diff options
Diffstat (limited to 'src/VBox/VMM/VMMR3/PGMPhys.cpp')
-rw-r--r-- | src/VBox/VMM/VMMR3/PGMPhys.cpp | 5486 |
1 files changed, 5486 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/PGMPhys.cpp b/src/VBox/VMM/VMMR3/PGMPhys.cpp new file mode 100644 index 00000000..29d653b6 --- /dev/null +++ b/src/VBox/VMM/VMMR3/PGMPhys.cpp @@ -0,0 +1,5486 @@ +/* $Id: PGMPhys.cpp $ */ +/** @file + * PGM - Page Manager and Monitor, Physical Memory Addressing. + */ + +/* + * Copyright (C) 2006-2020 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_PGM_PHYS +#include <VBox/vmm/pgm.h> +#include <VBox/vmm/iem.h> +#include <VBox/vmm/iom.h> +#include <VBox/vmm/mm.h> +#include <VBox/vmm/nem.h> +#include <VBox/vmm/stam.h> +#include <VBox/vmm/pdmdev.h> +#include "PGMInternal.h" +#include <VBox/vmm/vmcc.h> + +#include "PGMInline.h" + +#include <VBox/sup.h> +#include <VBox/param.h> +#include <VBox/err.h> +#include <VBox/log.h> +#include <iprt/assert.h> +#include <iprt/alloc.h> +#include <iprt/asm.h> +#ifdef VBOX_STRICT +# include <iprt/crc.h> +#endif +#include <iprt/thread.h> +#include <iprt/string.h> +#include <iprt/system.h> + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** The number of pages to free in one batch. */ +#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128 + + +/* + * PGMR3PhysReadU8-64 + * PGMR3PhysWriteU8-64 + */ +#define PGMPHYSFN_READNAME PGMR3PhysReadU8 +#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8 +#define PGMPHYS_DATASIZE 1 +#define PGMPHYS_DATATYPE uint8_t +#include "PGMPhysRWTmpl.h" + +#define PGMPHYSFN_READNAME PGMR3PhysReadU16 +#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16 +#define PGMPHYS_DATASIZE 2 +#define PGMPHYS_DATATYPE uint16_t +#include "PGMPhysRWTmpl.h" + +#define PGMPHYSFN_READNAME PGMR3PhysReadU32 +#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32 +#define PGMPHYS_DATASIZE 4 +#define PGMPHYS_DATATYPE uint32_t +#include "PGMPhysRWTmpl.h" + +#define PGMPHYSFN_READNAME PGMR3PhysReadU64 +#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64 +#define PGMPHYS_DATASIZE 8 +#define PGMPHYS_DATATYPE uint64_t +#include "PGMPhysRWTmpl.h" + + +/** + * EMT worker for PGMR3PhysReadExternal. + */ +static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead, + PGMACCESSORIGIN enmOrigin) +{ + VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin); + AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict); + return VINF_SUCCESS; +} + + +/** + * Read from physical memory, external users. + * + * @returns VBox status code. + * @retval VINF_SUCCESS. + * + * @param pVM The cross context VM structure. + * @param GCPhys Physical address to read from. + * @param pvBuf Where to read into. + * @param cbRead How many bytes to read. + * @param enmOrigin Who is calling. + * + * @thread Any but EMTs. + */ +VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin) +{ + VM_ASSERT_OTHER_THREAD(pVM); + + AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS); + LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead)); + + pgmLock(pVM); + + /* + * Copy loop on ram ranges. + */ + PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); + for (;;) + { + /* Inside range or not? */ + if (pRam && GCPhys >= pRam->GCPhys) + { + /* + * Must work our way thru this page by page. + */ + RTGCPHYS off = GCPhys - pRam->GCPhys; + while (off < pRam->cb) + { + unsigned iPage = off >> PAGE_SHIFT; + PPGMPAGE pPage = &pRam->aPages[iPage]; + + /* + * If the page has an ALL access handler, we'll have to + * delegate the job to EMT. + */ + if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) + || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage)) + { + pgmUnlock(pVM); + + return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5, + pVM, &GCPhys, pvBuf, cbRead, enmOrigin); + } + Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)); + + /* + * Simple stuff, go ahead. + */ + size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); + if (cb > cbRead) + cb = cbRead; + PGMPAGEMAPLOCK PgMpLck; + const void *pvSrc; + int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck); + if (RT_SUCCESS(rc)) + { + memcpy(pvBuf, pvSrc, cb); + pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); + } + else + { + AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n", + pRam->GCPhys + off, pPage, rc)); + memset(pvBuf, 0xff, cb); + } + + /* next page */ + if (cb >= cbRead) + { + pgmUnlock(pVM); + return VINF_SUCCESS; + } + cbRead -= cb; + off += cb; + GCPhys += cb; + pvBuf = (char *)pvBuf + cb; + } /* walk pages in ram range. */ + } + else + { + LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead)); + + /* + * Unassigned address space. + */ + size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0; + if (cb >= cbRead) + { + memset(pvBuf, 0xff, cbRead); + break; + } + memset(pvBuf, 0xff, cb); + + cbRead -= cb; + pvBuf = (char *)pvBuf + cb; + GCPhys += cb; + } + + /* Advance range if necessary. */ + while (pRam && GCPhys > pRam->GCPhysLast) + pRam = pRam->CTX_SUFF(pNext); + } /* Ram range walk */ + + pgmUnlock(pVM); + + return VINF_SUCCESS; +} + + +/** + * EMT worker for PGMR3PhysWriteExternal. + */ +static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite, + PGMACCESSORIGIN enmOrigin) +{ + /** @todo VERR_EM_NO_MEMORY */ + VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin); + AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict); + return VINF_SUCCESS; +} + + +/** + * Write to physical memory, external users. + * + * @returns VBox status code. + * @retval VINF_SUCCESS. + * @retval VERR_EM_NO_MEMORY. + * + * @param pVM The cross context VM structure. + * @param GCPhys Physical address to write to. + * @param pvBuf What to write. + * @param cbWrite How many bytes to write. + * @param enmOrigin Who is calling. + * + * @thread Any but EMTs. + */ +VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin) +{ + VM_ASSERT_OTHER_THREAD(pVM); + + AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, + ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n", + GCPhys, cbWrite, enmOrigin)); + AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS); + LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite)); + + pgmLock(pVM); + + /* + * Copy loop on ram ranges, stop when we hit something difficult. + */ + PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); + for (;;) + { + /* Inside range or not? */ + if (pRam && GCPhys >= pRam->GCPhys) + { + /* + * Must work our way thru this page by page. + */ + RTGCPTR off = GCPhys - pRam->GCPhys; + while (off < pRam->cb) + { + RTGCPTR iPage = off >> PAGE_SHIFT; + PPGMPAGE pPage = &pRam->aPages[iPage]; + + /* + * Is the page problematic, we have to do the work on the EMT. + * + * Allocating writable pages and access handlers are + * problematic, write monitored pages are simple and can be + * dealt with here. + */ + if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) + || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED + || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage)) + { + if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED + && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys); + else + { + pgmUnlock(pVM); + + return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5, + pVM, &GCPhys, pvBuf, cbWrite, enmOrigin); + } + } + Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)); + + /* + * Simple stuff, go ahead. + */ + size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); + if (cb > cbWrite) + cb = cbWrite; + PGMPAGEMAPLOCK PgMpLck; + void *pvDst; + int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck); + if (RT_SUCCESS(rc)) + { + memcpy(pvDst, pvBuf, cb); + pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); + } + else + AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", + pRam->GCPhys + off, pPage, rc)); + + /* next page */ + if (cb >= cbWrite) + { + pgmUnlock(pVM); + return VINF_SUCCESS; + } + + cbWrite -= cb; + off += cb; + GCPhys += cb; + pvBuf = (const char *)pvBuf + cb; + } /* walk pages in ram range */ + } + else + { + /* + * Unassigned address space, skip it. + */ + if (!pRam) + break; + size_t cb = pRam->GCPhys - GCPhys; + if (cb >= cbWrite) + break; + cbWrite -= cb; + pvBuf = (const char *)pvBuf + cb; + GCPhys += cb; + } + + /* Advance range if necessary. */ + while (pRam && GCPhys > pRam->GCPhysLast) + pRam = pRam->CTX_SUFF(pNext); + } /* Ram range walk */ + + pgmUnlock(pVM); + return VINF_SUCCESS; +} + + +/** + * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable. + * + * @returns see PGMR3PhysGCPhys2CCPtrExternal + * @param pVM The cross context VM structure. + * @param pGCPhys Pointer to the guest physical address. + * @param ppv Where to store the mapping address. + * @param pLock Where to store the lock. + */ +static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) +{ + /* + * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with + * an access handler after it succeeds. + */ + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock); + if (RT_SUCCESS(rc)) + { + PPGMPAGEMAPTLBE pTlbe; + int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe); + AssertFatalRC(rc2); + PPGMPAGE pPage = pTlbe->pPage; + if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) + { + PGMPhysReleasePageMappingLock(pVM, pLock); + rc = VERR_PGM_PHYS_PAGE_RESERVED; + } + else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + || pgmPoolIsDirtyPage(pVM, *pGCPhys) +#endif + ) + { + /* We *must* flush any corresponding pgm pool page here, otherwise we'll + * not be informed about writes and keep bogus gst->shw mappings around. + */ + pgmPoolFlushPageByGCPhys(pVM, *pGCPhys); + Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)); + /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has + * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */ + } + } + + pgmUnlock(pVM); + return rc; +} + + +/** + * Requests the mapping of a guest page into ring-3, external threads. + * + * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to + * release it. + * + * This API will assume your intention is to write to the page, and will + * therefore replace shared and zero pages. If you do not intend to modify the + * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical + * backing or if the page has any active access handlers. The caller + * must fall back on using PGMR3PhysWriteExternal. + * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. + * + * @param pVM The cross context VM structure. + * @param GCPhys The guest physical address of the page that should be mapped. + * @param ppv Where to store the address corresponding to GCPhys. + * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. + * + * @remark Avoid calling this API from within critical sections (other than the + * PGM one) because of the deadlock risk when we have to delegating the + * task to an EMT. + * @thread Any. + */ +VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) +{ + AssertPtr(ppv); + AssertPtr(pLock); + + Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM)); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + /* + * Query the Physical TLB entry for the page (may fail). + */ + PPGMPAGEMAPTLBE pTlbe; + rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); + if (RT_SUCCESS(rc)) + { + PPGMPAGE pPage = pTlbe->pPage; + if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) + rc = VERR_PGM_PHYS_PAGE_RESERVED; + else + { + /* + * If the page is shared, the zero page, or being write monitored + * it must be converted to an page that's writable if possible. + * We can only deal with write monitored pages here, the rest have + * to be on an EMT. + */ + if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) + || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + || pgmPoolIsDirtyPage(pVM, GCPhys) +#endif + ) + { + if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED + && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */ +#endif + ) + pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys); + else + { + pgmUnlock(pVM); + + return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4, + pVM, &GCPhys, ppv, pLock); + } + } + + /* + * Now, just perform the locking and calculate the return address. + */ + PPGMPAGEMAP pMap = pTlbe->pMap; + if (pMap) + pMap->cRefs++; + + unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage); + if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) + { + if (cLocks == 0) + pVM->pgm.s.cWriteLockedPages++; + PGM_PAGE_INC_WRITE_LOCKS(pPage); + } + else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage)) + { + PGM_PAGE_INC_WRITE_LOCKS(pPage); + AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage)); + if (pMap) + pMap->cRefs++; /* Extra ref to prevent it from going away. */ + } + + *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); + pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE; + pLock->pvMap = pMap; + } + } + + pgmUnlock(pVM); + return rc; +} + + +/** + * Requests the mapping of a guest page into ring-3, external threads. + * + * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to + * release it. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical + * backing or if the page as an active ALL access handler. The caller + * must fall back on using PGMPhysRead. + * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. + * + * @param pVM The cross context VM structure. + * @param GCPhys The guest physical address of the page that should be mapped. + * @param ppv Where to store the address corresponding to GCPhys. + * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. + * + * @remark Avoid calling this API from within critical sections (other than + * the PGM one) because of the deadlock risk. + * @thread Any. + */ +VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock) +{ + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + /* + * Query the Physical TLB entry for the page (may fail). + */ + PPGMPAGEMAPTLBE pTlbe; + rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); + if (RT_SUCCESS(rc)) + { + PPGMPAGE pPage = pTlbe->pPage; +#if 1 + /* MMIO pages doesn't have any readable backing. */ + if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) + rc = VERR_PGM_PHYS_PAGE_RESERVED; +#else + if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + rc = VERR_PGM_PHYS_PAGE_RESERVED; +#endif + else + { + /* + * Now, just perform the locking and calculate the return address. + */ + PPGMPAGEMAP pMap = pTlbe->pMap; + if (pMap) + pMap->cRefs++; + + unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage); + if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) + { + if (cLocks == 0) + pVM->pgm.s.cReadLockedPages++; + PGM_PAGE_INC_READ_LOCKS(pPage); + } + else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage)) + { + PGM_PAGE_INC_READ_LOCKS(pPage); + AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage)); + if (pMap) + pMap->cRefs++; /* Extra ref to prevent it from going away. */ + } + + *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); + pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ; + pLock->pvMap = pMap; + } + } + + pgmUnlock(pVM); + return rc; +} + + +/** + * Requests the mapping of multiple guest page into ring-3, external threads. + * + * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock() + * ASAP to release them. + * + * This API will assume your intention is to write to the pages, and will + * therefore replace shared and zero pages. If you do not intend to modify the + * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical + * backing or if any of the pages the page has any active access + * handlers. The caller must fall back on using PGMR3PhysWriteExternal. + * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains + * an invalid physical address. + * + * @param pVM The cross context VM structure. + * @param cPages Number of pages to lock. + * @param paGCPhysPages The guest physical address of the pages that + * should be mapped (@a cPages entries). + * @param papvPages Where to store the ring-3 mapping addresses + * corresponding to @a paGCPhysPages. + * @param paLocks Where to store the locking information that + * pfnPhysBulkReleasePageMappingLock needs (@a cPages + * in length). + * + * @remark Avoid calling this API from within critical sections (other than the + * PGM one) because of the deadlock risk when we have to delegating the + * task to an EMT. + * @thread Any. + */ +VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages, + void **papvPages, PPGMPAGEMAPLOCK paLocks) +{ + Assert(cPages > 0); + AssertPtr(papvPages); + AssertPtr(paLocks); + + Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM)); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + /* + * Lock the pages one by one. + * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal. + */ + int32_t cNextYield = 128; + uint32_t iPage; + for (iPage = 0; iPage < cPages; iPage++) + { + if (--cNextYield > 0) + { /* likely */ } + else + { + pgmUnlock(pVM); + ASMNopPause(); + pgmLock(pVM); + cNextYield = 128; + } + + /* + * Query the Physical TLB entry for the page (may fail). + */ + PPGMPAGEMAPTLBE pTlbe; + rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe); + if (RT_SUCCESS(rc)) + { } + else + break; + PPGMPAGE pPage = pTlbe->pPage; + + /* + * No MMIO or active access handlers. + */ + if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) + && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + { } + else + { + rc = VERR_PGM_PHYS_PAGE_RESERVED; + break; + } + + /* + * The page must be in the allocated state and not be a dirty pool page. + * We can handle converting a write monitored page to an allocated one, but + * anything more complicated must be delegated to an EMT. + */ + bool fDelegateToEmt = false; + if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED) +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]); +#else + fDelegateToEmt = false; +#endif + else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED) + { +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage])) + pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]); + else + fDelegateToEmt = true; +#endif + } + else + fDelegateToEmt = true; + if (!fDelegateToEmt) + { } + else + { + /* We could do this delegation in bulk, but considered too much work vs gain. */ + pgmUnlock(pVM); + rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4, + pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]); + pgmLock(pVM); + if (RT_FAILURE(rc)) + break; + cNextYield = 128; + } + + /* + * Now, just perform the locking and address calculation. + */ + PPGMPAGEMAP pMap = pTlbe->pMap; + if (pMap) + pMap->cRefs++; + + unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage); + if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) + { + if (cLocks == 0) + pVM->pgm.s.cWriteLockedPages++; + PGM_PAGE_INC_WRITE_LOCKS(pPage); + } + else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage)) + { + PGM_PAGE_INC_WRITE_LOCKS(pPage); + AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage)); + if (pMap) + pMap->cRefs++; /* Extra ref to prevent it from going away. */ + } + + papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK)); + paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE; + paLocks[iPage].pvMap = pMap; + } + + pgmUnlock(pVM); + + /* + * On failure we must unlock any pages we managed to get already. + */ + if (RT_FAILURE(rc) && iPage > 0) + PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks); + + return rc; +} + + +/** + * Requests the mapping of multiple guest page into ring-3, for reading only, + * external threads. + * + * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP + * to release them. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical + * backing or if any of the pages the page has an active ALL access + * handler. The caller must fall back on using PGMR3PhysWriteExternal. + * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains + * an invalid physical address. + * + * @param pVM The cross context VM structure. + * @param cPages Number of pages to lock. + * @param paGCPhysPages The guest physical address of the pages that + * should be mapped (@a cPages entries). + * @param papvPages Where to store the ring-3 mapping addresses + * corresponding to @a paGCPhysPages. + * @param paLocks Where to store the lock information that + * pfnPhysReleasePageMappingLock needs (@a cPages + * in length). + * + * @remark Avoid calling this API from within critical sections (other than + * the PGM one) because of the deadlock risk. + * @thread Any. + */ +VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages, + void const **papvPages, PPGMPAGEMAPLOCK paLocks) +{ + Assert(cPages > 0); + AssertPtr(papvPages); + AssertPtr(paLocks); + + Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM)); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + /* + * Lock the pages one by one. + * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal. + */ + int32_t cNextYield = 256; + uint32_t iPage; + for (iPage = 0; iPage < cPages; iPage++) + { + if (--cNextYield > 0) + { /* likely */ } + else + { + pgmUnlock(pVM); + ASMNopPause(); + pgmLock(pVM); + cNextYield = 256; + } + + /* + * Query the Physical TLB entry for the page (may fail). + */ + PPGMPAGEMAPTLBE pTlbe; + rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe); + if (RT_SUCCESS(rc)) + { } + else + break; + PPGMPAGE pPage = pTlbe->pPage; + + /* + * No MMIO or active all access handlers, everything else can be accessed. + */ + if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) + && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + { } + else + { + rc = VERR_PGM_PHYS_PAGE_RESERVED; + break; + } + + /* + * Now, just perform the locking and address calculation. + */ + PPGMPAGEMAP pMap = pTlbe->pMap; + if (pMap) + pMap->cRefs++; + + unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage); + if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) + { + if (cLocks == 0) + pVM->pgm.s.cReadLockedPages++; + PGM_PAGE_INC_READ_LOCKS(pPage); + } + else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage)) + { + PGM_PAGE_INC_READ_LOCKS(pPage); + AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage)); + if (pMap) + pMap->cRefs++; /* Extra ref to prevent it from going away. */ + } + + papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK)); + paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ; + paLocks[iPage].pvMap = pMap; + } + + pgmUnlock(pVM); + + /* + * On failure we must unlock any pages we managed to get already. + */ + if (RT_FAILURE(rc) && iPage > 0) + PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks); + + return rc; +} + + +#define MAKE_LEAF(a_pNode) \ + do { \ + (a_pNode)->pLeftR3 = NIL_RTR3PTR; \ + (a_pNode)->pRightR3 = NIL_RTR3PTR; \ + (a_pNode)->pLeftR0 = NIL_RTR0PTR; \ + (a_pNode)->pRightR0 = NIL_RTR0PTR; \ + } while (0) + +#define INSERT_LEFT(a_pParent, a_pNode) \ + do { \ + (a_pParent)->pLeftR3 = (a_pNode); \ + (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \ + } while (0) +#define INSERT_RIGHT(a_pParent, a_pNode) \ + do { \ + (a_pParent)->pRightR3 = (a_pNode); \ + (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \ + } while (0) + + +/** + * Recursive tree builder. + * + * @param ppRam Pointer to the iterator variable. + * @param iDepth The current depth. Inserts a leaf node if 0. + */ +static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth) +{ + PPGMRAMRANGE pRam; + if (iDepth <= 0) + { + /* + * Leaf node. + */ + pRam = *ppRam; + if (pRam) + { + *ppRam = pRam->pNextR3; + MAKE_LEAF(pRam); + } + } + else + { + + /* + * Intermediate node. + */ + PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1); + + pRam = *ppRam; + if (!pRam) + return pLeft; + *ppRam = pRam->pNextR3; + MAKE_LEAF(pRam); + INSERT_LEFT(pRam, pLeft); + + PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1); + if (pRight) + INSERT_RIGHT(pRam, pRight); + } + return pRam; +} + + +/** + * Rebuilds the RAM range search trees. + * + * @param pVM The cross context VM structure. + */ +static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM) +{ + + /* + * Create the reasonably balanced tree in a sequential fashion. + * For simplicity (laziness) we use standard recursion here. + */ + int iDepth = 0; + PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0); + while (pRam) + { + PPGMRAMRANGE pLeft = pRoot; + + pRoot = pRam; + pRam = pRam->pNextR3; + MAKE_LEAF(pRoot); + INSERT_LEFT(pRoot, pLeft); + + PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth); + if (pRight) + INSERT_RIGHT(pRoot, pRight); + /** @todo else: rotate the tree. */ + + iDepth++; + } + + pVM->pgm.s.pRamRangeTreeR3 = pRoot; + pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR; + +#ifdef VBOX_STRICT + /* + * Verify that the above code works. + */ + unsigned cRanges = 0; + for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) + cRanges++; + Assert(cRanges > 0); + + unsigned cMaxDepth = ASMBitLastSetU32(cRanges); + if ((1U << cMaxDepth) < cRanges) + cMaxDepth++; + + for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) + { + unsigned cDepth = 0; + PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3; + for (;;) + { + if (pRam == pRam2) + break; + Assert(pRam2); + if (pRam->GCPhys < pRam2->GCPhys) + pRam2 = pRam2->pLeftR3; + else + pRam2 = pRam2->pRightR3; + } + AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth)); + } +#endif /* VBOX_STRICT */ +} + +#undef MAKE_LEAF +#undef INSERT_LEFT +#undef INSERT_RIGHT + +/** + * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers. + * + * Called when anything was relocated. + * + * @param pVM The cross context VM structure. + */ +void pgmR3PhysRelinkRamRanges(PVM pVM) +{ + PPGMRAMRANGE pCur; + +#ifdef VBOX_STRICT + for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3) + { + Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur)); + Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0); + Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); + Assert((pCur->cb & PAGE_OFFSET_MASK) == 0); + Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1); + for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3) + Assert( pCur2 == pCur + || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */ + } +#endif + + pCur = pVM->pgm.s.pRamRangesXR3; + if (pCur) + { + pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0; + + for (; pCur->pNextR3; pCur = pCur->pNextR3) + pCur->pNextR0 = pCur->pNextR3->pSelfR0; + + Assert(pCur->pNextR0 == NIL_RTR0PTR); + } + else + { + Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR); + } + ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); + + pgmR3PhysRebuildRamRangeSearchTrees(pVM); +} + + +/** + * Links a new RAM range into the list. + * + * @param pVM The cross context VM structure. + * @param pNew Pointer to the new list entry. + * @param pPrev Pointer to the previous list entry. If NULL, insert as head. + */ +static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev) +{ + AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast)); + Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew)); + + pgmLock(pVM); + + PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3; + pNew->pNextR3 = pRam; + pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR; + + if (pPrev) + { + pPrev->pNextR3 = pNew; + pPrev->pNextR0 = pNew->pSelfR0; + } + else + { + pVM->pgm.s.pRamRangesXR3 = pNew; + pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0; + } + ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); + + pgmR3PhysRebuildRamRangeSearchTrees(pVM); + pgmUnlock(pVM); +} + + +/** + * Unlink an existing RAM range from the list. + * + * @param pVM The cross context VM structure. + * @param pRam Pointer to the new list entry. + * @param pPrev Pointer to the previous list entry. If NULL, insert as head. + */ +static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev) +{ + Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam); + Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam)); + + pgmLock(pVM); + + PPGMRAMRANGE pNext = pRam->pNextR3; + if (pPrev) + { + pPrev->pNextR3 = pNext; + pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR; + } + else + { + Assert(pVM->pgm.s.pRamRangesXR3 == pRam); + pVM->pgm.s.pRamRangesXR3 = pNext; + pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR; + } + ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); + + pgmR3PhysRebuildRamRangeSearchTrees(pVM); + pgmUnlock(pVM); +} + + +/** + * Unlink an existing RAM range from the list. + * + * @param pVM The cross context VM structure. + * @param pRam Pointer to the new list entry. + */ +static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam) +{ + pgmLock(pVM); + + /* find prev. */ + PPGMRAMRANGE pPrev = NULL; + PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; + while (pCur != pRam) + { + pPrev = pCur; + pCur = pCur->pNextR3; + } + AssertFatal(pCur); + + pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev); + pgmUnlock(pVM); +} + + +/** + * Frees a range of pages, replacing them with ZERO pages of the specified type. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pRam The RAM range in which the pages resides. + * @param GCPhys The address of the first page. + * @param GCPhysLast The address of the last page. + * @param enmType The page type to replace then with. + */ +static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + uint32_t cPendingPages = 0; + PGMMFREEPAGESREQ pReq; + int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); + AssertLogRelRCReturn(rc, rc); + + /* Iterate the pages. */ + PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1; + while (cPagesLeft-- > 0) + { + rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType); + AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */ + + PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType); + + GCPhys += PAGE_SIZE; + pPageDst++; + } + + if (cPendingPages) + { + rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); + AssertLogRelRCReturn(rc, rc); + } + GMMR3FreePagesCleanup(pReq); + + return rc; +} + +#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD)) + +/** + * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size + * + * This is only called on one of the EMTs while the other ones are waiting for + * it to complete this function. + * + * @returns VINF_SUCCESS (VBox strict status code). + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. + * @param pvUser User parameter + */ +static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) +{ + uintptr_t *paUser = (uintptr_t *)pvUser; + bool fInflate = !!paUser[0]; + unsigned cPages = paUser[1]; + RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2]; + uint32_t cPendingPages = 0; + PGMMFREEPAGESREQ pReq; + int rc; + + Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages)); + pgmLock(pVM); + + if (fInflate) + { + /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */ + pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL); + + /* Replace pages with ZERO pages. */ + rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); + if (RT_FAILURE(rc)) + { + pgmUnlock(pVM); + AssertLogRelRC(rc); + return rc; + } + + /* Iterate the pages. */ + for (unsigned i = 0; i < cPages; i++) + { + PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]); + if ( pPage == NULL + || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM) + { + Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0)); + break; + } + + LogFlow(("balloon page: %RGp\n", paPhysPage[i])); + + /* Flush the shadow PT if this page was previously used as a guest page table. */ + pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]); + + rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage)); + if (RT_FAILURE(rc)) + { + pgmUnlock(pVM); + AssertLogRelRC(rc); + return rc; + } + Assert(PGM_PAGE_IS_ZERO(pPage)); + PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED); + } + + if (cPendingPages) + { + rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); + if (RT_FAILURE(rc)) + { + pgmUnlock(pVM); + AssertLogRelRC(rc); + return rc; + } + } + GMMR3FreePagesCleanup(pReq); + } + else + { + /* Iterate the pages. */ + for (unsigned i = 0; i < cPages; i++) + { + PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]); + AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM); + + LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i])); + + Assert(PGM_PAGE_IS_BALLOONED(pPage)); + + /* Change back to zero page. (NEM does not need to be informed.) */ + PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); + } + + /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */ + } + + /* Notify GMM about the balloon change. */ + rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages); + if (RT_SUCCESS(rc)) + { + if (!fInflate) + { + Assert(pVM->pgm.s.cBalloonedPages >= cPages); + pVM->pgm.s.cBalloonedPages -= cPages; + } + else + pVM->pgm.s.cBalloonedPages += cPages; + } + + pgmUnlock(pVM); + + /* Flush the recompiler's TLB as well. */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH); + + AssertLogRelRC(rc); + return rc; +} + + +/** + * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param fInflate Inflate or deflate memory balloon + * @param cPages Number of pages to free + * @param paPhysPage Array of guest physical addresses + */ +static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage) +{ + uintptr_t paUser[3]; + + paUser[0] = fInflate; + paUser[1] = cPages; + paUser[2] = (uintptr_t)paPhysPage; + int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser); + AssertRC(rc); + + /* Made a copy in PGMR3PhysFreeRamPages; free it here. */ + RTMemFree(paPhysPage); +} + +#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */ + +/** + * Inflate or deflate a memory balloon + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param fInflate Inflate or deflate memory balloon + * @param cPages Number of pages to free + * @param paPhysPage Array of guest physical addresses + */ +VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage) +{ + /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */ +#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD)) + int rc; + + /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */ + AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER); + + /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock. + * In the SMP case we post a request packet to postpone the job. + */ + if (pVM->cCpus > 1) + { + unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]); + RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage); + AssertReturn(paPhysPageCopy, VERR_NO_MEMORY); + + memcpy(paPhysPageCopy, paPhysPage, cbPhysPage); + + rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy); + AssertRC(rc); + } + else + { + uintptr_t paUser[3]; + + paUser[0] = fInflate; + paUser[1] = cPages; + paUser[2] = (uintptr_t)paPhysPage; + rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser); + AssertRC(rc); + } + return rc; + +#else + NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +/** + * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all + * physical RAM. + * + * This is only called on one of the EMTs while the other ones are waiting for + * it to complete this function. + * + * @returns VINF_SUCCESS (VBox strict status code). + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. + * @param pvUser User parameter, unused. + */ +static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) +{ + int rc = VINF_SUCCESS; + NOREF(pvUser); NOREF(pVCpu); + + pgmLock(pVM); +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + pgmPoolResetDirtyPages(pVM); +#endif + + /** @todo pointless to write protect the physical page pointed to by RSP. */ + + for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); + pRam; + pRam = pRam->CTX_SUFF(pNext)) + { + uint32_t cPages = pRam->cb >> PAGE_SHIFT; + for (uint32_t iPage = 0; iPage < cPages; iPage++) + { + PPGMPAGE pPage = &pRam->aPages[iPage]; + PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage); + + if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM) + || enmPageType == PGMPAGETYPE_MMIO2) + { + /* + * A RAM page. + */ + switch (PGM_PAGE_GET_STATE(pPage)) + { + case PGM_PAGE_STATE_ALLOCATED: + /** @todo Optimize this: Don't always re-enable write + * monitoring if the page is known to be very busy. */ + if (PGM_PAGE_IS_WRITTEN_TO(pPage)) + PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage); + + pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT)); + break; + + case PGM_PAGE_STATE_SHARED: + AssertFailed(); + break; + + case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */ + default: + break; + } + } + } + } + pgmR3PoolWriteProtectPages(pVM); + PGM_INVL_ALL_VCPU_TLBS(pVM); + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); + + pgmUnlock(pVM); + return rc; +} + +/** + * Protect all physical RAM to monitor writes + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM) +{ + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + + int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL); + AssertRC(rc); + return rc; +} + + +/** + * Gets the number of ram ranges. + * + * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid. + * @param pVM The cross context VM structure. + */ +VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM) +{ + VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX); + + pgmLock(pVM); + uint32_t cRamRanges = 0; + for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext)) + cRamRanges++; + pgmUnlock(pVM); + return cRamRanges; +} + + +/** + * Get information about a range. + * + * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE. + * @param pVM The cross context VM structure. + * @param iRange The ordinal of the range. + * @param pGCPhysStart Where to return