summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/PGMPhys.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR3/PGMPhys.cpp')
-rw-r--r--src/VBox/VMM/VMMR3/PGMPhys.cpp5486
1 files changed, 5486 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/PGMPhys.cpp b/src/VBox/VMM/VMMR3/PGMPhys.cpp
new file mode 100644
index 00000000..29d653b6
--- /dev/null
+++ b/src/VBox/VMM/VMMR3/PGMPhys.cpp
@@ -0,0 +1,5486 @@
+/* $Id: PGMPhys.cpp $ */
+/** @file
+ * PGM - Page Manager and Monitor, Physical Memory Addressing.
+ */
+
+/*
+ * Copyright (C) 2006-2020 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_PGM_PHYS
+#include <VBox/vmm/pgm.h>
+#include <VBox/vmm/iem.h>
+#include <VBox/vmm/iom.h>
+#include <VBox/vmm/mm.h>
+#include <VBox/vmm/nem.h>
+#include <VBox/vmm/stam.h>
+#include <VBox/vmm/pdmdev.h>
+#include "PGMInternal.h"
+#include <VBox/vmm/vmcc.h>
+
+#include "PGMInline.h"
+
+#include <VBox/sup.h>
+#include <VBox/param.h>
+#include <VBox/err.h>
+#include <VBox/log.h>
+#include <iprt/assert.h>
+#include <iprt/alloc.h>
+#include <iprt/asm.h>
+#ifdef VBOX_STRICT
+# include <iprt/crc.h>
+#endif
+#include <iprt/thread.h>
+#include <iprt/string.h>
+#include <iprt/system.h>
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** The number of pages to free in one batch. */
+#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
+
+
+/*
+ * PGMR3PhysReadU8-64
+ * PGMR3PhysWriteU8-64
+ */
+#define PGMPHYSFN_READNAME PGMR3PhysReadU8
+#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
+#define PGMPHYS_DATASIZE 1
+#define PGMPHYS_DATATYPE uint8_t
+#include "PGMPhysRWTmpl.h"
+
+#define PGMPHYSFN_READNAME PGMR3PhysReadU16
+#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
+#define PGMPHYS_DATASIZE 2
+#define PGMPHYS_DATATYPE uint16_t
+#include "PGMPhysRWTmpl.h"
+
+#define PGMPHYSFN_READNAME PGMR3PhysReadU32
+#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
+#define PGMPHYS_DATASIZE 4
+#define PGMPHYS_DATATYPE uint32_t
+#include "PGMPhysRWTmpl.h"
+
+#define PGMPHYSFN_READNAME PGMR3PhysReadU64
+#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
+#define PGMPHYS_DATASIZE 8
+#define PGMPHYS_DATATYPE uint64_t
+#include "PGMPhysRWTmpl.h"
+
+
+/**
+ * EMT worker for PGMR3PhysReadExternal.
+ */
+static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
+ PGMACCESSORIGIN enmOrigin)
+{
+ VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
+ AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Read from physical memory, external users.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys Physical address to read from.
+ * @param pvBuf Where to read into.
+ * @param cbRead How many bytes to read.
+ * @param enmOrigin Who is calling.
+ *
+ * @thread Any but EMTs.
+ */
+VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
+{
+ VM_ASSERT_OTHER_THREAD(pVM);
+
+ AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
+ LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
+
+ pgmLock(pVM);
+
+ /*
+ * Copy loop on ram ranges.
+ */
+ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
+ for (;;)
+ {
+ /* Inside range or not? */
+ if (pRam && GCPhys >= pRam->GCPhys)
+ {
+ /*
+ * Must work our way thru this page by page.
+ */
+ RTGCPHYS off = GCPhys - pRam->GCPhys;
+ while (off < pRam->cb)
+ {
+ unsigned iPage = off >> PAGE_SHIFT;
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+
+ /*
+ * If the page has an ALL access handler, we'll have to
+ * delegate the job to EMT.
+ */
+ if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
+ || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
+ {
+ pgmUnlock(pVM);
+
+ return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
+ pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
+ }
+ Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
+
+ /*
+ * Simple stuff, go ahead.
+ */
+ size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
+ if (cb > cbRead)
+ cb = cbRead;
+ PGMPAGEMAPLOCK PgMpLck;
+ const void *pvSrc;
+ int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
+ if (RT_SUCCESS(rc))
+ {
+ memcpy(pvBuf, pvSrc, cb);
+ pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
+ }
+ else
+ {
+ AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
+ pRam->GCPhys + off, pPage, rc));
+ memset(pvBuf, 0xff, cb);
+ }
+
+ /* next page */
+ if (cb >= cbRead)
+ {
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+ }
+ cbRead -= cb;
+ off += cb;
+ GCPhys += cb;
+ pvBuf = (char *)pvBuf + cb;
+ } /* walk pages in ram range. */
+ }
+ else
+ {
+ LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
+
+ /*
+ * Unassigned address space.
+ */
+ size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
+ if (cb >= cbRead)
+ {
+ memset(pvBuf, 0xff, cbRead);
+ break;
+ }
+ memset(pvBuf, 0xff, cb);
+
+ cbRead -= cb;
+ pvBuf = (char *)pvBuf + cb;
+ GCPhys += cb;
+ }
+
+ /* Advance range if necessary. */
+ while (pRam && GCPhys > pRam->GCPhysLast)
+ pRam = pRam->CTX_SUFF(pNext);
+ } /* Ram range walk */
+
+ pgmUnlock(pVM);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * EMT worker for PGMR3PhysWriteExternal.
+ */
+static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
+ PGMACCESSORIGIN enmOrigin)
+{
+ /** @todo VERR_EM_NO_MEMORY */
+ VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
+ AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Write to physical memory, external users.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS.
+ * @retval VERR_EM_NO_MEMORY.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys Physical address to write to.
+ * @param pvBuf What to write.
+ * @param cbWrite How many bytes to write.
+ * @param enmOrigin Who is calling.
+ *
+ * @thread Any but EMTs.
+ */
+VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
+{
+ VM_ASSERT_OTHER_THREAD(pVM);
+
+ AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
+ ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
+ GCPhys, cbWrite, enmOrigin));
+ AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
+ LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
+
+ pgmLock(pVM);
+
+ /*
+ * Copy loop on ram ranges, stop when we hit something difficult.
+ */
+ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
+ for (;;)
+ {
+ /* Inside range or not? */
+ if (pRam && GCPhys >= pRam->GCPhys)
+ {
+ /*
+ * Must work our way thru this page by page.
+ */
+ RTGCPTR off = GCPhys - pRam->GCPhys;
+ while (off < pRam->cb)
+ {
+ RTGCPTR iPage = off >> PAGE_SHIFT;
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+
+ /*
+ * Is the page problematic, we have to do the work on the EMT.
+ *
+ * Allocating writable pages and access handlers are
+ * problematic, write monitored pages are simple and can be
+ * dealt with here.
+ */
+ if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
+ || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
+ || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
+ {
+ if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
+ && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
+ pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
+ else
+ {
+ pgmUnlock(pVM);
+
+ return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
+ pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
+ }
+ }
+ Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
+
+ /*
+ * Simple stuff, go ahead.
+ */
+ size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
+ if (cb > cbWrite)
+ cb = cbWrite;
+ PGMPAGEMAPLOCK PgMpLck;
+ void *pvDst;
+ int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
+ if (RT_SUCCESS(rc))
+ {
+ memcpy(pvDst, pvBuf, cb);
+ pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
+ }
+ else
+ AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
+ pRam->GCPhys + off, pPage, rc));
+
+ /* next page */
+ if (cb >= cbWrite)
+ {
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+ }
+
+ cbWrite -= cb;
+ off += cb;
+ GCPhys += cb;
+ pvBuf = (const char *)pvBuf + cb;
+ } /* walk pages in ram range */
+ }
+ else
+ {
+ /*
+ * Unassigned address space, skip it.
+ */
+ if (!pRam)
+ break;
+ size_t cb = pRam->GCPhys - GCPhys;
+ if (cb >= cbWrite)
+ break;
+ cbWrite -= cb;
+ pvBuf = (const char *)pvBuf + cb;
+ GCPhys += cb;
+ }
+
+ /* Advance range if necessary. */
+ while (pRam && GCPhys > pRam->GCPhysLast)
+ pRam = pRam->CTX_SUFF(pNext);
+ } /* Ram range walk */
+
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
+ *
+ * @returns see PGMR3PhysGCPhys2CCPtrExternal
+ * @param pVM The cross context VM structure.
+ * @param pGCPhys Pointer to the guest physical address.
+ * @param ppv Where to store the mapping address.
+ * @param pLock Where to store the lock.
+ */
+static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
+{
+ /*
+ * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
+ * an access handler after it succeeds.
+ */
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
+ if (RT_SUCCESS(rc))
+ {
+ PPGMPAGEMAPTLBE pTlbe;
+ int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
+ AssertFatalRC(rc2);
+ PPGMPAGE pPage = pTlbe->pPage;
+ if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
+ {
+ PGMPhysReleasePageMappingLock(pVM, pLock);
+ rc = VERR_PGM_PHYS_PAGE_RESERVED;
+ }
+ else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ || pgmPoolIsDirtyPage(pVM, *pGCPhys)
+#endif
+ )
+ {
+ /* We *must* flush any corresponding pgm pool page here, otherwise we'll
+ * not be informed about writes and keep bogus gst->shw mappings around.
+ */
+ pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
+ Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
+ /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
+ * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
+ }
+ }
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Requests the mapping of a guest page into ring-3, external threads.
+ *
+ * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
+ * release it.
+ *
+ * This API will assume your intention is to write to the page, and will
+ * therefore replace shared and zero pages. If you do not intend to modify the
+ * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
+ * backing or if the page has any active access handlers. The caller
+ * must fall back on using PGMR3PhysWriteExternal.
+ * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The guest physical address of the page that should be mapped.
+ * @param ppv Where to store the address corresponding to GCPhys.
+ * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
+ *
+ * @remark Avoid calling this API from within critical sections (other than the
+ * PGM one) because of the deadlock risk when we have to delegating the
+ * task to an EMT.
+ * @thread Any.
+ */
+VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
+{
+ AssertPtr(ppv);
+ AssertPtr(pLock);
+
+ Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Query the Physical TLB entry for the page (may fail).
+ */
+ PPGMPAGEMAPTLBE pTlbe;
+ rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
+ if (RT_SUCCESS(rc))
+ {
+ PPGMPAGE pPage = pTlbe->pPage;
+ if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
+ rc = VERR_PGM_PHYS_PAGE_RESERVED;
+ else
+ {
+ /*
+ * If the page is shared, the zero page, or being write monitored
+ * it must be converted to an page that's writable if possible.
+ * We can only deal with write monitored pages here, the rest have
+ * to be on an EMT.
+ */
+ if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
+ || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ || pgmPoolIsDirtyPage(pVM, GCPhys)
+#endif
+ )
+ {
+ if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
+ && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
+#endif
+ )
+ pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
+ else
+ {
+ pgmUnlock(pVM);
+
+ return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
+ pVM, &GCPhys, ppv, pLock);
+ }
+ }
+
+ /*
+ * Now, just perform the locking and calculate the return address.
+ */
+ PPGMPAGEMAP pMap = pTlbe->pMap;
+ if (pMap)
+ pMap->cRefs++;
+
+ unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
+ if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
+ {
+ if (cLocks == 0)
+ pVM->pgm.s.cWriteLockedPages++;
+ PGM_PAGE_INC_WRITE_LOCKS(pPage);
+ }
+ else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
+ {
+ PGM_PAGE_INC_WRITE_LOCKS(pPage);
+ AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
+ if (pMap)
+ pMap->cRefs++; /* Extra ref to prevent it from going away. */
+ }
+
+ *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
+ pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
+ pLock->pvMap = pMap;
+ }
+ }
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Requests the mapping of a guest page into ring-3, external threads.
+ *
+ * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
+ * release it.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
+ * backing or if the page as an active ALL access handler. The caller
+ * must fall back on using PGMPhysRead.
+ * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The guest physical address of the page that should be mapped.
+ * @param ppv Where to store the address corresponding to GCPhys.
+ * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
+ *
+ * @remark Avoid calling this API from within critical sections (other than
+ * the PGM one) because of the deadlock risk.
+ * @thread Any.
+ */
+VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
+{
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Query the Physical TLB entry for the page (may fail).
+ */
+ PPGMPAGEMAPTLBE pTlbe;
+ rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
+ if (RT_SUCCESS(rc))
+ {
+ PPGMPAGE pPage = pTlbe->pPage;
+#if 1
+ /* MMIO pages doesn't have any readable backing. */
+ if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
+ rc = VERR_PGM_PHYS_PAGE_RESERVED;
+#else
+ if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
+ rc = VERR_PGM_PHYS_PAGE_RESERVED;
+#endif
+ else
+ {
+ /*
+ * Now, just perform the locking and calculate the return address.
+ */
+ PPGMPAGEMAP pMap = pTlbe->pMap;
+ if (pMap)
+ pMap->cRefs++;
+
+ unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
+ if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
+ {
+ if (cLocks == 0)
+ pVM->pgm.s.cReadLockedPages++;
+ PGM_PAGE_INC_READ_LOCKS(pPage);
+ }
+ else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
+ {
+ PGM_PAGE_INC_READ_LOCKS(pPage);
+ AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
+ if (pMap)
+ pMap->cRefs++; /* Extra ref to prevent it from going away. */
+ }
+
+ *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
+ pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
+ pLock->pvMap = pMap;
+ }
+ }
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Requests the mapping of multiple guest page into ring-3, external threads.
+ *
+ * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
+ * ASAP to release them.
+ *
+ * This API will assume your intention is to write to the pages, and will
+ * therefore replace shared and zero pages. If you do not intend to modify the
+ * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
+ * backing or if any of the pages the page has any active access
+ * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
+ * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
+ * an invalid physical address.
+ *
+ * @param pVM The cross context VM structure.
+ * @param cPages Number of pages to lock.
+ * @param paGCPhysPages The guest physical address of the pages that
+ * should be mapped (@a cPages entries).
+ * @param papvPages Where to store the ring-3 mapping addresses
+ * corresponding to @a paGCPhysPages.
+ * @param paLocks Where to store the locking information that
+ * pfnPhysBulkReleasePageMappingLock needs (@a cPages
+ * in length).
+ *
+ * @remark Avoid calling this API from within critical sections (other than the
+ * PGM one) because of the deadlock risk when we have to delegating the
+ * task to an EMT.
+ * @thread Any.
+ */
+VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
+ void **papvPages, PPGMPAGEMAPLOCK paLocks)
+{
+ Assert(cPages > 0);
+ AssertPtr(papvPages);
+ AssertPtr(paLocks);
+
+ Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Lock the pages one by one.
+ * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
+ */
+ int32_t cNextYield = 128;
+ uint32_t iPage;
+ for (iPage = 0; iPage < cPages; iPage++)
+ {
+ if (--cNextYield > 0)
+ { /* likely */ }
+ else
+ {
+ pgmUnlock(pVM);
+ ASMNopPause();
+ pgmLock(pVM);
+ cNextYield = 128;
+ }
+
+ /*
+ * Query the Physical TLB entry for the page (may fail).
+ */
+ PPGMPAGEMAPTLBE pTlbe;
+ rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
+ if (RT_SUCCESS(rc))
+ { }
+ else
+ break;
+ PPGMPAGE pPage = pTlbe->pPage;
+
+ /*
+ * No MMIO or active access handlers.
+ */
+ if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
+ && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
+ { }
+ else
+ {
+ rc = VERR_PGM_PHYS_PAGE_RESERVED;
+ break;
+ }
+
+ /*
+ * The page must be in the allocated state and not be a dirty pool page.
+ * We can handle converting a write monitored page to an allocated one, but
+ * anything more complicated must be delegated to an EMT.
