */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PPGMCPU pPgmCpu = &pVM->apCpusR3[idCpu]->pgm.s;
+
+#define PGM_REG_COUNTER(a, b, c) \
+ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
+ AssertRC(rc);
+#define PGM_REG_PROFILE(a, b, c) \
+ rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
+ AssertRC(rc);
+
+ PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
+ PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
+
+#ifdef VBOX_WITH_STATISTICS
+ PGMCPUSTATS *pCpuStats = pVM->apCpusR3[idCpu]->pgm.s.pStatsR3;
+
+# if 0 /* rarely useful; leave for debugging. */
+ for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
+ STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
+ "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
+ for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
+ STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
+ "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
+# endif
+ /* R0 only: */
+ PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
+ PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
+
+ /* RZ only: */
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
+#if 0 /* rarely useful; leave for debugging. */
+ for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
+ STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
+ "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
+#endif
+ PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
+
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
+ //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
+ PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
+
+ /* HC only: */
+
+ /* RZ & R3: */
+ PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
+ PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
+ PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
+ PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
+ PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
+ PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
+ PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
+ PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
+ PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
+
+ PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
+ PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
+ PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
+ PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
+ PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
+ PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
+ PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
+ PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
+ PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
+ PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
+ PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
+ PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
+ PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
+ PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
+#endif /* VBOX_WITH_STATISTICS */
+
+#undef PGM_REG_PROFILE
+#undef PGM_REG_COUNTER
+
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
+ *
+ * The dynamic mapping area will also be allocated and initialized at this
+ * time. We could allocate it during PGMR3Init of course, but the mapping
+ * wouldn't be allocated at that time preventing us from setting up the
+ * page table entries with the dummy page.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
+{
+#ifndef PGM_WITHOUT_MAPPINGS
+ RTGCPTR GCPtr;
+ int rc;
+
+ /*
+ * Reserve space for the dynamic mappings.
+ */
+ rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
+ if (RT_SUCCESS(rc))
+ pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
+
+ if ( RT_SUCCESS(rc)
+ && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
+ {
+ rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
+ if (RT_SUCCESS(rc))
+ pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
+ }
+ if (RT_SUCCESS(rc))
+ {
+ AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
+ MMR3HyperReserveFence(pVM);
+ }
+ return rc;
+#else
+ RT_NOREF(pVM);
+ return VINF_SUCCESS;
+#endif
+}
+
+
+/**
+ * Ring-3 init finalizing.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
+{
+#ifndef PGM_WITHOUT_MAPPINGS
+ int rc = VERR_IPE_UNINITIALIZED_STATUS; /* (MSC incorrectly thinks it can be used uninitialized) */
+
+ /*
+ * Reserve space for the dynamic mappings.
+ * Initialize the dynamic mapping pages with dummy pages to simply the cache.
+ */
+ /* get the pointer to the page table entries. */
+ PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
+ AssertRelease(pMapping);
+ const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
+ const unsigned iPT = off >> X86_PD_SHIFT;
+ const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
+ pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
+ pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
+
+ /* init cache area */
+ RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
+ for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
+ {
+ rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
+ AssertRCReturn(rc, rc);
+ }
+#endif
+
+ /*
+ * Determine the max physical address width (MAXPHYADDR) and apply it to
+ * all the mask members and stuff.
+ */
+ uint32_t cMaxPhysAddrWidth;
+ uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
+ if ( uMaxExtLeaf >= 0x80000008
+ && uMaxExtLeaf <= 0x80000fff)
+ {
+ cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
+ LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
+ cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
+ pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
+ for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
+ pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
+ }
+ else
+ {
+ LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
+ cMaxPhysAddrWidth = 48;
+ pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
+ pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
+ }
+
+ /** @todo query from CPUM. */
+ pVM->pgm.s.GCPhysInvAddrMask = 0;
+ for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
+ pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
+
+ /*
+ * Initialize the invalid paging entry masks, assuming NX is disabled.
