1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
|
/* $Id: heapsimple.cpp $ */
/** @file
* IPRT - A Simple Heap.
*/
/*
* Copyright (C) 2006-2020 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP RTLOGGROUP_DEFAULT
#include <iprt/heap.h>
#include "internal/iprt.h"
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/errcore.h>
#include <iprt/log.h>
#include <iprt/string.h>
#include <iprt/param.h>
#include "internal/magics.h"
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/** Pointer to the heap anchor block. */
typedef struct RTHEAPSIMPLEINTERNAL *PRTHEAPSIMPLEINTERNAL;
/** Pointer to a heap block. */
typedef struct RTHEAPSIMPLEBLOCK *PRTHEAPSIMPLEBLOCK;
/** Pointer to a free heap block. */
typedef struct RTHEAPSIMPLEFREE *PRTHEAPSIMPLEFREE;
/**
* Structure describing a simple heap block.
* If this block is allocated, it is followed by the user data.
* If this block is free, see RTHEAPSIMPLEFREE.
*/
typedef struct RTHEAPSIMPLEBLOCK
{
/** The next block in the global block list. */
PRTHEAPSIMPLEBLOCK pNext;
/** The previous block in the global block list. */
PRTHEAPSIMPLEBLOCK pPrev;
/** Pointer to the heap anchor block. */
PRTHEAPSIMPLEINTERNAL pHeap;
/** Flags + magic. */
uintptr_t fFlags;
} RTHEAPSIMPLEBLOCK;
AssertCompileSizeAlignment(RTHEAPSIMPLEBLOCK, 16);
/** The block is free if this flag is set. When cleared it's allocated. */
#define RTHEAPSIMPLEBLOCK_FLAGS_FREE ((uintptr_t)RT_BIT(0))
/** The magic value. */
#define RTHEAPSIMPLEBLOCK_FLAGS_MAGIC ((uintptr_t)0xabcdef00)
/** The mask that needs to be applied to RTHEAPSIMPLEBLOCK::fFlags to obtain the magic value. */
#define RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK (~(uintptr_t)RT_BIT(0))
/**
* Checks if the specified block is valid or not.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_VALID(pBlock) \
( ((pBlock)->fFlags & RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK) == RTHEAPSIMPLEBLOCK_FLAGS_MAGIC )
/**
* Checks if the specified block is valid and in use.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_VALID_USED(pBlock) \
( ((pBlock)->fFlags & (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK | RTHEAPSIMPLEBLOCK_FLAGS_FREE)) \
== RTHEAPSIMPLEBLOCK_FLAGS_MAGIC )
/**
* Checks if the specified block is valid and free.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_VALID_FREE(pBlock) \
( ((pBlock)->fFlags & (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK | RTHEAPSIMPLEBLOCK_FLAGS_FREE)) \
== (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE) )
/**
* Checks if the specified block is free or not.
* @returns boolean answer.
* @param pBlock Pointer to a valid RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_FREE(pBlock) (!!((pBlock)->fFlags & RTHEAPSIMPLEBLOCK_FLAGS_FREE))
/**
* A free heap block.
* This is an extended version of RTHEAPSIMPLEBLOCK that takes the unused
* user data to store free list pointers and a cached size value.
*/
typedef struct RTHEAPSIMPLEFREE
{
/** Core stuff. */
RTHEAPSIMPLEBLOCK Core;
/** Pointer to the next free block. */
PRTHEAPSIMPLEFREE pNext;
/** Pointer to the previous free block. */
PRTHEAPSIMPLEFREE pPrev;
/** The size of the block (excluding the RTHEAPSIMPLEBLOCK part). */
size_t cb;
/** An alignment filler to make it a multiple of (sizeof(void *) * 2). */
size_t Alignment;
} RTHEAPSIMPLEFREE;
/**
* The heap anchor block.
* This structure is placed at the head of the memory block specified to RTHeapSimpleInit(),
* which means that the first RTHEAPSIMPLEBLOCK appears immediately after this structure.