+ */
+ bool fDelegateToEmt = false;
+ if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
+#else
+ fDelegateToEmt = false;
+#endif
+ else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
+ {
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
+ pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
+ else
+ fDelegateToEmt = true;
+#endif
+ }
+ else
+ fDelegateToEmt = true;
+ if (!fDelegateToEmt)
+ { }
+ else
+ {
+ /* We could do this delegation in bulk, but considered too much work vs gain. */
+ pgmUnlock(pVM);
+ rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
+ pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
+ pgmLock(pVM);
+ if (RT_FAILURE(rc))
+ break;
+ cNextYield = 128;
+ }
+
+ /*
+ * Now, just perform the locking and address calculation.
+ */
+ PPGMPAGEMAP pMap = pTlbe->pMap;
+ if (pMap)
+ pMap->cRefs++;
+
+ unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
+ if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
+ {
+ if (cLocks == 0)
+ pVM->pgm.s.cWriteLockedPages++;
+ PGM_PAGE_INC_WRITE_LOCKS(pPage);
+ }
+ else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
+ {
+ PGM_PAGE_INC_WRITE_LOCKS(pPage);
+ AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
+ if (pMap)
+ pMap->cRefs++; /* Extra ref to prevent it from going away. */
+ }
+
+ papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
+ paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
+ paLocks[iPage].pvMap = pMap;
+ }
+
+ pgmUnlock(pVM);
+
+ /*
+ * On failure we must unlock any pages we managed to get already.
+ */
+ if (RT_FAILURE(rc) && iPage > 0)
+ PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
+
+ return rc;
+}
+
+
+/**
+ * Requests the mapping of multiple guest page into ring-3, for reading only,
+ * external threads.
+ *
+ * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
+ * to release them.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
+ * backing or if any of the pages the page has an active ALL access
+ * handler. The caller must fall back on using PGMR3PhysWriteExternal.
+ * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
+ * an invalid physical address.
+ *
+ * @param pVM The cross context VM structure.
+ * @param cPages Number of pages to lock.
+ * @param paGCPhysPages The guest physical address of the pages that
+ * should be mapped (@a cPages entries).
+ * @param papvPages Where to store the ring-3 mapping addresses
+ * corresponding to @a paGCPhysPages.
+ * @param paLocks Where to store the lock information that
+ * pfnPhysReleasePageMappingLock needs (@a cPages
+ * in length).
+ *
+ * @remark Avoid calling this API from within critical sections (other than
+ * the PGM one) because of the deadlock risk.
+ * @thread Any.
+ */
+VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
+ void const **papvPages, PPGMPAGEMAPLOCK paLocks)
+{
+ Assert(cPages > 0);
+ AssertPtr(papvPages);
+ AssertPtr(paLocks);
+
+ Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Lock the pages one by one.
+ * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
+ */
+ int32_t cNextYield = 256;
+ uint32_t iPage;
+ for (iPage = 0; iPage < cPages; iPage++)
+ {
+ if (--cNextYield > 0)
+ { /* likely */ }
+ else
+ {
+ pgmUnlock(pVM);
+ ASMNopPause();
+ pgmLock(pVM);
+ cNextYield = 256;
+ }
+
+ /*
+ * Query the Physical TLB entry for the page (may fail).
+ */
+ PPGMPAGEMAPTLBE pTlbe;
+ rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
+ if (RT_SUCCESS(rc))
+ { }
+ else
+ break;
+ PPGMPAGE pPage = pTlbe->pPage;
+
+ /*
+ * No MMIO or active all access handlers, everything else can be accessed.
+ */
+ if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
+ && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
+ { }
+ else
+ {
+ rc = VERR_PGM_PHYS_PAGE_RESERVED;
+ break;
+ }
+
+ /*
+ * Now, just perform the locking and address calculation.
+ */
+ PPGMPAGEMAP pMap = pTlbe->pMap;
+ if (pMap)
+ pMap->cRefs++;
+
+ unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
+ if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
+ {
+ if (cLocks == 0)
+ pVM->pgm.s.cReadLockedPages++;
+ PGM_PAGE_INC_READ_LOCKS(pPage);
+ }
+ else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
+ {
+ PGM_PAGE_INC_READ_LOCKS(pPage);
+ AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
+ if (pMap)
+ pMap->cRefs++; /* Extra ref to prevent it from going away. */
+ }
+
+ papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
+ paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
+ paLocks[iPage].pvMap = pMap;
+ }
+
+ pgmUnlock(pVM);
+
+ /*
+ * On failure we must unlock any pages we managed to get already.
+ */
+ if (RT_FAILURE(rc) && iPage > 0)
+ PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
+
+ return rc;
+}
+
+
+#define MAKE_LEAF(a_pNode) \
+ do { \
+ (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
+ (a_pNode)->pRightR3 = NIL_RTR3PTR; \
+ (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
+ (a_pNode)->pRightR0 = NIL_RTR0PTR; \
+ } while (0)
+
+#define INSERT_LEFT(a_pParent, a_pNode) \
+ do { \
+ (a_pParent)->pLeftR3 = (a_pNode); \
+ (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
+ } while (0)
+#define INSERT_RIGHT(a_pParent, a_pNode) \
+ do { \
+ (a_pParent)->pRightR3 = (a_pNode); \
+ (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
+ } while (0)
+
+
+/**
+ * Recursive tree builder.
+ *
+ * @param ppRam Pointer to the iterator variable.
+ * @param iDepth The current depth. Inserts a leaf node if 0.
+ */
+static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
+{
+ PPGMRAMRANGE pRam;
+ if (iDepth <= 0)
+ {
+ /*
+ * Leaf node.
+ */
+ pRam = *ppRam;
+ if (pRam)
+ {
+ *ppRam = pRam->pNextR3;
+ MAKE_LEAF(pRam);
+ }
+ }
+ else
+ {
+
+ /*
+ * Intermediate node.
+ */
+ PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
+
+ pRam = *ppRam;
+ if (!pRam)
+ return pLeft;
+ *ppRam = pRam->pNextR3;
+ MAKE_LEAF(pRam);
+ INSERT_LEFT(pRam, pLeft);
+
+ PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
+ if (pRight)
+ INSERT_RIGHT(pRam, pRight);
+ }
+ return pRam;
+}
+
+
+/**
+ * Rebuilds the RAM range search trees.
+ *
+ * @param pVM The cross context VM structure.
+ */
+static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
+{
+
+ /*
+ * Create the reasonably balanced tree in a sequential fashion.
+ * For simplicity (laziness) we use standard recursion here.
+ */
+ int iDepth = 0;
+ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
+ while (pRam)
+ {
+ PPGMRAMRANGE pLeft = pRoot;
+
+ pRoot = pRam;
+ pRam = pRam->pNextR3;
+ MAKE_LEAF(pRoot);
+ INSERT_LEFT(pRoot, pLeft);
+
+ PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
+ if (pRight)
+ INSERT_RIGHT(pRoot, pRight);
+ /** @todo else: rotate the tree. */
+
+ iDepth++;
+ }
+
+ pVM->pgm.s.pRamRangeTreeR3 = pRoot;
+ pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
+
+#ifdef VBOX_STRICT
+ /*
+ * Verify that the above code works.
+ */
+ unsigned cRanges = 0;
+ for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
+ cRanges++;
+ Assert(cRanges > 0);
+
+ unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
+ if ((1U << cMaxDepth) < cRanges)
+ cMaxDepth++;
+
+ for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
+ {
+ unsigned cDepth = 0;
+ PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
+ for (;;)
+ {
+ if (pRam == pRam2)
+ break;
+ Assert(pRam2);
+ if (pRam->GCPhys < pRam2->GCPhys)
+ pRam2 = pRam2->pLeftR3;
+ else
+ pRam2 = pRam2->pRightR3;
+ }
+ AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
+ }
+#endif /* VBOX_STRICT */
+}
+
+#undef MAKE_LEAF
+#undef INSERT_LEFT
+#undef INSERT_RIGHT
+
+/**
+ * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
+ *
+ * Called when anything was relocated.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void pgmR3PhysRelinkRamRanges(PVM pVM)
+{
+ PPGMRAMRANGE pCur;
+
+#ifdef VBOX_STRICT
+ for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
+ {
+ Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
+ Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
+ Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
+ Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
+ Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
+ for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
+ Assert( pCur2 == pCur
+ || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
+ }
+#endif
+
+ pCur = pVM->pgm.s.pRamRangesXR3;
+ if (pCur)
+ {
+ pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
+
+ for (; pCur->pNextR3; pCur = pCur->pNextR3)
+ pCur->pNextR0 = pCur->pNextR3->pSelfR0;
+
+ Assert(pCur->pNextR0 == NIL_RTR0PTR);
+ }
+ else
+ {
+ Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
+ }
+ ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
+
+ pgmR3PhysRebuildRamRangeSearchTrees(pVM);
+}
+
+
+/**
+ * Links a new RAM range into the list.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pNew Pointer to the new list entry.
+ * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
+ */
+static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
+{
+ AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
+ Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
+
+ pgmLock(pVM);
+
+ PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
+ pNew->pNextR3 = pRam;
+ pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
+
+ if (pPrev)
+ {
+ pPrev->pNextR3 = pNew;
+ pPrev->pNextR0 = pNew->pSelfR0;
+ }
+ else
+ {
+ pVM->pgm.s.pRamRangesXR3 = pNew;
+ pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
+ }
+ ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
+
+ pgmR3PhysRebuildRamRangeSearchTrees(pVM);
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Unlink an existing RAM range from the list.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pRam Pointer to the new list entry.
+ * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
+ */
+static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
+{
+ Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
+ Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
+
+ pgmLock(pVM);
+
+ PPGMRAMRANGE pNext = pRam->pNextR3;
+ if (pPrev)
+ {
+ pPrev->pNextR3 = pNext;
+ pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
+ }
+ else
+ {
+ Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
+ pVM->pgm.s.pRamRangesXR3 = pNext;
+ pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
+ }
+ ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
+
+ pgmR3PhysRebuildRamRangeSearchTrees(pVM);
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Unlink an existing RAM range from the list.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pRam Pointer to the new list entry.
+ */
+static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
+{
+ pgmLock(pVM);
+
+ /* find prev. */
+ PPGMRAMRANGE pPrev = NULL;
+ PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
+ while (pCur != pRam)
+ {
+ pPrev = pCur;
+ pCur = pCur->pNextR3;
+ }
+ AssertFatal(pCur);
+
+ pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Frees a range of pages, replacing them with ZERO pages of the specified type.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pRam The RAM range in which the pages resides.
+ * @param GCPhys The address of the first page.
+ * @param GCPhysLast The address of the last page.
+ * @param enmType The page type to replace then with.
+ */
+static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ uint32_t cPendingPages = 0;
+ PGMMFREEPAGESREQ pReq;
+ int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
+ AssertLogRelRCReturn(rc, rc);
+
+ /* Iterate the pages. */
+ PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
+ while (cPagesLeft-- > 0)
+ {
+ rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType);
+ AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
+
+ PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType);
+
+ GCPhys += PAGE_SIZE;
+ pPageDst++;
+ }
+
+ if (cPendingPages)
+ {
+ rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
+ AssertLogRelRCReturn(rc, rc);
+ }
+ GMMR3FreePagesCleanup(pReq);
+
+ return rc;
+}
+
+#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
+
+/**
+ * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
+ *
+ * This is only called on one of the EMTs while the other ones are waiting for
+ * it to complete this function.
+ *
+ * @returns VINF_SUCCESS (VBox strict status code).
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
+ * @param pvUser User parameter
+ */
+static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
+{
+ uintptr_t *paUser = (uintptr_t *)pvUser;
+ bool fInflate = !!paUser[0];
+ unsigned cPages = paUser[1];
+ RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
+ uint32_t cPendingPages = 0;
+ PGMMFREEPAGESREQ pReq;
+ int rc;
+
+ Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
+ pgmLock(pVM);
+
+ if (fInflate)
+ {
+ /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
+ pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
+
+ /* Replace pages with ZERO pages. */
+ rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
+ if (RT_FAILURE(rc))
+ {
+ pgmUnlock(pVM);
+ AssertLogRelRC(rc);
+ return rc;
+ }
+
+ /* Iterate the pages. */
+ for (unsigned i = 0; i < cPages; i++)
+ {
+ PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
+ if ( pPage == NULL
+ || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
+ {
+ Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
+ break;
+ }
+
+ LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
+
+ /* Flush the shadow PT if this page was previously used as a guest page table. */
+ pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
+
+ rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
+ if (RT_FAILURE(rc))
+ {
+ pgmUnlock(pVM);
+ AssertLogRelRC(rc);
+ return rc;
+ }
+ Assert(PGM_PAGE_IS_ZERO(pPage));
+ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
+ }
+
+ if (cPendingPages)
+ {
+ rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
+ if (RT_FAILURE(rc))
+ {
+ pgmUnlock(pVM);
+ AssertLogRelRC(rc);
+ return rc;
+ }
+ }
+ GMMR3FreePagesCleanup(pReq);
+ }
+ else
+ {
+ /* Iterate the pages. */
+ for (unsigned i = 0; i < cPages; i++)
+ {
+ PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
+ AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
+
+ LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
+
+ Assert(PGM_PAGE_IS_BALLOONED(pPage));
+
+ /* Change back to zero page. (NEM does not need to be informed.) */
+ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
+ }
+
+ /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
+ }
+
+ /* Notify GMM about the balloon change. */
+ rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
+ if (RT_SUCCESS(rc))
+ {
+ if (!fInflate)
+ {
+ Assert(pVM->pgm.s.cBalloonedPages >= cPages);
+ pVM->pgm.s.cBalloonedPages -= cPages;
+ }
+ else
+ pVM->pgm.s.cBalloonedPages += cPages;
+ }
+
+ pgmUnlock(pVM);
+
+ /* Flush the recompiler's TLB as well. */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
+
+ AssertLogRelRC(rc);
+ return rc;
+}
+
+
+/**
+ * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param fInflate Inflate or deflate memory balloon
+ * @param cPages Number of pages to free
+ * @param paPhysPage Array of guest physical addresses
+ */
+static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
+{
+ uintptr_t paUser[3];
+
+ paUser[0] = fInflate;
+ paUser[1] = cPages;
+ paUser[2] = (uintptr_t)paPhysPage;
+ int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
+ AssertRC(rc);
+
+ /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
+ RTMemFree(paPhysPage);
+}
+
+#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
+
+/**
+ * Inflate or deflate a memory balloon
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param fInflate Inflate or deflate memory balloon
+ * @param cPages Number of pages to free
+ * @param paPhysPage Array of guest physical addresses
+ */
+VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
+{
+ /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
+#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
+ int rc;
+
+ /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
+ AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
+
+ /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
+ * In the SMP case we post a request packet to postpone the job.
+ */
+ if (pVM->cCpus > 1)
+ {
+ unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
+ RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
+ AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
+
+ memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
+
+ rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
+ AssertRC(rc);
+ }
+ else
+ {
+ uintptr_t paUser[3];
+
+ paUser[0] = fInflate;
+ paUser[1] = cPages;
+ paUser[2] = (uintptr_t)paPhysPage;
+ rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
+ AssertRC(rc);
+ }
+ return rc;
+
+#else
+ NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
+ return VERR_NOT_IMPLEMENTED;
+#endif
+}
+
+
+/**
+ * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
+ * physical RAM.
+ *
+ * This is only called on one of the EMTs while the other ones are waiting for
+ * it to complete this function.
+ *
+ * @returns VINF_SUCCESS (VBox strict status code).
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
+ * @param pvUser User parameter, unused.
+ */
+static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
+{
+ int rc = VINF_SUCCESS;
+ NOREF(pvUser); NOREF(pVCpu);
+
+ pgmLock(pVM);
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ pgmPoolResetDirtyPages(pVM);
+#endif
+
+ /** @todo pointless to write protect the physical page pointed to by RSP. */
+
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
+ pRam;
+ pRam = pRam->CTX_SUFF(pNext))
+ {
+ uint32_t cPages = pRam->cb >> PAGE_SHIFT;
+ for (uint32_t iPage = 0; iPage < cPages; iPage++)
+ {
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+ PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
+
+ if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
+ || enmPageType == PGMPAGETYPE_MMIO2)
+ {
+ /*
+ * A RAM page.