+ */
+ uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+
+ /** @todo The manuals are not entirely clear whether the physical
+ * address width is relevant. See table 5-9 in the intel
+ * manual vs the PDE4M descriptions. Write testcase (NP). */
+ pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
+ | X86_PDE4M_MBZ_MASK;
+
+ pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
+ pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
+ pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
+ pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
+
+ pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
+ pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
+ pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
+ pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
+ pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
+ pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
+
+ pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
+ pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
+ pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
+ pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
+ X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
+ pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
+ pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
+ }
+
+ /*
+ * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
+ * Intel only goes up to 36 bits, so we stick to 36 as well.
+ * Update: More recent intel manuals specifies 40 bits just like AMD.
+ */
+ uint32_t u32Dummy, u32Features;
+ CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
+ if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
+ pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
+ else
+ pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
+
+ /*
+ * Allocate memory if we're supposed to do that.
+ */
+#ifdef PGM_WITHOUT_MAPPINGS
+ int rc = VINF_SUCCESS;
+#endif
+ if (pVM->pgm.s.fRamPreAlloc)
+ rc = pgmR3PhysRamPreAllocate(pVM);
+
+ //pgmLogState(pVM);
+ LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp -> %Rrc\n", pVM->pgm.s.GCPhys4MBPSEMask, rc));
+ return rc;
+}
+
+
+/**
+ * Init phase completed callback.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param enmWhat What has been completed.
+ * @thread EMT(0)
+ */
+VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
+{
+ switch (enmWhat)
+ {
+ case VMINITCOMPLETED_HM:
+#ifdef VBOX_WITH_PCI_PASSTHROUGH
+ if (pVM->pgm.s.fPciPassthrough)
+ {
+ AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
+ AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
+ AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
+
+ /*
+ * Report assignments to the IOMMU (hope that's good enough for now).
+ */
+ if (pVM->pgm.s.fPciPassthrough)
+ {
+ int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
+ AssertRCReturn(rc, rc);
+ }
+ }
+#else
+ AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
+#endif
+ break;
+
+ default:
+ /* shut up gcc */
+ break;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Applies relocations to data and code managed by this component.
+ *
+ * This function will be called at init and whenever the VMM need to relocate it
+ * self inside the GC.
+ *
+ * @param pVM The cross context VM structure.
+ * @param offDelta Relocation delta relative to old location.
+ */
+VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
+{
+ LogFlow(("PGMR3Relocate: offDelta=%RGv\n", offDelta));
+
+ /*
+ * Paging stuff.
+ */
+
+ /* Shadow, guest and both mode switch & relocation for each VCPU. */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+
+ uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
+ if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
+ && g_aPgmShadowModeData[idxShw].pfnRelocate)
+ g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
+ else
+ AssertFailed();
+
+ uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
+ if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
+ && g_aPgmGuestModeData[idxGst].pfnRelocate)
+ g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
+ else
+ AssertFailed();
+ }
+
+ /*
+ * Ram ranges.
+ */
+ if (pVM->pgm.s.pRamRangesXR3)
+ pgmR3PhysRelinkRamRanges(pVM);
+
+#ifndef PGM_WITHOUT_MAPPINGS
+
+ /*
+ * Update the two page directories with all page table mappings.
+ * (One or more of them have changed, that's why we're here.)
+ */
+ pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
+ for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
+ pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
+
+ /* Relocate GC addresses of Page Tables. */
+ for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
+ {
+ for (RTHCUINT i = 0; i < pCur->cPTs; i++)
+ {
+ pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
+ pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
+ }
+ }
+
+ /*
+ * Dynamic page mapping area.
+ */
+ pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
+ pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
+ pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
+
+ if (pVM->pgm.s.pRCDynMap)
+ {
+ pVM->pgm.s.pRCDynMap += offDelta;
+ PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
+
+ pDynMap->paPages += offDelta;
+ PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
+
+ for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
+ {
+ paPages[iPage].pvPage += offDelta;
+ paPages[iPage].uPte.pLegacy += offDelta;
+ paPages[iPage].uPte.pPae += offDelta;
+ }
+ }
+
+#endif /* PGM_WITHOUT_MAPPINGS */
+
+ /*
+ * The Zero page.
+ */
+ pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
+ AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
+
+ /*
+ * The page pool.
