diff options
Diffstat (limited to 'src/VBox/VMM/testcase/Instructions/InstructionTestGen.py')
-rwxr-xr-x | src/VBox/VMM/testcase/Instructions/InstructionTestGen.py | 2239 |
1 files changed, 2239 insertions, 0 deletions
diff --git a/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py b/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py new file mode 100755 index 00000000..16c57a67 --- /dev/null +++ b/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py @@ -0,0 +1,2239 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# $Id: InstructionTestGen.py $ + +""" +Instruction Test Generator. +""" + +from __future__ import print_function; + +__copyright__ = \ +""" +Copyright (C) 2012-2020 Oracle Corporation + +This file is part of VirtualBox Open Source Edition (OSE), as +available from http://www.virtualbox.org. This file is free software; +you can redistribute it and/or modify it under the terms of the GNU +General Public License (GPL) as published by the Free Software +Foundation, in version 2 as it comes in the "COPYING" file of the +VirtualBox OSE distribution. VirtualBox OSE is distributed in the +hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. +""" +__version__ = "$Revision: 135976 $"; + + +# pylint: disable=C0103,R0913 + + +# Standard python imports. +import io; +import os; +from optparse import OptionParser +import random; +import sys; + + +## @name Exit codes +## @{ +RTEXITCODE_SUCCESS = 0; +RTEXITCODE_SYNTAX = 2; +## @} + +## @name Various C macros we're used to. +## @{ +UINT8_MAX = 0xff +UINT16_MAX = 0xffff +UINT32_MAX = 0xffffffff +UINT64_MAX = 0xffffffffffffffff +def RT_BIT_32(iBit): # pylint: disable=C0103 + """ 32-bit one bit mask. """ + return 1 << iBit; +def RT_BIT_64(iBit): # pylint: disable=C0103 + """ 64-bit one bit mask. """ + return 1 << iBit; +## @} + + +## @name ModR/M +## @{ +X86_MODRM_RM_MASK = 0x07; +X86_MODRM_REG_MASK = 0x38; +X86_MODRM_REG_SMASK = 0x07; +X86_MODRM_REG_SHIFT = 3; +X86_MODRM_MOD_MASK = 0xc0; +X86_MODRM_MOD_SMASK = 0x03; +X86_MODRM_MOD_SHIFT = 6; +## @} + +## @name SIB +## @{ +X86_SIB_BASE_MASK = 0x07; +X86_SIB_INDEX_MASK = 0x38; +X86_SIB_INDEX_SMASK = 0x07; +X86_SIB_INDEX_SHIFT = 3; +X86_SIB_SCALE_MASK = 0xc0; +X86_SIB_SCALE_SMASK = 0x03; +X86_SIB_SCALE_SHIFT = 6; +## @} + +## @name Prefixes +## @ +X86_OP_PRF_CS = 0x2e; +X86_OP_PRF_SS = 0x36; +X86_OP_PRF_DS = 0x3e; +X86_OP_PRF_ES = 0x26; +X86_OP_PRF_FS = 0x64; +X86_OP_PRF_GS = 0x65; +X86_OP_PRF_SIZE_OP = 0x66; +X86_OP_PRF_SIZE_ADDR = 0x67; +X86_OP_PRF_LOCK = 0xf0; +X86_OP_PRF_REPNZ = 0xf2; +X86_OP_PRF_REPZ = 0xf3; +X86_OP_REX_B = 0x41; +X86_OP_REX_X = 0x42; +X86_OP_REX_R = 0x44; +X86_OP_REX_W = 0x48; +## @} + + +## @name General registers +## @ +X86_GREG_xAX = 0 +X86_GREG_xCX = 1 +X86_GREG_xDX = 2 +X86_GREG_xBX = 3 +X86_GREG_xSP = 4 +X86_GREG_xBP = 5 +X86_GREG_xSI = 6 +X86_GREG_xDI = 7 +X86_GREG_x8 = 8 +X86_GREG_x9 = 9 +X86_GREG_x10 = 10 +X86_GREG_x11 = 11 +X86_GREG_x12 = 12 +X86_GREG_x13 = 13 +X86_GREG_x14 = 14 +X86_GREG_x15 = 15 +## @} + + +## @name Register names. +## @{ +g_asGRegs64NoSp = ('rax', 'rcx', 'rdx', 'rbx', None, 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15'); +g_asGRegs64 = ('rax', 'rcx', 'rdx', 'rbx', 'rsp', 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15'); +g_asGRegs32NoSp = ('eax', 'ecx', 'edx', 'ebx', None, 'ebp', 'esi', 'edi', + 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d'); +g_asGRegs32 = ('eax', 'ecx', 'edx', 'ebx', 'esp', 'ebp', 'esi', 'edi', + 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d'); +g_asGRegs16NoSp = ('ax', 'cx', 'dx', 'bx', None, 'bp', 'si', 'di', + 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w'); +g_asGRegs16 = ('ax', 'cx', 'dx', 'bx', 'sp', 'bp', 'si', 'di', + 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w'); +g_asGRegs8 = ('al', 'cl', 'dl', 'bl', 'ah', 'ch', 'dh', 'bh'); +g_asGRegs8Rex = ('al', 'cl', 'dl', 'bl', 'spl', 'bpl', 'sil', 'dil', + 'r8b', 'r9b', 'r10b', 'r11b', 'r12b', 'r13b', 'r14b', 'r15b', + 'ah', 'ch', 'dh', 'bh'); +## @} + +## @name EFLAGS/RFLAGS/EFLAGS +## @{ +X86_EFL_CF = RT_BIT_32(0); +X86_EFL_CF_BIT = 0; +X86_EFL_1 = RT_BIT_32(1); +X86_EFL_PF = RT_BIT_32(2); +X86_EFL_AF = RT_BIT_32(4); +X86_EFL_AF_BIT = 4; +X86_EFL_ZF = RT_BIT_32(6); +X86_EFL_ZF_BIT = 6; +X86_EFL_SF = RT_BIT_32(7); +X86_EFL_SF_BIT = 7; +X86_EFL_TF = RT_BIT_32(8); +X86_EFL_IF = RT_BIT_32(9); +X86_EFL_DF = RT_BIT_32(10); +X86_EFL_OF = RT_BIT_32(11); +X86_EFL_OF_BIT = 11; +X86_EFL_IOPL = (RT_BIT_32(12) | RT_BIT_32(13)); +X86_EFL_NT = RT_BIT_32(14); +X86_EFL_RF = RT_BIT_32(16); +X86_EFL_VM = RT_BIT_32(17); +X86_EFL_AC = RT_BIT_32(18); +X86_EFL_VIF = RT_BIT_32(19); +X86_EFL_VIP = RT_BIT_32(20); +X86_EFL_ID = RT_BIT_32(21); +X86_EFL_LIVE_MASK = 0x003f7fd5; +X86_EFL_RA1_MASK = RT_BIT_32(1); +X86_EFL_IOPL_SHIFT = 12; +X86_EFL_STATUS_BITS = ( X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF ); +## @} + +## @name Random +## @{ +g_iMyRandSeed = int((os.urandom(4)).encode('hex'), 16); +#g_iMyRandSeed = 286523426; +#g_iMyRandSeed = 1994382324; +g_oMyRand = random.Random(g_iMyRandSeed); +#g_oMyRand = random.SystemRandom(); + +def randU8(): + """ Unsigned 8-bit random number. """ + return g_oMyRand.getrandbits(8); + +def randU16(): + """ Unsigned 16-bit random number. """ + return g_oMyRand.getrandbits(16); + +def randU32(): + """ Unsigned 32-bit random number. """ + return g_oMyRand.getrandbits(32); + +def randU64(): + """ Unsigned 64-bit random number. """ + return g_oMyRand.getrandbits(64); + +def randUxx(cBits): + """ Unsigned 8-, 16-, 32-, or 64-bit random number. """ + return g_oMyRand.getrandbits(cBits); + +def randSxx(cBits): + """ Signed 8-, 16-, 32-, or 64-bit random number. """ + uVal = randUxx(cBits); + iRet = uVal & ((1 << (cBits - 1)) - 1); + if iRet != uVal: + iRet = -iRet; + return iRet; + +def randUxxList(cBits, cElements): + """ List of unsigned 8-, 16-, 32-, or 64-bit random numbers. """ + return [randUxx(cBits) for _ in range(cElements)]; +## @} + + + + +## @name Instruction Emitter Helpers +## @{ + +def calcRexPrefixForTwoModRmRegs(iReg, iRm, bOtherRexPrefixes = 0): + """ + Calculates a rex prefix if neccessary given the two registers + and optional rex size prefixes. + Returns an empty array if not necessary. + """ + bRex = bOtherRexPrefixes; + if iReg >= 8: + bRex |= X86_OP_REX_R; + if iRm >= 8: + bRex |= X86_OP_REX_B; + if bRex == 0: + return []; + return [bRex,]; + +def calcModRmForTwoRegs(iReg, iRm): + """ + Calculate the RM byte for two registers. + Returns an array with one byte in it. + """ + bRm = (0x3 << X86_MODRM_MOD_SHIFT) \ + | ((iReg << X86_MODRM_REG_SHIFT) & X86_MODRM_REG_MASK) \ + | (iRm & X86_MODRM_RM_MASK); + return [bRm,]; + +## @} + + +## @name Misc +## @{ + +def convU32ToSigned(u32): + """ Converts a 32-bit unsigned value to 32-bit signed. """ + if u32 < 0x80000000: + return u32; + return u32 - UINT32_MAX - 1; + +def rotateLeftUxx(cBits, uVal, cShift): + """ Rotate a xx-bit wide unsigned number to the left. """ + assert cShift < cBits; + + if cBits == 16: + uMask = UINT16_MAX; + elif cBits == 32: + uMask = UINT32_MAX; + elif cBits == 64: + uMask = UINT64_MAX; + else: + assert cBits == 8; + uMask = UINT8_MAX; + + uVal &= uMask; + uRet = (uVal << cShift) & uMask; + uRet |= (uVal >> (cBits - cShift)); + return uRet; + +def rotateRightUxx(cBits, uVal, cShift): + """ Rotate a xx-bit wide unsigned number to the right. """ + assert cShift < cBits; + + if cBits == 16: + uMask = UINT16_MAX; + elif cBits == 32: + uMask = UINT32_MAX; + elif cBits == 64: + uMask = UINT64_MAX; + else: + assert cBits == 8; + uMask = UINT8_MAX; + + uVal &= uMask; + uRet = (uVal >> cShift); + uRet |= (uVal << (cBits - cShift)) & uMask; + return uRet; + +def gregName(iReg, cBits, fRexByteRegs = True): + """ Gets the name of a general register by index and width. """ + if cBits == 64: + return g_asGRegs64[iReg]; + if cBits == 32: + return g_asGRegs32[iReg]; + if cBits == 16: + return g_asGRegs16[iReg]; + assert cBits == 8; + if fRexByteRegs: + return g_asGRegs8Rex[iReg]; + return g_asGRegs8[iReg]; + +## @} + + +class TargetEnv(object): + """ + Target Runtime Environment. + """ + + ## @name CPU Modes + ## @{ + ksCpuMode_Real = 'real'; + ksCpuMode_Protect = 'prot'; + ksCpuMode_Paged = 'paged'; + ksCpuMode_Long = 'long'; + ksCpuMode_V86 = 'v86'; + ## @} + + ## @name Instruction set. + ## @{ + ksInstrSet_16 = '16'; + ksInstrSet_32 = '32'; + ksInstrSet_64 = '64'; + ## @} + + def __init__(self, sName, + sInstrSet = ksInstrSet_32, + sCpuMode = ksCpuMode_Paged, + iRing = 3, + ): + self.sName = sName; + self.sInstrSet = sInstrSet; + self.sCpuMode = sCpuMode; + self.iRing = iRing; + self.asGRegs = g_asGRegs64 if self.is64Bit() else g_asGRegs32; + self.asGRegsNoSp = g_asGRegs64NoSp if self.is64Bit() else g_asGRegs32NoSp; + + def isUsingIprt(self): + """ Whether it's an IPRT environment or not. """ + return self.sName.startswith('iprt'); + + def is64Bit(self): + """ Whether it's a 64-bit environment or not. """ + return self.sInstrSet == self.ksInstrSet_64; + + def getDefOpBits(self): + """ Get the default