+ */
+ switch (PGM_PAGE_GET_STATE(pPage))
+ {
+ case PGM_PAGE_STATE_ALLOCATED:
+ /** @todo Optimize this: Don't always re-enable write
+ * monitoring if the page is known to be very busy. */
+ if (PGM_PAGE_IS_WRITTEN_TO(pPage))
+ PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
+
+ pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
+ break;
+
+ case PGM_PAGE_STATE_SHARED:
+ AssertFailed();
+ break;
+
+ case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
+ default:
+ break;
+ }
+ }
+ }
+ }
+ pgmR3PoolWriteProtectPages(pVM);
+ PGM_INVL_ALL_VCPU_TLBS(pVM);
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+/**
+ * Protect all physical RAM to monitor writes
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
+{
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+
+ int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
+ AssertRC(rc);
+ return rc;
+}
+
+
+/**
+ * Gets the number of ram ranges.
+ *
+ * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
+{
+ VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
+
+ pgmLock(pVM);
+ uint32_t cRamRanges = 0;
+ for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
+ cRamRanges++;
+ pgmUnlock(pVM);
+ return cRamRanges;
+}
+
+
+/**
+ * Get information about a range.
+ *
+ * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
+ * @param pVM The cross context VM structure.
+ * @param iRange The ordinal of the range.
+ * @param pGCPhysStart Where to return the start of the range. Optional.
+ * @param pGCPhysLast Where to return the address of the last byte in the
+ * range. Optional.
+ * @param ppszDesc Where to return the range description. Optional.
+ * @param pfIsMmio Where to indicate that this is a pure MMIO range.
+ * Optional.
+ */
+VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
+ const char **ppszDesc, bool *pfIsMmio)
+{
+ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
+
+ pgmLock(pVM);
+ uint32_t iCurRange = 0;
+ for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
+ if (iCurRange == iRange)
+ {
+ if (pGCPhysStart)
+ *pGCPhysStart = pCur->GCPhys;
+ if (pGCPhysLast)
+ *pGCPhysLast = pCur->GCPhysLast;
+ if (ppszDesc)
+ *ppszDesc = pCur->pszDesc;
+ if (pfIsMmio)
+ *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
+
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+ }
+ pgmUnlock(pVM);
+ return VERR_OUT_OF_RANGE;
+}
+
+
+/**
+ * Query the amount of free memory inside VMMR0
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pcbAllocMem Where to return the amount of memory allocated
+ * by VMs.
+ * @param pcbFreeMem Where to return the amount of memory that is
+ * allocated from the host but not currently used
+ * by any VMs.
+ * @param pcbBallonedMem Where to return the sum of memory that is
+ * currently ballooned by the VMs.
+ * @param pcbSharedMem Where to return the amount of memory that is
+ * currently shared.
+ */
+VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
+ uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
+ VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
+
+ uint64_t cAllocPages = 0;
+ uint64_t cFreePages = 0;
+ uint64_t cBalloonPages = 0;
+ uint64_t cSharedPages = 0;
+ int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
+ AssertRCReturn(rc, rc);
+
+ if (pcbAllocMem)
+ *pcbAllocMem = cAllocPages * _4K;
+
+ if (pcbFreeMem)
+ *pcbFreeMem = cFreePages * _4K;
+
+ if (pcbBallonedMem)
+ *pcbBallonedMem = cBalloonPages * _4K;
+
+ if (pcbSharedMem)
+ *pcbSharedMem = cSharedPages * _4K;
+
+ Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
+ cAllocPages, cFreePages, cBalloonPages, cSharedPages));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Query memory stats for the VM.
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pcbTotalMem Where to return total amount memory the VM may
+ * possibly use.
+ * @param pcbPrivateMem Where to return the amount of private memory
+ * currently allocated.
+ * @param pcbSharedMem Where to return the amount of actually shared
+ * memory currently used by the VM.
+ * @param pcbZeroMem Where to return the amount of memory backed by
+ * zero pages.
+ *
+ * @remarks The total mem is normally larger than the sum of the three
+ * components. There are two reasons for this, first the amount of
+ * shared memory is what we're sure is shared instead of what could
+ * possibly be shared with someone. Secondly, because the total may
+ * include some pure MMIO pages that doesn't go into any of the three
+ * sub-counts.
+ *
+ * @todo Why do we return reused shared pages instead of anything that could
+ * potentially be shared? Doesn't this mean the first VM gets a much
+ * lower number of shared pages?
+ */
+VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
+ uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
+
+ if (pcbTotalMem)
+ *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
+
+ if (pcbPrivateMem)
+ *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
+
+ if (pcbSharedMem)
+ *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
+
+ if (pcbZeroMem)
+ *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
+
+ Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pNew The new RAM range.
+ * @param GCPhys The address of the RAM range.
+ * @param GCPhysLast The last address of the RAM range.
+ * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
+ * if in HMA.
+ * @param R0PtrNew Ditto for R0.
+ * @param pszDesc The description.
+ * @param pPrev The previous RAM range (for linking).
+ */
+static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
+ RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
+{
+ /*
+ * Initialize the range.
+ */
+ pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
+ pNew->GCPhys = GCPhys;
+ pNew->GCPhysLast = GCPhysLast;
+ pNew->cb = GCPhysLast - GCPhys + 1;
+ pNew->pszDesc = pszDesc;
+ pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
+ pNew->pvR3 = NULL;
+ pNew->paLSPages = NULL;
+
+ uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
+ RTGCPHYS iPage = cPages;
+ while (iPage-- > 0)
+ PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
+
+ /* Update the page count stats. */
+ pVM->pgm.s.cZeroPages += cPages;
+ pVM->pgm.s.cAllPages += cPages;
+
+ /*
+ * Link it.
+ */
+ pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
+}
+
+
+#ifndef PGM_WITHOUT_MAPPINGS
+/**
+ * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.}
+ * @sa pgmR3PhysMMIO2ExRangeRelocate
+ */
+static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
+ PGMRELOCATECALL enmMode, void *pvUser)
+{
+ PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
+ Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
+ Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld);
+
+ switch (enmMode)
+ {
+ case PGMRELOCATECALL_SUGGEST:
+ return true;
+
+ case PGMRELOCATECALL_RELOCATE:
+ {
+ /*
+ * Update myself, then relink all the ranges and flush the RC TLB.
+ */
+ pgmLock(pVM);
+
+ pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
+
+ pgmR3PhysRelinkRamRanges(pVM);
+ for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
+ pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
+
+ pgmUnlock(pVM);
+ return true;
+ }
+
+ default:
+ AssertFailedReturn(false);
+ }
+}
+#endif /* !PGM_WITHOUT_MAPPINGS */
+
+
+/**
+ * PGMR3PhysRegisterRam worker that registers a high chunk.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The address of the RAM.
+ * @param cRamPages The number of RAM pages to register.
+ * @param cbChunk The size of the PGMRAMRANGE guest mapping.
+ * @param iChunk The chunk number.
+ * @param pszDesc The RAM range description.
+ * @param ppPrev Previous RAM range pointer. In/Out.
+ */
+static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
+ uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
+ PPGMRAMRANGE *ppPrev)
+{
+ const char *pszDescChunk = iChunk == 0
+ ? pszDesc
+ : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
+ AssertReturn(pszDescChunk, VERR_NO_MEMORY);
+
+ /*
+ * Allocate memory for the new chunk.
+ */
+ size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
+ PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
+ AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
+ RTR0PTR R0PtrChunk = NIL_RTR0PTR;
+ void *pvChunk = NULL;
+ int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(R0PtrChunk != NIL_RTR0PTR);
+ memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
+
+ PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
+
+ /*
+ * Create a mapping and map the pages into it.
+ * We push these in below the HMA.
+ */
+ RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
+#ifndef PGM_WITHOUT_MAPPINGS
+ rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
+ if (RT_SUCCESS(rc))
+#endif /* !PGM_WITHOUT_MAPPINGS */
+ {
+ pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
+
+ RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
+#ifndef PGM_WITHOUT_MAPPINGS
+ RTGCPTR GCPtrPage = GCPtrChunk;
+ for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
+ rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
+ if (RT_SUCCESS(rc))
+#endif /* !PGM_WITHOUT_MAPPINGS */
+ {
+ /*
+ * Ok, init and link the range.
+ */
+ pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
+ (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
+ *ppPrev = pNew;
+ }
+ }
+
+ if (RT_FAILURE(rc))
+ SUPR3PageFreeEx(pvChunk, cChunkPages);
+ }
+
+ RTMemTmpFree(paChunkPages);
+ return rc;
+}
+
+
+/**
+ * Sets up a range RAM.
+ *
+ * This will check for conflicting registrations, make a resource
+ * reservation for the memory (with GMM), and setup the per-page
+ * tracking structures (PGMPAGE).
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The physical address of the RAM.
+ * @param cb The size of the RAM.
+ * @param pszDesc The description - not copied, so, don't free or change it.
+ */
+VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
+{
+ /*
+ * Validate input.
+ */
+ Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
+ AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
+ AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
+ AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+
+ pgmLock(pVM);
+
+ /*
+ * Find range location and check for conflicts.
+ * (We don't lock here because the locking by EMT is only required on update.)
+ */
+ PPGMRAMRANGE pPrev = NULL;
+ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ while (pRam && GCPhysLast >= pRam->GCPhys)
+ {
+ if ( GCPhysLast >= pRam->GCPhys
+ && GCPhys <= pRam->GCPhysLast)
+ AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
+ GCPhys, GCPhysLast, pszDesc,
+ pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
+ VERR_PGM_RAM_CONFLICT);
+
+ /* next */
+ pPrev = pRam;
+ pRam = pRam->pNextR3;
+ }
+
+ /*
+ * Register it with GMM (the API bitches).
+ */
+ const RTGCPHYS cPages = cb >> PAGE_SHIFT;
+ int rc = MMR3IncreaseBaseReservation(pVM, cPages);
+ if (RT_FAILURE(rc))
+ {
+ pgmUnlock(pVM);
+ return rc;
+ }
+
+ if ( GCPhys >= _4G
+ && cPages > 256)
+ {
+ /*
+ * The PGMRAMRANGE structures for the high memory can get very big.
+ * In order to avoid SUPR3PageAllocEx allocation failures due to the
+ * allocation size limit there and also to avoid being unable to find
+ * guest mapping space for them, we split this memory up into 4MB in
+ * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
+ * mode.
+ *
+ * The first and last page of each mapping are guard pages and marked
+ * not-present. So, we've got 4186112 and 16769024 bytes available for
+ * the PGMRAMRANGE structure.
+ *
+ * Note! The sizes used here will influence the saved state.
+ */
+ uint32_t cbChunk = 16U*_1M;
+ uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
+ AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
+ AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
+
+ RTGCPHYS cPagesLeft = cPages;
+ RTGCPHYS GCPhysChunk = GCPhys;
+ uint32_t iChunk = 0;
+ while (cPagesLeft > 0)
+ {
+ uint32_t cPagesInChunk = cPagesLeft;
+ if (cPagesInChunk > cPagesPerChunk)
+ cPagesInChunk = cPagesPerChunk;
+
+ rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
+ AssertRCReturn(rc, rc);
+
+ /* advance */
+ GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
+ cPagesLeft -= cPagesInChunk;
+ iChunk++;
+ }
+ }
+ else
+ {
+ /*
+ * Allocate, initialize and link the new RAM range.
+ */
+ const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
+ PPGMRAMRANGE pNew;
+ rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
+ AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
+
+ pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
+ }
+ pgmPhysInvalidatePageMapTLB(pVM);
+
+ /*
+ * Notify NEM while holding the lock (experimental) and REM without (like always).
+ */
+ rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb);
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
+ *
+ * We do this late in the init process so that all the ROM and MMIO ranges have
+ * been registered already and we don't go wasting memory on them.
+ *
+ * @returns VBox status code.
+ *
+ * @param pVM The cross context VM structure.
+ */
+int pgmR3PhysRamPreAllocate(PVM pVM)
+{
+ Assert(pVM->pgm.s.fRamPreAlloc);
+ Log(("pgmR3PhysRamPreAllocate: enter\n"));
+
+ /*
+ * Walk the RAM ranges and allocate all RAM pages, halt at
+ * the first allocation error.
+ */
+ uint64_t cPages = 0;
+ uint64_t NanoTS = RTTimeNanoTS();
+ pgmLock(pVM);
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
+ {
+ PPGMPAGE pPage = &pRam->aPages[0];
+ RTGCPHYS GCPhys = pRam->GCPhys;
+ uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
+ while (cLeft-- > 0)
+ {
+ if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
+ {
+ switch (PGM_PAGE_GET_STATE(pPage))
+ {
+ case PGM_PAGE_STATE_ZERO:
+ {
+ int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
+ pgmUnlock(pVM);
+ return rc;
+ }
+ cPages++;
+ break;
+ }
+
+ case PGM_PAGE_STATE_BALLOONED:
+ case PGM_PAGE_STATE_ALLOCATED:
+ case PGM_PAGE_STATE_WRITE_MONITORED:
+ case PGM_PAGE_STATE_SHARED:
+ /* nothing to do here. */
+ break;
+ }
+ }
+
+ /* next */
+ pPage++;
+ GCPhys += PAGE_SIZE;
+ }
+ }
+ pgmUnlock(pVM);
+ NanoTS = RTTimeNanoTS() - NanoTS;
+
+ LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
+ Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks shared page checksums.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
+{
+#ifdef VBOX_STRICT
+ pgmLock(pVM);
+
+ if (pVM->pgm.s.cSharedPages > 0)
+ {
+ /*
+ * Walk the ram ranges.
+ */
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
+ {
+ uint32_t iPage = pRam->cb >> PAGE_SHIFT;
+ AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
+
+ while (iPage-- > 0)
+ {
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+ if (PGM_PAGE_IS_SHARED(pPage))
+ {
+ uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
+ if (!u32Checksum)
+ {
+ RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
+ void const *pvPage;
+ int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
+ if (RT_SUCCESS(rc))
+ {
+ uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
+# if 0
+ AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
+# else
+ if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
+ LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
+ else
+ AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
+# endif
+ }
+ else
+ AssertRC(rc);
+ }
+ }
+
+ } /* for each page */
+
+ } /* for each ram range */
+ }
+
+ pgmUnlock(pVM);
+#endif /* VBOX_STRICT */
+ NOREF(pVM);
+}
+
+
+/**
+ * Resets the physical memory state.
+ *
+ * ASSUMES that the caller owns the PGM lock.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+int pgmR3PhysRamReset(PVM pVM)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+
+ /* Reset the memory balloon. */
+ int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
+ AssertRC(rc);
+
+#ifdef VBOX_WITH_PAGE_SHARING
+ /* Clear all registered shared modules. */
+ pgmR3PhysAssertSharedPageChecksums(pVM);
+ rc = GMMR3ResetSharedModules(pVM);
+ AssertRC(rc);
+#endif
+ /* Reset counters. */
+ pVM->pgm.s.cReusedSharedPages = 0;
+ pVM->pgm.s.cBalloonedPages = 0;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Resets (zeros) the RAM after all devices and components have been reset.
+ *
+ * ASSUMES that the caller owns the PGM lock.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+int pgmR3PhysRamZeroAll(PVM pVM)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+
+ /*
+ * We batch up pages that should be freed instead of calling GMM for
+ * each and every one of them.
+ */
+ uint32_t cPendingPages = 0;
+ PGMMFREEPAGESREQ pReq;
+ int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
+ AssertLogRelRCReturn(rc, rc);
+
+ /*
+ * Walk the ram ranges.