+ */
+ pgmR3PoolRelocate(pVM);
+}
+
+
+/**
+ * Resets a virtual CPU when unplugged.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
+{
+ uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
+ if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
+ && g_aPgmGuestModeData[idxGst].pfnExit)
+ {
+ int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
+ AssertReleaseRC(rc);
+ }
+ pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
+
+ int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
+ AssertReleaseRC(rc);
+
+ STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
+
+ pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
+
+ /*
+ * Re-init other members.
+ */
+ pVCpu->pgm.s.fA20Enabled = true;
+ pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
+
+ /*
+ * Clear the FFs PGM owns.
+ */
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
+}
+
+
+/**
+ * The VM is being reset.
+ *
+ * For the PGM component this means that any PD write monitors
+ * needs to be removed.
+ *
+ * @param pVM The cross context VM structure.
+ */
+VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
+{
+ LogFlow(("PGMR3Reset:\n"));
+ VM_ASSERT_EMT(pVM);
+
+ pgmLock(pVM);
+
+ /*
+ * Unfix any fixed mappings and disable CR3 monitoring.
+ */
+ pVM->pgm.s.fMappingsFixed = false;
+ pVM->pgm.s.fMappingsFixedRestored = false;
+ pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
+ pVM->pgm.s.cbMappingFixed = 0;
+
+ /*
+ * Exit the guest paging mode before the pgm pool gets reset.
+ * Important to clean up the amd64 case.
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
+ if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
+ && g_aPgmGuestModeData[idxGst].pfnExit)
+ {
+ int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
+ AssertReleaseRC(rc);
+ }
+ pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
+ }
+
+#ifdef DEBUG
+ DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
+ DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
+#endif
+
+ /*
+ * Switch mode back to real mode. (Before resetting the pgm pool!)
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+
+ int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
+ AssertReleaseRC(rc);
+
+ STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
+ STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
+ }
+
+ /*
+ * Reset the shadow page pool.
+ */
+ pgmR3PoolReset(pVM);
+
+ /*
+ * Re-init various other members and clear the FFs that PGM owns.
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+
+ pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
+ PGMNotifyNxeChanged(pVCpu, false);
+
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
+
+ if (!pVCpu->pgm.s.fA20Enabled)
+ {
+ pVCpu->pgm.s.fA20Enabled = true;
+ pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
+#ifdef PGM_WITH_A20
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ pgmR3RefreshShadowModeAfterA20Change(pVCpu);
+ HMFlushTlb(pVCpu);
+#endif
+ }
+ }
+
+ //pgmLogState(pVM);
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Memory setup after VM construction or reset.
+ *
+ * @param pVM The cross context VM structure.
+ * @param fAtReset Indicates the context, after reset if @c true or after
+ * construction if @c false.
+ */
+VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
+{
+ if (fAtReset)
+ {
+ pgmLock(pVM);
+
+ int rc = pgmR3PhysRamZeroAll(pVM);
+ AssertReleaseRC(rc);
+
+ rc = pgmR3PhysRomReset(pVM);
+ AssertReleaseRC(rc);
+
+ pgmUnlock(pVM);
+ }
+}
+
+
+#ifdef VBOX_STRICT
+/**
+ * VM state change callback for clearing fNoMorePhysWrites after
+ * a snapshot has been created.
+ */
+static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
+{
+ if ( enmState == VMSTATE_RUNNING
+ || enmState == VMSTATE_RESUMING)
+ pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
+ NOREF(enmOldState); NOREF(pvUser);
+}
+#endif
+
+/**
+ * Private API to reset fNoMorePhysWrites.
+ */
+VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
+{
+ pVM->pgm.s.fNoMorePhysWrites = false;
+}
+
+/**
+ * Terminates the PGM.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3Term(PVM pVM)
+{
+ /* Must free shared pages here. */
+ pgmLock(pVM);
+ pgmR3PhysRamTerm(pVM);
+ pgmR3PhysRomTerm(pVM);
+ pgmUnlock(pVM);
+
+ PGMDeregisterStringFormatTypes();
+ return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
+}
+
+
+/**
+ * Show paging mode.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helpers.