the start of the range. Optional. + * @param pGCPhysLast Where to return the address of the last byte in the + * range. Optional. + * @param ppszDesc Where to return the range description. Optional. + * @param pfIsMmio Where to indicate that this is a pure MMIO range. + * Optional. + */ +VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast, + const char **ppszDesc, bool *pfIsMmio) +{ + VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); + + pgmLock(pVM); + uint32_t iCurRange = 0; + for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++) + if (iCurRange == iRange) + { + if (pGCPhysStart) + *pGCPhysStart = pCur->GCPhys; + if (pGCPhysLast) + *pGCPhysLast = pCur->GCPhysLast; + if (ppszDesc) + *ppszDesc = pCur->pszDesc; + if (pfIsMmio) + *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO); + + pgmUnlock(pVM); + return VINF_SUCCESS; + } + pgmUnlock(pVM); + return VERR_OUT_OF_RANGE; +} + + +/** + * Query the amount of free memory inside VMMR0 + * + * @returns VBox status code. + * @param pUVM The user mode VM handle. + * @param pcbAllocMem Where to return the amount of memory allocated + * by VMs. + * @param pcbFreeMem Where to return the amount of memory that is + * allocated from the host but not currently used + * by any VMs. + * @param pcbBallonedMem Where to return the sum of memory that is + * currently ballooned by the VMs. + * @param pcbSharedMem Where to return the amount of memory that is + * currently shared. + */ +VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem, + uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); + VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE); + + uint64_t cAllocPages = 0; + uint64_t cFreePages = 0; + uint64_t cBalloonPages = 0; + uint64_t cSharedPages = 0; + int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages); + AssertRCReturn(rc, rc); + + if (pcbAllocMem) + *pcbAllocMem = cAllocPages * _4K; + + if (pcbFreeMem) + *pcbFreeMem = cFreePages * _4K; + + if (pcbBallonedMem) + *pcbBallonedMem = cBalloonPages * _4K; + + if (pcbSharedMem) + *pcbSharedMem = cSharedPages * _4K; + + Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n", + cAllocPages, cFreePages, cBalloonPages, cSharedPages)); + return VINF_SUCCESS; +} + + +/** + * Query memory stats for the VM. + * + * @returns VBox status code. + * @param pUVM The user mode VM handle. + * @param pcbTotalMem Where to return total amount memory the VM may + * possibly use. + * @param pcbPrivateMem Where to return the amount of private memory + * currently allocated. + * @param pcbSharedMem Where to return the amount of actually shared + * memory currently used by the VM. + * @param pcbZeroMem Where to return the amount of memory backed by + * zero pages. + * + * @remarks The total mem is normally larger than the sum of the three + * components. There are two reasons for this, first the amount of + * shared memory is what we're sure is shared instead of what could + * possibly be shared with someone. Secondly, because the total may + * include some pure MMIO pages that doesn't go into any of the three + * sub-counts. + * + * @todo Why do we return reused shared pages instead of anything that could + * potentially be shared? Doesn't this mean the first VM gets a much + * lower number of shared pages? + */ +VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem, + uint64_t *pcbSharedMem, uint64_t *pcbZeroMem) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); + + if (pcbTotalMem) + *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE; + + if (pcbPrivateMem) + *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE; + + if (pcbSharedMem) + *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE; + + if (pcbZeroMem) + *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE; + + Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages)); + return VINF_SUCCESS; +} + + +/** + * PGMR3PhysRegisterRam worker that initializes and links a RAM range. + * + * @param pVM The cross context VM structure. + * @param pNew The new RAM range. + * @param GCPhys The address of the RAM range. + * @param GCPhysLast The last address of the RAM range. + * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR + * if in HMA. + * @param R0PtrNew Ditto for R0. + * @param pszDesc The description. + * @param pPrev The previous RAM range (for linking). + */ +static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, + RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev) +{ + /* + * Initialize the range. + */ + pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew); + pNew->GCPhys = GCPhys; + pNew->GCPhysLast = GCPhysLast; + pNew->cb = GCPhysLast - GCPhys + 1; + pNew->pszDesc = pszDesc; + pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0; + pNew->pvR3 = NULL; + pNew->paLSPages = NULL; + + uint32_t const cPages = pNew->cb >> PAGE_SHIFT; + RTGCPHYS iPage = cPages; + while (iPage-- > 0) + PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM); + + /* Update the page count stats. */ + pVM->pgm.s.cZeroPages += cPages; + pVM->pgm.s.cAllPages += cPages; + + /* + * Link it. + */ + pgmR3PhysLinkRamRange(pVM, pNew, pPrev); +} + + +#ifndef PGM_WITHOUT_MAPPINGS +/** + * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.} + * @sa pgmR3PhysMMIO2ExRangeRelocate + */ +static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, + PGMRELOCATECALL enmMode, void *pvUser) +{ + PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser; + Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING); + Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld); + + switch (enmMode) + { + case PGMRELOCATECALL_SUGGEST: + return true; + + case PGMRELOCATECALL_RELOCATE: + { + /* + * Update myself, then relink all the ranges and flush the RC TLB. + */ + pgmLock(pVM); + + pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE); + + pgmR3PhysRelinkRamRanges(pVM); + for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++) + pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR; + + pgmUnlock(pVM); + return true; + } + + default: + AssertFailedReturn(false); + } +} +#endif /* !PGM_WITHOUT_MAPPINGS */ + + +/** + * PGMR3PhysRegisterRam worker that registers a high chunk. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param GCPhys The address of the RAM. + * @param cRamPages The number of RAM pages to register. + * @param cbChunk The size of the PGMRAMRANGE guest mapping. + * @param iChunk The chunk number. + * @param pszDesc The RAM range description. + * @param ppPrev Previous RAM range pointer. In/Out. + */ +static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages, + uint32_t cbChunk, uint32_t iChunk, const char *pszDesc, + PPGMRAMRANGE *ppPrev) +{ + const char *pszDescChunk = iChunk == 0 + ? pszDesc + : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1); + AssertReturn(pszDescChunk, VERR_NO_MEMORY); + + /* + * Allocate memory for the new chunk. + */ + size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT; + PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages); + AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY); + RTR0PTR R0PtrChunk = NIL_RTR0PTR; + void *pvChunk = NULL; + int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages); + if (RT_SUCCESS(rc)) + { + Assert(R0PtrChunk != NIL_RTR0PTR); + memset(pvChunk, 0, cChunkPages << PAGE_SHIFT); + + PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk; + + /* + * Create a mapping and map the pages into it. + * We push these in below the HMA. + */ + RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk; +#ifndef PGM_WITHOUT_MAPPINGS + rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk); + if (RT_SUCCESS(rc)) +#endif /* !PGM_WITHOUT_MAPPINGS */ + { + pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap; + + RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE; +#ifndef PGM_WITHOUT_MAPPINGS + RTGCPTR GCPtrPage = GCPtrChunk; + for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE) + rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0); + if (RT_SUCCESS(rc)) +#endif /* !PGM_WITHOUT_MAPPINGS */ + { + /* + * Ok, init and link the range. + */ + pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1, + (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev); + *ppPrev = pNew; + } + } + + if (RT_FAILURE(rc)) + SUPR3PageFreeEx(pvChunk, cChunkPages); + } + + RTMemTmpFree(paChunkPages); + return rc; +} + + +/** + * Sets up a range RAM. + * + * This will check for conflicting registrations, make a resource + * reservation for the memory (with GMM), and setup the per-page + * tracking structures (PGMPAGE). + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param GCPhys The physical address of the RAM. + * @param cb The size of the RAM. + * @param pszDesc The description - not copied, so, don't free or change it. + */ +VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc) +{ + /* + * Validate input. + */ + Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc)); + AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); + AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER); + AssertReturn(cb > 0, VERR_INVALID_PARAMETER); + RTGCPHYS GCPhysLast = GCPhys + (cb - 1); + AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER); + AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + + pgmLock(pVM); + + /* + * Find range location and check for conflicts. + * (We don't lock here because the locking by EMT is only required on update.) + */ + PPGMRAMRANGE pPrev = NULL; + PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + while (pRam && GCPhysLast >= pRam->GCPhys) + { + if ( GCPhysLast >= pRam->GCPhys + && GCPhys <= pRam->GCPhysLast) + AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n", + GCPhys, GCPhysLast, pszDesc, + pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), + VERR_PGM_RAM_CONFLICT); + + /* next */ + pPrev = pRam; + pRam = pRam->pNextR3; + } + + /* + * Register it with GMM (the API bitches). + */ + const RTGCPHYS cPages = cb >> PAGE_SHIFT; + int rc = MMR3IncreaseBaseReservation(pVM, cPages); + if (RT_FAILURE(rc)) + { + pgmUnlock(pVM); + return rc; + } + + if ( GCPhys >= _4G + && cPages > 256) + { + /* + * The PGMRAMRANGE structures for the high memory can get very big. + * In order to avoid SUPR3PageAllocEx allocation failures due to the + * allocation size limit there and also to avoid being unable to find + * guest mapping space for them, we split this memory up into 4MB in + * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x + * mode. + * + * The first and last page of each mapping are guard pages and marked + * not-present. So, we've got 4186112 and 16769024 bytes available for + * the PGMRAMRANGE structure. + * + * Note! The sizes used here will influence the saved state. + */ + uint32_t cbChunk = 16U*_1M; + uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */ + AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2); + AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk); + + RTGCPHYS cPagesLeft = cPages; + RTGCPHYS GCPhysChunk = GCPhys; + uint32_t iChunk = 0; + while (cPagesLeft > 0) + { + uint32_t cPagesInChunk = cPagesLeft; + if (cPagesInChunk > cPagesPerChunk) + cPagesInChunk = cPagesPerChunk; + + rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev); + AssertRCReturn(rc, rc); + + /* advance */ + GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT; + cPagesLeft -= cPagesInChunk; + iChunk++; + } + } + else + { + /* + * Allocate, initialize and link the new RAM range. + */ + const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]); + PPGMRAMRANGE pNew; + rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew); + AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc); + + pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev); + } + pgmPhysInvalidatePageMapTLB(pVM); + + /* + * Notify NEM while holding the lock (experimental) and REM without (like always). + */ + rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb); + pgmUnlock(pVM); + return rc; +} + + +/** + * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM. + * + * We do this late in the init process so that all the ROM and MMIO ranges have + * been registered already and we don't go wasting memory on them. + * + * @returns VBox status code. + * + * @param pVM The cross context VM structure. + */ +int pgmR3PhysRamPreAllocate(PVM pVM) +{ + Assert(pVM->pgm.s.fRamPreAlloc); + Log(("pgmR3PhysRamPreAllocate: enter\n")); + + /* + * Walk the RAM ranges and allocate all RAM pages, halt at + * the first allocation error. + */ + uint64_t cPages = 0; + uint64_t NanoTS = RTTimeNanoTS(); + pgmLock(pVM); + for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) + { + PPGMPAGE pPage = &pRam->aPages[0]; + RTGCPHYS GCPhys = pRam->GCPhys; + uint32_t cLeft = pRam->cb >> PAGE_SHIFT; + while (cLeft-- > 0) + { + if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) + { + switch (PGM_PAGE_GET_STATE(pPage)) + { + case PGM_PAGE_STATE_ZERO: + { + int rc = pgmPhysAllocPage(pVM, pPage, GCPhys); + if (RT_FAILURE(rc)) + { + LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc)); + pgmUnlock(pVM); + return rc; + } + cPages++; + break; + } + + case PGM_PAGE_STATE_BALLOONED: + case PGM_PAGE_STATE_ALLOCATED: + case PGM_PAGE_STATE_WRITE_MONITORED: + case PGM_PAGE_STATE_SHARED: + /* nothing to do here. */ + break; + } + } + + /* next */ + pPage++; + GCPhys += PAGE_SIZE; + } + } + pgmUnlock(pVM); + NanoTS = RTTimeNanoTS() - NanoTS; + + LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000)); + Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n")); + return VINF_SUCCESS; +} + + +/** + * Checks shared page checksums. + * + * @param pVM The cross context VM structure. + */ +void pgmR3PhysAssertSharedPageChecksums(PVM pVM) +{ +#ifdef VBOX_STRICT + pgmLock(pVM); + + if (pVM->pgm.s.cSharedPages > 0) + { + /* + * Walk the ram ranges. + */ + for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) + { + uint32_t iPage = pRam->cb >> PAGE_SHIFT; + AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb)); + + while (iPage-- > 0) + { + PPGMPAGE pPage = &pRam->aPages[iPage]; + if (PGM_PAGE_IS_SHARED(pPage)) + { + uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/; + if (!u32Checksum) + { + RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT); + void const *pvPage; + int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage); + if (RT_SUCCESS(rc)) + { + uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE); +# if 0 + AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage)); +# else + if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum) + LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2)); + else + AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2)); +# endif + } + else + AssertRC(rc); + } + } + + } /* for each page */ + + } /* for each ram range */ + } + + pgmUnlock(pVM); +#endif /* VBOX_STRICT */ + NOREF(pVM); +} + + +/** + * Resets the physical memory state. + * + * ASSUMES that the caller owns the PGM lock. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +int pgmR3PhysRamReset(PVM pVM) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + + /* Reset the memory balloon. */ + int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0); + AssertRC(rc); + +#ifdef VBOX_WITH_PAGE_SHARING + /* Clear all registered shared modules. */ + pgmR3PhysAssertSharedPageChecksums(pVM); + rc = GMMR3ResetSharedModules(pVM); + AssertRC(rc); +#endif + /* Reset counters. */ + pVM->pgm.s.cReusedSharedPages = 0; + pVM->pgm.s.cBalloonedPages = 0; + + return VINF_SUCCESS; +} + + +/** + * Resets (zeros) the RAM after all devices and components have been reset. + * + * ASSUMES that the caller owns the PGM lock. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +int pgmR3PhysRamZeroAll(PVM pVM) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + + /* + * We batch up pages that should be freed instead of calling GMM for + * each and every one of them. + */ + uint32_t cPendingPages = 0; + PGMMFREEPAGESREQ pReq; + int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); + AssertLogRelRCReturn(rc, rc); + + /* + * Walk the ram ranges. + */ + for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) + { + uint32_t iPage = pRam->cb >> PAGE_SHIFT; + AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb)); + + if ( !pVM->pgm.s.fRamPreAlloc + && pVM->pgm.s.fZeroRamPagesOnReset) + { + /* Replace all RAM pages by ZERO pages. */ + while (iPage-- > 0) + { + PPGMPAGE pPage = &pRam->aPages[iPage]; + switch (PGM_PAGE_GET_TYPE(pPage)) + { + case PGMPAGETYPE_RAM: + /* Do not replace pages part of a 2 MB continuous range + with zero pages, but zero them instead. */ + if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE + || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED) + { + void *pvPage; + rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage); + AssertLogRelRCReturn(rc, rc); + ASMMemZeroPage(pvPage); + } + else if (PGM_PAGE_IS_BALLOONED(pPage)) + { + /* Turn into a zero page; the balloon status is lost when the VM reboots. */ + PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); + } + else if (!PGM_PAGE_IS_ZERO(pPage)) + { + rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), + PGMPAGETYPE_RAM); + AssertLogRelRCReturn(rc, rc); + } + break; + + case PGMPAGETYPE_MMIO2_ALIAS_MMIO: + case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */ + pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), + true /*fDoAccounting*/); + break; + + case PGMPAGETYPE_MMIO2: + case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */ + case PGMPAGETYPE_ROM: + case PGMPAGETYPE_MMIO: + break; + default: + AssertFailed(); + } + } /* for each page */ + } + else + { + /* Zero the memory. */ + while (iPage-- > 0) + { + PPGMPAGE pPage = &pRam->aPages[iPage]; + switch (PGM_PAGE_GET_TYPE(pPage)) + { + case PGMPAGETYPE_RAM: + switch (PGM_PAGE_GET_STATE(pPage)) + { + case PGM_PAGE_STATE_ZERO: + break; + + case PGM_PAGE_STATE_BALLOONED: + /* Turn into a zero page; the balloon status is lost when the VM reboots. */ + PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); + break; + + case PGM_PAGE_STATE_SHARED: + case PGM_PAGE_STATE_WRITE_MONITORED: + rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT)); + AssertLogRelRCReturn(rc, rc); + RT_FALL_THRU(); + + case PGM_PAGE_STATE_ALLOCATED: + if (pVM->pgm.s.fZeroRamPagesOnReset) + { + void *pvPage; + rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage); + AssertLogRelRCReturn(rc, rc); + ASMMemZeroPage(pvPage); + } + break; + } + break; + + case PGMPAGETYPE_MMIO2_ALIAS_MMIO: + case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */ + pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), + true /*fDoAccounting*/); + break; + + case PGMPAGETYPE_MMIO2: + case PGMPAGETYPE_ROM_SHADOW: + case PGMPAGETYPE_ROM: + case PGMPAGETYPE_MMIO: + break; + default: + AssertFailed(); + + } + } /* for each page */ + } + + } + + /* + * Finish off any pages pending freeing. + */ + if (cPendingPages) + { + rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); + AssertLogRelRCReturn(rc, rc); + } + GMMR3FreePagesCleanup(pReq); + return VINF_SUCCESS; +} + + +/** + * Frees all RAM during VM termination + * + * ASSUMES that the caller owns the PGM lock. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +int pgmR3PhysRamTerm(PVM pVM) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + + /* Reset the memory balloon. */ + int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0); + AssertRC(rc); + +#ifdef VBOX_WITH_PAGE_SHARING + /* + * Clear all registered shared modules. + */ + pgmR3PhysAssertSharedPageChecksums(pVM); + rc = GMMR3ResetSharedModules(pVM); + AssertRC(rc); + + /* + * Flush the handy pages updates to make sure no shared pages are hiding + * in there. (No unlikely if the VM shuts down, apparently.) + */ + rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL); +#endif + + /* + * We batch up pages that should be freed instead of calling GMM for + * each and every one of them. + */ + uint32_t cPendingPages = 0; + PGMMFREEPAGESREQ pReq; + rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); + AssertLogRelRCReturn(rc, rc); + + /* + * Walk the ram ranges. + */ + for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) + { + uint32_t iPage = pRam->cb >> PAGE_SHIFT; + AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb)); + + while (iPage-- > 0) + { + PPGMPAGE pPage = &pRam->aPages[iPage]; + switch (PGM_PAGE_GET_TYPE(pPage)) + { + case PGMPAGETYPE_RAM: + /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */ + /** @todo change this to explicitly free private pages here. */ + if (PGM_PAGE_IS_SHARED(pPage)) + { + rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), + PGMPAGETYPE_RAM); + AssertLogRelRCReturn(rc, rc); + } + break; + + case PGMPAGETYPE_MMIO2_ALIAS_MMIO: + case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: + case PGMPAGETYPE_MMIO2: + case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */ + case PGMPAGETYPE_ROM: + case PGMPAGETYPE_MMIO: + break; + default: + AssertFailed(); + } + } /* for each page */ + } + + /* + * Finish off any pages pending freeing. + */ + if (cPendingPages) + { + rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); + AssertLogRelRCReturn(rc, rc); + } + GMMR3FreePagesCleanup(pReq); + return VINF_SUCCESS; +} + + +/** + * This is the interface IOM is using to register an MMIO region. + * + * It will check for conflicts and ensure that a RAM range structure + * is present before calling the PGMR3HandlerPhysicalRegister API to + * register the callbacks. + * + * @returns VBox status code. + * + * @param pVM The cross context VM structure. + * @param GCPhys The start of the MMIO region. + * @param cb The size of the MMIO region. + * @param hType The physical access handler type registration. + * @param pvUserR3 The user argument for R3. + * @param pvUserR0 The user argument for R0. + * @param pvUserRC The user argument for RC. + * @param pszDesc The description of the MMIO region. + */ +VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType, + RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc) +{ + /* + * Assert on some assumption. + */ + VM_ASSERT_EMT(pVM); + AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); + AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); + Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + /* + * Make sure there's a RAM range structure for the region. + */ + RTGCPHYS GCPhysLast = GCPhys + (cb - 1); + bool fRamExists = false; + PPGMRAMRANGE pRamPrev = NULL; + PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + while (pRam && GCPhysLast >= pRam->GCPhys) + { + if ( GCPhysLast >= pRam->GCPhys + && GCPhys <= pRam->GCPhysLast) + { + /* Simplification: all within the same range. */ + AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys + && GCPhysLast <= pRam->GCPhysLast, + ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n", + GCPhys, GCPhysLast, pszDesc, + pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), + pgmUnlock(pVM), + VERR_PGM_RAM_CONFLICT); + + /* Check that it's all RAM or MMIO pages. */ + PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + uint32_t cLeft = cb >> PAGE_SHIFT; + while (cLeft-- > 0) + { + AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO, + ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n", + GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc), + pgmUnlock(pVM), + VERR_PGM_RAM_CONFLICT); + pPage++; + } + + /* Looks good. */ + fRamExists = true; + break; + } + + /* next */ + pRamPrev = pRam; + pRam = pRam->pNextR3; + } + PPGMRAMRANGE pNew; + if (fRamExists) + { + pNew = NULL; + + /* + * Make all the pages in the range MMIO/ZERO pages, freeing any + * RAM pages currently mapped here. This might not be 100% correct + * for PCI memory, but we're doing the same thing for MMIO2 pages. + */ + rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO); + AssertRCReturnStmt(rc, pgmUnlock(pVM), rc); + + /* Force a PGM pool flush as guest ram references have been changed. */ + /** @todo not entirely SMP safe; assuming for now the guest takes + * care of this internally (not touch mapped mmio while changing the + * mapping). */ + PVMCPU pVCpu = VMMGetCpu(pVM); + pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + } + else + { + + /* + * No RAM range, insert an ad hoc one. + * + * Note that we don't have to tell REM about this range because + * PGMHandlerPhysicalRegisterEx will do that for us. + */ + Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc)); + + const uint32_t cPages = cb >> PAGE_SHIFT; + const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]); + rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew); + AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc); + + /* Initialize the range. */ + pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew); + pNew->GCPhys = GCPhys; + pNew->GCPhysLast = GCPhysLast; + pNew->cb = cb; + pNew->pszDesc = pszDesc; + pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO; + pNew->pvR3 = NULL; + pNew->paLSPages = NULL; + + uint32_t iPage = cPages; + while (iPage-- > 0) + PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO); + Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO); + + /* update the page count stats. */ + pVM->pgm.s.cPureMmioPages += cPages; + pVM->pgm.s.cAllPages += cPages; + + /* link it */ + pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev); + } + + /* + * Register the access handler. + */ + rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc); + if ( RT_FAILURE(rc) + && !fRamExists) + { + pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT; + pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT; + + /* remove the ad hoc range. */ + pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev); + pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS; + MMHyperFree(pVM, pRam); + } + pgmPhysInvalidatePageMapTLB(pVM); + + pgmUnlock(pVM); + return rc; +} + + +/** + * This is the interface IOM is using to register an MMIO region. + * + * It will take care of calling PGMHandlerPhysicalDeregister and clean up + * any ad hoc PGMRAMRANGE left behind. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param GCPhys The start of the MMIO region. + * @param cb The size of the MMIO region. + */ +VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb) +{ + VM_ASSERT_EMT(pVM); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + /* + * First deregister the handler, then check if we should remove the ram range. + */ + rc = PGMHandlerPhysicalDeregister(pVM, GCPhys); + if (RT_SUCCESS(rc)) + { + RTGCPHYS GCPhysLast = GCPhys + (cb - 1); + PPGMRAMRANGE pRamPrev = NULL; + PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + while (pRam && GCPhysLast >= pRam->GCPhys) + { + /** @todo We're being a bit too careful here. rewrite. */ + if ( GCPhysLast == pRam->GCPhysLast + && GCPhys == pRam->GCPhys) + { + Assert(pRam->cb == cb); + + /* + * See if all the pages are dead MMIO pages. + */ + uint32_t const cPages = cb >> PAGE_SHIFT; + bool fAllMMIO = true; + uint32_t iPage = 0; + uint32_t cLeft = cPages; + while (cLeft-- > 0) + { + PPGMPAGE pPage = &pRam->aPages[iPage]; + if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage) + /*|| not-out-of-action later */) + { + fAllMMIO = false; + AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage)); + break; + } + Assert( PGM_PAGE_IS_ZERO(pPage) + || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO + || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO); + pPage++; + } + if (fAllMMIO) + { + /* + * Ad-hoc range, unlink and free it. + */ + Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n", + GCPhys, GCPhysLast, pRam->pszDesc)); + + pVM->pgm.s.cAllPages -= cPages; + pVM->pgm.s.cPureMmioPages -= cPages; + + pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev); + pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS; + MMHyperFree(pVM, pRam); + break; + } + } + + /* + * Range match? It will all be within one range (see PGMAllHandler.cpp). + */ + if ( GCPhysLast >= pRam->GCPhys + && GCPhys <= pRam->GCPhysLast) + { + Assert(GCPhys >= pRam->GCPhys); + Assert(GCPhysLast <= pRam->GCPhysLast); + + /* + * Turn the pages back into RAM pages. + */ + uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT; + uint32_t cLeft = cb >> PAGE_SHIFT; + while (cLeft--) + { + PPGMPAGE pPage = &pRam->aPages[iPage]; + AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage)) + || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO + || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO, + ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage)); + if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)) + PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM); + } + break; + } + + /* next */ + pRamPrev = pRam; + pRam = pRam->pNextR3; + } + } + + /* Force a PGM pool flush as guest ram references have been changed. */ + /** @todo Not entirely SMP safe; assuming for now the guest takes care of + * this internally (not touch mapped mmio while changing the mapping). */ + PVMCPU pVCpu = VMMGetCpu(pVM); + pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + + pgmPhysInvalidatePageMapTLB(pVM); + pgmPhysInvalidRamRangeTlbs(pVM); + pgmUnlock(pVM); + return rc; +} + + +/** + * Locate a MMIO2 range. + * + * @returns Pointer to the MMIO2 range. + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the region. + * @param iSubDev The sub-device number. + * @param iRegion The region. + * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and + * @a iRegion. + */ +DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, + uint32_t iRegion, PGMMMIO2HANDLE hMmio2) +{ + if (hMmio2 != NIL_PGMMMIO2HANDLE) + { + if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0) + { + PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1]; + if (pCur && pCur->pDevInsR3 == pDevIns) + { + Assert(pCur->idMmio2 == hMmio2); + AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL); + AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL); + return pCur; + } + Assert(!pCur); + } + for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3) + if (pCur->idMmio2 == hMmio2) + { + AssertBreak(pCur->pDevInsR3 == pDevIns); + AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL); + AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL); + return pCur; + } + } + else + { + /* + * Search the list. There shouldn't be many entries. + */ + /** @todo Optimize this lookup! There may now be many entries and it'll + * become really slow when doing MMR3HyperMapMMIO2 and similar. */ + for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3) + if ( pCur->pDevInsR3 == pDevIns + && pCur->iRegion == iRegion + && pCur->iSubDev == iSubDev) + return pCur; + } + return NULL; +} + + +#ifndef PGM_WITHOUT_MAPPINGS +/** + * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.} + * @sa pgmR3PhysRamRangeRelocate + */ +static DECLCALLBACK(bool) pgmR3PhysMmio2RangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, + PGMRELOCATECALL enmMode, void *pvUser) +{ + PPGMREGMMIO2RANGE pMmio = (PPGMREGMMIO2RANGE)pvUser; + Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING); + Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange)); RT_NOREF_PV(GCPtrOld); + + switch (enmMode) + { + case PGMRELOCATECALL_SUGGEST: + return true; + + case PGMRELOCATECALL_RELOCATE: + { + /* + * Update myself, then relink all the ranges and flush the RC TLB. + */ + pgmLock(pVM); + + pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange)); + + pgmR3PhysRelinkRamRanges(pVM); + for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++) + pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR; + + pgmUnlock(pVM); + return true; + } + + default: + AssertFailedReturn(false); + } +} +#endif /* !PGM_WITHOUT_MAPPINGS */ + + +/** + * Calculates the number of chunks + * + * @returns Number of registration chunk needed. + * @param pVM The cross context VM structure. + * @param cb The size of the MMIO/MMIO2 range. + * @param pcPagesPerChunk Where to return the number of pages tracked by each + * chunk. Optional. + * @param pcbChunk Where to return the guest mapping size for a chunk. + */ +static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk) +{ + RT_NOREF_PV(pVM); /* without raw mode */ + + /* + * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be + * needing a few bytes extra the PGMREGMMIO2RANGE structure. + * + * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving + * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB). + */ + uint32_t cbChunk = 16U*_1M; + uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */ + AssertCompile(sizeof(PGMREGMMIO2RANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2); + AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */ + AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk); + if (pcbChunk) + *pcbChunk = cbChunk; + if (pcPagesPerChunk) + *pcPagesPerChunk = cPagesPerChunk; + + /* Calc the number of chunks we need. */ + RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT; + uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk); + AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages); + return cChunks; +} + + +/** + * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE + * structures and does basic initialization. + * + * Caller must set type specfic members and initialize the PGMPAGE structures. + * + * This was previously also used by PGMR3PhysMmio2PreRegister, a function for + * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM + * interface. The reference to caller and type above is purely historical. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the region. + * @param iSubDev The sub-device number (internal PCI config number). + * @param iRegion The region number. If the MMIO2 memory is a PCI + * I/O region this number has to be the number of that + * region. Otherwise it can be any number safe + * UINT8_MAX. + * @param cb The size of the region. Must be page aligned. + * @param pszDesc The description. + * @param ppHeadRet Where to return the pointer to the first + * registration chunk. + * + * @thread EMT + */ +static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, + const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet) +{ + /* + * Figure out how many chunks we need and of which size. + */ + uint32_t cPagesPerChunk; + uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL); + AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE); + + /* + * Allocate the chunks. + */ + PPGMREGMMIO2RANGE *ppNext = ppHeadRet; + *ppNext = NULL; + + int rc = VINF_SUCCESS; + uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT; + for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++) + { + /* + * We currently do a single RAM range for the whole thing. This will + * probably have to change once someone needs really large MMIO regions, + * as we will be running into SUPR3PageAllocEx limitations and such. + */ + const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk); + const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]); + PPGMREGMMIO2RANGE pNew = NULL; + if ( iChunk + 1 < cChunks + || cbRange >= _1M) + { + /* + * Allocate memory for the registration structure. + */ + size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT; + size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT; + AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE); + PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages); + AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY); + RTR0PTR R0PtrChunk = NIL_RTR0PTR; + void *pvChunk = NULL; + rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages); + AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages)); + + Assert(R0PtrChunk != NIL_RTR0PTR); + memset(pvChunk, 0, cChunkPages << PAGE_SHIFT); + + pNew = (PPGMREGMMIO2RANGE)pvChunk; + pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING; + pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange); + + RTMemTmpFree(paChunkPages); + } + /* + * Not so big, do a one time hyper allocation. + */ + else + { + rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew); + AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange)); + + /* + * Initialize allocation specific items. + */ + //pNew->RamRange.fFlags = 0; + pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange); + } + + /* + * Initialize the registration structure (caller does specific bits). + */ + pNew->pDevInsR3 = pDevIns; + //pNew->pvR3 = NULL; + //pNew->pNext = NULL; + //pNew->fFlags = 0; + if (iChunk == 0) + pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK; + if (iChunk + 1 == cChunks) + pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK; + pNew->iSubDev = iSubDev; + pNew->iRegion = iRegion; + pNew->idSavedState = UINT8_MAX; + pNew->idMmio2 = UINT8_MAX; + //pNew->pPhysHandlerR3 = NULL; + //pNew->paLSPages = NULL; + pNew->RamRange.GCPhys = NIL_RTGCPHYS; + pNew->RamRange.GCPhysLast = NIL_RTGCPHYS; + pNew->RamRange.pszDesc = pszDesc; + pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT; + pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX; + //pNew->RamRange.pvR3 = NULL; + //pNew->RamRange.paLSPages = NULL; + + *ppNext = pNew; + ASMCompilerBarrier(); + cPagesLeft -= cPagesTrackedByChunk; + ppNext = &pNew->pNextR3; + } + Assert(cPagesLeft == 0); + + if (RT_SUCCESS(rc)) + { + Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); + return VINF_SUCCESS; + } + + /* + * Free floating ranges. + */ + while (*ppHeadRet) + { + PPGMREGMMIO2RANGE pFree = *ppHeadRet; + *ppHeadRet = pFree->pNextR3; + + if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) + { + const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]); + size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT; + SUPR3PageFreeEx(pFree, cChunkPages); + } + } + + return rc; +} + + +/** + * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a + * complete registration entry into the lists and lookup tables. + * + * @param pVM The cross context VM structure. + * @param pNew The new MMIO / MMIO2 registration to link. + */ +static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew) +{ + /* + * Link it into the list (order doesn't matter, so insert it at the head). + * + * Note! The range we're linking may consist of multiple chunks, so we + * have to find the last one. + */ + PPGMREGMMIO2RANGE pLast = pNew; + for (pLast = pNew; ; pLast = pLast->pNextR3) + { + if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + Assert(pLast->pNextR3); + Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3); + Assert(pLast->pNextR3->iSubDev == pNew->iSubDev); + Assert(pLast->pNextR3->iRegion == pNew->iRegion); + Assert((pLast->pNextR3->fFlags & PGMREGMMIO2RANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2)); + Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? pLast->idMmio2 + 1 : UINT8_MAX)); + } + + pgmLock(pVM); + + /* Link in the chain of ranges at the head of the list. */ + pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3; + pVM->pgm.s.pRegMmioRangesR3 = pNew; + + /* If MMIO, insert the MMIO2 range/page IDs. */ + uint8_t idMmio2 = pNew->idMmio2; + if (idMmio2 != UINT8_MAX) + { + for (;;) + { + Assert(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2); + Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL); + Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR); + pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew; + pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange); + if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + pNew = pNew->pNextR3; + idMmio2++; + } + } + else + Assert(!