+ */
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
+ {
+ uint32_t iPage = pRam->cb >> PAGE_SHIFT;
+ AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
+
+ if ( !pVM->pgm.s.fRamPreAlloc
+ && pVM->pgm.s.fZeroRamPagesOnReset)
+ {
+ /* Replace all RAM pages by ZERO pages. */
+ while (iPage-- > 0)
+ {
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+ switch (PGM_PAGE_GET_TYPE(pPage))
+ {
+ case PGMPAGETYPE_RAM:
+ /* Do not replace pages part of a 2 MB continuous range
+ with zero pages, but zero them instead. */
+ if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
+ || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
+ {
+ void *pvPage;
+ rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
+ AssertLogRelRCReturn(rc, rc);
+ ASMMemZeroPage(pvPage);
+ }
+ else if (PGM_PAGE_IS_BALLOONED(pPage))
+ {
+ /* Turn into a zero page; the balloon status is lost when the VM reboots. */
+ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
+ }
+ else if (!PGM_PAGE_IS_ZERO(pPage))
+ {
+ rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
+ PGMPAGETYPE_RAM);
+ AssertLogRelRCReturn(rc, rc);
+ }
+ break;
+
+ case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
+ case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
+ pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
+ true /*fDoAccounting*/);
+ break;
+
+ case PGMPAGETYPE_MMIO2:
+ case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
+ case PGMPAGETYPE_ROM:
+ case PGMPAGETYPE_MMIO:
+ break;
+ default:
+ AssertFailed();
+ }
+ } /* for each page */
+ }
+ else
+ {
+ /* Zero the memory. */
+ while (iPage-- > 0)
+ {
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+ switch (PGM_PAGE_GET_TYPE(pPage))
+ {
+ case PGMPAGETYPE_RAM:
+ switch (PGM_PAGE_GET_STATE(pPage))
+ {
+ case PGM_PAGE_STATE_ZERO:
+ break;
+
+ case PGM_PAGE_STATE_BALLOONED:
+ /* Turn into a zero page; the balloon status is lost when the VM reboots. */
+ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
+ break;
+
+ case PGM_PAGE_STATE_SHARED:
+ case PGM_PAGE_STATE_WRITE_MONITORED:
+ rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
+ AssertLogRelRCReturn(rc, rc);
+ RT_FALL_THRU();
+
+ case PGM_PAGE_STATE_ALLOCATED:
+ if (pVM->pgm.s.fZeroRamPagesOnReset)
+ {
+ void *pvPage;
+ rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
+ AssertLogRelRCReturn(rc, rc);
+ ASMMemZeroPage(pvPage);
+ }
+ break;
+ }
+ break;
+
+ case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
+ case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
+ pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
+ true /*fDoAccounting*/);
+ break;
+
+ case PGMPAGETYPE_MMIO2:
+ case PGMPAGETYPE_ROM_SHADOW:
+ case PGMPAGETYPE_ROM:
+ case PGMPAGETYPE_MMIO:
+ break;
+ default:
+ AssertFailed();
+
+ }
+ } /* for each page */
+ }
+
+ }
+
+ /*
+ * Finish off any pages pending freeing.
+ */
+ if (cPendingPages)
+ {
+ rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
+ AssertLogRelRCReturn(rc, rc);
+ }
+ GMMR3FreePagesCleanup(pReq);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Frees all RAM during VM termination
+ *
+ * ASSUMES that the caller owns the PGM lock.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+int pgmR3PhysRamTerm(PVM pVM)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+
+ /* Reset the memory balloon. */
+ int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
+ AssertRC(rc);
+
+#ifdef VBOX_WITH_PAGE_SHARING
+ /*
+ * Clear all registered shared modules.
+ */
+ pgmR3PhysAssertSharedPageChecksums(pVM);
+ rc = GMMR3ResetSharedModules(pVM);
+ AssertRC(rc);
+
+ /*
+ * Flush the handy pages updates to make sure no shared pages are hiding
+ * in there. (No unlikely if the VM shuts down, apparently.)
+ */
+ rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
+#endif
+
+ /*
+ * We batch up pages that should be freed instead of calling GMM for
+ * each and every one of them.
+ */
+ uint32_t cPendingPages = 0;
+ PGMMFREEPAGESREQ pReq;
+ rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
+ AssertLogRelRCReturn(rc, rc);
+
+ /*
+ * Walk the ram ranges.
+ */
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
+ {
+ uint32_t iPage = pRam->cb >> PAGE_SHIFT;
+ AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
+
+ while (iPage-- > 0)
+ {
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+ switch (PGM_PAGE_GET_TYPE(pPage))
+ {
+ case PGMPAGETYPE_RAM:
+ /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
+ /** @todo change this to explicitly free private pages here. */
+ if (PGM_PAGE_IS_SHARED(pPage))
+ {
+ rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
+ PGMPAGETYPE_RAM);
+ AssertLogRelRCReturn(rc, rc);
+ }
+ break;
+
+ case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
+ case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
+ case PGMPAGETYPE_MMIO2:
+ case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
+ case PGMPAGETYPE_ROM:
+ case PGMPAGETYPE_MMIO:
+ break;
+ default:
+ AssertFailed();
+ }
+ } /* for each page */
+ }
+
+ /*
+ * Finish off any pages pending freeing.
+ */
+ if (cPendingPages)
+ {
+ rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
+ AssertLogRelRCReturn(rc, rc);
+ }
+ GMMR3FreePagesCleanup(pReq);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * This is the interface IOM is using to register an MMIO region.
+ *
+ * It will check for conflicts and ensure that a RAM range structure
+ * is present before calling the PGMR3HandlerPhysicalRegister API to
+ * register the callbacks.
+ *
+ * @returns VBox status code.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The start of the MMIO region.
+ * @param cb The size of the MMIO region.
+ * @param hType The physical access handler type registration.
+ * @param pvUserR3 The user argument for R3.
+ * @param pvUserR0 The user argument for R0.
+ * @param pvUserRC The user argument for RC.
+ * @param pszDesc The description of the MMIO region.
+ */
+VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
+ RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
+{
+ /*
+ * Assert on some assumption.
+ */
+ VM_ASSERT_EMT(pVM);
+ AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
+ AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
+ Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Make sure there's a RAM range structure for the region.
+ */
+ RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
+ bool fRamExists = false;
+ PPGMRAMRANGE pRamPrev = NULL;
+ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ while (pRam && GCPhysLast >= pRam->GCPhys)
+ {
+ if ( GCPhysLast >= pRam->GCPhys
+ && GCPhys <= pRam->GCPhysLast)
+ {
+ /* Simplification: all within the same range. */
+ AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
+ && GCPhysLast <= pRam->GCPhysLast,
+ ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
+ GCPhys, GCPhysLast, pszDesc,
+ pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
+ pgmUnlock(pVM),
+ VERR_PGM_RAM_CONFLICT);
+
+ /* Check that it's all RAM or MMIO pages. */
+ PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ uint32_t cLeft = cb >> PAGE_SHIFT;
+ while (cLeft-- > 0)
+ {
+ AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
+ || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
+ ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
+ GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
+ pgmUnlock(pVM),
+ VERR_PGM_RAM_CONFLICT);
+ pPage++;
+ }
+
+ /* Looks good. */
+ fRamExists = true;
+ break;
+ }
+
+ /* next */
+ pRamPrev = pRam;
+ pRam = pRam->pNextR3;
+ }
+ PPGMRAMRANGE pNew;
+ if (fRamExists)
+ {
+ pNew = NULL;
+
+ /*
+ * Make all the pages in the range MMIO/ZERO pages, freeing any
+ * RAM pages currently mapped here. This might not be 100% correct
+ * for PCI memory, but we're doing the same thing for MMIO2 pages.
+ */
+ rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
+ AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
+
+ /* Force a PGM pool flush as guest ram references have been changed. */
+ /** @todo not entirely SMP safe; assuming for now the guest takes
+ * care of this internally (not touch mapped mmio while changing the
+ * mapping). */
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ }
+ else
+ {
+
+ /*
+ * No RAM range, insert an ad hoc one.
+ *
+ * Note that we don't have to tell REM about this range because
+ * PGMHandlerPhysicalRegisterEx will do that for us.
+ */
+ Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
+
+ const uint32_t cPages = cb >> PAGE_SHIFT;
+ const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
+ rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
+ AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
+
+ /* Initialize the range. */
+ pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
+ pNew->GCPhys = GCPhys;
+ pNew->GCPhysLast = GCPhysLast;
+ pNew->cb = cb;
+ pNew->pszDesc = pszDesc;
+ pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
+ pNew->pvR3 = NULL;
+ pNew->paLSPages = NULL;
+
+ uint32_t iPage = cPages;
+ while (iPage-- > 0)
+ PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
+ Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
+
+ /* update the page count stats. */
+ pVM->pgm.s.cPureMmioPages += cPages;
+ pVM->pgm.s.cAllPages += cPages;
+
+ /* link it */
+ pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
+ }
+
+ /*
+ * Register the access handler.
+ */
+ rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
+ if ( RT_FAILURE(rc)
+ && !fRamExists)
+ {
+ pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
+ pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
+
+ /* remove the ad hoc range. */
+ pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
+ pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
+ MMHyperFree(pVM, pRam);
+ }
+ pgmPhysInvalidatePageMapTLB(pVM);
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * This is the interface IOM is using to register an MMIO region.
+ *
+ * It will take care of calling PGMHandlerPhysicalDeregister and clean up
+ * any ad hoc PGMRAMRANGE left behind.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The start of the MMIO region.
+ * @param cb The size of the MMIO region.
+ */
+VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
+{
+ VM_ASSERT_EMT(pVM);
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * First deregister the handler, then check if we should remove the ram range.
+ */
+ rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
+ if (RT_SUCCESS(rc))
+ {
+ RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
+ PPGMRAMRANGE pRamPrev = NULL;
+ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ while (pRam && GCPhysLast >= pRam->GCPhys)
+ {
+ /** @todo We're being a bit too careful here. rewrite. */
+ if ( GCPhysLast == pRam->GCPhysLast
+ && GCPhys == pRam->GCPhys)
+ {
+ Assert(pRam->cb == cb);
+
+ /*
+ * See if all the pages are dead MMIO pages.
+ */
+ uint32_t const cPages = cb >> PAGE_SHIFT;
+ bool fAllMMIO = true;
+ uint32_t iPage = 0;
+ uint32_t cLeft = cPages;
+ while (cLeft-- > 0)
+ {
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+ if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
+ /*|| not-out-of-action later */)
+ {
+ fAllMMIO = false;
+ AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
+ break;
+ }
+ Assert( PGM_PAGE_IS_ZERO(pPage)
+ || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
+ || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
+ pPage++;
+ }
+ if (fAllMMIO)
+ {
+ /*
+ * Ad-hoc range, unlink and free it.
+ */
+ Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
+ GCPhys, GCPhysLast, pRam->pszDesc));
+
+ pVM->pgm.s.cAllPages -= cPages;
+ pVM->pgm.s.cPureMmioPages -= cPages;
+
+ pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
+ pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
+ MMHyperFree(pVM, pRam);
+ break;
+ }
+ }
+
+ /*
+ * Range match? It will all be within one range (see PGMAllHandler.cpp).
+ */
+ if ( GCPhysLast >= pRam->GCPhys
+ && GCPhys <= pRam->GCPhysLast)
+ {
+ Assert(GCPhys >= pRam->GCPhys);
+ Assert(GCPhysLast <= pRam->GCPhysLast);
+
+ /*
+ * Turn the pages back into RAM pages.
+ */
+ uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
+ uint32_t cLeft = cb >> PAGE_SHIFT;
+ while (cLeft--)
+ {
+ PPGMPAGE pPage = &pRam->aPages[iPage];
+ AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
+ || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
+ || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
+ ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
+ if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
+ PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
+ }
+ break;
+ }
+
+ /* next */
+ pRamPrev = pRam;
+ pRam = pRam->pNextR3;
+ }
+ }
+
+ /* Force a PGM pool flush as guest ram references have been changed. */
+ /** @todo Not entirely SMP safe; assuming for now the guest takes care of
+ * this internally (not touch mapped mmio while changing the mapping). */
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+
+ pgmPhysInvalidatePageMapTLB(pVM);
+ pgmPhysInvalidRamRangeTlbs(pVM);
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Locate a MMIO2 range.
+ *
+ * @returns Pointer to the MMIO2 range.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the region.
+ * @param iSubDev The sub-device number.
+ * @param iRegion The region.
+ * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and
+ * @a iRegion.
+ */
+DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev,
+ uint32_t iRegion, PGMMMIO2HANDLE hMmio2)
+{
+ if (hMmio2 != NIL_PGMMMIO2HANDLE)
+ {
+ if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0)
+ {
+ PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1];
+ if (pCur && pCur->pDevInsR3 == pDevIns)
+ {
+ Assert(pCur->idMmio2 == hMmio2);
+ AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL);
+ AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
+ return pCur;
+ }
+ Assert(!pCur);
+ }
+ for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
+ if (pCur->idMmio2 == hMmio2)
+ {
+ AssertBreak(pCur->pDevInsR3 == pDevIns);
+ AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL);
+ AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
+ return pCur;
+ }
+ }
+ else
+ {
+ /*
+ * Search the list. There shouldn't be many entries.
+ */
+ /** @todo Optimize this lookup! There may now be many entries and it'll
+ * become really slow when doing MMR3HyperMapMMIO2 and similar. */
+ for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
+ if ( pCur->pDevInsR3 == pDevIns
+ && pCur->iRegion == iRegion
+ && pCur->iSubDev == iSubDev)
+ return pCur;
+ }
+ return NULL;
+}
+
+
+#ifndef PGM_WITHOUT_MAPPINGS
+/**
+ * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.}
+ * @sa pgmR3PhysRamRangeRelocate
+ */
+static DECLCALLBACK(bool) pgmR3PhysMmio2RangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
+ PGMRELOCATECALL enmMode, void *pvUser)
+{
+ PPGMREGMMIO2RANGE pMmio = (PPGMREGMMIO2RANGE)pvUser;
+ Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
+ Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange)); RT_NOREF_PV(GCPtrOld);
+
+ switch (enmMode)
+ {
+ case PGMRELOCATECALL_SUGGEST:
+ return true;
+
+ case PGMRELOCATECALL_RELOCATE:
+ {
+ /*
+ * Update myself, then relink all the ranges and flush the RC TLB.
+ */
+ pgmLock(pVM);
+
+ pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange));
+
+ pgmR3PhysRelinkRamRanges(pVM);
+ for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
+ pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
+
+ pgmUnlock(pVM);
+ return true;
+ }
+
+ default:
+ AssertFailedReturn(false);
+ }
+}
+#endif /* !PGM_WITHOUT_MAPPINGS */
+
+
+/**
+ * Calculates the number of chunks
+ *
+ * @returns Number of registration chunk needed.
+ * @param pVM The cross context VM structure.
+ * @param cb The size of the MMIO/MMIO2 range.
+ * @param pcPagesPerChunk Where to return the number of pages tracked by each
+ * chunk. Optional.
+ * @param pcbChunk Where to return the guest mapping size for a chunk.
+ */
+static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
+{
+ RT_NOREF_PV(pVM); /* without raw mode */
+
+ /*
+ * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
+ * needing a few bytes extra the PGMREGMMIO2RANGE structure.
+ *
+ * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
+ * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
+ */
+ uint32_t cbChunk = 16U*_1M;
+ uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
+ AssertCompile(sizeof(PGMREGMMIO2RANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
+ AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
+ AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
+ if (pcbChunk)
+ *pcbChunk = cbChunk;
+ if (pcPagesPerChunk)
+ *pcPagesPerChunk = cPagesPerChunk;
+
+ /* Calc the number of chunks we need. */
+ RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
+ uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
+ AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
+ return cChunks;
+}
+
+
+/**
+ * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE
+ * structures and does basic initialization.
+ *
+ * Caller must set type specfic members and initialize the PGMPAGE structures.
+ *
+ * This was previously also used by PGMR3PhysMmio2PreRegister, a function for
+ * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM
+ * interface. The reference to caller and type above is purely historical.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the region.
+ * @param iSubDev The sub-device number (internal PCI config number).