+ * @param pszArgs "all" (default), "guest", "shadow" or "host".
+ */
+static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ /* digest argument. */
+ bool fGuest, fShadow, fHost;
+ if (pszArgs)
+ pszArgs = RTStrStripL(pszArgs);
+ if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
+ fShadow = fHost = fGuest = true;
+ else
+ {
+ fShadow = fHost = fGuest = false;
+ if (strstr(pszArgs, "guest"))
+ fGuest = true;
+ if (strstr(pszArgs, "shadow"))
+ fShadow = true;
+ if (strstr(pszArgs, "host"))
+ fHost = true;
+ }
+
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if (!pVCpu)
+ pVCpu = pVM->apCpusR3[0];
+
+
+ /* print info. */
+ if (fGuest)
+ pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
+ pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
+ pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
+ if (fShadow)
+ pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
+ if (fHost)
+ {
+ const char *psz;
+ switch (pVM->pgm.s.enmHostMode)
+ {
+ case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
+ case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
+ case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
+ case SUPPAGINGMODE_PAE: psz = "PAE"; break;
+ case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
+ case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
+ case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
+ case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
+ case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
+ case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
+ case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
+ default: psz = "unknown"; break;
+ }
+ pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
+ }
+}
+
+
+/**
+ * Dump registered MMIO ranges to the log.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helpers.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
+
+ pHlp->pfnPrintf(pHlp,
+ "RAM ranges (pVM=%p)\n"
+ "%.*s %.*s\n",
+ pVM,
+ sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
+ sizeof(RTHCPTR) * 2, "pvHC ");
+
+ for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
+ {
+ pHlp->pfnPrintf(pHlp,
+ "%RGp-%RGp %RHv %s\n",
+ pCur->GCPhys,
+ pCur->GCPhysLast,
+ pCur->pvR3,
+ pCur->pszDesc);
+ if (fVerbose)
+ {
+ RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
+ RTGCPHYS iPage = 0;
+ while (iPage < cPages)
+ {
+ RTGCPHYS const iFirstPage = iPage;
+ PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
+ do
+ iPage++;
+ while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
+ const char *pszType;
+ const char *pszMore = NULL;
+ switch (enmType)
+ {
+ case PGMPAGETYPE_RAM:
+ pszType = "RAM";
+ break;
+
+ case PGMPAGETYPE_MMIO2:
+ pszType = "MMIO2";
+ break;
+
+ case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
+ pszType = "MMIO2-alias-MMIO";
+ break;
+
+ case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
+ pszType = "special-alias-MMIO";
+ break;
+
+ case PGMPAGETYPE_ROM_SHADOW:
+ case PGMPAGETYPE_ROM:
+ {
+ pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
+
+ RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
+ PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
+ while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
+ pRom = pRom->pNextR3;
+ if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
+ pszMore = pRom->pszDesc;
+ break;
+ }
+
+ case PGMPAGETYPE_MMIO:
+ {
+ pszType = "MMIO";
+ pgmLock(pVM);
+ PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE);
+ if (pHandler)
+ pszMore = pHandler->pszDesc;
+ pgmUnlock(pVM);
+ break;
+ }
+
+ case PGMPAGETYPE_INVALID:
+ pszType = "invalid";
+ break;
+
+ default:
+ pszType = "bad";
+ break;
+ }
+ if (pszMore)
+ pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
+ pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
+ pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
+ pszType, pszMore);
+ else
+ pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
+ pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
+ pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
+ pszType);
+
+ }
+ }
+ }
+}
+
+
+/**
+ * Dump the page directory to the log.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helpers.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ /** @todo SMP support!! */
+ PVMCPU pVCpu = pVM->apCpusR3[0];
+
+/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
+ /* Big pages supported? */
+ const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
+
+ /* Global pages supported? */
+ const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
+
+ NOREF(pszArgs);
+
+ /*
+ * Get page directory addresses.
+ */
+ pgmLock(pVM);
+ PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
+ Assert(pPDSrc);
+
+ /*
+ * Iterate the page directory.