*/
typedef struct RTHEAPSIMPLEINTERNAL
{
/** The typical magic (RTHEAPSIMPLE_MAGIC). */
size_t uMagic;
/** The heap size. (This structure is included!) */
size_t cbHeap;
/** Pointer to the end of the heap. */
void *pvEnd;
/** The amount of free memory in the heap. */
size_t cbFree;
/** Free head pointer. */
PRTHEAPSIMPLEFREE pFreeHead;
/** Free tail pointer. */
PRTHEAPSIMPLEFREE pFreeTail;
/** Make the size of this structure is a multiple of 32. */
size_t auAlignment[2];
} RTHEAPSIMPLEINTERNAL;
AssertCompileSizeAlignment(RTHEAPSIMPLEINTERNAL, 32);
/** The minimum allocation size. */
#define RTHEAPSIMPLE_MIN_BLOCK (sizeof(RTHEAPSIMPLEBLOCK))
AssertCompile(RTHEAPSIMPLE_MIN_BLOCK >= sizeof(RTHEAPSIMPLEBLOCK));
AssertCompile(RTHEAPSIMPLE_MIN_BLOCK >= sizeof(RTHEAPSIMPLEFREE) - sizeof(RTHEAPSIMPLEBLOCK));
/** The minimum and default alignment. */
#define RTHEAPSIMPLE_ALIGNMENT (sizeof(RTHEAPSIMPLEBLOCK))
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
#ifdef RT_STRICT
# define RTHEAPSIMPLE_STRICT 1
#endif
#define ASSERT_L(a, b) AssertMsg((uintptr_t)(a) < (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_LE(a, b) AssertMsg((uintptr_t)(a) <= (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_G(a, b) AssertMsg((uintptr_t)(a) > (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_GE(a, b) AssertMsg((uintptr_t)(a) >= (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_ALIGN(a) AssertMsg(!((uintptr_t)(a) & (RTHEAPSIMPLE_ALIGNMENT - 1)), ("a=%p\n", (uintptr_t)(a)))
#define ASSERT_PREV(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->pPrev); \
if ((pBlock)->pPrev) \
{ \
ASSERT_L((pBlock)->pPrev, (pBlock)); \
ASSERT_GE((pBlock)->pPrev, (pHeapInt) + 1); \
} \
else \
Assert((pBlock) == (PRTHEAPSIMPLEBLOCK)((pHeapInt) + 1)); \
} while (0)
#define ASSERT_NEXT(pHeap, pBlock) \
do { ASSERT_ALIGN((pBlock)->pNext); \
if ((pBlock)->pNext) \
{ \
ASSERT_L((pBlock)->pNext, (pHeapInt)->pvEnd); \
ASSERT_G((pBlock)->pNext, (pBlock)); \
} \
} while (0)
#define ASSERT_BLOCK(pHeapInt, pBlock) \
do { AssertMsg(RTHEAPSIMPLEBLOCK_IS_VALID(pBlock), ("%#x\n", (pBlock)->fFlags)); \
AssertMsg((pBlock)->pHeap == (pHeapInt), ("%p != %p\n", (pBlock)->pHeap, (pHeapInt))); \
ASSERT_GE((pBlock), (pHeapInt) + 1); \
ASSERT_L((pBlock), (pHeapInt)->pvEnd); \
ASSERT_NEXT(pHeapInt, pBlock); \
ASSERT_PREV(pHeapInt, pBlock); \
} while (0)
#define ASSERT_BLOCK_USED(pHeapInt, pBlock) \
do { AssertMsg(RTHEAPSIMPLEBLOCK_IS_VALID_USED((pBlock)), ("%#x\n", (pBlock)->fFlags)); \
AssertMsg((pBlock)->pHeap == (pHeapInt), ("%p != %p\n", (pBlock)->pHeap, (pHeapInt))); \
ASSERT_GE((pBlock), (pHeapInt) + 1); \
ASSERT_L((pBlock), (pHeapInt)->pvEnd); \
ASSERT_NEXT(pHeapInt, pBlock); \