+ * @param iRegion The region number. If the MMIO2 memory is a PCI
+ * I/O region this number has to be the number of that
+ * region. Otherwise it can be any number safe
+ * UINT8_MAX.
+ * @param cb The size of the region. Must be page aligned.
+ * @param pszDesc The description.
+ * @param ppHeadRet Where to return the pointer to the first
+ * registration chunk.
+ *
+ * @thread EMT
+ */
+static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
+ const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet)
+{
+ /*
+ * Figure out how many chunks we need and of which size.
+ */
+ uint32_t cPagesPerChunk;
+ uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
+ AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
+
+ /*
+ * Allocate the chunks.
+ */
+ PPGMREGMMIO2RANGE *ppNext = ppHeadRet;
+ *ppNext = NULL;
+
+ int rc = VINF_SUCCESS;
+ uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
+ for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++)
+ {
+ /*
+ * We currently do a single RAM range for the whole thing. This will
+ * probably have to change once someone needs really large MMIO regions,
+ * as we will be running into SUPR3PageAllocEx limitations and such.
+ */
+ const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
+ const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]);
+ PPGMREGMMIO2RANGE pNew = NULL;
+ if ( iChunk + 1 < cChunks
+ || cbRange >= _1M)
+ {
+ /*
+ * Allocate memory for the registration structure.
+ */
+ size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
+ size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
+ AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
+ PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
+ AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
+ RTR0PTR R0PtrChunk = NIL_RTR0PTR;
+ void *pvChunk = NULL;
+ rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
+ AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
+
+ Assert(R0PtrChunk != NIL_RTR0PTR);
+ memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
+
+ pNew = (PPGMREGMMIO2RANGE)pvChunk;
+ pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
+ pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
+
+ RTMemTmpFree(paChunkPages);
+ }
+ /*
+ * Not so big, do a one time hyper allocation.
+ */
+ else
+ {
+ rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
+ AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
+
+ /*
+ * Initialize allocation specific items.
+ */
+ //pNew->RamRange.fFlags = 0;
+ pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
+ }
+
+ /*
+ * Initialize the registration structure (caller does specific bits).
+ */
+ pNew->pDevInsR3 = pDevIns;
+ //pNew->pvR3 = NULL;
+ //pNew->pNext = NULL;
+ //pNew->fFlags = 0;
+ if (iChunk == 0)
+ pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK;
+ if (iChunk + 1 == cChunks)
+ pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK;
+ pNew->iSubDev = iSubDev;
+ pNew->iRegion = iRegion;
+ pNew->idSavedState = UINT8_MAX;
+ pNew->idMmio2 = UINT8_MAX;
+ //pNew->pPhysHandlerR3 = NULL;
+ //pNew->paLSPages = NULL;
+ pNew->RamRange.GCPhys = NIL_RTGCPHYS;
+ pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
+ pNew->RamRange.pszDesc = pszDesc;
+ pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
+ pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
+ //pNew->RamRange.pvR3 = NULL;
+ //pNew->RamRange.paLSPages = NULL;
+
+ *ppNext = pNew;
+ ASMCompilerBarrier();
+ cPagesLeft -= cPagesTrackedByChunk;
+ ppNext = &pNew->pNextR3;
+ }
+ Assert(cPagesLeft == 0);
+
+ if (RT_SUCCESS(rc))
+ {
+ Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Free floating ranges.
+ */
+ while (*ppHeadRet)
+ {
+ PPGMREGMMIO2RANGE pFree = *ppHeadRet;
+ *ppHeadRet = pFree->pNextR3;
+
+ if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
+ {
+ const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
+ size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
+ SUPR3PageFreeEx(pFree, cChunkPages);
+ }
+ }
+
+ return rc;
+}
+
+
+/**
+ * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
+ * complete registration entry into the lists and lookup tables.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pNew The new MMIO / MMIO2 registration to link.
+ */
+static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
+{
+ /*
+ * Link it into the list (order doesn't matter, so insert it at the head).
+ *
+ * Note! The range we're linking may consist of multiple chunks, so we
+ * have to find the last one.
+ */
+ PPGMREGMMIO2RANGE pLast = pNew;
+ for (pLast = pNew; ; pLast = pLast->pNextR3)
+ {
+ if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ Assert(pLast->pNextR3);
+ Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
+ Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
+ Assert(pLast->pNextR3->iRegion == pNew->iRegion);
+ Assert((pLast->pNextR3->fFlags & PGMREGMMIO2RANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2));
+ Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? pLast->idMmio2 + 1 : UINT8_MAX));
+ }
+
+ pgmLock(pVM);
+
+ /* Link in the chain of ranges at the head of the list. */
+ pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
+ pVM->pgm.s.pRegMmioRangesR3 = pNew;
+
+ /* If MMIO, insert the MMIO2 range/page IDs. */
+ uint8_t idMmio2 = pNew->idMmio2;
+ if (idMmio2 != UINT8_MAX)
+ {
+ for (;;)
+ {
+ Assert(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2);
+ Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
+ Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
+ pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
+ pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
+ if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ pNew = pNew->pNextR3;
+ idMmio2++;
+ }
+ }
+ else
+ Assert(!(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2));
+
+ pgmPhysInvalidatePageMapTLB(pVM);
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Allocate and register an MMIO2 region.
+ *
+ * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
+ * associated with a device. It is also non-shared memory with a permanent
+ * ring-3 mapping and page backing (presently).
+ *
+ * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
+ * the VM, in which case we'll drop the base memory pages. Presently we will
+ * make no attempt to preserve anything that happens to be present in the base
+ * memory that is replaced, this is of course incorrect but it's too much
+ * effort.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
+ * memory.
+ * @retval VERR_ALREADY_EXISTS if the region already exists.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the region.
+ * @param iSubDev The sub-device number.
+ * @param iRegion The region number. If the MMIO2 memory is a PCI
+ * I/O region this number has to be the number of that
+ * region. Otherwise it can be any number save
+ * UINT8_MAX.
+ * @param cb The size of the region. Must be page aligned.
+ * @param fFlags Reserved for future use, must be zero.
+ * @param pszDesc The description.
+ * @param ppv Where to store the pointer to the ring-3 mapping of
+ * the memory.
+ * @param phRegion Where to return the MMIO2 region handle. Optional.
+ * @thread EMT
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
+ uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
+{
+ /*
+ * Validate input.
+ */
+ AssertPtrReturn(ppv, VERR_INVALID_POINTER);
+ *ppv = NULL;
+ if (phRegion)
+ {
+ AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
+ *phRegion = NIL_PGMMMIO2HANDLE;
+ }
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+ AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
+ AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
+ AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
+ AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS);
+ AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(cb, VERR_INVALID_PARAMETER);
+ AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
+
+ const uint32_t cPages = cb >> PAGE_SHIFT;
+ AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
+ AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
+ AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE);
+
+ /*
+ * For the 2nd+ instance, mangle the description string so it's unique.
+ */
+ if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
+ {
+ pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
+ if (!pszDesc)
+ return VERR_NO_MEMORY;
+ }
+
+ /*
+ * Allocate an MMIO2 range ID (not freed on failure).
+ *
+ * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
+ * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
+ */
+ unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL);
+ pgmLock(pVM);
+ uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
+ unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
+ if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
+ {
+ pgmUnlock(pVM);
+ AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
+ }
+ pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
+ pgmUnlock(pVM);
+
+ /*
+ * Try reserve and allocate the backing memory first as this is what is
+ * most likely to fail.
+ */
+ int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
+ if (RT_SUCCESS(rc))
+ {
+ PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
+ if (RT_SUCCESS(rc))
+ {
+ void *pvPages;
+#if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM)
+ RTR0PTR pvPagesR0;
+ rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages);
+#else
+ rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
+#endif
+ if (RT_SUCCESS(rc))
+ {
+ memset(pvPages, 0, cPages * PAGE_SIZE);
+
+ /*
+ * Create the registered MMIO range record for it.
+ */
+ PPGMREGMMIO2RANGE pNew;
+ rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew);
+ if (RT_SUCCESS(rc))
+ {
+ if (phRegion)
+ *phRegion = idMmio2; /* The ID of the first chunk. */
+
+ uint32_t iSrcPage = 0;
+ uint8_t *pbCurPages = (uint8_t *)pvPages;
+ for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
+ {
+ pCur->pvR3 = pbCurPages;
+#if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM)
+ pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT);
+#endif
+ pCur->RamRange.pvR3 = pbCurPages;
+ pCur->idMmio2 = idMmio2;
+ pCur->fFlags |= PGMREGMMIO2RANGE_F_MMIO2;
+
+ uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
+ while (iDstPage-- > 0)
+ {
+ PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
+ paPages[iDstPage + iSrcPage].Phys,
+ PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
+ PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
+ }
+
+ /* advance. */
+ iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
+ pbCurPages += pCur->RamRange.cb;
+ idMmio2++;
+ }
+
+ RTMemTmpFree(paPages);
+
+ /*
+ * Update the page count stats, link the registration and we're done.
+ */
+ pVM->pgm.s.cAllPages += cPages;
+ pVM->pgm.s.cPrivatePages += cPages;
+
+ pgmR3PhysMmio2Link(pVM, pNew);
+
+ *ppv = pvPages;
+ return VINF_SUCCESS;
+ }
+
+ SUPR3PageFreeEx(pvPages, cPages);
+ }
+ }
+ RTMemTmpFree(paPages);
+ MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
+ }
+ if (pDevIns->iInstance > 0)
+ MMR3HeapFree((void *)pszDesc);
+ return rc;
+}
+
+
+/**
+ * Deregisters and frees an MMIO2 region.
+ *
+ * Any physical access handlers registered for the region must be deregistered
+ * before calling this function.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the region.
+ * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
+ * regions for the given device is to be deregistered.
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
+{
+ /*
+ * Validate input.
+ */
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+
+ /*
+ * The loop here scanning all registrations will make sure that multi-chunk ranges
+ * get properly deregistered, though it's original purpose was the wildcard iRegion.
+ */
+ pgmLock(pVM);
+ int rc = VINF_SUCCESS;
+ unsigned cFound = 0;
+ PPGMREGMMIO2RANGE pPrev = NULL;
+ PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
+ while (pCur)
+ {
+ uint32_t const fFlags = pCur->fFlags;
+ if ( pCur->pDevInsR3 == pDevIns
+ && ( hMmio2 == NIL_PGMMMIO2HANDLE
+ || pCur->idMmio2 == hMmio2))
+ {
+ Assert(fFlags & PGMREGMMIO2RANGE_F_MMIO2);
+ cFound++;
+
+ /*
+ * Unmap it if it's mapped.
+ */
+ if (fFlags & PGMREGMMIO2RANGE_F_MAPPED)
+ {
+ int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys);
+ AssertRC(rc2);
+ if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
+ rc = rc2;
+ }
+
+ /*
+ * Unlink it
+ */
+ PPGMREGMMIO2RANGE pNext = pCur->pNextR3;
+ if (pPrev)
+ pPrev->pNextR3 = pNext;
+ else
+ pVM->pgm.s.pRegMmioRangesR3 = pNext;
+ pCur->pNextR3 = NULL;
+
+ uint8_t idMmio2 = pCur->idMmio2;
+ if (idMmio2 != UINT8_MAX)
+ {
+ Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
+ pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
+ pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
+ }
+
+ /*
+ * Free the memory.
+ */
+ const bool fIsMmio2 = RT_BOOL(fFlags & PGMREGMMIO2RANGE_F_MMIO2);
+ uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
+ if (fIsMmio2)
+ {
+ int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
+ AssertRC(rc2);
+ if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
+ rc = rc2;
+
+ rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
+ AssertRC(rc2);
+ if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
+ rc = rc2;
+ }
+
+ /* we're leaking hyper memory here if done at runtime. */
+#ifdef VBOX_STRICT
+ VMSTATE const enmState = VMR3GetState(pVM);
+ AssertMsg( enmState == VMSTATE_POWERING_OFF
+ || enmState == VMSTATE_POWERING_OFF_LS
+ || enmState == VMSTATE_OFF
+ || enmState == VMSTATE_OFF_LS
+ || enmState == VMSTATE_DESTROYING
+ || enmState == VMSTATE_TERMINATED
+ || enmState == VMSTATE_CREATING
+ , ("%s\n", VMR3GetStateName(enmState)));
+#endif
+
+ if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
+ {
+ const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]);
+ size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
+ SUPR3PageFreeEx(pCur, cChunkPages);
+ }
+ /*else
+ {
+ rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
+ AssertRCReturn(rc, rc);
+ } */
+
+
+ /* update page count stats */
+ pVM->pgm.s.cAllPages -= cPages;
+ if (fIsMmio2)
+ pVM->pgm.s.cPrivatePages -= cPages;
+ else
+ pVM->pgm.s.cPureMmioPages -= cPages;
+
+ /* next */
+ pCur = pNext;
+ if (hMmio2 != NIL_PGMMMIO2HANDLE)
+ {
+ if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ hMmio2++;
+ Assert(pCur->idMmio2 == hMmio2);
+ Assert(pCur->pDevInsR3 == pDevIns);
+ Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK));
+ }
+ }
+ else
+ {
+ pPrev = pCur;
+ pCur = pCur->pNextR3;
+ }
+ }
+ pgmPhysInvalidatePageMapTLB(pVM);
+ pgmUnlock(pVM);
+ return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
+}
+
+
+/**
+ * Maps a MMIO2 region.
+ *
+ * This is typically done when a guest / the bios / state loading changes the
+ * PCI config. The replacing of base memory has the same restrictions as during
+ * registration, of course.
+ *
+ * @returns VBox status code.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the region.
+ * @param hMmio2 The handle of the region to map.
+ * @param GCPhys The guest-physical address to be remapped.
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
+{
+ /*
+ * Validate input.
+ *
+ * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
+ * happens during VM construction.
+ */
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+ AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
+ AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
+ AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
+
+ PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
+ AssertReturn(pFirstMmio, VERR_NOT_FOUND);
+ Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
+
+ PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
+ RTGCPHYS cbRange = 0;
+ for (;;)
+ {
+ AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER);
+ Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
+ Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
+ Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
+ Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
+ Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
+ cbRange += pLastMmio->RamRange.cb;
+ if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ pLastMmio = pLastMmio->pNextR3;
+ }
+
+ RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
+ AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
+
+ /*
+ * Find our location in the ram range list, checking for restriction
+ * we don't bother implementing yet (partially overlapping, multiple
+ * ram ranges).
+ */
+ pgmLock(pVM);
+
+ AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER);
+
+ bool fRamExists = false;
+ PPGMRAMRANGE pRamPrev = NULL;
+ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ while (pRam && GCPhysLast >= pRam->GCPhys)
+ {
+ if ( GCPhys <= pRam->GCPhysLast
+ && GCPhysLast >= pRam->GCPhys)
+ {
+ /* Completely within? */
+ AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
+ && GCPhysLast <= pRam->GCPhysLast,
+ ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
+ GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
+ pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
+ pgmUnlock(pVM),
+ VERR_PGM_RAM_CONFLICT);
+
+ /* Check that all the pages are RAM pages. */
+ PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
+ while (cPagesLeft-- > 0)
+ {
+ AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
+ ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
+ GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
+ pgmUnlock(pVM),
+ VERR_PGM_RAM_CONFLICT);
+ pPage++;
+ }
+
+ /* There can only be one MMIO/MMIO2 chunk matching here! */
+ AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
+ ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
+ GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
+ pgmUnlock(pVM),
+ VERR_PGM_PHYS_MMIO_EX_IPE);
+
+ fRamExists = true;
+ break;
+ }
+
+ /* next */
+ pRamPrev = pRam;
+ pRam = pRam->pNextR3;
+ }
+ Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
+
+
+ /*
+ * Make the changes.