operand size as a bit count. """ + if self.sInstrSet == self.ksInstrSet_16: + return 16; + return 32; + + def getDefOpBytes(self): + """ Get the default operand size as a byte count. """ + return self.getDefOpBits() / 8; + + def getMaxOpBits(self): + """ Get the max operand size as a bit count. """ + if self.sInstrSet == self.ksInstrSet_64: + return 64; + return 32; + + def getMaxOpBytes(self): + """ Get the max operand size as a byte count. """ + return self.getMaxOpBits() / 8; + + def getDefAddrBits(self): + """ Get the default address size as a bit count. """ + if self.sInstrSet == self.ksInstrSet_16: + return 16; + if self.sInstrSet == self.ksInstrSet_32: + return 32; + return 64; + + def getDefAddrBytes(self): + """ Get the default address size as a byte count. """ + return self.getDefAddrBits() / 8; + + def getGRegCount(self, cbEffBytes = 4): + """ Get the number of general registers. """ + if self.sInstrSet == self.ksInstrSet_64: + if cbEffBytes == 1: + return 16 + 4; + return 16; + return 8; + + def randGRegNoSp(self, cbEffBytes = 4): + """ Returns a random general register number, excluding the SP register. """ + iReg = randU16() % self.getGRegCount(cbEffBytes); + while iReg == X86_GREG_xSP: + iReg = randU16() % self.getGRegCount(cbEffBytes); + return iReg; + + def randGRegNoSpList(self, cItems, cbEffBytes = 4): + """ List of randGRegNoSp values. """ + aiRegs = []; + for _ in range(cItems): + aiRegs.append(self.randGRegNoSp(cbEffBytes)); + return aiRegs; + + def getAddrModes(self): + """ Gets a list of addressing mode (16, 32, or/and 64). """ + if self.sInstrSet == self.ksInstrSet_16: + return [16, 32]; + if self.sInstrSet == self.ksInstrSet_32: + return [32, 16]; + return [64, 32]; + + def is8BitHighGReg(self, cbEffOp, iGReg): + """ Checks if the given register is a high 8-bit general register (AH, CH, DH or BH). """ + assert cbEffOp in [1, 2, 4, 8]; + if cbEffOp == 1: + if iGReg >= 16: + return True; + if iGReg >= 4 and not self.is64Bit(): + return True; + return False; + + def gregNameBits(self, iReg, cBits): + """ Gets the name of the given register for the specified width (bits). """ + return gregName(iReg, cBits, self.is64Bit()); + + def gregNameBytes(self, iReg, cbWidth): + """ Gets the name of the given register for the specified with (in bytes). """ + return gregName(iReg, cbWidth * 8, self.is64Bit()); + + + + +## Target environments. +g_dTargetEnvs = { + 'iprt-r3-32': TargetEnv('iprt-r3-32', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 3), + 'iprt-r3-64': TargetEnv('iprt-r3-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 3), + 'bs2-r0-64': TargetEnv('bs2-r0-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0), + 'bs2-r0-64-big': TargetEnv('bs2-r0-64-big', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0), + 'bs2-r0-32-big': TargetEnv('bs2-r0-32-big', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 0), +}; + + +class InstrTestBase(object): + """ + Base class for testing one instruction. + """ + + def __init__(self, sName, sInstr = None): + self.sName = sName; + self.sInstr = sInstr if sInstr else sName.split()[0]; + + def isApplicable(self, oGen): + """ + Tests if the instruction test is applicable to the selected environment. + """ + _ = oGen; + return True; + + def generateTest(self, oGen, sTestFnName): + """ + Emits the test assembly code. + """ + oGen.write(';; @todo not implemented. This is for the linter: %s, %s\n' % (oGen, sTestFnName)); + return True; + + def generateInputs(self, cbEffOp, cbMaxOp, oGen, fLong = False): + """ Generate a list of inputs. """ + if fLong: + # + # Try do extremes as well as different ranges of random numbers. + # + auRet = [0, 1, ]; + if cbMaxOp >= 1: + auRet += [ UINT8_MAX / 2, UINT8_MAX / 2 + 1, UINT8_MAX ]; + if cbMaxOp >= 2: + auRet += [ UINT16_MAX / 2, UINT16_MAX / 2 + 1, UINT16_MAX ]; + if cbMaxOp >= 4: + auRet += [ UINT32_MAX / 2, UINT32_MAX / 2 + 1, UINT32_MAX ]; + if cbMaxOp >= 8: + auRet += [ UINT64_MAX / 2, UINT64_MAX / 2 + 1, UINT64_MAX ]; + + if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: + for cBits, cValues in ( (8, 4), (16, 4), (32, 8), (64, 8) ): + if cBits < cbMaxOp * 8: + auRet += randUxxList(cBits, cValues); + cWanted = 16; + elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: + for cBits, cValues in ( (8, 8), (16, 8), (24, 2), (32, 16), (40, 1), (48, 1), (56, 1), (64, 16) ): + if cBits < cbMaxOp * 8: + auRet += randUxxList(cBits, cValues); + cWanted = 64; + else: + for cBits, cValues in ( (8, 16), (16, 16), (24, 4), (32, 64), (40, 4), (48, 4), (56, 4), (64, 64) ): + if cBits < cbMaxOp * 8: + auRet += randUxxList(cBits, cValues); + cWanted = 168; + if len(auRet) < cWanted: + auRet += randUxxList(cbEffOp * 8, cWanted - len(auRet)); + else: + # + # Short list, just do some random numbers. + # + auRet = []; + if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: + auRet += randUxxList(cbMaxOp, 1); + elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: + auRet += randUxxList(cbMaxOp, 2); + else: + auRet = []; + for cBits in (8, 16, 32, 64): + if cBits < cbMaxOp * 8: + auRet += randUxxList(cBits, 1); + return auRet; + + +class InstrTest_MemOrGreg_2_Greg(InstrTestBase): + """ + Instruction reading memory or general register and writing the result to a + general register. + """ + + def __init__(self, sName, fnCalcResult, sInstr = None, acbOpVars = None): + InstrTestBase.__init__(self, sName, sInstr); + self.fnCalcResult = fnCalcResult; + self.acbOpVars = [ 1, 2, 4, 8 ] if not acbOpVars else list(acbOpVars); + self.fTestRegForm = True; + self.fTestMemForm = True; + + ## @name Test Instruction Writers + ## @{ + + def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen): + """ Writes the instruction with two general registers as operands. """ + oGen.write(' %s %s, %s\n' + % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),)); + return True; + + def writeInstrGregPureRM(self, cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen): + """ Writes the instruction with two general registers as operands. """ + oGen.write(' '); + if iOp2 == 13 and iMod == 0 and cAddrBits == 64: + oGen.write('altrexb '); # Alternative encoding for rip relative addressing. + oGen.write('%s %s, [' % (self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp),)); + if (iOp2 == 5 or iOp2 == 13) and iMod == 0: + oGen.write('VBINSTST_NAME(g_u%sData)' % (cbEffOp * 8,)) + if oGen.oTarget.is64Bit(): + oGen.write(' wrt rip'); + else: + if iMod == 1: + oGen.write('byte %d + ' % (offDisp,)); + elif iMod == 2: + oGen.write('dword %d + ' % (offDisp,)); + else: + assert iMod == 0; + + if cAddrBits == 64: + oGen.write(g_asGRegs64[iOp2]); + elif cAddrBits == 32: + oGen.write(g_asGRegs32[iOp2]); + elif cAddrBits == 16: + assert False; ## @todo implement 16-bit addressing. + else: + assert False, str(cAddrBits); + + oGen.write(']\n'); + return True; + + def writeInstrGregSibLabel(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): + """ Writes the instruction taking a register and a label (base only w/o reg), SIB form. """ + assert offDisp is None; assert iBaseReg in [5, 13]; assert iIndexReg == 4; assert cAddrBits != 16; + if cAddrBits == 64: + # Note! Cannot test this in 64-bit mode in any sensible way because the disp is 32-bit + # and we cannot (yet) make assumtions about where we're loaded. + ## @todo Enable testing this in environments where we can make assumptions (boot sector). + oGen.write(' %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP]\n' + % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8,)); + else: + oGen.write(' altsibx%u %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP] ; iOp1=%s cbEffOp=%s\n' + % ( iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8, iOp1, cbEffOp)); + return True; + + def writeInstrGregSibScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): + """ Writes the instruction taking a register and disp+scaled register (no base reg), SIB form. """ + assert iBaseReg in [5, 13]; assert iIndexReg != 4; assert cAddrBits != 16; + # Note! Using altsibxN to force scaled encoding. This is only really a + # necessity for iScale=1, but doesn't hurt for the rest. + oGen.write(' altsibx%u %s %s, [%s * %#x' + % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,)); + if offDisp is not None: + oGen.write(' + %#x' % (offDisp,)); + oGen.write(']\n'); + _ = iBaseReg; + return True; + + def writeInstrGregSibBase(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): + """ Writes the instruction taking a register and base only (with reg), SIB form. """ + oGen.write(' altsibx%u %s %s, [%s' + % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iBaseReg, cAddrBits),)); + if offDisp is not None: + oGen.write(' + %#x' % (offDisp,)); + oGen.write(']\n'); + _ = iIndexReg; + return True; + + def writeInstrGregSibBaseAndScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): + """ Writes tinstruction taking a register and full featured SIB form address. """ + # Note! From the looks of things, yasm will encode the following instructions the same way: + # mov