ASSERT_PREV(pHeapInt, pBlock); \
} while (0)
#define ASSERT_FREE_PREV(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->pPrev); \
if ((pBlock)->pPrev) \
{ \
ASSERT_GE((pBlock)->pPrev, (pHeapInt)->pFreeHead); \
ASSERT_L((pBlock)->pPrev, (pBlock)); \
ASSERT_LE((pBlock)->pPrev, (pBlock)->Core.pPrev); \
} \
else \
Assert((pBlock) == (pHeapInt)->pFreeHead); \
} while (0)
#define ASSERT_FREE_NEXT(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->pNext); \
if ((pBlock)->pNext) \
{ \
ASSERT_LE((pBlock)->pNext, (pHeapInt)->pFreeTail); \
ASSERT_G((pBlock)->pNext, (pBlock)); \
ASSERT_GE((pBlock)->pNext, (pBlock)->Core.pNext); \
} \
else \
Assert((pBlock) == (pHeapInt)->pFreeTail); \
} while (0)
#ifdef RTHEAPSIMPLE_STRICT
# define ASSERT_FREE_CB(pHeapInt, pBlock) \
do { size_t cbCalc = ((pBlock)->Core.pNext ? (uintptr_t)(pBlock)->Core.pNext : (uintptr_t)(pHeapInt)->pvEnd) \
- (uintptr_t)(pBlock) - sizeof(RTHEAPSIMPLEBLOCK); \
AssertMsg((pBlock)->cb == cbCalc, ("cb=%#zx cbCalc=%#zx\n", (pBlock)->cb, cbCalc)); \
} while (0)
#else
# define ASSERT_FREE_CB(pHeapInt, pBlock) do {} while (0)
#endif
/** Asserts that a free block is valid. */
#define ASSERT_BLOCK_FREE(pHeapInt, pBlock) \
do { ASSERT_BLOCK(pHeapInt, &(pBlock)->Core); \
Assert(RTHEAPSIMPLEBLOCK_IS_VALID_FREE(&(pBlock)->Core)); \
ASSERT_GE((pBlock), (pHeapInt)->pFreeHead); \
ASSERT_LE((pBlock), (pHeapInt)->pFreeTail); \
ASSERT_FREE_NEXT(pHeapInt, pBlock); \
ASSERT_FREE_PREV(pHeapInt, pBlock); \
ASSERT_FREE_CB(pHeapInt, pBlock); \
} while (0)
/** Asserts that the heap anchor block is ok. */
#define ASSERT_ANCHOR(pHeapInt) \
do { AssertPtr(pHeapInt);\
Assert((pHeapInt)->uMagic == RTHEAPSIMPLE_MAGIC); \
} while (0)
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
#ifdef RTHEAPSIMPLE_STRICT
static void rtHeapSimpleAssertAll(PRTHEAPSIMPLEINTERNAL pHeapInt);
#endif
static PRTHEAPSIMPLEBLOCK rtHeapSimpleAllocBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, size_t cb, size_t uAlignment);
static void rtHeapSimpleFreeBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, PRTHEAPSIMPLEBLOCK pBlock);
RTDECL(int) RTHeapSimpleInit(PRTHEAPSIMPLE phHeap, void *pvMemory, size_t cbMemory)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
PRTHEAPSIMPLEFREE pFree;
unsigned i;
/*
* Validate input. The imposed minimum heap size is just a convenient value.
*/
AssertReturn(cbMemory >= PAGE_SIZE, VERR_INVALID_PARAMETER);
AssertPtrReturn(pvMemory, VERR_INVALID_POINTER);
AssertReturn((uintptr_t)pvMemory + (cbMemory - 1) > (uintptr_t)cbMemory, VERR_INVALID_PARAMETER);
/*
* Place the heap anchor block at the start of the heap memory,
* enforce 32 byte alignment of it. Also align the heap size correctly.