+ */
+ RTGCPHYS GCPhysCur = GCPhys;
+ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
+ {
+ pCurMmio->RamRange.GCPhys = GCPhysCur;
+ pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
+ if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ {
+ Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
+ break;
+ }
+ GCPhysCur += pCurMmio->RamRange.cb;
+ }
+
+ if (fRamExists)
+ {
+ /*
+ * Make all the pages in the range MMIO/ZERO pages, freeing any
+ * RAM pages currently mapped here. This might not be 100% correct
+ * for PCI memory, but we're doing the same thing for MMIO2 pages.
+ *
+ * We replace this MMIO/ZERO pages with real pages in the MMIO2 case.
+ */
+ Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
+
+ int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
+ AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
+
+ if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2)
+ {
+ /* replace the pages, freeing all present RAM pages. */
+ PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
+ PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
+ while (cPagesLeft-- > 0)
+ {
+ Assert(PGM_PAGE_IS_MMIO(pPageDst));
+
+ RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
+ uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
+ PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
+ PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
+ PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
+ PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
+ PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
+ PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
+ PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
+ /* (We tell NEM at the end of the function.) */
+
+ pVM->pgm.s.cZeroPages--;
+ GCPhys += PAGE_SIZE;
+ pPageSrc++;
+ pPageDst++;
+ }
+ }
+
+ /* Flush physical page map TLB. */
+ pgmPhysInvalidatePageMapTLB(pVM);
+
+ /* Force a PGM pool flush as guest ram references have been changed. */
+ /** @todo not entirely SMP safe; assuming for now the guest takes care of
+ * this internally (not touch mapped mmio while changing the mapping). */
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ }
+ else
+ {
+ /*
+ * No RAM range, insert the ones prepared during registration.
+ */
+ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
+ {
+ /* Clear the tracking data of pages we're going to reactivate. */
+ PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
+ uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
+ while (cPagesLeft-- > 0)
+ {
+ PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
+ PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
+ pPageSrc++;
+ }
+
+ /* link in the ram range */
+ pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
+
+ if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ {
+ Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
+ break;
+ }
+ pRamPrev = &pCurMmio->RamRange;
+ }
+ }
+
+ /*
+ * Register the access handler if plain MMIO.
+ *
+ * We must register access handlers for each range since the access handler
+ * code refuses to deal with multiple ranges (and we can).
+ */
+ if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2))
+ {
+ AssertFailed();
+ int rc = VINF_SUCCESS;
+ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
+ {
+ Assert(!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED));
+ rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys,
+ pCurMmio->RamRange.GCPhysLast);
+ if (RT_FAILURE(rc))
+ break;
+ pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; /* Use this to mark that the handler is registered. */
+ if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ }
+ if (RT_FAILURE(rc))
+ {
+ /* Almost impossible, but try clean up properly and get out of here. */
+ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
+ {
+ if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
+ {
+ pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_MAPPED;
+ pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists);
+ }
+
+ if (!fRamExists)
+ pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
+ else
+ {
+ Assert(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
+
+ uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
+ PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ while (cPagesLeft-- > 0)
+ {
+ PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
+ pPageDst++;
+ }
+ }
+
+ pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
+ pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
+ if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ }
+
+ pgmUnlock(pVM);
+ return rc;
+ }
+ }
+
+ /*
+ * We're good, set the flags and invalid the mapping TLB.
+ */
+ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
+ {
+ pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
+ if (fRamExists)
+ pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING;
+ else
+ pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
+ if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ }
+ pgmPhysInvalidatePageMapTLB(pVM);
+
+ /*
+ * Notify NEM while holding the lock (experimental) and REM without (like always).
+ */
+ uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
+ | (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
+ int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3);
+
+ pgmUnlock(pVM);
+
+ return rc;
+}
+
+
+/**
+ * Unmaps an MMIO2 region.
+ *
+ * This is typically done when a guest / the bios / state loading changes the
+ * PCI config. The replacing of base memory has the same restrictions as during
+ * registration, of course.
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
+{
+ /*
+ * Validate input
+ */
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+ AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
+ if (GCPhys != NIL_RTGCPHYS)
+ {
+ AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
+ AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ }
+
+ PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
+ AssertReturn(pFirstMmio, VERR_NOT_FOUND);
+ Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
+ RTGCPHYS cbRange = 0;
+ for (;;)
+ {
+ AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
+ AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, pgmUnlock(pVM), VERR_INVALID_PARAMETER);
+ Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
+ Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
+ Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
+ cbRange += pLastMmio->RamRange.cb;
+ if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ pLastMmio = pLastMmio->pNextR3;
+ }
+
+ Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n",
+ pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
+
+ uint16_t const fOldFlags = pFirstMmio->fFlags;
+ AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
+
+ /*
+ * If plain MMIO, we must deregister the handlers first.
+ */
+ if (!(fOldFlags & PGMREGMMIO2RANGE_F_MMIO2))
+ {
+ AssertFailed();
+
+ PPGMREGMMIO2RANGE pCurMmio = pFirstMmio;
+ rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING));
+ AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
+ while (!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK))
+ {
+ pCurMmio = pCurMmio->pNextR3;
+ rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING));
+ AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE);
+ }
+ }
+
+ /*
+ * Unmap it.
+ */
+ RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys;
+ if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
+ {
+ /*
+ * We've replaced RAM, replace with zero pages.
+ *
+ * Note! This is where we might differ a little from a real system, because
+ * it's likely to just show the RAM pages as they were before the
+ * MMIO/MMIO2 region was mapped here.
+ */
+ /* Only one chunk allowed when overlapping! */
+ Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK);
+
+ /* Restore the RAM pages we've replaced. */
+ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
+ pRam = pRam->pNextR3;
+
+ uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
+ if (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2)
+ pVM->pgm.s.cZeroPages += cPagesLeft;
+
+ PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ while (cPagesLeft-- > 0)
+ {
+ PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
+ pPageDst++;
+ }
+
+ /* Flush physical page map TLB. */
+ pgmPhysInvalidatePageMapTLB(pVM);
+
+ /* Update range state. */
+ pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
+ pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
+ pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
+ }
+ else
+ {
+ /*
+ * Unlink the chunks related to the MMIO/MMIO2 region.
+ */
+ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
+ {
+ pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
+ pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
+ pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
+ pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
+ if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
+ break;
+ }
+ }
+
+ /* Force a PGM pool flush as guest ram references have been changed. */
+ /** @todo not entirely SMP safe; assuming for now the guest takes care
+ * of this internally (not touch mapped mmio while changing the
+ * mapping). */
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+
+ pgmPhysInvalidatePageMapTLB(pVM);
+ pgmPhysInvalidRamRangeTlbs(pVM);
+
+ /*
+ * Notify NEM while holding the lock (experimental) and REM without (like always).
+ */
+ uint32_t const fNemFlags = (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
+ | (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
+ rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags);
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Reduces the mapping size of a MMIO2 region.
+ *
+ * This is mainly for dealing with old saved states after changing the default
+ * size of a mapping region. See PGMDevHlpMMIOExReduce and
+ * PDMPCIDEV::pfnRegionLoadChangeHookR3.
+ *
+ * The region must not currently be mapped when making this call. The VM state
+ * must be state restore or VM construction.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the region.
+ * @param hMmio2 The handle of the region to reduce.
+ * @param cbRegion The new mapping size.
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
+{
+ /*
+ * Validate input
+ */
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+ AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
+ AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
+ AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
+ VMSTATE enmVmState = VMR3GetState(pVM);
+ AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
+ || enmVmState == VMSTATE_LOADING,
+ ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
+ VERR_VM_INVALID_VM_STATE);
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
+ if (pFirstMmio)
+ {
+ Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
+ if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED))
+ {
+ /*
+ * NOTE! Current implementation does not support multiple ranges.
+ * Implement when there is a real world need and thus a testcase.
+ */
+ AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
+ ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
+ rc = VERR_NOT_SUPPORTED);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Make the change.
+ */
+ Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
+ pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
+
+ AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
+ ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
+ rc = VERR_OUT_OF_RANGE);
+ if (RT_SUCCESS(rc))
+ {
+ pFirstMmio->RamRange.cb = cbRegion;
+ }
+ }
+ }
+ else
+ rc = VERR_WRONG_ORDER;
+ }
+ else
+ rc = VERR_NOT_FOUND;
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Validates @a hMmio2, making sure it belongs to @a pDevIns.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device which allegedly owns @a hMmio2.
+ * @param hMmio2 The handle to validate.
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
+{
+ /*
+ * Validate input
+ */
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
+
+ /*
+ * Just do this the simple way. No need for locking as this is only taken at
+ */
+ pgmLock(pVM);
+ PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
+ pgmUnlock(pVM);
+ AssertReturn(pFirstMmio, VERR_INVALID_HANDLE);
+ AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2, VERR_INVALID_HANDLE);
+ AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE);
+ return VINF_SUCCESS;
+}
+
+
+#ifndef PGM_WITHOUT_MAPPINGS
+/**
+ * Gets the HC physical address of a page in the MMIO2 region.
+ *
+ * This is API is intended for MMHyper and shouldn't be called
+ * by anyone else...
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The owner of the memory, optional.
+ * @param iSubDev Sub-device number.
+ * @param iRegion The region.
+ * @param off The page expressed an offset into the MMIO2 region.
+ * @param pHCPhys Where to store the result.
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
+ RTGCPHYS off, PRTHCPHYS pHCPhys)
+{
+ /*
+ * Validate input
+ */
+ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+ AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
+ AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
+
+ pgmLock(pVM);
+ PPGMREGMMIO2RANGE pCurMmio = pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE);
+ AssertReturn(pCurMmio, VERR_NOT_FOUND);
+ AssertReturn(pCurMmio->fFlags & (PGMREGMMIO2RANGE_F_MMIO2 | PGMREGMMIO2RANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
+
+ while ( off >= pCurMmio->RamRange.cb
+ && !(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK))
+ {
+ off -= pCurMmio->RamRange.cb;
+ pCurMmio = pCurMmio->pNextR3;
+ }
+ AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER);
+
+ PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT];
+ *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+}
+#endif /* !PGM_WITHOUT_MAPPINGS */
+
+
+/**
+ * Gets the mapping address of an MMIO2 region.
+ *
+ * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device owning the MMIO2 handle.
+ * @param hMmio2 The region handle.
+ */
+VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
+{
+ AssertPtrReturn(pDevIns, NIL_RTGCPHYS);
+
+ PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
+ AssertReturn(pFirstRegMmio, NIL_RTGCPHYS);
+
+ if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
+ return pFirstRegMmio->RamRange.GCPhys;
+ return NIL_RTGCPHYS;
+}
+
+/**
+ * Changes the region number of an MMIO2 region.
+ *
+ * This is only for dealing with save state issues, nothing else.
+ *
+ * @return VBox status code.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device owning the MMIO2 memory.
+ * @param hMmio2 The handle of the region.
+ * @param iNewRegion The new region index.
+ *
+ * @thread EMT(0)
+ * @sa @bugref{9359}
+ */
+VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
+{
+ /*
+ * Validate input.
+ */
+ VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+ AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
+ AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
+
+ AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
+
+ int rc = pgmLock(pVM);
+ AssertRCReturn(rc, rc);
+
+ PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
+ AssertReturnStmt(pFirstRegMmio, pgmUnlock(pVM), VERR_NOT_FOUND);
+ AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL,
+ pgmUnlock(pVM), VERR_RESOURCE_IN_USE);
+
+ /*
+ * Make the change.
+ */
+ pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
+
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Worker for PGMR3PhysRomRegister.
+ *
+ * This is here to simplify lock management, i.e. the caller does all the
+ * locking and we can simply return without needing to remember to unlock
+ * anything first.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the ROM.
+ * @param GCPhys First physical address in the range.
+ * Must be page aligned!
+ * @param cb The size of the range (in bytes).
+ * Must be page aligned!
+ * @param pvBinary Pointer to the binary data backing the ROM image.
+ * @param cbBinary The size of the binary data pvBinary points to.
+ * This must be less or equal to @a cb.
+ * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
+ * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
+ * @param pszDesc Pointer to description string. This must not be freed.
+ */
+static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
+ const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
+{
+ /*
+ * Validate input.
+ */
+ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
+ AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
+ AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
+ RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
+ AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
+ AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
+ VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
+
+ const uint32_t cPages = cb >> PAGE_SHIFT;
+
+ /*
+ * Find the ROM location in the ROM list first.
+ */
+ PPGMROMRANGE pRomPrev = NULL;
+ PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
+ while (pRom && GCPhysLast >= pRom->GCPhys)
+ {
+ if ( GCPhys <= pRom->GCPhysLast
+ && GCPhysLast >= pRom->GCPhys)
+ AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
+ GCPhys, GCPhysLast, pszDesc,
+ pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
+ VERR_PGM_RAM_CONFLICT);
+ /* next */
+ pRomPrev = pRom;
+ pRom = pRom->pNextR3;
+ }
+
+ /*
+ * Find the RAM location and check for conflicts.
+ *
+ * Conflict detection is a bit different than for RAM
+ * registration since a ROM can be located within a RAM
+ * range. So, what we have to check for is other memory
+ * types (other than RAM that is) and that we don't span
+ * more than one RAM range (layz).
+ */
+ bool fRamExists = false;
+ PPGMRAMRANGE pRamPrev = NULL;
+ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ while (pRam && GCPhysLast >= pRam->GCPhys)
+ {
+ if ( GCPhys <= pRam->GCPhysLast
+ && GCPhysLast >= pRam->GCPhys)
+ {
+ /* completely within? */
+ AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
+ && GCPhysLast <= pRam->GCPhysLast,
+ ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
+ GCPhys, GCPhysLast, pszDesc,
+ pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
+ VERR_PGM_RAM_CONFLICT);
+ fRamExists = true;
+ break;
+ }
+
+ /* next */
+ pRamPrev = pRam;
+ pRam = pRam->pNextR3;
+ }
+ if (fRamExists)
+ {
+ PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ uint32_t cPagesLeft = cPages;
+ while (cPagesLeft-- > 0)
+ {
+ AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
+ ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
+ pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
+ pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
+ Assert(PGM_PAGE_IS_ZERO(pPage));
+ pPage++;
+ }
+ }
+
+ /*
+ * Update the base memory reservation if necessary.
+ */
+ uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
+ if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
+ cExtraBaseCost += cPages;
+ if (cExtraBaseCost)
+ {
+ int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ /*
+ * Allocate memory for the virgin copy of the RAM.
+ */
+ PGMMALLOCATEPAGESREQ pReq;
+ int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
+ AssertRCReturn(rc, rc);
+
+ for (uint32_t iPage = 0; iPage < cPages; iPage++)
+ {
+ pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
+ pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
+ pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
+ }
+
+ rc = GMMR3AllocatePagesPerform(pVM, pReq);
+ if (RT_FAILURE(rc))
+ {
+ GMMR3AllocatePagesCleanup(pReq);
+ return rc;
+ }
+
+ /*
+ * Allocate the new ROM range and RAM range (if necessary).
+ */
+ PPGMROMRANGE pRomNew;
+ rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
+ if (RT_SUCCESS(rc))
+ {
+ PPGMRAMRANGE pRamNew = NULL;
+ if (!fRamExists)
+ rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Initialize and insert the RAM range (if required).
+ */
+ PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
+ if (!fRamExists)
+ {
+ pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
+ pRamNew->GCPhys = GCPhys;
+ pRamNew->GCPhysLast = GCPhysLast;
+ pRamNew->cb = cb;
+ pRamNew->pszDesc = pszDesc;
+ pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
+ pRamNew->pvR3 = NULL;
+ pRamNew->paLSPages = NULL;
+
+ PPGMPAGE pPage = &pRamNew->aPages[0];
+ for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
+ {
+ PGM_PAGE_INIT(pPage,
+ pReq->aPages[iPage].HCPhysGCPhys,
+ pReq->aPages[iPage].idPage,
+ PGMPAGETYPE_ROM,
+ PGM_PAGE_STATE_ALLOCATED);
+
+ pRomPage->Virgin = *pPage;
+ }
+
+ pVM->pgm.s.cAllPages += cPages;
+ pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
+ }
+ else
+ {
+ PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
+ for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
+ {
+ PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
+ PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
+ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
+ PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
+ PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
+ PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
+ PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
+
+ pRomPage->Virgin = *pPage;
+ }
+
+ pRamNew = pRam;
+
+ pVM->pgm.s.cZeroPages -= cPages;
+ }
+ pVM->pgm.s.cPrivatePages += cPages;
+
+ /* Flush physical page map TLB. */
+ pgmPhysInvalidatePageMapTLB(pVM);
+
+
+ /* Notify NEM before we register handlers. */
+ uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
+ | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
+ rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify);
+
+ /* Register the ROM access handler. */
+ if (RT_SUCCESS(rc))
+ rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
+ pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
+ pszDesc);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Copy the image over to the virgin pages.