+ */
+ for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
+ {
+ X86PDE PdeSrc = pPDSrc->a[iPD];
+ if (PdeSrc.n.u1Present)
+ {
+ if (PdeSrc.b.u1Size && fPSE)
+ pHlp->pfnPrintf(pHlp,
+ "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
+ iPD,
+ pgmGstGet4MBPhysPage(pVM, PdeSrc),
+ PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
+ else
+ pHlp->pfnPrintf(pHlp,
+ "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
+ iPD,
+ (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
+ PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
+ }
+ }
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Service a VMMCALLRING3_PGM_LOCK call.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3LockCall(PVM pVM)
+{
+ int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
+ AssertRC(rc);
+ return rc;
+}
+
+
+/**
+ * Called by pgmPoolFlushAllInt prior to flushing the pool.
+ *
+ * @returns VBox status code, fully asserted.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
+{
+ /* Unmap the old CR3 value before flushing everything. */
+ int rc = VINF_SUCCESS;
+ uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
+ if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
+ && g_aPgmBothModeData[idxBth].pfnMapCR3)
+ {
+ rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
+ AssertRC(rc);
+ }
+
+ /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
+ uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
+ if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
+ && g_aPgmShadowModeData[idxShw].pfnExit)
+ {
+ rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
+ AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
+ }
+
+ Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
+ return rc;
+}
+
+
+/**
+ * Called by pgmPoolFlushAllInt after flushing the pool.
+ *
+ * @returns VBox status code, fully asserted.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
+{
+ pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
+ int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
+ Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
+ AssertRCReturn(rc, rc);
+ AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
+
+ Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE);
+ AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
+ || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
+ ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
+ return rc;
+}
+
+
+/**
+ * Called by PGMR3PhysSetA20 after changing the A20 state.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
+{
+ /** @todo Probably doing a bit too much here. */
+ int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
+ AssertReleaseRC(rc);
+ rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
+ AssertReleaseRC(rc);
+}
+
+
+#ifdef VBOX_WITH_DEBUGGER
+
+/**
+ * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
+ */
+static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
+{
+ /*
+ * Validate input.
+ */
+ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
+ PVM pVM = pUVM->pVM;
+ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
+
+ if (!cArgs)
+ {
+ /*
+ * Print the list of error injection locations with status.
+ */
+ DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
+ DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
+ }
+ else
+ {
+ /*
+ * String switch on where to inject the error.
+ */
+ bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
+ const char *pszWhere = paArgs[0].u.pszString;
+ if (!strcmp(pszWhere, "handy"))
+ ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
+ else
+ return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
+ DBGCCmdHlpPrintf(pCmdHlp, "done\n");
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
+ */
+static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
+{
+ /*
+ * Validate input.
+ */
+ NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
+ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
+ PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
+ if (!pVCpu)
+ return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
+
+ /*
+ * Force page directory sync.
+ */
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+
+ int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
+ if (RT_FAILURE(rc))
+ return rc;
+
+ return VINF_SUCCESS;
+}
+
+#ifdef VBOX_STRICT
+
+/**
+ * EMT callback for pgmR3CmdAssertCR3.
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pcErrors Where to return the error count.
+ */
+static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
+{
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+
+ *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
+ */
+static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
+{
+ /*
+ * Validate input.
+ */
+ NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
+ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
+
+ int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
+ if (RT_FAILURE(rc))
+ return rc;
+
+ unsigned cErrors = 0;
+ rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
+ if (RT_FAILURE(rc))
+ return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
+ if (cErrors > 0)
+ return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
+ return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
+}
+
+#endif /* VBOX_STRICT */
+
+/**
+ * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
+ */
+static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
+{
+ /*
+ * Validate input.
+ */
+ NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
+ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
+ PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
+ if (!pVCpu)
+ return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
+
+ /*
+ * Force page directory sync.
+ */
+ int rc;
+ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
+ {
+ ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
+ rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
+ }
+ else
+ {
+ ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
+ }
+ return rc;
+}
+
+
+/**
+ * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
+ */
+static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
+{
+ /*
+ * Validate input.