eax, [rsi*1 + rbx] + # mov eax, [rbx + rsi*1] + # So, when there are two registers involved, the '*1' selects + # which is index and which is base. + oGen.write(' %s %s, [%s + %s * %u' + % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), + oGen.gregNameBits(iBaseReg, cAddrBits), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,)); + if offDisp is not None: + oGen.write(' + %#x' % (offDisp,)); + oGen.write(']\n'); + return True; + + ## @} + + + ## @name Memory setups + ## @{ + + def generateMemSetupReadByLabel(self, oGen, cbEffOp, uInput): + """ Sets up memory for a memory read. """ + oGen.pushConst(uInput); + oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,)); + return True; + + def generateMemSetupReadByReg(self, oGen, cAddrBits, cbEffOp, iReg1, uInput, offDisp = None): + """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """ + oGen.pushConst(uInput); + oGen.write(' call VBINSTST_NAME(%s)\n' + % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iReg1, offDisp = offDisp),)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iReg1],)); + return True; + + def generateMemSetupReadByScaledReg(self, oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp = None): + """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """ + oGen.pushConst(uInput); + oGen.write(' call VBINSTST_NAME(%s)\n' + % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, offDisp = offDisp, iIndexReg = iIndexReg, iScale = iScale),)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],)); + return True; + + def generateMemSetupReadByBaseAndScaledReg(self, oGen, cAddrBits, cbEffOp, iBaseReg, iIndexReg, iScale, uInput, offDisp): + """ Sets up memory for a memory read indirectly addressed thru two registers with optional displacement. """ + oGen.pushConst(uInput); + oGen.write(' call VBINSTST_NAME(%s)\n' + % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iBaseReg, offDisp = offDisp, + iIndexReg = iIndexReg, iScale = iScale),)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iBaseReg],)); + return True; + + def generateMemSetupPureRM(self, oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp = None): + """ Sets up memory for a pure R/M addressed read, iOp2 being the R/M value. """ + oGen.pushConst(uInput); + assert offDisp is None or iMod != 0; + if (iOp2 != 5 and iOp2 != 13) or iMod != 0: + oGen.write(' call VBINSTST_NAME(%s)\n' + % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iOp2, offDisp),)); + else: + oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); + return True; + + ## @} + + def generateOneStdTestGregGreg(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult): + """ Generate one standard instr greg,greg test. """ + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uInput,)); + if iOp1X != iOp2X: + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); + self.writeInstrGregGreg(cbEffOp, iOp1, iOp2, oGen); + oGen.pushConst(uResult); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1X, iOp2X if iOp1X != iOp2X else None),)); + _ = cbMaxOp; + return True; + + def generateOneStdTestGregGreg8BitHighPain(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput): + """ High 8-bit registers are a real pain! """ + assert oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) or oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2); + # Figure out the register indexes of the max op sized regs involved. + iOp1X = iOp1 & 3; + iOp2X = iOp2 & 3; + oGen.write(' ; iOp1=%u iOp1X=%u iOp2=%u iOp2X=%u\n' % (iOp1, iOp1X, iOp2, iOp2X,)); + + # Calculate unshifted result. + if iOp1X != iOp2X: + uCur = oGen.auRegValues[iOp1X]; + if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): + uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8); + else: + uCur = uInput; + if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) != oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): + if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): + uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8); + else: + uCur = rotateLeftUxx(cbMaxOp * 8, uCur, 8); + uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen); + + + # Rotate the input and/or result to match their max-op-sized registers. + if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): + uInput = rotateLeftUxx(cbMaxOp * 8, uInput, 8); + if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): + uResult = rotateLeftUxx(cbMaxOp * 8, uResult, 8); + + # Hand it over to an overridable worker method. + return self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult); + + + def generateOneStdTestGregMemNoSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult): + """ Generate mode 0, 1 and 2 test for the R/M=iOp2. """ + if cAddrBits == 16: + _ = cbMaxOp; + else: + iMod = 0; # No disp, except for i=5. + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput); + self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, None, oGen); + oGen.pushConst(uResult); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); + + if iOp2 != 5 and iOp2 != 13: + iMod = 1; + for offDisp in oGen.getDispForMod(iMod): + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp); + self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen); + oGen.pushConst(uResult); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); + + iMod = 2; + for offDisp in oGen.getDispForMod(iMod): + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp); + self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen); + oGen.pushConst(uResult); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); + + return True; + + def generateOneStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, # pylint: disable=R0913 + iBaseReg, iIndexReg, iScale, uInput, uResult): + """ Generate one SIB variations. """ + for offDisp in oGen.getDispForMod(iMod, cbEffOp): + if ((iBaseReg == 5 or iBaseReg == 13) and iMod == 0): + if iIndexReg == 4: + if cAddrBits == 64: + continue; # skipping. + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + self.generateMemSetupReadByLabel(oGen, cbEffOp, uInput); + self.writeInstrGregSibLabel(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); + sChecker = oGen.needGRegChecker(iOp1); + else: + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + self.generateMemSetupReadByScaledReg(oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp); + self.writeInstrGregSibScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); + sChecker = oGen.needGRegChecker(iOp1, iIndexReg); + else: + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + if iIndexReg == 4: + self.generateMemSetupReadByReg(oGen, cAddrBits, cbEffOp, iBaseReg, uInput, offDisp); + self.writeInstrGregSibBase(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); + sChecker = oGen.needGRegChecker(iOp1, iBaseReg); + else: + if iIndexReg == iBaseReg and iScale == 1 and offDisp is not None and (offDisp & 1): + if offDisp < 0: offDisp += 1; + else: offDisp -= 1; + self.generateMemSetupReadByBaseAndScaledReg(oGen, cAddrBits, cbEffOp, iBaseReg, + iIndexReg, iScale, uInput, offDisp); + self.writeInstrGregSibBaseAndScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); + sChecker = oGen.needGRegChecker(iOp1, iBaseReg, iIndexReg); + oGen.pushConst(uResult); + oGen.write(' call VBINSTST_NAME(%s)\n' % (sChecker,)); + _ = cbMaxOp; + return True; + + def generateStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, auInputs): + """ Generate all SIB variations for the given iOp1 (reg) value. """ + assert cAddrBits in [32, 64]; + i = oGen.cSibBasePerRun; + while i > 0: + oGen.iSibBaseReg = (oGen.iSibBaseReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8); + if oGen.iSibBaseReg == X86_GREG_xSP: # no RSP testing atm. + continue; + + j = oGen.getSibIndexPerRun(); + while j > 0: + oGen.iSibIndexReg = (oGen.iSibIndexReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8); + if oGen.iSibIndexReg == iOp1 and oGen.iSibIndexReg != 4 and cAddrBits != cbMaxOp: + continue; # Don't know the high bit of the address ending up the result - skip it for now. + + for iMod in [0, 1, 2]: + if oGen.iSibBaseReg == iOp1 \ + and ((oGen.iSibBaseReg != 5 and oGen.iSibBaseReg != 13) or iMod != 0) \ + and cAddrBits != cbMaxOp: + continue; # Don't know the high bit of the address ending up the result - skip it for now. + + for _ in oGen.oSibScaleRange: + oGen.iSibScale *= 2; + if oGen.iSibScale > 8: + oGen.iSibScale = 1; + + for uInput in auInputs: + oGen.newSubTest(); + uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[iOp1], oGen); + self.generateOneStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, + oGen.iSibBaseReg, oGen.iSibIndexReg, oGen.iSibScale, + uInput, uResult); + j -= 1; + i -= 1; + + return True; + + + def generateStandardTests(self, oGen): + """ Generate standard tests. """ + + # Parameters. + cbDefOp = oGen.oTarget.getDefOpBytes(); + cbMaxOp = oGen.oTarget.getMaxOpBytes(); + auShortInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen); + auLongInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen, fLong = True); + iLongOp1 = oGen.oTarget.randGRegNoSp(); + iLongOp2 = oGen.oTarget.randGRegNoSp(); + + # Register tests + if self.fTestRegForm: + for cbEffOp in self.acbOpVars: + if cbEffOp > cbMaxOp: + continue; + oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp)); + if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: + oOp2Range = [iLongOp2,]; + oGen.write('; cbEffOp=%u\n' % (cbEffOp,)); + + for iOp1 in range(oGen.oTarget.getGRegCount(cbEffOp)): + if iOp1 == X86_GREG_xSP: + continue; # Cannot test xSP atm. + for iOp2 in oOp2Range: + if (iOp2 >= 16 and iOp1 in range(4, 16)) \ + or (iOp1 >= 16 and iOp2 in range(4, 16)): + continue; # Any REX encoding turns AH,CH,DH,BH regs into SPL,BPL,SIL,DIL. + if iOp2 == X86_GREG_xSP: + continue; # Cannot test xSP atm. + + oGen.write('; iOp2=%u cbEffOp=%u\n' % (iOp2, cbEffOp)); + for uInput in (auLongInputs if iOp1 == iLongOp1 and iOp2 == iLongOp2 else auShortInputs): + oGen.newSubTest(); + if not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) and not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): + uCur = oGen.auRegValues[iOp1 & 15] if iOp1 != iOp2 else uInput; + uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen); + self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1 & 15, iOp2, iOp2 & 15, + uInput, uResult); + else: + self.generateOneStdTestGregGreg8BitHighPain(oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput); + + # Memory test. + if self.fTestMemForm: + for cAddrBits in oGen.oTarget.getAddrModes(): + for cbEffOp in self.acbOpVars: + if cbEffOp > cbMaxOp: + continue; + + for _ in oGen.getModRegRange(cbEffOp): + oGen.iModReg = (oGen.iModReg + 1) % oGen.oTarget.getGRegCount(cbEffOp); + if oGen.iModReg == X86_GREG_xSP: + continue; # Cannot test xSP atm. + if oGen.iModReg > 15: + continue; ## TODO AH,CH,DH,BH + + auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs; + for _ in oGen.oModRmRange: + oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8); + if oGen.iModRm != 4 or cAddrBits == 16: + for uInput in auInputs: + oGen.newSubTest(); + if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 \ + and oGen.iModRm != 13 and cbEffOp != cbMaxOp: + continue; # Don't know the high bit of the address ending up the result - skip it for now. + uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen); + self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp, + oGen.iModReg, oGen.iModRm, uInput, uResult); + else: + # SIB - currently only short list of inputs or things may get seriously out of hand. + self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs); + return True; + + def generateTest(self, oGen, sTestFnName): + oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); + + self.generateStandardTests(oGen); + + oGen.write(' ret\n'); + oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); + return True; + + + +class InstrTest_Mov_Gv_Ev(InstrTest_MemOrGreg_2_Greg): + """ + Tests MOV Gv,Ev. + """ + def __init__(self): + InstrTest_MemOrGreg_2_Greg.__init__(self, 'mov Gv,Ev', self.calc_mov); + + @staticmethod + def calc_mov(cbEffOp, uInput, uCur, oGen): + """ Calculates the result of a mov instruction.""" + if cbEffOp == 8: + return uInput & UINT64_MAX; + if cbEffOp == 4: + return uInput & UINT32_MAX; + if cbEffOp == 2: + return (uCur & 0xffffffffffff0000) | (uInput & UINT16_MAX); + assert cbEffOp == 1; _ = oGen; + return (uCur & 0xffffffffffffff00) | (uInput & UINT8_MAX); + + +class InstrTest_MovSxD_Gv_Ev(InstrTest_MemOrGreg_2_Greg): + """ + Tests MOVSXD Gv,Ev. + """ + def __init__(self): + InstrTest_MemOrGreg_2_Greg.__init__(self, 'movsxd Gv,Ev', self.calc_movsxd, acbOpVars = [ 8, 4, 2, ]); + self.fTestMemForm = False; # drop this... + + def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen): + """ Writes the instruction with two general registers as operands. """ + if cbEffOp == 8: + oGen.write(' movsxd %s, %s\n' + % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp / 2),)); + else: + oGen.write(' oddmovsxd %s, %s\n' + % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),)); + return True; + + def isApplicable(self, oGen): + return oGen.oTarget.is64Bit(); + + @staticmethod + def calc_movsxd(cbEffOp, uInput, uCur, oGen): + """ + Calculates the result of a movxsd instruction. + Returns the result value (cbMaxOp sized). + """ + _ = oGen; + if cbEffOp == 8 and (uInput & RT_BIT_32(31)): + return (UINT32_MAX << 32) | (uInput & UINT32_MAX); + if cbEffOp == 2: + return (uCur & 0xffffffffffff0000) | (uInput & 0xffff); + return uInput & UINT32_MAX; + + +class InstrTest_DivIDiv(InstrTestBase): + """ + Tests IDIV and DIV instructions. + """ + + def __init__(self, fIsIDiv): + if not fIsIDiv: + InstrTestBase.__init__(self, 'div Gv,Ev', 'div'); + else: + InstrTestBase.__init__(self, 'idiv Gv,Ev', 'idiv'); + self.fIsIDiv = fIsIDiv; + + def generateInputEdgeCases(self, cbEffOp, fLong, fXcpt): + """ Generate edge case inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """ + # Test params. + uStep = 1 << (cbEffOp * 8); + if self.fIsIDiv: + uStep /= 2; + + # edge tests + auRet = []; + + uDivisor = 1 if fLong else 3; + uDividend = uStep * uDivisor - 1; + for i in range(5 if fLong else 3): + auRet.append([uDividend + fXcpt, uDivisor]); + if self.fIsIDiv: + auRet.append([-uDividend - fXcpt, -uDivisor]); + auRet.append([-(uDividend + uDivisor + fXcpt), uDivisor]); + auRet.append([ (uDividend + uDivisor + fXcpt), -uDivisor]); + if i <= 3 and fLong: + auRet.append([uDividend - 1 + fXcpt*3, uDivisor]); + if self.fIsIDiv: + auRet.append([-(uDividend - 1 + fXcpt*3), -uDivisor]); + uDivisor += 1; + uDividend += uStep; + + uDivisor = uStep - 1; + uDividend = uStep * uDivisor - 1; + for _ in range(3 if fLong else 1): + auRet.append([uDividend + fXcpt, uDivisor]); + if self.fIsIDiv: + auRet.append([-uDividend - fXcpt, -uDivisor]); + uDivisor -= 1; + uDividend -= uStep; + + if self.fIsIDiv: + uDivisor = -uStep; + for _ in range(3 if fLong else 1): + auRet.append([uDivisor * (-uStep - 1) - (not fXcpt), uDivisor]); + uDivisor += 1 + uDivisor = uStep - 1; + for _ in range(3 if fLong else 1): + auRet.append([-(uDivisor * (uStep + 1) - (not fXcpt)), uDivisor]); + uDivisor -= 1 + + return auRet; + + def generateInputsNoXcpt(self, cbEffOp, fLong = False): + """ Generate inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """ + # Test params. + uStep = 1 << (cbEffOp * 8); + if self.fIsIDiv: + uStep /= 2; + + # edge tests + auRet = self.generateInputEdgeCases(cbEffOp, fLong, False) + + # random tests. + if self.fIsIDiv: + for _ in range(6 if fLong else 2): + while True: + uDivisor = randSxx(cbEffOp * 8); + if uDivisor == 0 or uDivisor >= uStep or uDivisor < -uStep: + continue; + uDividend = randSxx(cbEffOp * 16); + uResult = uDividend / uDivisor; + if uResult >= uStep or uResult <= -uStep: # exclude difficulties + continue; + break; + auRet.append([uDividend, uDivisor]); + else: + for _ in range(6 if fLong else 2): + while True: + uDivisor = randUxx(cbEffOp * 8); + if uDivisor == 0 or uDivisor >= uStep: + continue; + uDividend = randUxx(cbEffOp * 16); + uResult = uDividend / uDivisor; + if uResult >= uStep: + continue; + break; + auRet.append([uDividend, uDivisor]); + + return auRet; + + def generateOneStdTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): + """ Generate code of one '[I]DIV rDX:rAX,<GREG>' test. """ + cbMaxOp = oGen.oTarget.getMaxOpBytes(); + fEffOp = ((1 << (cbEffOp *8) ) - 1); + fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; + fTopOp = fMaxOp - fEffOp; + fFullOp1 = ((1 << (cbEffOp*16)) - 1); + + uAX = iDividend & fFullOp1; # full with unsigned + uDX = uAX >> (cbEffOp*8); + uAX &= fEffOp; + uOp2Val = iDivisor & fEffOp; + + iQuotient = iDividend / iDivisor; + iReminder = iDividend % iDivisor; + if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division. + iQuotient += 1; + iReminder -= iDivisor; + uAXResult = iQuotient & fEffOp; + uDXResult = iReminder & fEffOp; + + if cbEffOp < cbMaxOp: + uAX |= randUxx(cbMaxOp * 8) & fTopOp; + uDX |= randUxx(cbMaxOp * 8) & fTopOp; + uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp; + if cbEffOp < 4: + uAXResult |= uAX & fTopOp; + uDXResult |= uDX & fTopOp; + oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' + ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n' + % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor, + iQuotient & fEffOp, iQuotient, iReminder & fEffOp, iReminder, )); + + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,)); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,)); + + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); + oGen.pushConst(uDXResult); + oGen.pushConst(uAXResult); + + oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),)); + return True; + + def generateOneStdTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): + """ Generate code of one '[I]DIV AX,<GREG>' test (8-bit). """ + cbMaxOp = oGen.oTarget.getMaxOpBytes(); + fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; + iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2; + assert iOp2X != X86_GREG_xAX; + + uAX = iDividend & UINT16_MAX; # full with unsigned + uOp2Val = iDivisor & UINT8_MAX; + + iQuotient = iDividend / iDivisor; + iReminder = iDividend % iDivisor; + if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division. + iQuotient += 1; + iReminder -= iDivisor; + uAXResult = (iQuotient & UINT8_MAX) | ((iReminder & UINT8_MAX) << 8); + + uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX); + uAXResult |= uAX & (fMaxOp - UINT16_MAX); + uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX); + if iOp2X != iOp2: + uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8); + oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' + ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n' + % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor, + iQuotient & UINT8_MAX, iQuotient, iReminder & UINT8_MAX, iReminder, )); + + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); + oGen.pushConst(uAXResult); + + oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),)); + return; + + + def generateStandardTests(self, oGen): + """ Generates test that causes no exceptions. """ + + # Parameters. + iLongOp2 = oGen.oTarget.randGRegNoSp(); + + # Register tests + if True: + for cbEffOp in ( 8, 4, 2, 1 ): + if cbEffOp > oGen.oTarget.getMaxOpBytes(): + continue; + oGen.write('; cbEffOp=%u\n' % (cbEffOp,)); + oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp)); + if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: + oOp2Range = [iLongOp2,]; + for iOp2 in oOp2Range: + if iOp2 == X86_GREG_xSP: + continue; # Cannot test xSP atm. + if iOp2 == X86_GREG_xAX or (cbEffOp > 1 and iOp2 == X86_GREG_xDX): + continue; # Will overflow or be too complicated to get right. + if cbEffOp == 1 and iOp2 == (16 if oGen.oTarget.is64Bit() else 4): + continue; # Avoid dividing by AH, same reasons as above. + + for iDividend, iDivisor in self.generateInputsNoXcpt(cbEffOp, iOp2 == iLongOp2): + oGen.newSubTest(); + if cbEffOp > 1: + self.generateOneStdTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor); + else: + self.generateOneStdTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor); + + ## Memory test. + #if False: + # for cAddrBits in oGen.oTarget.getAddrModes(): + # for cbEffOp in self.acbOpVars: + # if cbEffOp > cbMaxOp: + # continue; + # + # auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs; + # for _ in oGen.oModRmRange: + # oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8); + # if oGen.iModRm != 4 or cAddrBits == 16: + # for uInput in auInputs: + # oGen.newSubTest(); + # if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 and oGen.iModRm != 13 and cbEffOp != cbMaxOp: + # continue; # Don't know the high bit of the address ending up the result - skip it for now. + # uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen); + # self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp, + # oGen.iModReg, oGen.iModRm, uInput, uResult); + # else: + # # SIB - currently only short list of inputs or things may get seriously out of hand. + # self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs); + # + return True; + + def generateInputsXcpt(self, cbEffOp, fLong = False): + """ + Generate inputs for cbEffOp that will overflow or underflow. + Returns a list of pairs, dividen + divisor. + """ + # Test params. + uStep = 1 << (cbEffOp * 8); + if self.fIsIDiv: + uStep /= 2; + + # edge tests + auRet = self.generateInputEdgeCases(cbEffOp, fLong, True); + auRet.extend([[0, 0], [1, 0], [ uStep * uStep / 2 - 1, 0]]); + + # random tests. + if self.fIsIDiv: + for _ in range(6 if fLong else 2): + while True: + uDivisor = randSxx(cbEffOp * 8); + uDividend = randSxx(cbEffOp * 16); + if uDivisor >= uStep or uDivisor < -uStep: + continue; + if uDivisor != 0: + uResult = uDividend / uDivisor; + if (uResult <= uStep and uResult >= 0) or (uResult >= -uStep and uResult < 0): + continue; # exclude difficulties + break; + auRet.append([uDividend, uDivisor]); + else: + for _ in range(6 if fLong else 2): + while True: + uDivisor = randUxx(cbEffOp * 8); + uDividend = randUxx(cbEffOp * 16); + if uDivisor >= uStep: + continue; + if uDivisor != 0: + uResult = uDividend / uDivisor; + if uResult < uStep: + continue; + break; + auRet.append([uDividend, uDivisor]); + + return auRet; + + def generateOneDivideErrorTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): + """ Generate code of one '[I]DIV rDX:rAX,<GREG>' test that causes #DE. """ + cbMaxOp = oGen.oTarget.getMaxOpBytes(); + fEffOp = ((1 << (cbEffOp *8) ) - 1); + fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; + fTopOp = fMaxOp - fEffOp; + fFullOp1 = ((1 << (cbEffOp*16)) - 1); + + uAX = iDividend & fFullOp1; # full with unsigned + uDX = uAX >> (cbEffOp*8); + uAX &= fEffOp; + uOp2Val = iDivisor & fEffOp; + + if cbEffOp < cbMaxOp: + uAX |= randUxx(cbMaxOp * 8) & fTopOp; + uDX |= randUxx(cbMaxOp * 8) & fTopOp; + uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp; + oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' + % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor,)); + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,)); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX],)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX],)); + oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n' + % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),)); + return True; + + def generateOneDivideErrorTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): + """ Generate code of one '[I]DIV AX,<GREG>' test that causes #DE (8-bit). """ + if not oGen.oTarget.is64Bit() and iOp2 == 4: # Avoid AH. + iOp2 = 5; + + cbMaxOp = oGen.oTarget.getMaxOpBytes(); + fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; + iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2; + assert iOp2X != X86_GREG_xAX; + + uAX = iDividend & UINT16_MAX; # full with unsigned + uOp2Val = iDivisor & UINT8_MAX; + + uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX); + uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX); + if iOp2X != iOp2: + uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8); + oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' + % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor,)); + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); + oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,)); + oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); + oGen.write(' push sAX\n'); + oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n' + % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),)); + return; + + def generateDivideErrorTests(self, oGen): + """ Generate divide error tests (raises X86_XCPT_DE). """ + oGen.write('%ifdef VBINSTST_CAN_DO_TRAPS\n'); + + # We do one register variation here, assuming the standard test has got them covered. + # Register tests + if True: + iOp2 = oGen.oTarget.randGRegNoSp(); + while iOp2 == X86_GREG_xAX or iOp2 == X86_GREG_xDX: + iOp2 = oGen.oTarget.randGRegNoSp(); + + for cbEffOp in ( 8, 4, 2, 1 ): + if cbEffOp > oGen.oTarget.getMaxOpBytes(): + continue; + oGen.write('; cbEffOp=%u iOp2=%u\n' % (cbEffOp, iOp2,)); + + for iDividend, iDivisor in self.generateInputsXcpt(cbEffOp, fLong = not oGen.isTiny()): + oGen.newSubTest(); + if cbEffOp > 1: + self.generateOneDivideErrorTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor); + else: + self.generateOneDivideErrorTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor); + + oGen.write('%endif ; VBINSTST_CAN_DO_TRAPS\n'); + return True; + + + def generateTest(self, oGen, sTestFnName): + oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); + #oGen.write(' int3\n'); + + self.generateStandardTests(oGen); + self.generateDivideErrorTests(oGen); + + #oGen.write(' int3\n'); + oGen.write(' ret\n'); + oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); + return True; + + + +class InstrTest_DaaDas(InstrTestBase): + """ Tests the DAA and DAS instructions. """ + + def __init__(self, fIsDas): + InstrTestBase.