/* $Id: PGMAllGst.h $ */ /** @file * VBox - Page Manager, Guest Paging Template - All context code. */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ RT_C_DECLS_BEGIN #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 static int PGM_GST_NAME(Walk)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk); #endif PGM_GST_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys); PGM_GST_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask); PGM_GST_DECL(int, GetPDE)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE); #ifdef IN_RING3 /* r3 only for now. */ PGM_GST_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3); PGM_GST_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta); PGM_GST_DECL(int, Exit)(PVMCPUCC pVCpu); #endif RT_C_DECLS_END /** * Enters the guest mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPhysCR3 The physical address from the CR3 register. */ PGM_GST_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3) { /* * Map and monitor CR3 */ uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData; AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE); AssertReturn(g_aPgmBothModeData[idxBth].pfnMapCR3, VERR_PGM_MODE_IPE); return g_aPgmBothModeData[idxBth].pfnMapCR3(pVCpu, GCPhysCR3); } /** * Exits the guest mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ PGM_GST_DECL(int, Exit)(PVMCPUCC pVCpu) { uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData; AssertReturn(idxBth < RT_ELEMENTS(g_aPgmBothModeData), VERR_PGM_MODE_IPE); AssertReturn(g_aPgmBothModeData[idxBth].pfnUnmapCR3, VERR_PGM_MODE_IPE); return g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu); } #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 DECLINLINE(int) PGM_GST_NAME(WalkReturnNotPresent)(PVMCPUCC pVCpu, PGSTPTWALK pWalk, int iLevel) { NOREF(iLevel); NOREF(pVCpu); pWalk->Core.fNotPresent = true; pWalk->Core.uLevel = (uint8_t)iLevel; return VERR_PAGE_TABLE_NOT_PRESENT; } DECLINLINE(int) PGM_GST_NAME(WalkReturnBadPhysAddr)(PVMCPUCC pVCpu, PGSTPTWALK pWalk, int iLevel, int rc) { AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu); pWalk->Core.fBadPhysAddr = true; pWalk->Core.uLevel = (uint8_t)iLevel; return VERR_PAGE_TABLE_NOT_PRESENT; } DECLINLINE(int) PGM_GST_NAME(WalkReturnRsvdError)(PVMCPUCC pVCpu, PGSTPTWALK pWalk, int iLevel) { NOREF(pVCpu); pWalk->Core.fRsvdError = true; pWalk->Core.uLevel = (uint8_t)iLevel; return VERR_PAGE_TABLE_NOT_PRESENT; } /** * Performs a guest page table walk. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPtr The guest virtual address to walk by. * @param pWalk Where to return the walk result. This is always set. */ DECLINLINE(int) PGM_GST_NAME(Walk)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PGSTPTWALK pWalk) { int rc; /* * Init the walking structure. */ RT_ZERO(*pWalk); pWalk->Core.GCPtr = GCPtr; # if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE /* * Boundary check for PAE and 32-bit (prevents trouble further down). */ if (RT_UNLIKELY(GCPtr >= _4G)) return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 8); # endif uint32_t register fEffective = X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | 1; { # if PGM_GST_TYPE == PGM_TYPE_AMD64 /* * The PMLE4. */ rc = pgmGstGetLongModePML4PtrEx(pVCpu, &pWalk->pPml4); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc); PX86PML4E register pPml4e; pWalk->pPml4e = pPml4e = &pWalk->pPml4->a[(GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK]; X86PML4E register Pml4e; pWalk->Pml4e.u = Pml4e.u = pPml4e->u; if (Pml4e.n.u1Present) { /* probable */ } else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 4); if (RT_LIKELY(GST_IS_PML4E_VALID(pVCpu, Pml4e))) { /* likely */ } else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 4); pWalk->Core.fEffective = fEffective = ((uint32_t)Pml4e.u & (X86_PML4E_RW | X86_PML4E_US | X86_PML4E_PWT | X86_PML4E_PCD | X86_PML4E_A)) | ((uint32_t)(Pml4e.u >> 63) ^ 1) /*NX */; /* * The PDPE. */ rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pWalk->pPdpt); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc); # elif PGM_GST_TYPE == PGM_TYPE_PAE rc = pgmGstGetPaePDPTPtrEx(pVCpu, &pWalk->pPdpt); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc); # endif } { # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE PX86PDPE register pPdpe; pWalk->pPdpe = pPdpe = &pWalk->pPdpt->a[(GCPtr >> GST_PDPT_SHIFT) & GST_PDPT_MASK]; X86PDPE register Pdpe; pWalk->Pdpe.u = Pdpe.u = pPdpe->u; if (Pdpe.n.u1Present) { /* probable */ } else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 3); if (RT_LIKELY(GST_IS_PDPE_VALID(pVCpu, Pdpe))) { /* likely */ } else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 3); # if PGM_GST_TYPE == PGM_TYPE_AMD64 pWalk->Core.fEffective = fEffective &= ((uint32_t)Pdpe.u & (X86_PDPE_RW | X86_PDPE_US | X86_PDPE_PWT | X86_PDPE_PCD | X86_PDPE_A)) | ((uint32_t)(Pdpe.u >> 63) ^ 1) /*NX */; # else pWalk->Core.fEffective = fEffective = X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | ((uint32_t)Pdpe.u & (X86_PDPE_PWT | X86_PDPE_PCD)) | ((uint32_t)(Pdpe.u >> 63) ^ 1) /*NX */; # endif /* * The PDE. */ rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pWalk->pPd); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 2, rc); # elif PGM_GST_TYPE == PGM_TYPE_32BIT rc = pgmGstGet32bitPDPtrEx(pVCpu, &pWalk->pPd); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 8, rc); # endif } { PGSTPDE register pPde; pWalk->pPde = pPde = &pWalk->pPd->a[(GCPtr >> GST_PD_SHIFT) & GST_PD_MASK]; GSTPDE Pde; pWalk->Pde.u = Pde.u = pPde->u; if (Pde.n.u1Present) { /* probable */ } else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 2); if (Pde.n.u1Size && GST_IS_PSE_ACTIVE(pVCpu)) { if (RT_LIKELY(GST_IS_BIG_PDE_VALID(pVCpu, Pde))) { /* likely */ } else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2); /* * We're done. */ # if PGM_GST_TYPE == PGM_TYPE_32BIT fEffective &= Pde.u & (X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A); # else fEffective &= ((uint32_t)Pde.u & (X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PWT | X86_PDE4M_PCD | X86_PDE4M_A)) | ((uint32_t)(Pde.u >> 63) ^ 1) /*NX */; # endif fEffective |= (uint32_t)Pde.u & (X86_PDE4M_D | X86_PDE4M_G); fEffective |= (uint32_t)(Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT; pWalk->Core.fEffective = fEffective; pWalk->Core.fEffectiveRW = !!(fEffective & X86_PTE_RW); pWalk->Core.fEffectiveUS = !!(fEffective & X86_PTE_US); # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE pWalk->Core.fEffectiveNX = !(fEffective & 1) && GST_IS_NX_ACTIVE(pVCpu); # else pWalk->Core.fEffectiveNX = false; # endif pWalk->Core.fBigPage = true; pWalk->Core.fSucceeded = true; pWalk->Core.GCPhys = GST_GET_BIG_PDE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pde) | (GCPtr & GST_BIG_PAGE_OFFSET_MASK); PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->Core.GCPhys); return VINF_SUCCESS; } if (RT_UNLIKELY(!GST_IS_PDE_VALID(pVCpu, Pde))) return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 2); # if PGM_GST_TYPE == PGM_TYPE_32BIT pWalk->Core.fEffective = fEffective &= Pde.u & (X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A); # else pWalk->Core.fEffective = fEffective &= ((uint32_t)Pde.u & (X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD | X86_PDE_A)) | ((uint32_t)(Pde.u >> 63) ^ 1) /*NX */; # endif /* * The PTE. */ rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GST_GET_PDE_GCPHYS(Pde), &pWalk->pPt); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_NAME(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc); } { PGSTPTE register pPte; pWalk->pPte = pPte = &pWalk->pPt->a[(GCPtr >> GST_PT_SHIFT) & GST_PT_MASK]; GSTPTE register Pte; pWalk->Pte.u = Pte.u = pPte->u; if (Pte.n.u1Present) { /* probable */ } else return PGM_GST_NAME(WalkReturnNotPresent)(pVCpu, pWalk, 1); if (RT_LIKELY(GST_IS_PTE_VALID(pVCpu, Pte))) { /* likely */ } else return PGM_GST_NAME(WalkReturnRsvdError)(pVCpu, pWalk, 1); /* * We're done. */ # if PGM_GST_TYPE == PGM_TYPE_32BIT fEffective &= Pte.u & (X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A); # else fEffective &= ((uint32_t)Pte.u & (X86_PTE_RW | X86_PTE_US | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A)) | ((uint32_t)(Pte.u >> 63) ^ 1) /*NX */; # endif fEffective |= (uint32_t)Pte.u & (X86_PTE_D | X86_PTE_PAT | X86_PTE_G); pWalk->Core.fEffective = fEffective; pWalk->Core.fEffectiveRW = !!(fEffective & X86_PTE_RW); pWalk->Core.fEffectiveUS = !!(fEffective & X86_PTE_US); # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE pWalk->Core.fEffectiveNX = !(fEffective & 1) && GST_IS_NX_ACTIVE(pVCpu); # else pWalk->Core.fEffectiveNX = false; # endif pWalk->Core.fSucceeded = true; pWalk->Core.GCPhys = GST_GET_PDE_GCPHYS(Pte) | (GCPtr & PAGE_OFFSET_MASK); return VINF_SUCCESS; } } #endif /* 32BIT, PAE, AMD64 */ /** * Gets effective Guest OS page information. * * When GCPtr is in a big page, the function will return as if it was a normal * 4KB page. If the need for distinguishing between big and normal page becomes * necessary at a later point, a PGMGstGetPage Ex() will be created for that * purpose. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtr Guest Context virtual address of the page. * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages. * @param pGCPhys Where to store the GC physical address of the page. * This is page aligned! */ PGM_GST_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys) { #if PGM_GST_TYPE == PGM_TYPE_REAL \ || PGM_GST_TYPE == PGM_TYPE_PROT /* * Fake it. */ if (pfFlags) *pfFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US; if (pGCPhys) *pGCPhys = GCPtr & PAGE_BASE_GC_MASK; NOREF(pVCpu); return VINF_SUCCESS; #elif PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 GSTPTWALK Walk; int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk); if (RT_FAILURE(rc)) return rc; if (pGCPhys) *pGCPhys = Walk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; if (pfFlags) { if (!Walk.Core.fBigPage) *pfFlags = (Walk.Pte.u & ~(GST_PTE_PG_MASK | X86_PTE_RW | X86_PTE_US)) /* NX not needed */ | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0) | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE) | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0) # endif ; else { *pfFlags = (Walk.Pde.u & ~(GST_PTE_PG_MASK | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PS)) /* NX not needed */ | ((Walk.Pde.u & X86_PDE4M_PAT) >> X86_PDE4M_PAT_SHIFT) | (Walk.Core.fEffectiveRW ? X86_PTE_RW : 0) | (Walk.Core.fEffectiveUS ? X86_PTE_US : 0) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_GST_TYPE) | (Walk.Core.fEffectiveNX ? X86_PTE_PAE_NX : 0) # endif ; } } return VINF_SUCCESS; #else # error "shouldn't be here!" /* something else... */ return VERR_NOT_SUPPORTED; #endif } /** * Modify page flags for a range of pages in the guest's tables * * The existing flags are ANDed with the fMask and ORed with the fFlags. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtr Virtual address of the first page in the range. Page aligned! * @param cb Size (in bytes) of the page range to apply the modification to. Page aligned! * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course. * @param fMask The AND mask - page flags X86_PTE_*. */ PGM_GST_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask) { Assert((cb & PAGE_OFFSET_MASK) == 0); RT_NOREF_PV(cb); #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 for (;;) { GSTPTWALK Walk; int rc = PGM_GST_NAME(Walk)(pVCpu, GCPtr, &Walk); if (RT_FAILURE(rc)) return rc; if (!Walk.Core.fBigPage) { /* * 4KB Page table, process * * Walk pages till we're done. */ unsigned iPTE = (GCPtr >> GST_PT_SHIFT) & GST_PT_MASK; while (iPTE < RT_ELEMENTS(Walk.pPt->a)) { GSTPTE Pte = Walk.pPt->a[iPTE]; Pte.u = (Pte.u & (fMask | X86_PTE_PAE_PG_MASK)) | (fFlags & ~GST_PTE_PG_MASK); Walk.pPt->a[iPTE] = Pte; /* next page */ cb -= PAGE_SIZE; if (!cb) return VINF_SUCCESS; GCPtr += PAGE_SIZE; iPTE++; } } else { /* * 2/4MB Page table */ GSTPDE PdeNew; # if PGM_GST_TYPE == PGM_TYPE_32BIT PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PG_HIGH_MASK | X86_PDE4M_PS)) # else PdeNew.u = (Walk.Pde.u & (fMask | ((fMask & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT) | GST_PDE_BIG_PG_MASK | X86_PDE4M_PS)) # endif | (fFlags & ~GST_PTE_PG_MASK) | ((fFlags & X86_PTE_PAT) << X86_PDE4M_PAT_SHIFT); *Walk.pPde = PdeNew; /* advance */ const unsigned cbDone = GST_BIG_PAGE_SIZE - (GCPtr & GST_BIG_PAGE_OFFSET_MASK); if (cbDone >= cb) return VINF_SUCCESS; cb -= cbDone; GCPtr += cbDone; } } #else /* real / protected mode: ignore. */ NOREF(pVCpu); NOREF(GCPtr); NOREF(fFlags); NOREF(fMask); return VINF_SUCCESS; #endif } /** * Retrieve guest PDE information. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtr Guest context pointer. * @param pPDE Pointer to guest PDE structure. */ PGM_GST_DECL(int, GetPDE)(PVMCPUCC pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPDE) { #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 # if PGM_GST_TYPE != PGM_TYPE_AMD64 /* Boundary check. */ if (RT_UNLIKELY(GCPtr >= _4G)) return VERR_PAGE_TABLE_NOT_PRESENT; # endif # if PGM_GST_TYPE == PGM_TYPE_32BIT unsigned iPd = (GCPtr >> GST_PD_SHIFT) & GST_PD_MASK; PX86PD pPd = pgmGstGet32bitPDPtr(pVCpu); # elif PGM_GST_TYPE == PGM_TYPE_PAE unsigned iPd = 0; /* shut up gcc */ PCX86PDPAE pPd = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPd, NULL); # elif PGM_GST_TYPE == PGM_TYPE_AMD64 PX86PML4E pPml4eIgn; X86PDPE PdpeIgn; unsigned iPd = 0; /* shut up gcc */ PCX86PDPAE pPd = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eIgn, &PdpeIgn, &iPd); /* Note! We do not return an effective PDE here like we do for the PTE in GetPage method. */ # endif if (RT_LIKELY(pPd)) pPDE->u = (X86PGPAEUINT)pPd->a[iPd].u; else pPDE->u = 0; return VINF_SUCCESS; #else NOREF(pVCpu); NOREF(GCPtr); NOREF(pPDE); AssertFailed(); return VERR_NOT_IMPLEMENTED; #endif } #ifdef IN_RING3 /** * Relocate any GC pointers related to guest mode paging. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param offDelta The relocation offset. */ PGM_GST_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta) { RT_NOREF(pVCpu, offDelta); return VINF_SUCCESS; } #endif