*/
pHeapInt = (PRTHEAPSIMPLEINTERNAL)pvMemory;
if ((uintptr_t)pvMemory & 31)
{
const uintptr_t off = 32 - ((uintptr_t)pvMemory & 31);
cbMemory -= off;
pHeapInt = (PRTHEAPSIMPLEINTERNAL)((uintptr_t)pvMemory + off);
}
cbMemory &= ~(RTHEAPSIMPLE_ALIGNMENT - 1);
/* Init the heap anchor block. */
pHeapInt->uMagic = RTHEAPSIMPLE_MAGIC;
pHeapInt->pvEnd = (uint8_t *)pHeapInt + cbMemory;
pHeapInt->cbHeap = cbMemory;
pHeapInt->cbFree = cbMemory
- sizeof(RTHEAPSIMPLEBLOCK)
- sizeof(RTHEAPSIMPLEINTERNAL);
pHeapInt->pFreeTail = pHeapInt->pFreeHead = (PRTHEAPSIMPLEFREE)(pHeapInt + 1);
for (i = 0; i < RT_ELEMENTS(pHeapInt->auAlignment); i++)
pHeapInt->auAlignment[i] = ~(size_t)0;
/* Init the single free block. */
pFree = pHeapInt->pFreeHead;
pFree->Core.pNext = NULL;
pFree->Core.pPrev = NULL;
pFree->Core.pHeap = pHeapInt;
pFree->Core.fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->pNext = NULL;
pFree->pPrev = NULL;
pFree->cb = pHeapInt->cbFree;
*phHeap = pHeapInt;
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTHeapSimpleInit);
RTDECL(int) RTHeapSimpleRelocate(RTHEAPSIMPLE hHeap, uintptr_t offDelta)
{
PRTHEAPSIMPLEINTERNAL pHeapInt = hHeap;
PRTHEAPSIMPLEFREE pCur;
/*
* Validate input.
*/
AssertPtrReturn(pHeapInt, VERR_INVALID_HANDLE);
AssertReturn(pHeapInt->uMagic == RTHEAPSIMPLE_MAGIC, VERR_INVALID_HANDLE);
AssertMsgReturn((uintptr_t)pHeapInt - (uintptr_t)pHeapInt->pvEnd + pHeapInt->cbHeap == offDelta,
("offDelta=%p, expected=%p\n", offDelta, (uintptr_t)pHeapInt->pvEnd - pHeapInt->cbHeap - (uintptr_t)pHeapInt),
VERR_INVALID_PARAMETER);
/*
* Relocate the heap anchor block.
*/
#define RELOCATE_IT(var, type, offDelta) do { if (RT_UNLIKELY((var) != NULL)) { (var) = (type)((uintptr_t)(var) + offDelta); } } while (0)
RELOCATE_IT(pHeapInt->pvEnd, void *, offDelta);
RELOCATE_IT(pHeapInt->pFreeHead, PRTHEAPSIMPLEFREE, offDelta);
RELOCATE_IT(pHeapInt->pFreeTail, PRTHEAPSIMPLEFREE, offDelta);
/*
* Walk the heap blocks.
*/
for (pCur = (PRTHEAPSIMPLEFREE)(pHeapInt + 1);
pCur && (uintptr_t)pCur < (uintptr_t)pHeapInt->pvEnd;
pCur = (PRTHEAPSIMPLEFREE)pCur->Core.pNext)
{
RELOCATE_IT(pCur->Core.pNext, PRTHEAPSIMPLEBLOCK, offDelta);
RELOCATE_IT(pCur->Core.pPrev, PRTHEAPSIMPLEBLOCK, offDelta);
RELOCATE_IT(pCur->Core.pHeap, PRTHEAPSIMPLEINTERNAL, offDelta);
if (RTHEAPSIMPLEBLOCK_IS_FREE(&pCur->Core))
{
RELOCATE_IT(pCur->pNext, PRTHEAPSIMPLEFREE, offDelta);
RELOCATE_IT(pCur->pPrev, PRTHEAPSIMPLEFREE, offDelta);
}
}
#undef RELOCATE_IT
#ifdef RTHEAPSIMPLE_STRICT
/*
* Give it a once over before we return.
*/
rtHeapSimpleAssertAll(pHeapInt);
#endif
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTHeapSimpleRelocate);
RTDECL(void *) RTHeapSimpleAlloc(RTHEAPSIMPLE hHeap, size_t cb, size_t cbAlignment)
{
PRTHEAPSIMPLEINTERNAL pHeapInt = hHeap;
PRTHEAPSIMPLEBLOCK pBlock;
/*
* Validate and adjust the input.
*/
AssertPtrReturn(pHeapInt, NULL);
if (cb < RTHEAPSIMPLE_MIN_BLOCK)
cb = RTHEAPSIMPLE_MIN_BLOCK;
else
cb = RT_ALIGN_Z(cb, RTHEAPSIMPLE_ALIGNMENT);
if (!cbAlignment)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
else
{
Assert(!(cbAlignment & (cbAlignment - 1)));
Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment);
if (cbAlignment < RTHEAPSIMPLE_ALIGNMENT)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
}
/*
* Do the allocation.