+ * This must be done after linking in the RAM range.
+ */
+ size_t cbBinaryLeft = cbBinary;
+ PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
+ for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
+ {
+ void *pvDstPage;
+ rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
+ if (RT_FAILURE(rc))
+ {
+ VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
+ break;
+ }
+ if (cbBinaryLeft >= PAGE_SIZE)
+ {
+ memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
+ cbBinaryLeft -= PAGE_SIZE;
+ }
+ else
+ {
+ ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
+ if (cbBinaryLeft > 0)
+ {
+ memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
+ cbBinaryLeft = 0;
+ }
+ }
+ }
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Initialize the ROM range.
+ * Note that the Virgin member of the pages has already been initialized above.
+ */
+ pRomNew->GCPhys = GCPhys;
+ pRomNew->GCPhysLast = GCPhysLast;
+ pRomNew->cb = cb;
+ pRomNew->fFlags = fFlags;
+ pRomNew->idSavedState = UINT8_MAX;
+ pRomNew->cbOriginal = cbBinary;
+ pRomNew->pszDesc = pszDesc;
+ pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
+ ? pvBinary : RTMemDup(pvBinary, cbBinary);
+ if (pRomNew->pvOriginal)
+ {
+ for (unsigned iPage = 0; iPage < cPages; iPage++)
+ {
+ PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
+ pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
+ PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
+ }
+
+ /* update the page count stats for the shadow pages. */
+ if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
+ {
+ pVM->pgm.s.cZeroPages += cPages;
+ pVM->pgm.s.cAllPages += cPages;
+ }
+
+ /*
+ * Insert the ROM range, tell REM and return successfully.
+ */
+ pRomNew->pNextR3 = pRom;
+ pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
+
+ if (pRomPrev)
+ {
+ pRomPrev->pNextR3 = pRomNew;
+ pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
+ }
+ else
+ {
+ pVM->pgm.s.pRomRangesR3 = pRomNew;
+ pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
+ }
+
+ pgmPhysInvalidatePageMapTLB(pVM);
+ GMMR3AllocatePagesCleanup(pReq);
+
+ /* Notify NEM again. */
+ return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify);
+ }
+
+ /* bail out */
+ rc = VERR_NO_MEMORY;
+ }
+
+ int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
+ AssertRC(rc2);
+ }
+
+ if (!fRamExists)
+ {
+ pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
+ MMHyperFree(pVM, pRamNew);
+ }
+ }
+ MMHyperFree(pVM, pRomNew);
+ }
+
+ /** @todo Purge the mapping cache or something... */
+ GMMR3FreeAllocatedPages(pVM, pReq);
+ GMMR3AllocatePagesCleanup(pReq);
+ return rc;
+}
+
+
+/**
+ * Registers a ROM image.
+ *
+ * Shadowed ROM images requires double the amount of backing memory, so,
+ * don't use that unless you have to. Shadowing of ROM images is process
+ * where we can select where the reads go and where the writes go. On real
+ * hardware the chipset provides means to configure this. We provide
+ * PGMR3PhysProtectROM() for this purpose.
+ *
+ * A read-only copy of the ROM image will always be kept around while we
+ * will allocate RAM pages for the changes on demand (unless all memory
+ * is configured to be preallocated).
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns The device instance owning the ROM.
+ * @param GCPhys First physical address in the range.
+ * Must be page aligned!
+ * @param cb The size of the range (in bytes).
+ * Must be page aligned!
+ * @param pvBinary Pointer to the binary data backing the ROM image.
+ * @param cbBinary The size of the binary data pvBinary points to.
+ * This must be less or equal to @a cb.
+ * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
+ * @param pszDesc Pointer to description string. This must not be freed.
+ *
+ * @remark There is no way to remove the rom, automatically on device cleanup or
+ * manually from the device yet. This isn't difficult in any way, it's
+ * just not something we expect to be necessary for a while.
+ */
+VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
+ const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
+{
+ Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
+ pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
+ pgmLock(pVM);
+ int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
+ * that the virgin part is untouched.
+ *
+ * This is done after the normal memory has been cleared.
+ *
+ * ASSUMES that the caller owns the PGM lock.
+ *
+ * @param pVM The cross context VM structure.
+ */
+int pgmR3PhysRomReset(PVM pVM)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
+ {
+ const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
+
+ if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
+ {
+ /*
+ * Reset the physical handler.
+ */
+ int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * What we do with the shadow pages depends on the memory
+ * preallocation option. If not enabled, we'll just throw
+ * out all the dirty pages and replace them by the zero page.
+ */
+ if (!pVM->pgm.s.fRamPreAlloc)
+ {
+ /* Free the dirty pages. */
+ uint32_t cPendingPages = 0;
+ PGMMFREEPAGESREQ pReq;
+ rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
+ AssertRCReturn(rc, rc);
+
+ for (uint32_t iPage = 0; iPage < cPages; iPage++)
+ if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
+ && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
+ {
+ Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
+ rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
+ pRom->GCPhys + (iPage << PAGE_SHIFT),
+ (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
+ AssertLogRelRCReturn(rc, rc);
+ }
+
+ if (cPendingPages)
+ {
+ rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
+ AssertLogRelRCReturn(rc, rc);
+ }
+ GMMR3FreePagesCleanup(pReq);
+ }
+ else
+ {
+ /* clear all the shadow pages. */
+ for (uint32_t iPage = 0; iPage < cPages; iPage++)
+ {
+ if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
+ continue;
+ Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
+ void *pvDstPage;
+ const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
+ rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
+ if (RT_FAILURE(rc))
+ break;
+ ASMMemZeroPage(pvDstPage);
+ }
+ AssertRCReturn(rc, rc);
+ }
+ }
+
+ /*
+ * Restore the original ROM pages after a saved state load.
+ * Also, in strict builds check that ROM pages remain unmodified.
+ */
+#ifndef VBOX_STRICT
+ if (pVM->pgm.s.fRestoreRomPagesOnReset)
+#endif
+ {
+ size_t cbSrcLeft = pRom->cbOriginal;
+ uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
+ uint32_t cRestored = 0;
+ for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
+ {
+ const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
+ void const *pvDstPage;
+ int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
+ if (RT_FAILURE(rc))
+ break;
+
+ if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
+ {
+ if (pVM->pgm.s.fRestoreRomPagesOnReset)
+ {
+ void *pvDstPageW;
+ rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
+ AssertLogRelRCReturn(rc, rc);
+ memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
+ cRestored++;
+ }
+ else
+ LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
+ }
+ cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
+ }
+ if (cRestored > 0)
+ LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
+ }
+ }
+
+ /* Clear the ROM restore flag now as we only need to do this once after
+ loading saved state. */
+ pVM->pgm.s.fRestoreRomPagesOnReset = false;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Called by PGMR3Term to free resources.
+ *
+ * ASSUMES that the caller owns the PGM lock.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void pgmR3PhysRomTerm(PVM pVM)
+{
+ /*
+ * Free the heap copy of the original bits.
+ */
+ for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
+ {
+ if ( pRom->pvOriginal
+ && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
+ {
+ RTMemFree((void *)pRom->pvOriginal);
+ pRom->pvOriginal = NULL;
+ }
+ }
+}
+
+
+/**
+ * Change the shadowing of a range of ROM pages.
+ *
+ * This is intended for implementing chipset specific memory registers
+ * and will not be very strict about the input. It will silently ignore
+ * any pages that are not the part of a shadowed ROM.
+ *
+ * @returns VBox status code.
+ * @retval VINF_PGM_SYNC_CR3
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys Where to start. Page aligned.
+ * @param cb How much to change. Page aligned.
+ * @param enmProt The new ROM protection.
+ */
+VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
+{
+ /*
+ * Check input
+ */
+ if (!cb)
+ return VINF_SUCCESS;
+ AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
+ AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
+ AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
+
+ /*
+ * Process the request.
+ */
+ pgmLock(pVM);
+ int rc = VINF_SUCCESS;
+ bool fFlushTLB = false;
+ for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
+ {
+ if ( GCPhys <= pRom->GCPhysLast
+ && GCPhysLast >= pRom->GCPhys
+ && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
+ {
+ /*
+ * Iterate the relevant pages and make necessary the changes.
+ */
+ bool fChanges = false;
+ uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
+ ? pRom->cb >> PAGE_SHIFT
+ : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
+ for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
+ iPage < cPages;
+ iPage++)
+ {
+ PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
+ if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
+ {
+ fChanges = true;
+
+ /* flush references to the page. */
+ PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
+ int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
+ true /*fFlushPTEs*/, &fFlushTLB);
+ if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
+ rc = rc2;
+ uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
+
+ PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
+ PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
+
+ *pOld = *pRamPage;
+ *pRamPage = *pNew;
+ /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
+
+ /* Tell NEM about the backing and protection change. */
+ if (VM_IS_NEM_ENABLED(pVM))
+ {
+ PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
+ NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
+ pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
+ PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
+ }
+ }
+ pRomPage->enmProt = enmProt;
+ }
+
+ /*
+ * Reset the access handler if we made changes, no need
+ * to optimize this.
+ */
+ if (fChanges)
+ {
+ int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
+ if (RT_FAILURE(rc2))
+ {
+ pgmUnlock(pVM);
+ AssertRC(rc);
+ return rc2;
+ }
+ }
+
+ /* Advance - cb isn't updated. */
+ GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
+ }
+ }
+ pgmUnlock(pVM);
+ if (fFlushTLB)
+ PGM_INVL_ALL_VCPU_TLBS(pVM);
+
+ return rc;
+}
+
+
+/**
+ * Sets the Address Gate 20 state.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fEnable True if the gate should be enabled.
+ * False if the gate should be disabled.
+ */
+VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
+{
+ LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
+ if (pVCpu->pgm.s.fA20Enabled != fEnable)
+ {
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
+ if ( CPUMIsGuestInVmxRootMode(pCtx)
+ && !fEnable)
+ {
+ Log(("Cannot enter A20M mode while in VMX root mode\n"));
+ return;
+ }
+#endif
+ pVCpu->pgm.s.fA20Enabled = fEnable;
+ pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
+ NEMR3NotifySetA20(pVCpu, fEnable);
+#ifdef PGM_WITH_A20
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ pgmR3RefreshShadowModeAfterA20Change(pVCpu);
+ HMFlushTlb(pVCpu);
+#endif
+ IEMTlbInvalidateAllPhysical(pVCpu);
+ STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
+ }
+}
+
+
+/**
+ * Tree enumeration callback for dealing with age rollover.
+ * It will perform a simple compression of the current age.
+ */
+static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
+{
+ /* Age compression - ASSUMES iNow == 4. */
+ PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
+ if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
+ pChunk->iLastUsed = 3;
+ else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
+ pChunk->iLastUsed = 2;
+ else if (pChunk->iLastUsed)
+ pChunk->iLastUsed = 1;
+ else /* iLastUsed = 0 */
+ pChunk->iLastUsed = 4;
+
+ NOREF(pvUser);
+ return 0;
+}
+
+
+/**
+ * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
+ */
+typedef struct PGMR3PHYSCHUNKUNMAPCB
+{
+ PVM pVM; /**< Pointer to the VM. */
+ PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
+} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
+
+
+/**
+ * Callback used to find the mapping that's been unused for
+ * the longest time.
+ */
+static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
+{
+ PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
+ PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
+
+ /*
+ * Check for locks and compare when last used.
+ */
+ if (pChunk->cRefs)
+ return 0;
+ if (pChunk->cPermRefs)
+ return 0;
+ if ( pArg->pChunk
+ && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
+ return 0;
+
+ /*
+ * Check that it's not in any of the TLBs.
+ */
+ PVM pVM = pArg->pVM;
+ if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
+ == pChunk->Core.Key)
+ {
+ pChunk = NULL;
+ return 0;
+ }
+#ifdef VBOX_STRICT
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
+ {
+ Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
+ Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
+ }
+#endif
+
+#ifndef VBOX_WITH_RAM_IN_KERNEL
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR0.aEntries); i++)
+ if (pVM->pgm.s.PhysTlbR0.aEntries[i].pMap == pChunk)
+ return 0;
+#endif
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
+ if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
+ return 0;
+
+ pArg->pChunk = pChunk;
+ return 0;
+}
+
+
+/**
+ * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
+ *
+ * The candidate will not be part of any TLBs, so no need to flush
+ * anything afterwards.
+ *
+ * @returns Chunk id.
+ * @param pVM The cross context VM structure.
+ */
+static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+
+ /*
+ * Enumerate the age tree starting with the left most node.
+ */
+ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
+ PGMR3PHYSCHUNKUNMAPCB Args;
+ Args.pVM = pVM;
+ Args.pChunk = NULL;
+ RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
+ Assert(Args.pChunk);
+ if (Args.pChunk)
+ {
+ Assert(Args.pChunk->cRefs == 0);
+ Assert(Args.pChunk->cPermRefs == 0);
+ STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
+ return Args.pChunk->Core.Key;
+ }
+
+ STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
+ return INT32_MAX;
+}
+
+
+/**
+ * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
+ *
+ * This is only called on one of the EMTs while the other ones are waiting for
+ * it to complete this function.
+ *
+ * @returns VINF_SUCCESS (VBox strict status code).
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
+ * @param pvUser User pointer. Unused
+ *
+ */
+static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
+{
+ int rc = VINF_SUCCESS;
+ pgmLock(pVM);
+ NOREF(pVCpu); NOREF(pvUser);
+
+ if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
+ {
+ /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
+ /** @todo also not really efficient to unmap a chunk that contains PD
+ * or PT pages. */
+ pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
+
+ /*
+ * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
+ */
+ GMMMAPUNMAPCHUNKREQ Req;
+ Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
+ Req.Hdr.cbReq = sizeof(Req);
+ Req.pvR3 = NULL;
+ Req.idChunkMap = NIL_GMM_CHUNKID;
+ Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
+ if (Req.idChunkUnmap != INT32_MAX)
+ {
+ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
+ rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
+ STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Remove the unmapped one.
+ */
+ PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
+ AssertRelease(pUnmappedChunk);
+ AssertRelease(!pUnmappedChunk->cRefs);
+ AssertRelease(!pUnmappedChunk->cPermRefs);
+ pUnmappedChunk->pv = NULL;
+ pUnmappedChunk->Core.Key = UINT32_MAX;
+#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
+ MMR3HeapFree(pUnmappedChunk);
+#else
+ MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
+#endif
+ pVM->pgm.s.ChunkR3Map.c--;
+ pVM->pgm.s.cUnmappedChunks++;
+
+ /*
+ * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
+ */
+ /** @todo We should not flush chunks which include cr3 mappings. */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
+
+ pPGM->pGst32BitPdR3 = NULL;
+ pPGM->pGstPaePdptR3 = NULL;
+ pPGM->pGstAmd64Pml4R3 = NULL;
+#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
+ pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
+ pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
+ pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
+#endif
+ for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
+ {
+ pPGM->apGstPaePDsR3[i] = NULL;
+#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
+ pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
+#endif
+ }
+
+ /* Flush REM TLBs. */
+ CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
+ }
+ }
+ }
+ }
+ pgmUnlock(pVM);
+ return rc;
+}
+
+/**
+ * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+void pgmR3PhysUnmapChunk(PVM pVM)
+{
+ int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
+ AssertRC(rc);
+}
+
+
+/**
+ * Maps the given chunk into the ring-3 mapping cache.