__init__(self, 'das' if fIsDas else 'daa'); + self.fIsDas = fIsDas; + + def isApplicable(self, oGen): + return not oGen.oTarget.is64Bit(); + + def generateTest(self, oGen, sTestFnName): + if self.fIsDas: from itgTableDas import g_aItgDasResults as aItgResults; + else: from itgTableDaa import g_aItgDaaResults as aItgResults; + cMax = len(aItgResults); + if oGen.isTiny(): + cMax = 64; + + oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); + oGen.write(' xor ebx, ebx\n'); + oGen.write('.das_loop:\n'); + # Save the loop variable so we can load known values. + oGen.write(' push ebx\n'); + oGen.newSubTestEx('ebx'); + + # Push the results. + oGen.write(' movzx eax, byte [.abAlResults + ebx]\n'); + oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,)); + oGen.write(' push eax\n'); + oGen.write(' movzx eax, byte [.aFlagsResults + ebx]\n'); + oGen.write(' push eax\n'); + # Calc and push the inputs. + oGen.write(' mov eax, ebx\n'); + oGen.write(' shr eax, 2\n'); + oGen.write(' and eax, 0ffh\n'); + oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,)); + oGen.write(' push eax\n'); + + oGen.write(' pushfd\n') + oGen.write(' and dword [xSP], ~(X86_EFL_CF | X86_EFL_AF)\n'); + oGen.write(' mov al, bl\n'); + oGen.write(' and al, 2\n'); + oGen.write(' shl al, X86_EFL_AF_BIT - 1\n'); + oGen.write(' or [xSP], al\n'); + oGen.write(' mov al, bl\n'); + oGen.write(' and al, X86_EFL_CF\n'); + oGen.write(' or [xSP], al\n'); + + # Load register values and do the test. + oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); + oGen.write(' popfd\n'); + oGen.write(' pop eax\n'); + if self.fIsDas: + oGen.write(' das\n'); + else: + oGen.write(' daa\n'); + + # Verify the results. + fFlagsToCheck = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_ZF; + oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needFlagsGRegChecker(fFlagsToCheck, X86_GREG_xAX),)); + + # Restore the loop variable and advance. + oGen.write(' pop ebx\n'); + oGen.write(' inc ebx\n'); + oGen.write(' cmp ebx, %#x\n' % (cMax,)); + oGen.write(' jb .das_loop\n'); + + oGen.write(' ret\n'); + + oGen.write('.abAlResults:\n'); + for i in range(cMax): + oGen.write(' db %#x\n' % (aItgResults[i][0],)); + + oGen.write('.aFlagsResults:\n'); + for i in range(cMax): + oGen.write(' db %#x\n' % (aItgResults[i][1],)); + + oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); + return True; + + +## +# Instruction Tests. +# +g_aoInstructionTests = [ + InstrTest_Mov_Gv_Ev(), + InstrTest_MovSxD_Gv_Ev(), + InstrTest_DivIDiv(fIsIDiv = False), + InstrTest_DivIDiv(fIsIDiv = True), + InstrTest_DaaDas(fIsDas = False), + InstrTest_DaaDas(fIsDas = True), +]; + + + + + +class InstructionTestGen(object): # pylint: disable=R0902 + """ + Instruction Test Generator. + """ + + ## @name Test size + ## @{ + ksTestSize_Large = 'large'; + ksTestSize_Medium = 'medium'; + ksTestSize_Tiny = 'tiny'; + ## @} + kasTestSizes = ( ksTestSize_Large, ksTestSize_Medium, ksTestSize_Tiny ); + + ## The prefix for the checker functions. + ksCheckerPrefix = 'Common_Check_' + + + def __init__(self, oOptions): + self.oOptions = oOptions; + self.oTarget = g_dTargetEnvs[oOptions.sTargetEnv]; + + # Calculate the number of output files. + self.cFiles = 1; + if len(g_aoInstructionTests) > self.oOptions.cInstrPerFile: + self.cFiles = len(g_aoInstructionTests) / self.oOptions.cInstrPerFile; + if self.cFiles * self.oOptions.cInstrPerFile < len(g_aoInstructionTests): + self.cFiles += 1; + + # Fix the known register values. + self.au64Regs = randUxxList(64, 16); + self.au32Regs = [(self.au64Regs[i] & UINT32_MAX) for i in range(8)]; + self.au16Regs = [(self.au64Regs[i] & UINT16_MAX) for i in range(8)]; + self.auRegValues = self.au64Regs if self.oTarget.is64Bit() else self.au32Regs; + + # Declare state variables used while generating. + self.oFile = sys.stderr; + self.iFile = -1; + self.sFile = ''; + self._dCheckFns = dict(); + self._dMemSetupFns = dict(); + self._d64BitConsts = dict(); + + # State variables used while generating test convenientely placed here (lazy bird)... + self.iModReg = 0; + self.iModRm = 0; + self.iSibBaseReg = 0; + self.iSibIndexReg = 0; + self.iSibScale = 1; + if self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: + self._oModRegRange = range(2); + self._oModRegRange8 = range(2); + self.oModRmRange = range(2); + self.cSibBasePerRun = 1; + self._cSibIndexPerRun = 2; + self.oSibScaleRange = range(1); + elif self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: + self._oModRegRange = range( 5 if self.oTarget.is64Bit() else 4); + self._oModRegRange8 = range( 6 if self.oTarget.is64Bit() else 4); + self.oModRmRange = range(5); + self.cSibBasePerRun = 5; + self._cSibIndexPerRun = 4 + self.oSibScaleRange = range(2); + else: + self._oModRegRange = range(16 if self.oTarget.is64Bit() else 8); + self._oModRegRange8 = range(20 if self.oTarget.is64Bit() else 8); + self.oModRmRange = range(16 if self.oTarget.is64Bit() else 8); + self.cSibBasePerRun = 8; + self._cSibIndexPerRun = 9; + self.oSibScaleRange = range(4); + self.iSibIndexRange = 0; + + + # + # Methods used by instruction tests. + # + + def write(self, sText): + """ Writes to the current output file. """ + return self.oFile.write(unicode(sText)); + + def writeln(self, sText): + """ Writes a line to the current output file. """ + self.write(sText); + return self.write('\n'); + + def writeInstrBytes(self, abInstr): + """ + Emits an instruction given as a sequence of bytes values. + """ + self.write(' db %#04x' % (abInstr[0],)); + for i in range(1, len(abInstr)): + self.write(', %#04x' % (abInstr[i],)); + return self.write('\n'); + + def newSubTest(self): + """ + Indicates that a new subtest has started. + """ + self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], __LINE__\n'); + return True; + + def newSubTestEx(self, sIndicator): + """ + Indicates that a new subtest has started. + """ + self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], %s\n' % (sIndicator, )); + return True; + + def needGRegChecker(self, iReg1, iReg2 = None, iReg3 = None): + """ + Records the need for a given register checker function, returning its label. + """ + if iReg2 is not None: + if iReg3 is not None: + sName = '%s_%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2], self.oTarget.asGRegs[iReg3],); + else: + sName = '%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2],); + else: + sName = '%s' % (self.oTarget.asGRegs[iReg1],); + assert iReg3 is None; + + if sName in self._dCheckFns: + self._dCheckFns[sName] += 1; + else: + self._dCheckFns[sName] = 1; + + return self.ksCheckerPrefix + sName; + + def needFlagsGRegChecker(self, fFlagsToCheck, iReg1, iReg2 = None, iReg3 = None): + """ + Records the need for a given rFLAGS + register checker function, returning its label. + """ + sWorkerName = self.needGRegChecker(iReg1, iReg2, iReg3); + + sName = 'eflags_%#x_%s' % (fFlagsToCheck, sWorkerName[len(self.ksCheckerPrefix):]); + if sName in self._dCheckFns: + self._dCheckFns[sName] += 1; + else: + self._dCheckFns[sName] = 1; + + return self.ksCheckerPrefix + sName; + + def needGRegMemSetup(self, cAddrBits, cbEffOp, iBaseReg = None, offDisp = None, iIndexReg = None, iScale = 1): + """ + Records the need for a given register checker function, returning its label. + """ + assert cAddrBits in [64, 32, 16]; + assert cbEffOp in [8, 4, 2, 1]; + assert iScale in [1, 2, 4, 8]; + + sName = '%ubit_U%u' % (cAddrBits, cbEffOp * 8,); + if iBaseReg is not None: + sName += '_%s' % (gregName(iBaseReg, cAddrBits),); + sName += '_x%u' % (iScale,); + if iIndexReg is not None: + sName += '_%s' % (gregName(iIndexReg, cAddrBits),); + if offDisp is not None: + sName += '_%#010x' % (offDisp & UINT32_MAX, ); + if sName in self._dMemSetupFns: + self._dMemSetupFns[sName] += 1; + else: + self._dMemSetupFns[sName] = 1; + return 'Common_MemSetup_' + sName; + + def need64BitConstant(self, uVal): + """ + Records the need for a 64-bit constant, returning its label. + These constants are pooled to attempt reduce the size of the whole thing. + """ + assert uVal >= 0 and uVal <= UINT64_MAX; + if uVal in self._d64BitConsts: + self._d64BitConsts[uVal] += 1; + else: + self._d64BitConsts[uVal] = 1; + return 'g_u64Const_0x%016x' % (uVal, ); + + def pushConst(self, uResult): + """ + Emits a push constant value, taking care of high values on 64-bit hosts. + """ + if self.oTarget.is64Bit() and uResult >= 0x80000000: + self.write(' push qword [%s wrt rip]\n' % (self.need64BitConstant(uResult),)); + else: + self.write(' push dword 0x%x\n' % (uResult,)); + return True; + + def getDispForMod(self, iMod, cbAlignment = 1): + """ + Get a set of address dispositions for a given addressing mode. + The alignment restriction is for SIB scaling. + """ + assert cbAlignment in [1, 2, 4, 8]; + if iMod == 0: + aoffDisp = [ None, ]; + elif iMod == 1: + aoffDisp = [ 127 & ~(cbAlignment - 1), -128 ]; + elif iMod == 2: + aoffDisp = [ 2147483647 & ~(cbAlignment - 1), -2147483648 ]; + else: assert False; + return aoffDisp; + + def getModRegRange(self, cbEffOp): + """ + The Mod R/M register range varies with the effective operand size, for + 8-bit registers we have 4 more. + """ + if cbEffOp == 1: + return self._oModRegRange8; + return self._oModRegRange; + + def getSibIndexPerRun(self): + """ + We vary the SIB index test range a little to try cover more operand + combinations and avoid repeating the same ones. + """ + self.iSibIndexRange += 1; + self.iSibIndexRange %= 3; + if self.iSibIndexRange == 0: + return self._cSibIndexPerRun - 1; + return self._cSibIndexPerRun; + + def isTiny(self): + """ Checks if we're in tiny mode.""" + return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny; + + def isMedium(self): + """ Checks if we're in medium mode.""" + return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium; + + + # + # Forwarding calls for oTarget to shorted typing and lessen the attacks + # on the right margin. + # + + def gregNameBits(self, iReg, cBitsWide): + """ Target: Get the name of a general register for the given size (in bits). """ + return self.oTarget.gregNameBits(iReg, cBitsWide); + + def gregNameBytes(self, iReg, cbWide): + """ Target: Get the name of a general register for the given size (in bytes). """ + return