+ */
+ NOREF(pCmd);
+ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
+ PVM pVM = pUVM->pVM;
+ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
+ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
+ if (cArgs == 2)
+ {
+ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
+ if (strcmp(paArgs[1].u.pszString, "nozero"))
+ return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
+ }
+ bool fIncZeroPgs = cArgs < 2;
+
+ /*
+ * Open the output file and get the ram parameters.
+ */
+ RTFILE hFile;
+ int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
+ if (RT_FAILURE(rc))
+ return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
+
+ uint32_t cbRamHole = 0;
+ CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
+ uint64_t cbRam = 0;
+ CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
+ RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
+
+ /*
+ * Dump the physical memory, page by page.
+ */
+ RTGCPHYS GCPhys = 0;
+ char abZeroPg[PAGE_SIZE];
+ RT_ZERO(abZeroPg);
+
+ pgmLock(pVM);
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
+ pRam = pRam->pNextR3)
+ {
+ /* fill the gap */
+ if (pRam->GCPhys > GCPhys && fIncZeroPgs)
+ {
+ while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
+ {
+ rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
+ GCPhys += PAGE_SIZE;
+ }
+ }
+
+ PCPGMPAGE pPage = &pRam->aPages[0];
+ while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
+ {
+ if ( PGM_PAGE_IS_ZERO(pPage)
+ || PGM_PAGE_IS_BALLOONED(pPage))
+ {
+ if (fIncZeroPgs)
+ {
+ rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
+ if (RT_FAILURE(rc))
+ DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
+ }
+ }
+ else
+ {
+ switch (PGM_PAGE_GET_TYPE(pPage))
+ {
+ case PGMPAGETYPE_RAM:
+ case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
+ case PGMPAGETYPE_ROM:
+ case PGMPAGETYPE_MMIO2:
+ {
+ void const *pvPage;
+ PGMPAGEMAPLOCK Lock;
+ rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
+ if (RT_SUCCESS(rc))
+ {
+ rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
+ PGMPhysReleasePageMappingLock(pVM, &Lock);
+ if (RT_FAILURE(rc))
+ DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
+ }
+ else
+ DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
+ break;
+ }
+
+ default:
+ AssertFailed();
+ RT_FALL_THRU();
+ case PGMPAGETYPE_MMIO:
+ case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
+ case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
+ if (fIncZeroPgs)
+ {
+ rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
+ if (RT_FAILURE(rc))
+ DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
+ }
+ break;
+ }
+ }
+
+
+ /* advance */
+ GCPhys += PAGE_SIZE;
+ pPage++;
+ }
+ }
+ pgmUnlock(pVM);
+
+ RTFileClose(hFile);
+ if (RT_SUCCESS(rc))
+ return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
+ return VINF_SUCCESS;
+}
+
+#endif /* VBOX_WITH_DEBUGGER */
+
+/**
+ * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
+ */
+typedef struct PGMCHECKINTARGS
+{
+ bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
+ PPGMPHYSHANDLER pPrevPhys;
+ PVM pVM;
+} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
+
+/**
+ * Validate a node in the physical handler tree.
+ *
+ * @returns 0 on if ok, other wise 1.
+ * @param pNode The handler node.
+ * @param pvUser pVM.
+ */
+static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
+{
+ PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
+ PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
+ AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
+ AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
+ ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
+ AssertReleaseMsg( !pArgs->pPrevPhys
+ || ( pArgs->fLeftToRight
+ ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
+ : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
+ ("pPrevPhys=%p %RGp-%RGp %s\n"
+ " pCur=%p %RGp-%RGp %s\n",
+ pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
+ pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
+ pArgs->pPrevPhys = pCur;
+ return 0;
+}
+
+
+/**
+ * Perform an integrity check on the PGM component.
+ *
+ * @returns VINF_SUCCESS if everything is fine.
+ * @returns VBox error status after asserting on integrity breach.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
+{
+ AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
+
+ /*
+ * Check the trees.
+ */
+ int cErrors = 0;
+ const PGMCHECKINTARGS LeftToRight = { true, NULL, pVM };
+ const PGMCHECKINTARGS RightToLeft = { false, NULL, pVM };
+ PGMCHECKINTARGS Args = LeftToRight;
+ cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
+ Args = RightToLeft;
+ cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
+
+ return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
+}
+