*/
pBlock = rtHeapSimpleAllocBlock(pHeapInt, cb, cbAlignment);
if (RT_LIKELY(pBlock))
{
void *pv = pBlock + 1;
return pv;
}
return NULL;
}
RT_EXPORT_SYMBOL(RTHeapSimpleAlloc);
RTDECL(void *) RTHeapSimpleAllocZ(RTHEAPSIMPLE hHeap, size_t cb, size_t cbAlignment)
{
PRTHEAPSIMPLEINTERNAL pHeapInt = hHeap;
PRTHEAPSIMPLEBLOCK pBlock;
/*
* Validate and adjust the input.
*/
AssertPtrReturn(pHeapInt, NULL);
if (cb < RTHEAPSIMPLE_MIN_BLOCK)
cb = RTHEAPSIMPLE_MIN_BLOCK;
else
cb = RT_ALIGN_Z(cb, RTHEAPSIMPLE_ALIGNMENT);
if (!cbAlignment)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
else
{
Assert(!(cbAlignment & (cbAlignment - 1)));
Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment);
if (cbAlignment < RTHEAPSIMPLE_ALIGNMENT)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
}
/*
* Do the allocation.
*/
pBlock = rtHeapSimpleAllocBlock(pHeapInt, cb, cbAlignment);
if (RT_LIKELY(pBlock))
{
void *pv = pBlock + 1;
memset(pv, 0, cb);
return pv;
}
return NULL;
}
RT_EXPORT_SYMBOL(RTHeapSimpleAllocZ);
/**
* Allocates a block of memory from the specified heap.
*
* No parameter validation or adjustment is performed.
*
* @returns Pointer to the allocated block.
* @returns NULL on failure.
*
* @param pHeapInt The heap.
* @param cb Size of the memory block to allocate.
* @param uAlignment The alignment specifications for the allocated block.
*/
static PRTHEAPSIMPLEBLOCK rtHeapSimpleAllocBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, size_t cb, size_t uAlignment)
{
PRTHEAPSIMPLEBLOCK pRet = NULL;
PRTHEAPSIMPLEFREE pFree;
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
/*
* Search for a fitting block from the lower end of the heap.
*/
for (pFree = pHeapInt->pFreeHead;
pFree;
pFree = pFree->pNext)
{
uintptr_t offAlign;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
/*
* Match for size and alignment.
*/
if (pFree->cb < cb)
continue;
offAlign = (uintptr_t)(&pFree->Core + 1) & (uAlignment - 1);
if (offAlign)
{
RTHEAPSIMPLEFREE Free;
PRTHEAPSIMPLEBLOCK pPrev;
offAlign = uAlignment - offAlign;
if (pFree->cb - offAlign < cb)
continue;
/*
* Make a stack copy of the free block header and adjust the pointer.
*/
Free = *pFree;
pFree = (PRTHEAPSIMPLEFREE)((uintptr_t)pFree + offAlign);
/*
* Donate offAlign bytes to the node in front of us.
* If we're the head node, we'll have to create a fake node. We'll
* mark it USED for simplicity.
*
* (Should this policy of donating memory to the guy in front of us
* cause big 'leaks', we could create a new free node if there is room
* for that.)
*/
pPrev = Free.Core.pPrev;
if (pPrev)
{
AssertMsg(!RTHEAPSIMPLEBLOCK_IS_FREE(pPrev), ("Impossible!\n"));
pPrev->pNext = &pFree->Core;
}
else
{
pPrev = (PRTHEAPSIMPLEBLOCK)(pHeapInt + 1);
Assert(pPrev == &pFree->Core);
pPrev->pPrev = NULL;
pPrev->pNext = &pFree->Core;
pPrev->pHeap = pHeapInt;
pPrev->fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC;
}
pHeapInt->cbFree -= offAlign;
/*
* Recreate pFree in the new position and adjust the neighbors.