(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2)); + + pgmPhysInvalidatePageMapTLB(pVM); + pgmUnlock(pVM); +} + + +/** + * Allocate and register an MMIO2 region. + * + * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM + * associated with a device. It is also non-shared memory with a permanent + * ring-3 mapping and page backing (presently). + * + * A MMIO2 range may overlap with base memory if a lot of RAM is configured for + * the VM, in which case we'll drop the base memory pages. Presently we will + * make no attempt to preserve anything that happens to be present in the base + * memory that is replaced, this is of course incorrect but it's too much + * effort. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the + * memory. + * @retval VERR_ALREADY_EXISTS if the region already exists. + * + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the region. + * @param iSubDev The sub-device number. + * @param iRegion The region number. If the MMIO2 memory is a PCI + * I/O region this number has to be the number of that + * region. Otherwise it can be any number save + * UINT8_MAX. + * @param cb The size of the region. Must be page aligned. + * @param fFlags Reserved for future use, must be zero. + * @param pszDesc The description. + * @param ppv Where to store the pointer to the ring-3 mapping of + * the memory. + * @param phRegion Where to return the MMIO2 region handle. Optional. + * @thread EMT + */ +VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, + uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion) +{ + /* + * Validate input. + */ + AssertPtrReturn(ppv, VERR_INVALID_POINTER); + *ppv = NULL; + if (phRegion) + { + AssertPtrReturn(phRegion, VERR_INVALID_POINTER); + *phRegion = NIL_PGMMMIO2HANDLE; + } + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); + AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); + AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); + AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); + AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS); + AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(cb, VERR_INVALID_PARAMETER); + AssertReturn(!fFlags, VERR_INVALID_PARAMETER); + + const uint32_t cPages = cb >> PAGE_SHIFT; + AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER); + AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE); + AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE); + + /* + * For the 2nd+ instance, mangle the description string so it's unique. + */ + if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */ + { + pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance); + if (!pszDesc) + return VERR_NO_MEMORY; + } + + /* + * Allocate an MMIO2 range ID (not freed on failure). + * + * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so + * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES. + */ + unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL); + pgmLock(pVM); + uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1; + unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks; + if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES) + { + pgmUnlock(pVM); + AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES); + } + pVM->pgm.s.cMmio2Regions = cNewMmio2Regions; + pgmUnlock(pVM); + + /* + * Try reserve and allocate the backing memory first as this is what is + * most likely to fail. + */ + int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc); + if (RT_SUCCESS(rc)) + { + PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE)); + if (RT_SUCCESS(rc)) + { + void *pvPages; +#if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM) + RTR0PTR pvPagesR0; + rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages); +#else + rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages); +#endif + if (RT_SUCCESS(rc)) + { + memset(pvPages, 0, cPages * PAGE_SIZE); + + /* + * Create the registered MMIO range record for it. + */ + PPGMREGMMIO2RANGE pNew; + rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew); + if (RT_SUCCESS(rc)) + { + if (phRegion) + *phRegion = idMmio2; /* The ID of the first chunk. */ + + uint32_t iSrcPage = 0; + uint8_t *pbCurPages = (uint8_t *)pvPages; + for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3) + { + pCur->pvR3 = pbCurPages; +#if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM) + pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT); +#endif + pCur->RamRange.pvR3 = pbCurPages; + pCur->idMmio2 = idMmio2; + pCur->fFlags |= PGMREGMMIO2RANGE_F_MMIO2; + + uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT; + while (iDstPage-- > 0) + { + PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage], + paPages[iDstPage + iSrcPage].Phys, + PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage), + PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED); + } + + /* advance. */ + iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT; + pbCurPages += pCur->RamRange.cb; + idMmio2++; + } + + RTMemTmpFree(paPages); + + /* + * Update the page count stats, link the registration and we're done. + */ + pVM->pgm.s.cAllPages += cPages; + pVM->pgm.s.cPrivatePages += cPages; + + pgmR3PhysMmio2Link(pVM, pNew); + + *ppv = pvPages; + return VINF_SUCCESS; + } + + SUPR3PageFreeEx(pvPages, cPages); + } + } + RTMemTmpFree(paPages); + MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc); + } + if (pDevIns->iInstance > 0) + MMR3HeapFree((void *)pszDesc); + return rc; +} + + +/** + * Deregisters and frees an MMIO2 region. + * + * Any physical access handlers registered for the region must be deregistered + * before calling this function. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the region. + * @param hMmio2 The MMIO2 handle to deregister, or NIL if all + * regions for the given device is to be deregistered. + */ +VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2) +{ + /* + * Validate input. + */ + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + + /* + * The loop here scanning all registrations will make sure that multi-chunk ranges + * get properly deregistered, though it's original purpose was the wildcard iRegion. + */ + pgmLock(pVM); + int rc = VINF_SUCCESS; + unsigned cFound = 0; + PPGMREGMMIO2RANGE pPrev = NULL; + PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; + while (pCur) + { + uint32_t const fFlags = pCur->fFlags; + if ( pCur->pDevInsR3 == pDevIns + && ( hMmio2 == NIL_PGMMMIO2HANDLE + || pCur->idMmio2 == hMmio2)) + { + Assert(fFlags & PGMREGMMIO2RANGE_F_MMIO2); + cFound++; + + /* + * Unmap it if it's mapped. + */ + if (fFlags & PGMREGMMIO2RANGE_F_MAPPED) + { + int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys); + AssertRC(rc2); + if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) + rc = rc2; + } + + /* + * Unlink it + */ + PPGMREGMMIO2RANGE pNext = pCur->pNextR3; + if (pPrev) + pPrev->pNextR3 = pNext; + else + pVM->pgm.s.pRegMmioRangesR3 = pNext; + pCur->pNextR3 = NULL; + + uint8_t idMmio2 = pCur->idMmio2; + if (idMmio2 != UINT8_MAX) + { + Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur); + pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL; + pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR; + } + + /* + * Free the memory. + */ + const bool fIsMmio2 = RT_BOOL(fFlags & PGMREGMMIO2RANGE_F_MMIO2); + uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT; + if (fIsMmio2) + { + int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages); + AssertRC(rc2); + if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) + rc = rc2; + + rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc); + AssertRC(rc2); + if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) + rc = rc2; + } + + /* we're leaking hyper memory here if done at runtime. */ +#ifdef VBOX_STRICT + VMSTATE const enmState = VMR3GetState(pVM); + AssertMsg( enmState == VMSTATE_POWERING_OFF + || enmState == VMSTATE_POWERING_OFF_LS + || enmState == VMSTATE_OFF + || enmState == VMSTATE_OFF_LS + || enmState == VMSTATE_DESTROYING + || enmState == VMSTATE_TERMINATED + || enmState == VMSTATE_CREATING + , ("%s\n", VMR3GetStateName(enmState))); +#endif + + if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) + { + const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]); + size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT; + SUPR3PageFreeEx(pCur, cChunkPages); + } + /*else + { + rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call. + AssertRCReturn(rc, rc); + } */ + + + /* update page count stats */ + pVM->pgm.s.cAllPages -= cPages; + if (fIsMmio2) + pVM->pgm.s.cPrivatePages -= cPages; + else + pVM->pgm.s.cPureMmioPages -= cPages; + + /* next */ + pCur = pNext; + if (hMmio2 != NIL_PGMMMIO2HANDLE) + { + if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + hMmio2++; + Assert(pCur->idMmio2 == hMmio2); + Assert(pCur->pDevInsR3 == pDevIns); + Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK)); + } + } + else + { + pPrev = pCur; + pCur = pCur->pNextR3; + } + } + pgmPhysInvalidatePageMapTLB(pVM); + pgmUnlock(pVM); + return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc; +} + + +/** + * Maps a MMIO2 region. + * + * This is typically done when a guest / the bios / state loading changes the + * PCI config. The replacing of base memory has the same restrictions as during + * registration, of course. + * + * @returns VBox status code. + * + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the region. + * @param hMmio2 The handle of the region to map. + * @param GCPhys The guest-physical address to be remapped. + */ +VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys) +{ + /* + * Validate input. + * + * Note! It's safe to walk the MMIO/MMIO2 list since registrations only + * happens during VM construction. + */ + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER); + AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER); + AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); + + PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); + AssertReturn(pFirstMmio, VERR_NOT_FOUND); + Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); + + PPGMREGMMIO2RANGE pLastMmio = pFirstMmio; + RTGCPHYS cbRange = 0; + for (;;) + { + AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER); + Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS); + Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS); + Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3); + Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev); + Assert(pLastMmio->iRegion == pFirstMmio->iRegion); + cbRange += pLastMmio->RamRange.cb; + if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + pLastMmio = pLastMmio->pNextR3; + } + + RTGCPHYS GCPhysLast = GCPhys + cbRange - 1; + AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); + + /* + * Find our location in the ram range list, checking for restriction + * we don't bother implementing yet (partially overlapping, multiple + * ram ranges). + */ + pgmLock(pVM); + + AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER); + + bool fRamExists = false; + PPGMRAMRANGE pRamPrev = NULL; + PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + while (pRam && GCPhysLast >= pRam->GCPhys) + { + if ( GCPhys <= pRam->GCPhysLast + && GCPhysLast >= pRam->GCPhys) + { + /* Completely within? */ + AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys + && GCPhysLast <= pRam->GCPhysLast, + ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n", + GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, + pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), + pgmUnlock(pVM), + VERR_PGM_RAM_CONFLICT); + + /* Check that all the pages are RAM pages. */ + PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + uint32_t cPagesLeft = cbRange >> PAGE_SHIFT; + while (cPagesLeft-- > 0) + { + AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM, + ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n", + GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc), + pgmUnlock(pVM), + VERR_PGM_RAM_CONFLICT); + pPage++; + } + + /* There can only be one MMIO/MMIO2 chunk matching here! */ + AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK, + ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n", + GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags), + pgmUnlock(pVM), + VERR_PGM_PHYS_MMIO_EX_IPE); + + fRamExists = true; + break; + } + + /* next */ + pRamPrev = pRam; + pRam = pRam->pNextR3; + } + Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc)); + + + /* + * Make the changes. + */ + RTGCPHYS GCPhysCur = GCPhys; + for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) + { + pCurMmio->RamRange.GCPhys = GCPhysCur; + pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1; + if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + { + Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast); + break; + } + GCPhysCur += pCurMmio->RamRange.cb; + } + + if (fRamExists) + { + /* + * Make all the pages in the range MMIO/ZERO pages, freeing any + * RAM pages currently mapped here. This might not be 100% correct + * for PCI memory, but we're doing the same thing for MMIO2 pages. + * + * We replace this MMIO/ZERO pages with real pages in the MMIO2 case. + */ + Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */ + + int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO); + AssertRCReturnStmt(rc, pgmUnlock(pVM), rc); + + if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2) + { + /* replace the pages, freeing all present RAM pages. */ + PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0]; + PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT; + while (cPagesLeft-- > 0) + { + Assert(PGM_PAGE_IS_MMIO(pPageDst)); + + RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc); + uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc); + PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage); + PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys); + PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2); + PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED); + PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE); + PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0); + PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0); + /* (We tell NEM at the end of the function.) */ + + pVM->pgm.s.cZeroPages--; + GCPhys += PAGE_SIZE; + pPageSrc++; + pPageDst++; + } + } + + /* Flush physical page map TLB. */ + pgmPhysInvalidatePageMapTLB(pVM); + + /* Force a PGM pool flush as guest ram references have been changed. */ + /** @todo not entirely SMP safe; assuming for now the guest takes care of + * this internally (not touch mapped mmio while changing the mapping). */ + PVMCPU pVCpu = VMMGetCpu(pVM); + pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + } + else + { + /* + * No RAM range, insert the ones prepared during registration. + */ + for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) + { + /* Clear the tracking data of pages we're going to reactivate. */ + PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0]; + uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT; + while (cPagesLeft-- > 0) + { + PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0); + PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0); + pPageSrc++; + } + + /* link in the ram range */ + pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev); + + if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + { + Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast); + break; + } + pRamPrev = &pCurMmio->RamRange; + } + } + + /* + * Register the access handler if plain MMIO. + * + * We must register access handlers for each range since the access handler + * code refuses to deal with multiple ranges (and we can). + */ + if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2)) + { + AssertFailed(); + int rc = VINF_SUCCESS; + for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) + { + Assert(!