self.oTarget.gregNameBytes(iReg, cbWide); + + def is64Bit(self): + """ Target: Is the target 64-bit? """ + return self.oTarget.is64Bit(); + + + # + # Internal machinery. + # + + def _randInitIndexes(self): + """ + Initializes the Mod R/M and SIB state index with random numbers prior + to generating a test. + + Note! As with all other randomness and variations we do, we cannot + test all combinations for each and every instruction so we try + get coverage over time. + """ + self.iModReg = randU8(); + self.iModRm = randU8(); + self.iSibBaseReg = randU8(); + self.iSibIndexReg = randU8(); + self.iSibScale = 1 << (randU8() & 3); + self.iSibIndexRange = randU8(); + return True; + + def _calcTestFunctionName(self, oInstrTest, iInstrTest): + """ + Calc a test function name for the given instruction test. + """ + sName = 'TestInstr%03u_%s' % (iInstrTest, oInstrTest.sName); + return sName.replace(',', '_').replace(' ', '_').replace('%', '_'); + + def _generateFileHeader(self, ): + """ + Writes the file header. + Raises exception on trouble. + """ + self.write('; $Id: InstructionTestGen.py $\n' + ';; @file %s\n' + '; Autogenerate by %s %s. DO NOT EDIT\n' + ';\n' + '\n' + ';\n' + '; Headers\n' + ';\n' + '%%include "env-%s.mac"\n' + % ( os.path.basename(self.sFile), + os.path.basename(__file__), __version__[11:-1], + self.oTarget.sName, + ) ); + # Target environment specific init stuff. + + # + # Global variables. + # + self.write('\n\n' + ';\n' + '; Globals\n' + ';\n'); + self.write('VBINSTST_BEGINDATA\n' + 'VBINSTST_GLOBALNAME_EX g_pvLow16Mem4K, data hidden\n' + ' dq 0\n' + 'VBINSTST_GLOBALNAME_EX g_pvLow32Mem4K, data hidden\n' + ' dq 0\n' + 'VBINSTST_GLOBALNAME_EX g_pvMem4K, data hidden\n' + ' dq 0\n' + 'VBINSTST_GLOBALNAME_EX g_uVBInsTstSubTestIndicator, data hidden\n' + ' dd 0\n' + '%ifdef VBINSTST_CAN_DO_TRAPS\n' + 'VBINSTST_TRAP_RECS_BEGIN\n' + '%endif\n' + 'VBINSTST_BEGINCODE\n' + ); + self.write('%ifdef RT_ARCH_AMD64\n'); + for i in range(len(g_asGRegs64)): + self.write('g_u64KnownValue_%s: dq 0x%x\n' % (g_asGRegs64[i], self.au64Regs[i])); + self.write('%endif\n\n') + + # + # Common functions. + # + + # Loading common values. + self.write('\n\n' + 'VBINSTST_BEGINPROC Common_LoadKnownValues\n' + '%ifdef RT_ARCH_AMD64\n'); + for i in range(len(g_asGRegs64NoSp)): + if g_asGRegs64NoSp[i]: + self.write(' mov %s, 0x%x\n' % (g_asGRegs64NoSp[i], self.au64Regs[i],)); + self.write('%else\n'); + for i in range(8): + if g_asGRegs32NoSp[i]: + self.write(' mov %s, 0x%x\n' % (g_asGRegs32NoSp[i], self.au32Regs[i],)); + self.write('%endif\n' + ' ret\n' + 'VBINSTST_ENDPROC Common_LoadKnownValues\n' + '\n'); + + self.write('VBINSTST_BEGINPROC Common_CheckKnownValues\n' + '%ifdef RT_ARCH_AMD64\n'); + for i in range(len(g_asGRegs64NoSp)): + if g_asGRegs64NoSp[i]: + self.write(' cmp %s, [g_u64KnownValue_%s wrt rip]\n' + ' je .ok_%u\n' + ' push %u ; register number\n' + ' push %s ; actual\n' + ' push qword [g_u64KnownValue_%s wrt rip] ; expected\n' + ' call VBINSTST_NAME(Common_BadValue)\n' + '.ok_%u:\n' + % ( g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i, i, g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i,)); + self.write('%else\n'); + for i in range(8): + if g_asGRegs32NoSp[i]: + self.write(' cmp %s, 0x%x\n' + ' je .ok_%u\n' + ' push %u ; register number\n' + ' push %s ; actual\n' + ' push dword 0x%x ; expected\n' + ' call VBINSTST_NAME(Common_BadValue)\n' + '.ok_%u:\n' + % ( g_asGRegs32NoSp[i], self.au32Regs[i], i, i, g_asGRegs32NoSp[i], self.au32Regs[i], i,)); + self.write('%endif\n' + ' ret\n' + 'VBINSTST_ENDPROC Common_CheckKnownValues\n' + '\n'); + + return True; + + def _generateMemSetupFunctions(self): # pylint: disable=R0915 + """ + Generates the memory setup functions. + """ + cDefAddrBits = self.oTarget.getDefAddrBits(); + for sName in self._dMemSetupFns: + # Unpack it. + asParams = sName.split('_'); + cAddrBits = int(asParams[0][:-3]); assert asParams[0][-3:] == 'bit'; + cEffOpBits = int(asParams[1][1:]); assert asParams[1][0] == 'U'; + if cAddrBits == 64: asAddrGRegs = g_asGRegs64; + elif cAddrBits == 32: asAddrGRegs = g_asGRegs32; + else: asAddrGRegs = g_asGRegs16; + + i = 2; + iBaseReg = None; + sBaseReg = None; + if i < len(asParams) and asParams[i] in asAddrGRegs: + sBaseReg = asParams[i]; + iBaseReg = asAddrGRegs.index(sBaseReg); + i += 1 + + assert i < len(asParams); assert asParams[i][0] == 'x'; + iScale = iScale = int(asParams[i][1:]); assert iScale in [1, 2, 4, 8], '%u %s' % (iScale, sName); + i += 1; + + sIndexReg = None; + iIndexReg = None; + if i < len(asParams) and asParams[i] in asAddrGRegs: + sIndexReg = asParams[i]; + iIndexReg = asAddrGRegs.index(sIndexReg); + i += 1; + + u32Disp = None; + if i < len(asParams) and len(asParams[i]) == 10: + u32Disp = long(asParams[i], 16); + i += 1; + + assert i == len(asParams), 'i=%d len=%d len[i]=%d (%s)' % (i, len(asParams), len(asParams[i]), asParams[i],); + assert iScale == 1 or iIndexReg is not None; + + # Find a temporary register. + iTmpReg1 = X86_GREG_xCX; + while iTmpReg1 in [iBaseReg, iIndexReg]: + iTmpReg1 += 1; + + # Prologue. + self.write('\n\n' + '; cAddrBits=%s cEffOpBits=%s iBaseReg=%s u32Disp=%s iIndexReg=%s iScale=%s\n' + 'VBINSTST_BEGINPROC Common_MemSetup_%s\n' + ' MY_PUSH_FLAGS\n' + ' push %s\n' + % ( cAddrBits, cEffOpBits, iBaseReg, u32Disp, iIndexReg, iScale, + sName, self.oTarget.asGRegs[iTmpReg1], )); + + # Figure out what to use. + if cEffOpBits == 64: + sTmpReg1 = g_asGRegs64[iTmpReg1]; + sDataVar = 'VBINSTST_NAME(g_u64Data)'; + elif cEffOpBits == 32: + sTmpReg1 = g_asGRegs32[iTmpReg1]; + sDataVar = 'VBINSTST_NAME(g_u32Data)'; + elif cEffOpBits == 16: + sTmpReg1 = g_asGRegs16[iTmpReg1]; + sDataVar = 'VBINSTST_NAME(g_u16Data)'; + else: + assert cEffOpBits == 8; assert iTmpReg1 < 4; + sTmpReg1 = g_asGRegs8Rex[iTmpReg1]; + sDataVar = 'VBINSTST_NAME(g_u8Data)'; + + # Special case: reg + reg * [2,4,8] + if iBaseReg == iIndexReg and iBaseReg is not None and iScale != 1: + iTmpReg2 = X86_GREG_xBP; + while iTmpReg2 in [iBaseReg, iIndexReg, iTmpReg1]: + iTmpReg2 += 1; + sTmpReg2 = self.gregNameBits(iTmpReg2, cAddrBits); + self.write(' push sAX\n' + ' push %s\n' + ' push sDX\n' + % (self.oTarget.asGRegs[iTmpReg2],)); + if cAddrBits == 16: + self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sTmpReg2,)); + else: + self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sTmpReg2,)); + self.write(' add %s, 0x200\n' % (sTmpReg2,)); + self.write(' mov %s, %s\n' % (self.gregNameBits(X86_GREG_xAX, cAddrBits), sTmpReg2,)); + if u32Disp is not None: + self.write(' sub %s, %d\n' + % ( self.gregNameBits(X86_GREG_xAX, cAddrBits), convU32ToSigned(u32Disp), )); + self.write(' xor edx, edx\n' + '%if xCB == 2\n' + ' push 0\n' + '%endif\n'); + self.write(' push %u\n' % (iScale + 1,)); + self.write(' div %s [xSP]\n' % ('qword' if cAddrBits == 64 else 'dword',)); + self.write(' sub %s, %s\n' % (sTmpReg2, self.gregNameBits(X86_GREG_xDX, cAddrBits),)); + self.write(' pop sDX\n' + ' pop sDX\n'); # sTmpReg2 is eff address; sAX is sIndexReg value. + # Note! sTmpReg1 can be xDX and that's no problem now. + self.write(' mov %s, [xSP + sCB*3 + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,)); + self.write(' mov [%s], %s\n' % (sTmpReg2, sTmpReg1,)); # Value in place. + self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg2],)); + if iBaseReg == X86_GREG_xAX: + self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg1],)); + else: + self.write(' mov %s, %s\n' % (sBaseReg, self.gregNameBits(X86_GREG_xAX, cAddrBits),)); + self.write(' pop sAX\n'); + + else: + # Load the value and mem address, storing the value there. + # Note! ASSUMES that the scale and disposition works fine together. + sAddrReg = sBaseReg if sBaseReg is not None else sIndexReg; + self.write(' mov %s, [xSP + sCB + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,)); + if cAddrBits >= cDefAddrBits: + self.write(' mov [%s xWrtRIP], %s\n' % (sDataVar, sTmpReg1,)); + self.write(' lea %s, [%s xWrtRIP]\n' % (sAddrReg, sDataVar,)); + else: + if cAddrBits == 16: + self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sAddrReg,)); + else: + self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sAddrReg,)); + self.write(' add %s, %s\n' % (sAddrReg, (randU16() << cEffOpBits) & 0xfff, )); + self.write(' mov [%s], %s\n' % (sAddrReg, sTmpReg1, )); + + # Adjust for disposition and scaling. + if u32Disp is not None: + self.write(' sub %s, %d\n' % ( sAddrReg, convU32ToSigned(u32Disp), )); + if iIndexReg is not None: + if iBaseReg == iIndexReg: + assert iScale == 1; + assert u32Disp is None or (u32Disp & 1) == 0; + self.write(' shr %s, 1\n' % (sIndexReg,)); + elif sBaseReg is not None: + uIdxRegVal = randUxx(cAddrBits); + if cAddrBits == 64: + self.write(' mov %s, %u\n' + ' sub %s, %s\n' + ' mov %s, %u\n' + % ( sIndexReg, (uIdxRegVal * iScale) & UINT64_MAX, + sBaseReg, sIndexReg, + sIndexReg, uIdxRegVal, )); + else: + assert cAddrBits == 32; + self.write(' mov %s, %u\n' + ' sub %s, %#06x\n' + % ( sIndexReg, uIdxRegVal, sBaseReg, (uIdxRegVal * iScale) & UINT32_MAX, )); + elif iScale == 2: + assert u32Disp is None or (u32Disp & 1) == 0; + self.write(' shr %s, 1\n' % (sIndexReg,)); + elif iScale == 4: + assert u32Disp is None or (u32Disp & 3) == 0; + self.write(' shr %s, 2\n' % (sIndexReg,)); + elif iScale == 8: + assert u32Disp is None or (u32Disp & 7) == 0; + self.write(' shr %s, 3\n' % (sIndexReg,)); + else: + assert iScale == 1; + + # Set upper bits that's supposed to be unused. + if cDefAddrBits > cAddrBits or cAddrBits == 16: + if cDefAddrBits == 64: + assert cAddrBits == 32; + if iBaseReg is not None: + self.write(' mov %s, %#018x\n' + ' or %s, %s\n' + % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000, + g_asGRegs64[iBaseReg], g_asGRegs64[iTmpReg1],)); + if iIndexReg is not None and iIndexReg != iBaseReg: + self.write(' mov %s, %#018x\n' + ' or %s, %s\n' + % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000, + g_asGRegs64[iIndexReg], g_asGRegs64[iTmpReg1],)); + else: + assert cDefAddrBits == 32; assert cAddrBits == 16; assert iIndexReg is None; + if iBaseReg is not None: + self.write(' or %s, %#010x\n' + % ( g_asGRegs32[iBaseReg], randU32() & 0xffff0000, )); + + # Epilogue. + self.write(' pop %s\n' + ' MY_POP_FLAGS\n' + ' ret sCB\n' + 'VBINSTST_ENDPROC Common_MemSetup_%s\n' + % ( self.oTarget.asGRegs[iTmpReg1], sName,)); + + + def _generateFileFooter(self): + """ + Generates file footer. + """ + + # Terminate the trap records. + self.write('\n\n' + ';\n' + '; Terminate the trap records\n' + ';\n' + 'VBINSTST_BEGINDATA\n' + '%ifdef VBINSTST_CAN_DO_TRAPS\n' + 'VBINSTST_TRAP_RECS_END\n' + '%endif\n' + 'VBINSTST_BEGINCODE\n'); + + # Register checking functions. + for sName in self._dCheckFns: + asRegs = sName.split('_'); + sPushSize = 'dword'; + + # Do we check eflags first. + if asRegs[0] == 'eflags': + asRegs.pop(0); + sFlagsToCheck = asRegs.pop(0); + self.write('\n\n' + '; Check flags and then defers to the register-only checker\n' + '; To save space, the callee cleans up the stack.' + '; Ref count: %u\n' + 'VBINSTST_BEGINPROC %s%s\n' + ' MY_PUSH_FLAGS\n' + ' push sAX\n' + ' mov sAX, [xSP + sCB]\n' + ' and sAX, %s\n' + ' cmp sAX, [xSP + xCB + sCB*2]\n' + ' je .equal\n' + % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, + sFlagsToCheck,)); + self.write(' push dword 0xef ; register number\n' + ' push sAX ; actual\n' + ' mov sAX, [xSP + xCB + sCB*4]\n' + ' push sAX ; expected\n' + ' call VBINSTST_NAME(Common_BadValue)\n'); + self.write('.equal:\n' + ' mov xAX, [xSP + sCB*2]\n' # Remove the expected eflags value from the stack frame. + ' mov [xSP + sCB*2 + xCB + sCB - xCB], xAX\n' + ' pop sAX\n' + ' MY_POP_FLAGS\n' + ' lea xSP, [xSP + sCB]\n' + ' jmp VBINSTST_NAME(Common_Check_%s)\n' + 'VBINSTST_ENDPROC %s%s\n' + % ( '_'.join(asRegs), + self.ksCheckerPrefix, sName,) ); + else: + # Prologue + self.write('\n\n' + '; Checks 1 or more register values, expected values pushed on the stack.\n' + '; To save space, the callee cleans up the stack.' + '; Ref count: %u\n' + 'VBINSTST_BEGINPROC %s%s\n' + ' MY_PUSH_FLAGS\n' + % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, ) ); + + # Register checks. + for i in range(len(asRegs)): + sReg = asRegs[i]; + iReg = self.oTarget.asGRegs.index(sReg); + if i == asRegs.index(sReg): # Only check once, i.e. input = output reg. + self.write(' cmp %s, [xSP + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n' + ' je .equal%u\n' + ' push %s %u ; register number\n' + ' push %s ; actual\n' + ' mov %s, [xSP + sCB*2 + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n' + ' push %s ; expected\n' + ' call VBINSTST_NAME(Common_BadValue)\n' + '.equal%u:\n' + % ( sReg, i, i, sPushSize, iReg, sReg, sReg, i, sReg, i, ) ); + + + # Restore known register values and check the other registers. + for sReg in asRegs: + if self.oTarget.is64Bit(): + self.write(' mov %s, [g_u64KnownValue_%s wrt rip]\n' % (sReg, sReg,)); + else: + iReg = self.oTarget.asGRegs.index(sReg) + self.write(' mov %s, 0x%x\n' % (sReg, self.au32Regs[iReg],)); + self.write(' MY_POP_FLAGS\n' + ' call VBINSTST_NAME(Common_CheckKnownValues)\n' + ' ret sCB*%u\n' + 'VBINSTST_ENDPROC %s%s\n' + % (len(asRegs), self.ksCheckerPrefix, sName,)); + + # memory setup functions + self._generateMemSetupFunctions(); + + # 64-bit constants. + if len(self._d64BitConsts) > 0: + self.write('\n\n' + ';\n' + '; 64-bit constants\n' + ';\n'); + for uVal in self._d64BitConsts: + self.write('g_u64Const_0x%016x: dq 0x%016x ; Ref count: %d\n' % (uVal, uVal, self._d64BitConsts[uVal], ) ); + + return True; + + def _generateTests(self): + """ + Generate the test cases. + """ + for self.iFile in range(self.cFiles): + if self.cFiles == 1: + self.sFile = '%s.asm' % (self.oOptions.sOutputBase,) + else: + self.sFile = '%s-%u.asm' % (self.oOptions.sOutputBase, self.iFile) + self.oFile = sys.stdout; + if self.oOptions.sOutputBase != '-': + self.oFile = io.open(self.sFile, 'w', buffering = 65536, encoding = 'utf-8'); + + self._generateFileHeader(); + + # Calc the range. + iInstrTestStart = self.iFile * self.oOptions.cInstrPerFile; + iInstrTestEnd = iInstrTestStart + self.oOptions.cInstrPerFile; + if iInstrTestEnd > len(g_aoInstructionTests): + iInstrTestEnd = len(g_aoInstructionTests); + + # Generate the instruction tests. + for iInstrTest in range(iInstrTestStart, iInstrTestEnd): + oInstrTest = g_aoInstructionTests[iInstrTest]; + if oInstrTest.isApplicable(self): + self.write('\n' + '\n' + ';\n' + '; %s\n' + ';\n' + % (oInstrTest.sName,)); + self._randInitIndexes(); + oInstrTest.generateTest(self, self._calcTestFunctionName(oInstrTest, iInstrTest)); + + # Generate the main function. + self.write('\n\n' + 'VBINSTST_BEGINPROC TestInstrMain\n' + ' MY_PUSH_ALL\n' + ' sub xSP, 40h\n' + '%ifdef VBINSTST_CAN_DO_TRAPS\n' + ' VBINSTST_TRAP_RECS_INSTALL\n' + '%endif\n' + '\n'); + + for iInstrTest in range(iInstrTestStart, iInstrTestEnd): + oInstrTest = g_aoInstructionTests[iInstrTest]; + if oInstrTest.isApplicable(self): + self.write('%%ifdef ASM_CALL64_GCC\n' + ' lea rdi, [.szInstr%03u wrt rip]\n' + '%%elifdef ASM_CALL64_MSC\n' + ' lea rcx, [.szInstr%03u wrt rip]\n' + '%%else\n' + ' mov xAX, .szInstr%03u\n' + ' mov [xSP], xAX\n' + '%%endif\n' + ' VBINSTST_CALL_FN_SUB_TEST\n' + ' call VBINSTST_NAME(%s)\n' + % ( iInstrTest, iInstrTest, iInstrTest, self._calcTestFunctionName(oInstrTest, iInstrTest))); + + self.write('\n' + '%ifdef VBINSTST_CAN_DO_TRAPS\n' + ' VBINSTST_TRAP_RECS_UNINSTALL\n' + '%endif\n' + ' add xSP, 40h\n' + ' MY_POP_ALL\n' + ' ret\n\n'); + for iInstrTest in range(iInstrTestStart, iInstrTestEnd): + self.write('.szInstr%03u: db \'%s\', 0\n' % (iInstrTest, g_aoInstructionTests[iInstrTest].sName,)); + self.write('VBINSTST_ENDPROC TestInstrMain\n\n'); + + self._generateFileFooter(); + if self.oOptions.sOutputBase != '-': + self.oFile.close(); + self.oFile = None; + self.sFile = ''; + + return RTEXITCODE_SUCCESS; + + def _runMakefileMode(self): + """ + Generate a list of output files on standard output. + """ + if self.cFiles == 1: + print('%s.asm' % (self.oOptions.sOutputBase,)); + else: + print(' '.join('%s-%s.asm' % (self.oOptions.sOutputBase, i) for i in range(self.cFiles))); + return RTEXITCODE_SUCCESS; + + def run(self): + """ + Generates the tests or whatever is required. + """ + if self.oOptions.fMakefileMode: + return self._runMakefileMode(); + sys.stderr.write('InstructionTestGen.py: Seed = %s\n' % (g_iMyRandSeed,)); + return self._generateTests(); + + @staticmethod + def main(): + """ + Main function a la C/C++. Returns exit code. + """ + + # + # Parse the command line. + # + oParser = OptionParser(version = __version__[11:-1].strip()); + oParser.add_option('--makefile-mode', dest = 'fMakefileMode', action = 'store_true', default = False, + help = 'Special mode for use to output a list of output files for the benefit of ' + 'the make program (kmk).'); + oParser.add_option('--split', dest = 'cInstrPerFile', metavar = '<instr-per-file>', type = 'int', default = 9999999, + help = 'Number of instruction to test per output file.'); + oParser.add_option('--output-base', dest = 'sOutputBase', metavar = '<file>', default = None, + help = 'The output file base name, no suffix please. Required.'); + oParser.add_option('--target', dest = 'sTargetEnv', metavar = '<target>', + default = 'iprt-r3-32', + choices = g_dTargetEnvs.keys(), + help = 'The target environment. Choices: %s' + % (', '.join(sorted(g_dTargetEnvs.keys())),)); + oParser.add_option('--test-size', dest = 'sTestSize', default = InstructionTestGen.ksTestSize_Medium, + choices = InstructionTestGen.kasTestSizes, + help = 'Selects the test size.'); + + (oOptions, asArgs) = oParser.parse_args(); + if len(asArgs) > 0: + oParser.print_help(); + return RTEXITCODE_SYNTAX + if oOptions.sOutputBase is None: + print('syntax error: Missing required option --output-base.', file = sys.stderr); + return RTEXITCODE_SYNTAX + + # + # Instantiate the program class and run it. + # + oProgram = InstructionTestGen(oOptions); + return oProgram.run(); + + +if __name__ == '__main__': + sys.exit(InstructionTestGen.main()); + |