*/
*pFree = Free;
/* the core */
if (pFree->Core.pNext)
pFree->Core.pNext->pPrev = &pFree->Core;
pFree->Core.pPrev = pPrev;
/* the free part */
pFree->cb -= offAlign;
if (pFree->pNext)
pFree->pNext->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
if (pFree->pPrev)
pFree->pPrev->pNext = pFree;
else
pHeapInt->pFreeHead = pFree;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
ASSERT_BLOCK_USED(pHeapInt, pPrev);
}
/*
* Split off a new FREE block?
*/
if (pFree->cb >= cb + RT_ALIGN_Z(sizeof(RTHEAPSIMPLEFREE), RTHEAPSIMPLE_ALIGNMENT))
{
/*
* Move the FREE block up to make room for the new USED block.
*/
PRTHEAPSIMPLEFREE pNew = (PRTHEAPSIMPLEFREE)((uintptr_t)&pFree->Core + cb + sizeof(RTHEAPSIMPLEBLOCK));
pNew->Core.pNext = pFree->Core.pNext;
if (pFree->Core.pNext)
pFree->Core.pNext->pPrev = &pNew->Core;
pNew->Core.pPrev = &pFree->Core;
pNew->Core.pHeap = pHeapInt;
pNew->Core.fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pNew->pNext = pFree->pNext;
if (pNew->pNext)
pNew->pNext->pPrev = pNew;
else
pHeapInt->pFreeTail = pNew;
pNew->pPrev = pFree->pPrev;
if (pNew->pPrev)
pNew->pPrev->pNext = pNew;
else
pHeapInt->pFreeHead = pNew;
pNew->cb = (pNew->Core.pNext ? (uintptr_t)pNew->Core.pNext : (uintptr_t)pHeapInt->pvEnd) \
- (uintptr_t)pNew - sizeof(RTHEAPSIMPLEBLOCK);
ASSERT_BLOCK_FREE(pHeapInt, pNew);
/*
* Update the old FREE node making it a USED node.
*/
pFree->Core.fFlags &= ~RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->Core.pNext = &pNew->Core;
pHeapInt->cbFree -= pFree->cb;
pHeapInt->cbFree += pNew->cb;
pRet = &pFree->Core;
ASSERT_BLOCK_USED(pHeapInt, pRet);
}
else
{
/*
* Link it out of the free list.
*/
if (pFree->pNext)
pFree->pNext->pPrev = pFree->pPrev;
else
pHeapInt->pFreeTail = pFree->pPrev;
if (pFree->pPrev)
pFree->pPrev->pNext = pFree->pNext;
else
pHeapInt->pFreeHead = pFree->pNext;
/*
* Convert it to a used block.
*/
pHeapInt->cbFree -= pFree->cb;
pFree->Core.fFlags &= ~RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pRet = &pFree->Core;
ASSERT_BLOCK_USED(pHeapInt, pRet);
}
break;
}
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
return pRet;
}
RTDECL(void) RTHeapSimpleFree(RTHEAPSIMPLE hHeap, void *pv)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
PRTHEAPSIMPLEBLOCK pBlock;
/*
* Validate input.
*/
if (!pv)
return;
AssertPtr(pv);
Assert(RT_ALIGN_P(pv, RTHEAPSIMPLE_ALIGNMENT) == pv);
/*
* Get the block and heap. If in strict mode, validate these.
*/
pBlock = (PRTHEAPSIMPLEBLOCK)pv - 1;
pHeapInt = pBlock->pHeap;
ASSERT_BLOCK_USED(pHeapInt, pBlock);
ASSERT_ANCHOR(pHeapInt);
Assert(pHeapInt == (PRTHEAPSIMPLEINTERNAL)hHeap || !hHeap); RT_NOREF_PV(hHeap);
#ifdef RTHEAPSIMPLE_FREE_POISON
/*
* Poison the block.
*/
const size_t cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pBlock - sizeof(RTHEAPSIMPLEBLOCK);
memset(pBlock + 1, RTHEAPSIMPLE_FREE_POISON, cbBlock);
#endif
/*
* Call worker which does the actual job.
*/
rtHeapSimpleFreeBlock(pHeapInt, pBlock);
}
RT_EXPORT_SYMBOL(RTHeapSimpleFree);
/**
* Free a memory block.
*
* @param pHeapInt The heap.
* @param pBlock The memory block to free.