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)); + rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys, + pCurMmio->RamRange.GCPhysLast); + if (RT_FAILURE(rc)) + break; + pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; /* Use this to mark that the handler is registered. */ + if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + } + if (RT_FAILURE(rc)) + { + /* Almost impossible, but try clean up properly and get out of here. */ + for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) + { + if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED) + { + pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_MAPPED; + pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists); + } + + if (!fRamExists) + pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange); + else + { + Assert(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */ + + uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT; + PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + while (cPagesLeft-- > 0) + { + PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM); + pPageDst++; + } + } + + pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS; + pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; + if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + } + + pgmUnlock(pVM); + return rc; + } + } + + /* + * We're good, set the flags and invalid the mapping TLB. + */ + for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) + { + pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; + if (fRamExists) + pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING; + else + pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING; + if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + } + pgmPhysInvalidatePageMapTLB(pVM); + + /* + * Notify NEM while holding the lock (experimental) and REM without (like always). + */ + uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) + | (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0); + int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3); + + pgmUnlock(pVM); + + return rc; +} + + +/** + * Unmaps an MMIO2 region. + * + * This is typically done when a guest / the bios / state loading changes the + * PCI config. The replacing of base memory has the same restrictions as during + * registration, of course. + */ +VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys) +{ + /* + * Validate input + */ + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); + if (GCPhys != NIL_RTGCPHYS) + { + AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER); + AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + } + + PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); + AssertReturn(pFirstMmio, VERR_NOT_FOUND); + Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + PPGMREGMMIO2RANGE pLastMmio = pFirstMmio; + RTGCPHYS cbRange = 0; + for (;;) + { + AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER); + AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, pgmUnlock(pVM), VERR_INVALID_PARAMETER); + Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3); + Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev); + Assert(pLastMmio->iRegion == pFirstMmio->iRegion); + cbRange += pLastMmio->RamRange.cb; + if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + pLastMmio = pLastMmio->pNextR3; + } + + Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n", + pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc)); + + uint16_t const fOldFlags = pFirstMmio->fFlags; + AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER); + + /* + * If plain MMIO, we must deregister the handlers first. + */ + if (!(fOldFlags & PGMREGMMIO2RANGE_F_MMIO2)) + { + AssertFailed(); + + PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; + rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)); + AssertRCReturnStmt(rc, pgmUnlock(pVM), rc); + while (!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)) + { + pCurMmio = pCurMmio->pNextR3; + rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)); + AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE); + } + } + + /* + * Unmap it. + */ + RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys; + if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING) + { + /* + * We've replaced RAM, replace with zero pages. + * + * Note! This is where we might differ a little from a real system, because + * it's likely to just show the RAM pages as they were before the + * MMIO/MMIO2 region was mapped here. + */ + /* Only one chunk allowed when overlapping! */ + Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); + + /* Restore the RAM pages we've replaced. */ + PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast) + pRam = pRam->pNextR3; + + uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT; + if (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2) + pVM->pgm.s.cZeroPages += cPagesLeft; + + PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + while (cPagesLeft-- > 0) + { + PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM); + pPageDst++; + } + + /* Flush physical page map TLB. */ + pgmPhysInvalidatePageMapTLB(pVM); + + /* Update range state. */ + pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS; + pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; + pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED); + } + else + { + /* + * Unlink the chunks related to the MMIO/MMIO2 region. + */ + for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) + { + pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange); + pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS; + pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; + pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED); + if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) + break; + } + } + + /* Force a PGM pool flush as guest ram references have been changed. */ + /** @todo not entirely SMP safe; assuming for now the guest takes care + * of this internally (not touch mapped mmio while changing the + * mapping). */ + PVMCPU pVCpu = VMMGetCpu(pVM); + pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + + pgmPhysInvalidatePageMapTLB(pVM); + pgmPhysInvalidRamRangeTlbs(pVM); + + /* + * Notify NEM while holding the lock (experimental) and REM without (like always). + */ + uint32_t const fNemFlags = (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) + | (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0); + rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags); + + pgmUnlock(pVM); + return rc; +} + + +/** + * Reduces the mapping size of a MMIO2 region. + * + * This is mainly for dealing with old saved states after changing the default + * size of a mapping region. See PGMDevHlpMMIOExReduce and + * PDMPCIDEV::pfnRegionLoadChangeHookR3. + * + * The region must not currently be mapped when making this call. The VM state + * must be state restore or VM construction. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the region. + * @param hMmio2 The handle of the region to reduce. + * @param cbRegion The new mapping size. + */ +VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion) +{ + /* + * Validate input + */ + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); + AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER); + AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT); + VMSTATE enmVmState = VMR3GetState(pVM); + AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING + || enmVmState == VMSTATE_LOADING, + ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)), + VERR_VM_INVALID_VM_STATE); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); + if (pFirstMmio) + { + Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); + if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)) + { + /* + * NOTE! Current implementation does not support multiple ranges. + * Implement when there is a real world need and thus a testcase. + */ + AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK, + ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags), + rc = VERR_NOT_SUPPORTED); + if (RT_SUCCESS(rc)) + { + /* + * Make the change. + */ + Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n", + pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion)); + + AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal, + ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal), + rc = VERR_OUT_OF_RANGE); + if (RT_SUCCESS(rc)) + { + pFirstMmio->RamRange.cb = cbRegion; + } + } + } + else + rc = VERR_WRONG_ORDER; + } + else + rc = VERR_NOT_FOUND; + + pgmUnlock(pVM); + return rc; +} + + +/** + * Validates @a hMmio2, making sure it belongs to @a pDevIns. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns The device which allegedly owns @a hMmio2. + * @param hMmio2 The handle to validate. + */ +VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2) +{ + /* + * Validate input + */ + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + AssertPtrReturn(pDevIns, VERR_INVALID_POINTER); + + /* + * Just do this the simple way. No need for locking as this is only taken at + */ + pgmLock(pVM); + PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); + pgmUnlock(pVM); + AssertReturn(pFirstMmio, VERR_INVALID_HANDLE); + AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2, VERR_INVALID_HANDLE); + AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE); + return VINF_SUCCESS; +} + + +#ifndef PGM_WITHOUT_MAPPINGS +/** + * Gets the HC physical address of a page in the MMIO2 region. + * + * This is API is intended for MMHyper and shouldn't be called + * by anyone else... + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns The owner of the memory, optional. + * @param iSubDev Sub-device number. + * @param iRegion The region. + * @param off The page expressed an offset into the MMIO2 region. + * @param pHCPhys Where to store the result. + */ +VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, + RTGCPHYS off, PRTHCPHYS pHCPhys) +{ + /* + * Validate input + */ + VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); + AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); + + pgmLock(pVM); + PPGMREGMMIO2RANGE pCurMmio = pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE); + AssertReturn(pCurMmio, VERR_NOT_FOUND); + AssertReturn(pCurMmio->fFlags & (PGMREGMMIO2RANGE_F_MMIO2 | PGMREGMMIO2RANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE); + + while ( off >= pCurMmio->RamRange.cb + && !(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)) + { + off -= pCurMmio->RamRange.cb; + pCurMmio = pCurMmio->pNextR3; + } + AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER); + + PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT]; + *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage); + pgmUnlock(pVM); + return VINF_SUCCESS; +} +#endif /* !PGM_WITHOUT_MAPPINGS */ + + +/** + * Gets the mapping address of an MMIO2 region. + * + * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle. + * + * @param pVM The cross context VM structure. + * @param pDevIns The device owning the MMIO2 handle. + * @param hMmio2 The region handle. + */ +VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2) +{ + AssertPtrReturn(pDevIns, NIL_RTGCPHYS); + + PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); + AssertReturn(pFirstRegMmio, NIL_RTGCPHYS); + + if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED) + return pFirstRegMmio->RamRange.GCPhys; + return NIL_RTGCPHYS; +} + +/** + * Changes the region number of an MMIO2 region. + * + * This is only for dealing with save state issues, nothing else. + * + * @return VBox status code. + * + * @param pVM The cross context VM structure. + * @param pDevIns The device owning the MMIO2 memory. + * @param hMmio2 The handle of the region. + * @param iNewRegion The new region index. + * + * @thread EMT(0) + * @sa @bugref{9359} + */ +VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion) +{ + /* + * Validate input. + */ + VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE); + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); + AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); + + AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE); + + int rc = pgmLock(pVM); + AssertRCReturn(rc, rc); + + PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); + AssertReturnStmt(pFirstRegMmio, pgmUnlock(pVM), VERR_NOT_FOUND); + AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL, + pgmUnlock(pVM), VERR_RESOURCE_IN_USE); + + /* + * Make the change. + */ + pFirstRegMmio->iRegion = (uint8_t)iNewRegion; + + pgmUnlock(pVM); + return VINF_SUCCESS; +} + + +/** + * Worker for PGMR3PhysRomRegister. + * + * This is here to simplify lock management, i.e. the caller does all the + * locking and we can simply return without needing to remember to unlock + * anything first. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the ROM. + * @param GCPhys First physical address in the range. + * Must be page aligned! + * @param cb The size of the range (in bytes). + * Must be page aligned! + * @param pvBinary Pointer to the binary data backing the ROM image. + * @param cbBinary The size of the binary data pvBinary points to. + * This must be less or equal to @a cb. + * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED + * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY. + * @param pszDesc Pointer to description string. This must not be freed. + */ +static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb, + const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc) +{ + /* + * Validate input. + */ + AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); + AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); + AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER); + RTGCPHYS GCPhysLast = GCPhys + (cb - 1); + AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); + AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER); + AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); + AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER); + VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); + + const uint32_t cPages = cb >> PAGE_SHIFT; + + /* + * Find the ROM location in the ROM list first. + */ + PPGMROMRANGE pRomPrev = NULL; + PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; + while (pRom && GCPhysLast >= pRom->GCPhys) + { + if ( GCPhys <= pRom->GCPhysLast + && GCPhysLast >= pRom->GCPhys) + AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n", + GCPhys, GCPhysLast, pszDesc, + pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc), + VERR_PGM_RAM_CONFLICT); + /* next */ + pRomPrev = pRom; + pRom = pRom->pNextR3; + } + + /* + * Find the RAM location and check for conflicts. + * + * Conflict detection is a bit different than for RAM + * registration since a ROM can be located within a RAM + * range. So, what we have to check for is other memory + * types (other than RAM that is) and that we don't span + * more than one RAM range (layz). + */ + bool fRamExists = false; + PPGMRAMRANGE pRamPrev = NULL; + PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + while (pRam && GCPhysLast >= pRam->GCPhys) + { + if ( GCPhys <= pRam->GCPhysLast + && GCPhysLast >= pRam->GCPhys) + { + /* completely within? */ + AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys + && GCPhysLast <= pRam->GCPhysLast, + ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n", + GCPhys, GCPhysLast, pszDesc, + pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), + VERR_PGM_RAM_CONFLICT); + fRamExists = true; + break; + } + + /* next */ + pRamPrev = pRam; + pRam = pRam->pNextR3; + } + if (fRamExists) + { + PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + uint32_t cPagesLeft = cPages; + while (cPagesLeft-- > 0) + { + AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM, + ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n", + pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT), + pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT); + Assert(PGM_PAGE_IS_ZERO(pPage)); + pPage++; + } + } + + /* + * Update the base memory reservation if necessary. + */ + uint32_t cExtraBaseCost = fRamExists ? 0 : cPages; + if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) + cExtraBaseCost += cPages; + if (cExtraBaseCost) + { + int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost); + if (RT_FAILURE(rc)) + return rc; + } + + /* + * Allocate memory for the virgin copy of the RAM. + */ + PGMMALLOCATEPAGESREQ pReq; + int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE); + AssertRCReturn(rc, rc); + + for (uint32_t iPage = 0; iPage < cPages; iPage++) + { + pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT); + pReq->aPages[iPage].idPage = NIL_GMM_PAGEID; + pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID; + } + + rc = GMMR3AllocatePagesPerform(pVM, pReq); + if (RT_FAILURE(rc)) + { + GMMR3AllocatePagesCleanup(pReq); + return rc; + } + + /* + * Allocate the new ROM range and RAM range (if necessary). + */ + PPGMROMRANGE pRomNew; + rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew); + if (RT_SUCCESS(rc)) + { + PPGMRAMRANGE pRamNew = NULL; + if (!fRamExists) + rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew); + if (RT_SUCCESS(rc)) + { + /* + * Initialize and insert the RAM range (if required). + */ + PPGMROMPAGE pRomPage = &pRomNew->aPages[0]; + if (!fRamExists) + { + pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew); + pRamNew->GCPhys = GCPhys; + pRamNew->GCPhysLast = GCPhysLast; + pRamNew->cb = cb; + pRamNew->pszDesc = pszDesc; + pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM; + pRamNew->pvR3 = NULL; + pRamNew->paLSPages = NULL; + + PPGMPAGE pPage = &pRamNew->aPages[0]; + for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++) + { + PGM_PAGE_INIT(pPage, + pReq->aPages[iPage].HCPhysGCPhys, + pReq->aPages[iPage].idPage, + PGMPAGETYPE_ROM, + PGM_PAGE_STATE_ALLOCATED); + + pRomPage->Virgin = *pPage; + } + + pVM->pgm.s.cAllPages += cPages; + pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev); + } + else + { + PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; + for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++) + { + PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM); + PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys); + PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED); + PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage); + PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE); + PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0); + PGM_PAGE_SET_TRACKING(pVM, pPage, 0); + + pRomPage->Virgin = *pPage; + } + + pRamNew = pRam; + + pVM->pgm.s.cZeroPages -= cPages; + } + pVM->pgm.s.cPrivatePages += cPages; + + /* Flush physical page map TLB. */ + pgmPhysInvalidatePageMapTLB(pVM); + + + /* Notify NEM before we register handlers. */ + uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0) + | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0); + rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify); + + /* Register the ROM access handler. */ + if (RT_SUCCESS(rc)) + rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType, + pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew), + pszDesc); + if (RT_SUCCESS(rc)) + { + /* + * Copy the image over to the virgin pages. + * This must be done after linking in the RAM range. + */ + size_t cbBinaryLeft = cbBinary; + PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT]; + for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++) + { + void *pvDstPage; + rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage); + if (RT_FAILURE(rc)) + { + VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys); + break; + } + if (cbBinaryLeft >= PAGE_SIZE) + { + memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE); + cbBinaryLeft -= PAGE_SIZE; + } + else + { + ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */ + if (cbBinaryLeft > 0) + { + memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft); + cbBinaryLeft = 0; + } + } + } + if (RT_SUCCESS(rc)) + { + /* + * Initialize the ROM range. + * Note that the Virgin member of the pages has already been initialized above. + */ + pRomNew->GCPhys = GCPhys; + pRomNew->GCPhysLast = GCPhysLast; + pRomNew->cb = cb; + pRomNew->fFlags = fFlags; + pRomNew->idSavedState = UINT8_MAX; + pRomNew->cbOriginal = cbBinary; + pRomNew->pszDesc = pszDesc; + pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY + ? pvBinary : RTMemDup(pvBinary, cbBinary); + if (pRomNew->pvOriginal) + { + for (unsigned iPage = 0; iPage < cPages; iPage++) + { + PPGMROMPAGE pPage = &pRomNew->aPages[iPage]; + pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE; + PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW); + } + + /* update the page count stats for the shadow pages. */ + if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) + { + pVM->pgm.s.cZeroPages += cPages; + pVM->pgm.s.cAllPages += cPages; + } + + /* + * Insert the ROM range, tell REM and return successfully. + */ + pRomNew->pNextR3 = pRom; + pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR; + + if (pRomPrev) + { + pRomPrev->pNextR3 = pRomNew; + pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew); + } + else + { + pVM->pgm.s.pRomRangesR3 = pRomNew; + pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew); + } + + pgmPhysInvalidatePageMapTLB(pVM); + GMMR3AllocatePagesCleanup(pReq); + + /* Notify NEM again. */ + return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify); + } + + /* bail out */ + rc = VERR_NO_MEMORY; + } + + int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys); + AssertRC(rc2); + } + + if (!fRamExists) + { + pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev); + MMHyperFree(pVM, pRamNew); + } + } + MMHyperFree(pVM, pRomNew); + } + + /** @todo Purge the mapping cache or something... */ + GMMR3FreeAllocatedPages(pVM, pReq); + GMMR3AllocatePagesCleanup(pReq); + return rc; +} + + +/** + * Registers a ROM image. + * + * Shadowed ROM images requires double the amount of backing memory, so, + * don't use that unless you have to. Shadowing of ROM images is process + * where we can select where the reads go and where the writes go. On real + * hardware the chipset provides means to configure this. We provide + * PGMR3PhysProtectROM() for this purpose. + * + * A read-only copy of the ROM image will always be kept around while we + * will allocate RAM pages for the changes on demand (unless all memory + * is configured to be preallocated). + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns The device instance owning the ROM. + * @param GCPhys First physical address in the range. + * Must be page aligned! + * @param cb The size of the range (in bytes). + * Must be page aligned! + * @param pvBinary Pointer to the binary data backing the ROM image. + * @param cbBinary The size of the binary data pvBinary points to. + * This must be less or equal to @a cb. + * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX. + * @param pszDesc Pointer to description string. This must not be freed. + * + * @remark There is no way to remove the rom, automatically on device cleanup or + * manually from the device yet. This isn't difficult in any way, it's + * just not something we expect to be necessary for a while. + */ +VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb, + const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc) +{ + Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n", + pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc)); + pgmLock(pVM); + int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc); + pgmUnlock(pVM); + return rc; +} + + +/** + * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify + * that the virgin part is untouched. + * + * This is done after the normal memory has been cleared. + * + * ASSUMES that the caller owns the PGM lock. + * + * @param pVM The cross context VM structure. + */ +int pgmR3PhysRomReset(PVM pVM) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) + { + const uint32_t cPages = pRom->cb >> PAGE_SHIFT; + + if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) + { + /* + * Reset the physical handler. + */ + int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE); + AssertRCReturn(rc, rc); + + /* + * What we do with the shadow pages depends on the memory + * preallocation option. If not enabled, we'll just throw + * out all the dirty pages and replace them by the zero page. + */ + if (!pVM->pgm.s.fRamPreAlloc) + { + /* Free the dirty pages. */ + uint32_t cPendingPages = 0; + PGMMFREEPAGESREQ pReq; + rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); + AssertRCReturn(rc, rc); + + for (uint32_t iPage = 0; iPage < cPages; iPage++) + if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) + && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow)) + { + Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED); + rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, + pRom->GCPhys + (iPage << PAGE_SHIFT), + (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow)); + AssertLogRelRCReturn(rc, rc); + } + + if (cPendingPages) + { + rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); + AssertLogRelRCReturn(rc, rc); + } + GMMR3FreePagesCleanup(pReq); + } + else + { + /* clear all the shadow pages. */ + for (uint32_t iPage = 0; iPage < cPages; iPage++) + { + if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)) + continue; + Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow)); + void *pvDstPage; + const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT); + rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage); + if (RT_FAILURE(rc)) + break; + ASMMemZeroPage(pvDstPage); + } + AssertRCReturn(rc, rc); + } + } + + /* + * Restore the original ROM pages after a saved state load. + * Also, in strict builds check that ROM pages remain unmodified. + */ +#ifndef VBOX_STRICT + if (pVM->pgm.s.fRestoreRomPagesOnReset) +#endif + { + size_t cbSrcLeft = pRom->cbOriginal; + uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal; + uint32_t cRestored = 0; + for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE) + { + const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT); + void const *pvDstPage; + int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage); + if (RT_FAILURE(rc)) + break; + + if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE))) + { + if (pVM->pgm.s.fRestoreRomPagesOnReset) + { + void *pvDstPageW; + rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW); + AssertLogRelRCReturn(rc, rc); + memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)); + cRestored++; + } + else + LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc)); + } + cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE); + } + if (cRestored > 0) + LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages)); + } + } + + /* Clear the ROM restore flag now as we only need to do this once after + loading saved state. */ + pVM->pgm.s.fRestoreRomPagesOnReset = false; + + return VINF_SUCCESS; +} + + +/** + * Called by PGMR3Term to free resources. + * + * ASSUMES that the caller owns the PGM lock. + * + * @param pVM The cross context VM structure. + */ +void pgmR3PhysRomTerm(PVM pVM) +{ + /* + * Free the heap copy of the original bits. + */ + for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) + { + if ( pRom->pvOriginal + && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)) + { + RTMemFree((void *)pRom->pvOriginal); + pRom->pvOriginal = NULL; + } + } +} + + +/** + * Change the shadowing of a range of ROM pages. + * + * This is intended for implementing chipset specific memory registers + * and will not be very strict about the input. It will silently ignore + * any pages that are not the part of a shadowed ROM. + * + * @returns VBox status code. + * @retval VINF_PGM_SYNC_CR3 + * + * @param pVM The cross context VM structure. + * @param GCPhys Where to start. Page aligned. + * @param cb How much to change. Page aligned. + * @param enmProt The new ROM protection. + */ +VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt) +{ + /* + * Check input + */ + if (!cb) + return VINF_SUCCESS; + AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); + RTGCPHYS GCPhysLast = GCPhys + (cb - 1); + AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); + AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER); + + /* + * Process the request. + */ + pgmLock(pVM); + int rc = VINF_SUCCESS; + bool fFlushTLB = false; + for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) + { + if ( GCPhys <= pRom->GCPhysLast + && GCPhysLast >= pRom->GCPhys + && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)) + { + /* + * Iterate the relevant pages and make necessary the changes. + */ + bool fChanges = false; + uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast + ? pRom->cb >> PAGE_SHIFT + : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT; + for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT; + iPage < cPages; + iPage++) + { + PPGMROMPAGE pRomPage = &pRom->aPages[iPage]; + if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt)) + { + fChanges = true; + + /* flush references to the page. */ + PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT)); + int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, + true /*fFlushPTEs*/, &fFlushTLB); + if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2))) + rc = rc2; + uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage); + + PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow; + PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin; + + *pOld = *pRamPage; + *pRamPage = *pNew; + /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */ + + /* Tell NEM about the backing and protection change. */ + if (VM_IS_NEM_ENABLED(pVM)) + { + PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew); + NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew), + pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State); + PGM_PAGE_SET_NEM_STATE(pRamPage, u2State); + } + } + pRomPage->enmProt = enmProt; + } + + /* + * Reset the access handler if we made changes, no need + * to optimize this. + */ + if (fChanges) + { + int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys); + if (RT_FAILURE(rc2)) + { + pgmUnlock(pVM); + AssertRC(rc); + return rc2; + } + } + + /* Advance - cb isn't updated. */ + GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT); + } + } + pgmUnlock(pVM); + if (fFlushTLB) + PGM_INVL_ALL_VCPU_TLBS(pVM); + + return rc; +} + + +/** + * Sets the Address Gate 20 state. + * + * @param pVCpu The cross context virtual CPU structure. + * @param fEnable True if the gate should be enabled. + * False if the gate should be disabled. + */ +VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable) +{ + LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled)); + if (pVCpu->pgm.s.fA20Enabled != fEnable) + { +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); + if ( CPUMIsGuestInVmxRootMode(pCtx) + && !fEnable) + { + Log(("Cannot enter A20M mode while in VMX root mode\n")); + return; + } +#endif + pVCpu->pgm.s.fA20Enabled = fEnable; + pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20); + NEMR3NotifySetA20(pVCpu, fEnable); +#ifdef PGM_WITH_A20 + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + pgmR3RefreshShadowModeAfterA20Change(pVCpu); + HMFlushTlb(pVCpu); +#endif + IEMTlbInvalidateAllPhysical(pVCpu); + STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes); + } +} + + +/** + * Tree enumeration callback for dealing with age rollover. + * It will perform a simple compression of the current age. + */ +static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser) +{ + /* Age compression - ASSUMES iNow == 4. */ + PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode; + if (pChunk->iLastUsed >= UINT32_C(0xffffff00)) + pChunk->iLastUsed = 3; + else if (pChunk->iLastUsed >= UINT32_C(0xfffff000)) + pChunk->iLastUsed = 2; + else if (pChunk->iLastUsed) + pChunk->iLastUsed = 1; + else /* iLastUsed = 0 */ + pChunk->iLastUsed = 4; + + NOREF(pvUser); + return 0; +} + + +/** + * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback(). + */ +typedef struct PGMR3PHYSCHUNKUNMAPCB +{ + PVM pVM; /**< Pointer to the VM. */ + PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */ +} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB; + + +/** + * Callback used to find the mapping that's been unused for + * the longest time. + */ +static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser) +{ + PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode; + PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser; + + /* + * Check for locks and compare when last used. + */ + if (pChunk->cRefs) + return 0; + if (pChunk->cPermRefs) + return 0; + if ( pArg->pChunk + && pChunk->iLastUsed >= pArg->pChunk->iLastUsed) + return 0; + + /* + * Check that it's not in any of the TLBs. + */ + PVM pVM = pArg->pVM; + if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk + == pChunk->Core.Key) + { + pChunk = NULL; + return 0; + } +#ifdef VBOX_STRICT + for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++) + { + Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk); + Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key); + } +#endif + +#ifndef VBOX_WITH_RAM_IN_KERNEL + for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR0.aEntries); i++) + if (pVM->pgm.s.PhysTlbR0.aEntries[i].pMap == pChunk) + return 0; +#endif + for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++) + if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk) + return 0; + + pArg->pChunk = pChunk; + return 0; +} + + +/** + * Finds a good candidate for unmapping when the ring-3 mapping cache is full. + * + * The candidate will not be part of any TLBs, so no need to flush + * anything afterwards. + * + * @returns Chunk id. + * @param pVM The cross context VM structure. + */ +static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + + /* + * Enumerate the age tree starting with the left most node. + */ + STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a); + PGMR3PHYSCHUNKUNMAPCB Args; + Args.pVM = pVM; + Args.pChunk = NULL; + RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args); + Assert(Args.pChunk); + if (Args.pChunk) + { + Assert(Args.pChunk->cRefs == 0); + Assert(Args.pChunk->cPermRefs == 0); + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a); + return Args.pChunk->Core.Key; + } + + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a); + return INT32_MAX; +} + + +/** + * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk + * + * This is only called on one of the EMTs while the other ones are waiting for + * it to complete this function. + * + * @returns VINF_SUCCESS (VBox strict status code). + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. + * @param pvUser User pointer. Unused + * + */ +static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) +{ + int rc = VINF_SUCCESS; + pgmLock(pVM); + NOREF(pVCpu); NOREF(pvUser); + + if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax) + { + /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */ + /** @todo also not really efficient to unmap a chunk that contains PD + * or PT pages. */ + pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */); + + /* + * Request the ring-0 part to unmap a chunk to make space in the mapping cache. + */ + GMMMAPUNMAPCHUNKREQ Req; + Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; + Req.Hdr.cbReq = sizeof(Req); + Req.pvR3 = NULL; + Req.idChunkMap = NIL_GMM_CHUNKID; + Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM); + if (Req.idChunkUnmap != INT32_MAX) + { + STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a); + rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr); + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a); + if (RT_SUCCESS(rc)) + { + /* + * Remove the unmapped one. + */ + PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap); + AssertRelease(pUnmappedChunk); + AssertRelease(!pUnmappedChunk->cRefs); + AssertRelease(!pUnmappedChunk->cPermRefs); + pUnmappedChunk->pv = NULL; + pUnmappedChunk->Core.Key = UINT32_MAX; +#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE + MMR3HeapFree(pUnmappedChunk); +#else + MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING); +#endif + pVM->pgm.s.ChunkR3Map.c--; + pVM->pgm.s.cUnmappedChunks++; + + /* + * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses). + */ + /** @todo We should not flush chunks which include cr3 mappings. */ + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + { + PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s; + + pPGM->pGst32BitPdR3 = NULL; + pPGM->pGstPaePdptR3 = NULL; + pPGM->pGstAmd64Pml4R3 = NULL; +#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pPGM->pGst32BitPdR0 = NIL_RTR0PTR; + pPGM->pGstPaePdptR0 = NIL_RTR0PTR; + pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR; +#endif + for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++) + { + pPGM->apGstPaePDsR3[i] = NULL; +#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR; +#endif + } + + /* Flush REM TLBs. */ + CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); + } + } + } + } + pgmUnlock(pVM); + return rc; +} + +/** + * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap) + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +void pgmR3PhysUnmapChunk(PVM pVM) +{ + int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL); + AssertRC(rc); +} + + +/** + * Maps the given chunk into the ring-3 mapping cache. + * + * This will call ring-0. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param idChunk The chunk in question. + * @param ppChunk Where to store the chunk tracking structure. + * + * @remarks Called from within the PGM critical section. + * @remarks Can be called from any thread! + */ +int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk) +{ + int rc; + + PGM_LOCK_ASSERT_OWNER(pVM); + + /* + * Move the chunk time forward. + */ + pVM->pgm.s.ChunkR3Map.iNow++; + if (pVM->pgm.s.ChunkR3Map.iNow == 0) + { + pVM->pgm.s.ChunkR3Map.iNow = 4; + RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL); + } + + /* + * Allocate a new tracking structure first. + */ +#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE + PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk)); +#else + PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL); +#endif + AssertReturn(pChunk, VERR_NO_MEMORY); + pChunk->Core.Key = idChunk; + pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow; + + /* + * Request the ring-0 part to map the chunk in question. + */ + GMMMAPUNMAPCHUNKREQ Req; + Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; + Req.Hdr.cbReq = sizeof(Req); + Req.pvR3 = NULL; + Req.idChunkMap = idChunk; + Req.idChunkUnmap = NIL_GMM_CHUNKID; + + /* Must be callable from any thread, so can't use VMMR3CallR0. */ + STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a); + rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr); + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a); + if (RT_SUCCESS(rc)) + { + pChunk->pv = Req.pvR3; + + /* + * If we're running out of virtual address space, then we should + * unmap another chunk. + * + * Currently, an unmap operation requires that all other virtual CPUs + * are idling and not by chance making use of the memory we're + * unmapping. So, we create an async unmap operation here. + * + * Now, when creating or restoring a saved state this wont work very + * well since we may want to restore all guest RAM + a little something. + * So, we have to do the unmap synchronously. Fortunately for us + * though, during these operations the other virtual CPUs are inactive + * and it should be safe to do this. + */ + /** @todo Eventually we should lock all memory when used and do + * map+unmap as one kernel call without any rendezvous or + * other precautions. */ + if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax) + { + switch (VMR3GetState(pVM)) + { + case VMSTATE_LOADING: + case VMSTATE_SAVING: + { + PVMCPU pVCpu = VMMGetCpu(pVM); + if ( pVCpu + && pVM->pgm.s.cDeprecatedPageLocks == 0) + { + pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL); + break; + } + } + RT_FALL_THRU(); + default: + rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM); + AssertRC(rc); + break; + } + } + + /* + * Update the tree. We must do this after any unmapping to make sure + * the chunk we're going to return isn't unmapped by accident. + */ + AssertPtr(Req.pvR3); + bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core); + AssertRelease(fRc); + pVM->pgm.s.ChunkR3Map.c++; + pVM->pgm.s.cMappedChunks++; + } + else + { + /** @todo this may fail because of /proc/sys/vm/max_map_count, so we + * should probably restrict ourselves on linux. */ + AssertRC(rc); +#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE + MMR3HeapFree(pChunk); +#else + MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING); +#endif + pChunk = NULL; + } + + *ppChunk = pChunk; + return rc; +} + + +/** + * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal. + * + * @returns see pgmR3PhysChunkMap. + * @param pVM The cross context VM structure. + * @param idChunk The chunk to map. + */ +VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk) +{ + PPGMCHUNKR3MAP pChunk; + int rc; + + pgmLock(pVM); + rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk); + pgmUnlock(pVM); + return rc; +} + + +/** + * Invalidates the TLB for the ring-3 mapping cache. + * + * @param pVM The cross context VM structure. + */ +VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM) +{ + pgmLock(pVM); + for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++) + { + pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID; + pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL; + } + /* The page map TLB references chunks, so invalidate that one too. */ + pgmPhysInvalidatePageMapTLB(pVM); + pgmUnlock(pVM); +} + + +/** + * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large + * (2MB) page for use with a nested paging PDE. + * + * @returns The following VBox status codes. + * @retval VINF_SUCCESS on success. + * @retval VINF_EM_NO_MEMORY if we're out of memory. + * + * @param pVM The cross context VM structure. + * @param GCPhys GC physical start address of the 2 MB range + */ +VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys) +{ +#ifdef PGM_WITH_LARGE_PAGES + uint64_t u64TimeStamp1, u64TimeStamp2; + + pgmLock(pVM); + + STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a); + u64TimeStamp1 = RTTimeMilliTS(); + int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL); + u64TimeStamp2 = RTTimeMilliTS(); + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a); + if (RT_SUCCESS(rc)) + { + Assert(pVM->pgm.s.cLargeHandyPages == 1); + + uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage; + RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys; + + void *pv; + + /* Map the large page into our address space. + * + * Note: assuming that within the 2 MB range: + * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise) + * - user space mapping is continuous as well + * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE) + */ + rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv); + AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc)); + + if (RT_SUCCESS(rc)) + { + /* + * Clear the pages. + */ + STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b); + for (unsigned i = 0; i < _2M/PAGE_SIZE; i++) + { + ASMMemZeroPage(pv); + + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); + AssertRC(rc); + + Assert(PGM_PAGE_IS_ZERO(pPage)); + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero); + pVM->pgm.s.cZeroPages--; + + /* + * Do the PGMPAGE modifications. + */ + pVM->pgm.s.cPrivatePages++; + PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys); + PGM_PAGE_SET_PAGEID(pVM, pPage, idPage); + PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED); + PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE); + PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0); + PGM_PAGE_SET_TRACKING(pVM, pPage, 0); + + /* Somewhat dirty assumption that page ids are increasing. */ + idPage++; + + HCPhys += PAGE_SIZE; + GCPhys += PAGE_SIZE; + + pv = (void *)((uintptr_t)pv + PAGE_SIZE); + + Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys)); + } + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b); + + /* Flush all TLBs. */ + PGM_INVL_ALL_VCPU_TLBS(pVM); + pgmPhysInvalidatePageMapTLB(pVM); + } + pVM->pgm.s.cLargeHandyPages = 0; + } + + if (RT_SUCCESS(rc)) + { + static uint32_t cTimeOut = 0; + uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1; + + if (u64TimeStampDelta > 100) + { + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow); + if ( ++cTimeOut > 10 + || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */) + { + /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages. + * E.g. Vista 64 tries to move memory around, which takes a huge amount of time. + */ + LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut)); + PGMSetLargePageUsage(pVM, false); + } + } + else + if (cTimeOut > 0) + cTimeOut--; + } + + pgmUnlock(pVM); + return rc; +#else + RT_NOREF(pVM, GCPhys); + return VERR_NOT_IMPLEMENTED; +#endif /* PGM_WITH_LARGE_PAGES */ +} + + +/** + * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES. + * + * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to + * signal and clear the out of memory condition. When contracted, this API is + * used to try clear the condition when the user wants to resume. + * + * @returns The following VBox status codes. + * @retval VINF_SUCCESS on success. FFs cleared. + * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in + * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY. + * + * @param pVM The cross context VM structure. + * + * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing + * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and + * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF + * handler. + */ +VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM) +{ + pgmLock(pVM); + + /* + * Allocate more pages, noting down the index of the first new page. + */ + uint32_t iClear = pVM->pgm.s.cHandyPages; + AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE); + Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages))); + int rcAlloc = VINF_SUCCESS; + int rcSeed = VINF_SUCCESS; + int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL); + while (rc == VERR_GMM_SEED_ME) + { + void *pvChunk; + rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk); + if (RT_SUCCESS(rc)) + { + rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL); + if (RT_FAILURE(rc)) + SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT); + } + if (RT_SUCCESS(rc)) + rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL); + } + + /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */ + if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT + && pVM->pgm.s.cHandyPages > 0) + { + /* Still handy pages left, so don't panic. */ + rc = VINF_SUCCESS; + } + + if (RT_SUCCESS(rc)) + { + AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); + Assert(pVM->pgm.s.cHandyPages > 0); + VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES); + VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY); + +#ifdef VBOX_STRICT + uint32_t i; + for (i = iClear; i < pVM->pgm.s.cHandyPages; i++) + if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID + || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID + || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK)) + break; + if (i != pVM->pgm.s.cHandyPages) + { + RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__); + RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages); + for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++) + RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j, + pVM->pgm.s.aHandyPages[j].idPage, + pVM->pgm.s.aHandyPages[j].HCPhysGCPhys, + pVM->pgm.s.aHandyPages[j].idSharedPage, + j == i ? " <---" : ""); + RTAssertPanic(); + } +#endif + /* + * Clear the pages. + */ + while (iClear < pVM->pgm.s.cHandyPages) + { + PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear]; + void *pv; + rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv); + AssertLogRelMsgBreak(RT_SUCCESS(rc), + ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", + iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc)); + ASMMemZeroPage(pv); + iClear++; + Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys)); + } + } + else + { + uint64_t cAllocPages, cMaxPages, cBalloonPages; + + /* + * We should never get here unless there is a genuine shortage of + * memory (or some internal error). Flag the error so the VM can be + * suspended ASAP and the user informed. If we're totally out of + * handy pages we will return failure. + */ + /* Report the failure. */ + LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n" + " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n", + rc, rcAlloc, rcSeed, + pVM->pgm.s.cHandyPages, + pVM->pgm.s.cAllPages, + pVM->pgm.s.cPrivatePages, + pVM->pgm.s.cSharedPages, + pVM->pgm.s.cZeroPages)); + + if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS) + { + LogRel(("GMM: Statistics:\n" + " Allocated pages: %RX64\n" + " Maximum pages: %RX64\n" + " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages)); + } + + if ( rc != VERR_NO_MEMORY + && rc != VERR_NO_PHYS_MEMORY + && rc != VERR_LOCK_FAILED) + { + for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++) + { + LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n", + i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage, + pVM->pgm.s.aHandyPages[i].idSharedPage)); + uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage; + if (idPage != NIL_GMM_PAGEID) + { + for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; + pRam; + pRam = pRam->pNextR3) + { + uint32_t const cPages = pRam->cb >> PAGE_SHIFT; + for (uint32_t iPage = 0; iPage < cPages; iPage++) + if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage) + LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n", + pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc)); + } + } + } + } + + if (rc == VERR_NO_MEMORY) + { + uint64_t cbHostRamAvail = 0; + int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail); + if (RT_SUCCESS(rc2)) + LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M)); + else + LogRel(("Cannot determine the amount of available host memory\n")); + } + + /* Set the FFs and adjust rc. */ + VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES); + VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY); + if ( rc == VERR_NO_MEMORY + || rc == VERR_NO_PHYS_MEMORY + || rc == VERR_LOCK_FAILED) + rc = VINF_EM_NO_MEMORY; + } + + pgmUnlock(pVM); + return rc; +} + + +/** + * Frees the specified RAM page and replaces it with the ZERO page. + * + * This is used by ballooning, remapping MMIO2, RAM reset and state loading. + * + * @param pVM The cross context VM structure. + * @param pReq Pointer to the request. + * @param pcPendingPages Where the number of pages waiting to be freed are + * kept. This will normally be incremented. + * @param pPage Pointer to the page structure. + * @param GCPhys The guest physical address of the page, if applicable. + * @param enmNewType New page type for NEM notification, since several + * callers will change the type upon successful return. + * + * @remarks The caller must own the PGM lock. + */ +int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys, + PGMPAGETYPE enmNewType) +{ + /* + * Assert sanity. + */ + PGM_LOCK_ASSERT_OWNER(pVM); + if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM + && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW)) + { + AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage)); + return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage)); + } + + /** @todo What about ballooning of large pages??! */ + Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE + && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED); + + if ( PGM_PAGE_IS_ZERO(pPage) + || PGM_PAGE_IS_BALLOONED(pPage)) + return VINF_SUCCESS; + + const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage); + Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage)); + if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID + || idPage > GMM_PAGEID_LAST + || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID)) + { + AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage)); + return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage); + } + const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage); + + /* update page count stats. */ + if (PGM_PAGE_IS_SHARED(pPage)) + pVM->pgm.s.cSharedPages--; + else + pVM->pgm.s.cPrivatePages--; + pVM->pgm.s.cZeroPages++; + + /* Deal with write monitored pages. */ + if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED) + { + PGM_PAGE_SET_WRITTEN_TO(pVM, pPage); + pVM->pgm.s.cWrittenToPages++; + } + + /* + * pPage = ZERO page. + */ + PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg); + PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); + PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID); + PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE); + PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0); + PGM_PAGE_SET_TRACKING(pVM, pPage, 0); + + /* Flush physical page map TLB entry. */ + pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys); + + /* Notify NEM. */ + /** @todo consider doing batch NEM notifications. */ + if (VM_IS_NEM_ENABLED(pVM)) + { + uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage); + NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, + pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State); + PGM_PAGE_SET_NEM_STATE(pPage, u2State); + } + + /* + * Make sure it's not in the handy page array. + */ + for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++) + { + if (pVM->pgm.s.aHandyPages[i].idPage == idPage) + { + pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID; + break; + } + if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage) + { + pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID; + break; + } + } + + /* + * Push it onto the page array. + */ + uint32_t iPage = *pcPendingPages; + Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE); + *pcPendingPages += 1; + + pReq->aPages[iPage].idPage = idPage; + + if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE) + return VINF_SUCCESS; + + /* + * Flush the pages. + */ + int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE); + if (RT_SUCCESS(rc)) + { + GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); + *pcPendingPages = 0; + } + return rc; +} + + +/** + * Converts a GC physical address to a HC ring-3 pointer, with some + * additional checks. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write + * access handler of some kind. + * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all + * accesses or is odd in any way. + * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist. + * + * @param pVM The cross context VM structure. + * @param GCPhys The GC physical address to convert. Since this is only + * used for filling the REM TLB, the A20 mask must be + * applied before calling this API. + * @param fWritable Whether write access is required. + * @param ppv Where to store the pointer corresponding to GCPhys on + * success. + */ +VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv) +{ + pgmLock(pVM); + PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys); + + PPGMRAMRANGE pRam; + PPGMPAGE pPage; + int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam); + if (RT_SUCCESS(rc)) + { + if (PGM_PAGE_IS_BALLOONED(pPage)) + rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; + else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage)) + rc = VINF_SUCCESS; + else + { + if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */ + rc = VERR_PGM_PHYS_TLB_CATCH_ALL; + else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + { + /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work + * in -norawr0 mode. */ + if (fWritable) + rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; + } + else + { + /* Temporarily disabled physical handler(s), since the recompiler + doesn't get notified when it's reset we'll have to pretend it's + operating normally. */ + if (pgmHandlerPhysicalIsAll(pVM, GCPhys)) + rc = VERR_PGM_PHYS_TLB_CATCH_ALL; + else + rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; + } + } + if (RT_SUCCESS(rc)) + { + int rc2; + + /* Make sure what we return is writable. */ + if (fWritable) + switch (PGM_PAGE_GET_STATE(pPage)) + { + case PGM_PAGE_STATE_ALLOCATED: + break; + case PGM_PAGE_STATE_BALLOONED: + AssertFailed(); + break; + case PGM_PAGE_STATE_ZERO: + case PGM_PAGE_STATE_SHARED: + if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE) + break; + RT_FALL_THRU(); + case PGM_PAGE_STATE_WRITE_MONITORED: + rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK); + AssertLogRelRCReturn(rc2, rc2); + break; + } + + /* Get a ring-3 mapping of the address. */ + PPGMPAGER3MAPTLBE pTlbe; + rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); + AssertLogRelRCReturn(rc2, rc2); + *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); + /** @todo mapping/locking hell; this isn't horribly efficient since + * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */ + + Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv)); + } + else + Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage)); + + /* else: handler catching all access, no pointer returned. */ + } + else + rc = VERR_PGM_PHYS_TLB_UNASSIGNED; + + pgmUnlock(pVM); + return rc; +} + |