+ *
+ * This will call ring-0.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param idChunk The chunk in question.
+ * @param ppChunk Where to store the chunk tracking structure.
+ *
+ * @remarks Called from within the PGM critical section.
+ * @remarks Can be called from any thread!
+ */
+int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
+{
+ int rc;
+
+ PGM_LOCK_ASSERT_OWNER(pVM);
+
+ /*
+ * Move the chunk time forward.
+ */
+ pVM->pgm.s.ChunkR3Map.iNow++;
+ if (pVM->pgm.s.ChunkR3Map.iNow == 0)
+ {
+ pVM->pgm.s.ChunkR3Map.iNow = 4;
+ RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
+ }
+
+ /*
+ * Allocate a new tracking structure first.
+ */
+#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
+ PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
+#else
+ PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
+#endif
+ AssertReturn(pChunk, VERR_NO_MEMORY);
+ pChunk->Core.Key = idChunk;
+ pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
+
+ /*
+ * Request the ring-0 part to map the chunk in question.
+ */
+ GMMMAPUNMAPCHUNKREQ Req;
+ Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
+ Req.Hdr.cbReq = sizeof(Req);
+ Req.pvR3 = NULL;
+ Req.idChunkMap = idChunk;
+ Req.idChunkUnmap = NIL_GMM_CHUNKID;
+
+ /* Must be callable from any thread, so can't use VMMR3CallR0. */
+ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
+ rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
+ STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
+ if (RT_SUCCESS(rc))
+ {
+ pChunk->pv = Req.pvR3;
+
+ /*
+ * If we're running out of virtual address space, then we should
+ * unmap another chunk.
+ *
+ * Currently, an unmap operation requires that all other virtual CPUs
+ * are idling and not by chance making use of the memory we're
+ * unmapping. So, we create an async unmap operation here.
+ *
+ * Now, when creating or restoring a saved state this wont work very
+ * well since we may want to restore all guest RAM + a little something.
+ * So, we have to do the unmap synchronously. Fortunately for us
+ * though, during these operations the other virtual CPUs are inactive
+ * and it should be safe to do this.
+ */
+ /** @todo Eventually we should lock all memory when used and do
+ * map+unmap as one kernel call without any rendezvous or
+ * other precautions. */
+ if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
+ {
+ switch (VMR3GetState(pVM))
+ {
+ case VMSTATE_LOADING:
+ case VMSTATE_SAVING:
+ {
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if ( pVCpu
+ && pVM->pgm.s.cDeprecatedPageLocks == 0)
+ {
+ pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
+ break;
+ }
+ }
+ RT_FALL_THRU();
+ default:
+ rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
+ AssertRC(rc);
+ break;
+ }
+ }
+
+ /*
+ * Update the tree. We must do this after any unmapping to make sure
+ * the chunk we're going to return isn't unmapped by accident.
+ */
+ AssertPtr(Req.pvR3);
+ bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
+ AssertRelease(fRc);
+ pVM->pgm.s.ChunkR3Map.c++;
+ pVM->pgm.s.cMappedChunks++;
+ }
+ else
+ {
+ /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
+ * should probably restrict ourselves on linux. */
+ AssertRC(rc);
+#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
+ MMR3HeapFree(pChunk);
+#else
+ MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
+#endif
+ pChunk = NULL;
+ }
+
+ *ppChunk = pChunk;
+ return rc;
+}
+
+
+/**
+ * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
+ *
+ * @returns see pgmR3PhysChunkMap.
+ * @param pVM The cross context VM structure.
+ * @param idChunk The chunk to map.
+ */
+VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
+{
+ PPGMCHUNKR3MAP pChunk;
+ int rc;
+
+ pgmLock(pVM);
+ rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Invalidates the TLB for the ring-3 mapping cache.
+ *
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
+{
+ pgmLock(pVM);
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
+ {
+ pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
+ pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
+ }
+ /* The page map TLB references chunks, so invalidate that one too. */
+ pgmPhysInvalidatePageMapTLB(pVM);
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
+ * (2MB) page for use with a nested paging PDE.
+ *
+ * @returns The following VBox status codes.
+ * @retval VINF_SUCCESS on success.
+ * @retval VINF_EM_NO_MEMORY if we're out of memory.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys GC physical start address of the 2 MB range
+ */
+VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
+{
+#ifdef PGM_WITH_LARGE_PAGES
+ uint64_t u64TimeStamp1, u64TimeStamp2;
+
+ pgmLock(pVM);
+
+ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
+ u64TimeStamp1 = RTTimeMilliTS();
+ int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
+ u64TimeStamp2 = RTTimeMilliTS();
+ STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(pVM->pgm.s.cLargeHandyPages == 1);
+
+ uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
+ RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
+
+ void *pv;
+
+ /* Map the large page into our address space.
+ *
+ * Note: assuming that within the 2 MB range:
+ * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
+ * - user space mapping is continuous as well
+ * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
+ */
+ rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
+ AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
+
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Clear the pages.
+ */
+ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
+ for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
+ {
+ ASMMemZeroPage(pv);
+
+ PPGMPAGE pPage;
+ rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
+ AssertRC(rc);
+
+ Assert(PGM_PAGE_IS_ZERO(pPage));
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
+ pVM->pgm.s.cZeroPages--;
+
+ /*
+ * Do the PGMPAGE modifications.
+ */
+ pVM->pgm.s.cPrivatePages++;
+ PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
+ PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
+ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
+ PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
+ PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
+ PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
+
+ /* Somewhat dirty assumption that page ids are increasing. */
+ idPage++;
+
+ HCPhys += PAGE_SIZE;
+ GCPhys += PAGE_SIZE;
+
+ pv = (void *)((uintptr_t)pv + PAGE_SIZE);
+
+ Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
+ }
+ STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
+
+ /* Flush all TLBs. */
+ PGM_INVL_ALL_VCPU_TLBS(pVM);
+ pgmPhysInvalidatePageMapTLB(pVM);
+ }
+ pVM->pgm.s.cLargeHandyPages = 0;
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ static uint32_t cTimeOut = 0;
+ uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
+
+ if (u64TimeStampDelta > 100)
+ {
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
+ if ( ++cTimeOut > 10
+ || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
+ {
+ /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
+ * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
+ */
+ LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
+ PGMSetLargePageUsage(pVM, false);
+ }
+ }
+ else
+ if (cTimeOut > 0)
+ cTimeOut--;
+ }
+
+ pgmUnlock(pVM);
+ return rc;
+#else
+ RT_NOREF(pVM, GCPhys);
+ return VERR_NOT_IMPLEMENTED;
+#endif /* PGM_WITH_LARGE_PAGES */
+}
+
+
+/**
+ * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
+ *
+ * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
+ * signal and clear the out of memory condition. When contracted, this API is
+ * used to try clear the condition when the user wants to resume.
+ *
+ * @returns The following VBox status codes.
+ * @retval VINF_SUCCESS on success. FFs cleared.
+ * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
+ * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
+ *
+ * @param pVM The cross context VM structure.
+ *
+ * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
+ * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
+ * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
+ * handler.
+ */
+VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
+{
+ pgmLock(pVM);
+
+ /*
+ * Allocate more pages, noting down the index of the first new page.
+ */
+ uint32_t iClear = pVM->pgm.s.cHandyPages;
+ AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
+ Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
+ int rcAlloc = VINF_SUCCESS;
+ int rcSeed = VINF_SUCCESS;
+ int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
+ while (rc == VERR_GMM_SEED_ME)
+ {
+ void *pvChunk;
+ rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
+ if (RT_SUCCESS(rc))
+ {
+ rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
+ if (RT_FAILURE(rc))
+ SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
+ }
+ if (RT_SUCCESS(rc))
+ rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
+ }
+
+ /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
+ if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
+ && pVM->pgm.s.cHandyPages > 0)
+ {
+ /* Still handy pages left, so don't panic. */
+ rc = VINF_SUCCESS;
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
+ Assert(pVM->pgm.s.cHandyPages > 0);
+ VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
+ VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
+
+#ifdef VBOX_STRICT
+ uint32_t i;
+ for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
+ if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
+ || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
+ || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
+ break;
+ if (i != pVM->pgm.s.cHandyPages)
+ {
+ RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
+ RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
+ for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
+ RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
+ pVM->pgm.s.aHandyPages[j].idPage,
+ pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
+ pVM->pgm.s.aHandyPages[j].idSharedPage,
+ j == i ? " <---" : "");
+ RTAssertPanic();
+ }
+#endif
+ /*
+ * Clear the pages.
+ */
+ while (iClear < pVM->pgm.s.cHandyPages)
+ {
+ PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
+ void *pv;
+ rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
+ AssertLogRelMsgBreak(RT_SUCCESS(rc),
+ ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
+ iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
+ ASMMemZeroPage(pv);
+ iClear++;
+ Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
+ }
+ }
+ else
+ {
+ uint64_t cAllocPages, cMaxPages, cBalloonPages;
+
+ /*
+ * We should never get here unless there is a genuine shortage of
+ * memory (or some internal error). Flag the error so the VM can be
+ * suspended ASAP and the user informed. If we're totally out of
+ * handy pages we will return failure.
+ */
+ /* Report the failure. */
+ LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
+ " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
+ rc, rcAlloc, rcSeed,
+ pVM->pgm.s.cHandyPages,
+ pVM->pgm.s.cAllPages,
+ pVM->pgm.s.cPrivatePages,
+ pVM->pgm.s.cSharedPages,
+ pVM->pgm.s.cZeroPages));
+
+ if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
+ {
+ LogRel(("GMM: Statistics:\n"
+ " Allocated pages: %RX64\n"
+ " Maximum pages: %RX64\n"
+ " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
+ }
+
+ if ( rc != VERR_NO_MEMORY
+ && rc != VERR_NO_PHYS_MEMORY
+ && rc != VERR_LOCK_FAILED)
+ {
+ for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
+ {
+ LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
+ i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
+ pVM->pgm.s.aHandyPages[i].idSharedPage));
+ uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
+ if (idPage != NIL_GMM_PAGEID)
+ {
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
+ pRam;
+ pRam = pRam->pNextR3)
+ {
+ uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
+ for (uint32_t iPage = 0; iPage < cPages; iPage++)
+ if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
+ LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
+ pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
+ }
+ }
+ }
+ }
+
+ if (rc == VERR_NO_MEMORY)
+ {
+ uint64_t cbHostRamAvail = 0;
+ int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
+ if (RT_SUCCESS(rc2))
+ LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
+ else
+ LogRel(("Cannot determine the amount of available host memory\n"));
+ }
+
+ /* Set the FFs and adjust rc. */
+ VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
+ VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
+ if ( rc == VERR_NO_MEMORY
+ || rc == VERR_NO_PHYS_MEMORY
+ || rc == VERR_LOCK_FAILED)
+ rc = VINF_EM_NO_MEMORY;
+ }
+
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Frees the specified RAM page and replaces it with the ZERO page.
+ *
+ * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pReq Pointer to the request.
+ * @param pcPendingPages Where the number of pages waiting to be freed are
+ * kept. This will normally be incremented.
+ * @param pPage Pointer to the page structure.
+ * @param GCPhys The guest physical address of the page, if applicable.
+ * @param enmNewType New page type for NEM notification, since several
+ * callers will change the type upon successful return.
+ *
+ * @remarks The caller must own the PGM lock.
+ */
+int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
+ PGMPAGETYPE enmNewType)
+{
+ /*
+ * Assert sanity.
+ */
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
+ && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
+ {
+ AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
+ return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
+ }
+
+ /** @todo What about ballooning of large pages??! */
+ Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
+ && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
+
+ if ( PGM_PAGE_IS_ZERO(pPage)
+ || PGM_PAGE_IS_BALLOONED(pPage))
+ return VINF_SUCCESS;
+
+ const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
+ Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
+ if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
+ || idPage > GMM_PAGEID_LAST
+ || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
+ {
+ AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
+ return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
+ }
+ const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
+
+ /* update page count stats. */
+ if (PGM_PAGE_IS_SHARED(pPage))
+ pVM->pgm.s.cSharedPages--;
+ else
+ pVM->pgm.s.cPrivatePages--;
+ pVM->pgm.s.cZeroPages++;
+
+ /* Deal with write monitored pages. */
+ if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
+ {
+ PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
+ pVM->pgm.s.cWrittenToPages++;
+ }
+
+ /*
+ * pPage = ZERO page.
+ */
+ PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
+ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
+ PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
+ PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
+ PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
+ PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
+
+ /* Flush physical page map TLB entry. */
+ pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
+
+ /* Notify NEM. */
+ /** @todo consider doing batch NEM notifications. */
+ if (VM_IS_NEM_ENABLED(pVM))
+ {
+ uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
+ NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg,
+ pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
+ PGM_PAGE_SET_NEM_STATE(pPage, u2State);
+ }
+
+ /*
+ * Make sure it's not in the handy page array.
+ */
+ for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
+ {
+ if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
+ {
+ pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
+ break;
+ }
+ if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
+ {
+ pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
+ break;
+ }
+ }
+
+ /*
+ * Push it onto the page array.
+ */
+ uint32_t iPage = *pcPendingPages;
+ Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
+ *pcPendingPages += 1;
+
+ pReq->aPages[iPage].idPage = idPage;
+
+ if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
+ return VINF_SUCCESS;
+
+ /*
+ * Flush the pages.
+ */
+ int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
+ if (RT_SUCCESS(rc))
+ {
+ GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
+ *pcPendingPages = 0;
+ }
+ return rc;
+}
+
+
+/**
+ * Converts a GC physical address to a HC ring-3 pointer, with some
+ * additional checks.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
+ * access handler of some kind.
+ * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
+ * accesses or is odd in any way.
+ * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The GC physical address to convert. Since this is only
+ * used for filling the REM TLB, the A20 mask must be
+ * applied before calling this API.
+ * @param fWritable Whether write access is required.
+ * @param ppv Where to store the pointer corresponding to GCPhys on
+ * success.
+ */
+VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
+{
+ pgmLock(pVM);
+ PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
+
+ PPGMRAMRANGE pRam;
+ PPGMPAGE pPage;
+ int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
+ if (RT_SUCCESS(rc))
+ {
+ if (PGM_PAGE_IS_BALLOONED(pPage))
+ rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
+ else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
+ rc = VINF_SUCCESS;
+ else
+ {
+ if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
+ rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
+ else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
+ {
+ /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
+ * in -norawr0 mode. */
+ if (fWritable)
+ rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
+ }
+ else
+ {
+ /* Temporarily disabled physical handler(s), since the recompiler
+ doesn't get notified when it's reset we'll have to pretend it's
+ operating normally. */
+ if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
+ rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
+ else
+ rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
+ }
+ }
+ if (RT_SUCCESS(rc))
+ {
+ int rc2;
+
+ /* Make sure what we return is writable. */
+ if (fWritable)
+ switch (PGM_PAGE_GET_STATE(pPage))
+ {
+ case PGM_PAGE_STATE_ALLOCATED:
+ break;
+ case PGM_PAGE_STATE_BALLOONED:
+ AssertFailed();
+ break;
+ case PGM_PAGE_STATE_ZERO:
+ case PGM_PAGE_STATE_SHARED:
+ if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
+ break;
+ RT_FALL_THRU();
+ case PGM_PAGE_STATE_WRITE_MONITORED:
+ rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
+ AssertLogRelRCReturn(rc2, rc2);
+ break;
+ }
+
+ /* Get a ring-3 mapping of the address. */
+ PPGMPAGER3MAPTLBE pTlbe;
+ rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
+ AssertLogRelRCReturn(rc2, rc2);
+ *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
+ /** @todo mapping/locking hell; this isn't horribly efficient since
+ * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
+
+ Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
+ }
+ else
+ Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
+
+ /* else: handler catching all access, no pointer returned. */
+ }
+ else
+ rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
+
+ pgmUnlock(pVM);
+ return rc;
+}
+