*/
static void rtHeapSimpleFreeBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, PRTHEAPSIMPLEBLOCK pBlock)
{
PRTHEAPSIMPLEFREE pFree = (PRTHEAPSIMPLEFREE)pBlock;
PRTHEAPSIMPLEFREE pLeft;
PRTHEAPSIMPLEFREE pRight;
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
/*
* Look for the closest free list blocks by walking the blocks right
* of us (both lists are sorted by address).
*/
pLeft = NULL;
pRight = NULL;
if (pHeapInt->pFreeTail)
{
pRight = (PRTHEAPSIMPLEFREE)pFree->Core.pNext;
while (pRight && !RTHEAPSIMPLEBLOCK_IS_FREE(&pRight->Core))
{
ASSERT_BLOCK(pHeapInt, &pRight->Core);
pRight = (PRTHEAPSIMPLEFREE)pRight->Core.pNext;
}
if (!pRight)
pLeft = pHeapInt->pFreeTail;
else
{
ASSERT_BLOCK_FREE(pHeapInt, pRight);
pLeft = pRight->pPrev;
}
if (pLeft)
ASSERT_BLOCK_FREE(pHeapInt, pLeft);
}
AssertMsgReturnVoid(pLeft != pFree, ("Freed twice! pv=%p (pBlock=%p)\n", pBlock + 1, pBlock));
ASSERT_L(pLeft, pFree);
Assert(!pRight || (uintptr_t)pRight > (uintptr_t)pFree);
Assert(!pLeft || pLeft->pNext == pRight);
/*
* Insert at the head of the free block list?
*/
if (!pLeft)
{
Assert(pRight == pHeapInt->pFreeHead);
pFree->Core.fFlags |= RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->pPrev = NULL;
pFree->pNext = pRight;
if (pRight)
pRight->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
pHeapInt->pFreeHead = pFree;
}
else
{
/*
* Can we merge with left hand free block?
*/
if (pLeft->Core.pNext == &pFree->Core)
{
pLeft->Core.pNext = pFree->Core.pNext;
if (pFree->Core.pNext)
pFree->Core.pNext->pPrev = &pLeft->Core;
pHeapInt->cbFree -= pLeft->cb;
pFree = pLeft;
}
/*
* No, just link it into the free list then.
*/
else
{
pFree->Core.fFlags |= RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->pNext = pRight;
pFree->pPrev = pLeft;
pLeft->pNext = pFree;
if (pRight)
pRight->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
}
}
/*
* Can we merge with right hand free block?
*/
if ( pRight
&& pRight->Core.pPrev == &pFree->Core)
{
/* core */
pFree->Core.pNext = pRight->Core.pNext;
if (pRight->Core.pNext)
pRight->Core.pNext->pPrev = &pFree->Core;
/* free */
pFree->pNext = pRight->pNext;
if (pRight->pNext)
pRight->pNext->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
pHeapInt->cbFree -= pRight->cb;
}
/*
* Calculate the size and update free stats.
*/
pFree->cb = (pFree->Core.pNext ? (uintptr_t)pFree->Core.pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pFree - sizeof(RTHEAPSIMPLEBLOCK);
pHeapInt->cbFree += pFree->cb;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
}
#ifdef RTHEAPSIMPLE_STRICT
/**
* Internal consistency check (relying on assertions).
* @param pHeapInt
*/
static void rtHeapSimpleAssertAll(PRTHEAPSIMPLEINTERNAL pHeapInt)
{
PRTHEAPSIMPLEFREE pPrev = NULL;
PRTHEAPSIMPLEFREE pPrevFree = NULL;
PRTHEAPSIMPLEFREE pBlock;
for (pBlock = (PRTHEAPSIMPLEFREE)(pHeapInt + 1);
pBlock;
pBlock = (PRTHEAPSIMPLEFREE)pBlock->Core.pNext)
{
if (RTHEAPSIMPLEBLOCK_IS_FREE(&pBlock->Core))
{
ASSERT_BLOCK_FREE(pHeapInt, pBlock);
Assert(pBlock->pPrev == pPrevFree);
Assert(pPrevFree || pHeapInt->pFreeHead == pBlock);
pPrevFree = pBlock;
}
else
ASSERT_BLOCK_USED(pHeapInt, &pBlock->Core);
Assert(!pPrev || pPrev == (PRTHEAPSIMPLEFREE)pBlock->Core.pPrev);
pPrev = pBlock;
}
Assert(pHeapInt->pFreeTail == pPrevFree);
}
#endif
RTDECL(size_t) RTHeapSimpleSize(RTHEAPSIMPLE hHeap, void *pv)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
PRTHEAPSIMPLEBLOCK pBlock;
size_t cbBlock;
/*
* Validate input.
*/
if (!pv)
return 0;
AssertPtrReturn(pv, 0);
AssertReturn(RT_ALIGN_P(pv, RTHEAPSIMPLE_ALIGNMENT) == pv, 0);
/*
* Get the block and heap. If in strict mode, validate these.
*/
pBlock = (PRTHEAPSIMPLEBLOCK)pv - 1;
pHeapInt = pBlock->pHeap;
ASSERT_BLOCK_USED(pHeapInt, pBlock);
ASSERT_ANCHOR(pHeapInt);
Assert(pHeapInt == (PRTHEAPSIMPLEINTERNAL)hHeap || !hHeap); RT_NOREF_PV(hHeap);
/*
* Calculate the block size.
*/
cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pBlock- sizeof(RTHEAPSIMPLEBLOCK);
return cbBlock;
}
RT_EXPORT_SYMBOL(RTHeapSimpleSize);
RTDECL(size_t) RTHeapSimpleGetHeapSize(RTHEAPSIMPLE hHeap)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
if (hHeap == NIL_RTHEAPSIMPLE)
return 0;
pHeapInt = hHeap;
AssertPtrReturn(pHeapInt, 0);
ASSERT_ANCHOR(pHeapInt);
return pHeapInt->cbHeap;
}
RT_EXPORT_SYMBOL(RTHeapSimpleGetHeapSize);
RTDECL(size_t) RTHeapSimpleGetFreeSize(RTHEAPSIMPLE hHeap)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
if (hHeap == NIL_RTHEAPSIMPLE)
return 0;
pHeapInt = hHeap;
AssertPtrReturn(pHeapInt, 0);
ASSERT_ANCHOR(pHeapInt);
return pHeapInt->cbFree;
}
RT_EXPORT_SYMBOL(RTHeapSimpleGetFreeSize);
RTDECL(void) RTHeapSimpleDump(RTHEAPSIMPLE hHeap, PFNRTHEAPSIMPLEPRINTF pfnPrintf)
{
PRTHEAPSIMPLEINTERNAL pHeapInt = (PRTHEAPSIMPLEINTERNAL)hHeap;
PRTHEAPSIMPLEFREE pBlock;
pfnPrintf("**** Dumping Heap %p - cbHeap=%zx cbFree=%zx ****\n",
hHeap, pHeapInt->cbHeap, pHeapInt->cbFree);
for (pBlock = (PRTHEAPSIMPLEFREE)(pHeapInt + 1);
pBlock;
pBlock = (PRTHEAPSIMPLEFREE)pBlock->Core.pNext)
{
size_t cb = (pBlock->pNext ? (uintptr_t)pBlock->Core.pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pBlock - sizeof(RTHEAPSIMPLEBLOCK);
if (RTHEAPSIMPLEBLOCK_IS_FREE(&pBlock->Core))
pfnPrintf("%p %06x FREE pNext=%p pPrev=%p fFlags=%#x cb=%#06x : cb=%#06x pNext=%p pPrev=%p\n",
pBlock, (uintptr_t)pBlock - (uintptr_t)(pHeapInt + 1), pBlock->Core.pNext, pBlock->Core.pPrev, pBlock->Core.fFlags, cb,
pBlock->cb, pBlock->pNext, pBlock->pPrev);
else
pfnPrintf("%p %06x USED pNext=%p pPrev=%p fFlags=%#x cb=%#06x\n",
pBlock, (uintptr_t)pBlock - (uintptr_t)(pHeapInt + 1), pBlock->Core.pNext, pBlock->Core.pPrev, pBlock->Core.fFlags, cb);
}
pfnPrintf("**** Done dumping Heap %p ****\n", hHeap);
}
RT_EXPORT_SYMBOL(RTHeapSimpleDump);
|