summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/common/crypto/cipher-openssl.cpp
blob: 66ca571ed6cd11e27883001663d26ce2950a3181 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/* $Id: cipher-openssl.cpp $ */
/** @file
 * IPRT - Crypto - Symmetric Cipher using OpenSSL.
 */

/*
 * Copyright (C) 2018-2020 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
 * VirtualBox OSE distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#ifdef IPRT_WITH_OPENSSL
# include "internal/iprt.h"
# include <iprt/crypto/cipher.h>

# include <iprt/asm.h>
# include <iprt/assert.h>
# include <iprt/err.h>
# include <iprt/mem.h>
# include <iprt/string.h>

# include "internal/iprt-openssl.h"
# include "openssl/evp.h"

# include "internal/magics.h"


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * OpenSSL cipher instance data.
 */
typedef struct RTCRCIPHERINT
{
    /** Magic value (RTCRCIPHERINT_MAGIC). */
    uint32_t            u32Magic;
    /** Reference count. */
    uint32_t volatile   cRefs;
    /** The cihper. */
    const EVP_CIPHER   *pCipher;
    /** The IPRT cipher type, if we know it. */
    RTCRCIPHERTYPE      enmType;
} RTCRCIPHERINT;


RTDECL(int) RTCrCipherOpenByType(PRTCRCIPHER phCipher, RTCRCIPHERTYPE enmType, uint32_t fFlags)
{
    AssertPtrReturn(phCipher, VERR_INVALID_POINTER);
    *phCipher = NIL_RTCRCIPHER;
    AssertReturn(!fFlags, VERR_INVALID_FLAGS);

    /*
     * Translate the IPRT cipher type to EVP cipher.
     */
    const EVP_CIPHER *pCipher = NULL;
    switch (enmType)
    {
        case RTCRCIPHERTYPE_XTS_AES_128:
            pCipher = EVP_aes_128_xts();
            break;
        case RTCRCIPHERTYPE_XTS_AES_256:
            pCipher = EVP_aes_256_xts();
            break;

        /* no default! */
        case RTCRCIPHERTYPE_INVALID:
        case RTCRCIPHERTYPE_END:
        case RTCRCIPHERTYPE_32BIT_HACK:
            AssertFailedReturn(VERR_INVALID_PARAMETER);
    }
    AssertReturn(pCipher, VERR_CR_CIPHER_NOT_SUPPORTED);

    /*
     * Create the instance.
     */
    RTCRCIPHERINT *pThis = (RTCRCIPHERINT *)RTMemAllocZ(sizeof(*pThis));
    if (pThis)
    {
        pThis->u32Magic = RTCRCIPHERINT_MAGIC;
        pThis->cRefs    = 1;
        pThis->pCipher  = pCipher;
        pThis->enmType  = enmType;
        *phCipher = pThis;
        return VINF_SUCCESS;
    }
    return VERR_NO_MEMORY;
}


RTDECL(uint32_t) RTCrCipherRetain(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, UINT32_MAX);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, UINT32_MAX);

    uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs);
    Assert(cRefs > 1 && cRefs < 1024);
    return cRefs;
}


/**
 * Destroys the cipher instance.
 */
static uint32_t rtCrCipherDestroy(RTCRCIPHER pThis)
{
    pThis->u32Magic= ~RTCRCIPHERINT_MAGIC;
    pThis->pCipher = NULL;
    RTMemFree(pThis);
    return 0;
}


RTDECL(uint32_t) RTCrCipherRelease(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    if (pThis == NIL_RTCRCIPHER)
        return 0;
    AssertPtrReturn(pThis, UINT32_MAX);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, UINT32_MAX);

    uint32_t cRefs = ASMAtomicDecU32(&pThis->cRefs);
    Assert(cRefs < 1024);
    if (cRefs == 0)
        return rtCrCipherDestroy(pThis);
    return cRefs;
}


RTDECL(uint32_t) RTCrCipherGetKeyLength(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, 0);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, 0);

    return EVP_CIPHER_key_length(pThis->pCipher);
}


RTDECL(uint32_t) RTCrCipherGetInitializationVectorLength(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, 0);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, 0);

    return EVP_CIPHER_iv_length(pThis->pCipher);
}


RTDECL(uint32_t) RTCrCipherGetBlockSize(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, 0);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, 0);

    return EVP_CIPHER_block_size(pThis->pCipher);
}


RTDECL(int) RTCrCipherEncrypt(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                              void const *pvInitVector, size_t cbInitVector,
                              void const *pvPlainText, size_t cbPlainText,
                              void *pvEncrypted, size_t cbEncrypted, size_t *pcbEncrypted)
{
    /*
     * Validate input.
     */
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, VERR_INVALID_HANDLE);
    AssertMsgReturn((ssize_t)cbKey == EVP_CIPHER_key_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbKey, EVP_CIPHER_key_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_KEY_LENGTH);
    AssertMsgReturn((ssize_t)cbInitVector == EVP_CIPHER_iv_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbInitVector, EVP_CIPHER_iv_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_INITIALIZATION_VECTOR_LENGTH);
    AssertReturn(cbPlainText > 0, VERR_NO_DATA);

    Assert(EVP_CIPHER_block_size(pThis->pCipher) <= 1); /** @todo more complicated ciphers later */
    size_t const cbNeeded = cbPlainText;
    if (pcbEncrypted)
    {
        *pcbEncrypted = cbNeeded;
        AssertReturn(cbEncrypted >= cbNeeded, VERR_BUFFER_OVERFLOW);
    }
    else
        AssertReturn(cbEncrypted == cbNeeded, VERR_INVALID_PARAMETER);
    AssertReturn((size_t)(int)cbPlainText == cbPlainText && (int)cbPlainText > 0, VERR_OUT_OF_RANGE);

    /*
     * Allocate and initialize the cipher context.
     */
    int rc = VERR_NO_MEMORY;
# if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
    EVP_CIPHER_CTX *pCipherCtx = EVP_CIPHER_CTX_new();
    if (pCipherCtx)
# else
    EVP_CIPHER_CTX  CipherCtx;
    EVP_CIPHER_CTX *pCipherCtx = &CipherCtx;
    RT_ZERO(CipherCtx);
# endif
    {
        int rcOssl = EVP_EncryptInit(pCipherCtx, pThis->pCipher, (unsigned char const *)pvKey,
                                     (unsigned char const *)pvInitVector);
        if (rcOssl > 0)
        {
            /*
             * Do the encryption.
             */
            int cbEncrypted1 = 0;
            rcOssl = EVP_EncryptUpdate(pCipherCtx, (unsigned char *)pvEncrypted, &cbEncrypted1,
                                       (unsigned char const *)pvPlainText, (int)cbPlainText);
            if (rcOssl > 0)
            {
                Assert(cbEncrypted1 <= (ssize_t)cbNeeded);
                int cbEncrypted2 = 0;
                rcOssl = EVP_EncryptFinal(pCipherCtx, (unsigned char *)pvEncrypted + cbEncrypted1, &cbEncrypted2);
                if (rcOssl > 0)
                {
                    Assert(cbEncrypted1 + cbEncrypted2 == (ssize_t)cbNeeded);
                    if (pcbEncrypted)
                        *pcbEncrypted = cbEncrypted1 + cbEncrypted2;
                    rc = VINF_SUCCESS;
                }
                else
                    rc = VERR_CR_CIPHER_OSSL_ENCRYPT_FINAL_FAILED;
            }
            else
                rc = VERR_CR_CIPHER_OSSL_ENCRYPT_UPDATE_FAILED;
        }
        else
            rc = VERR_CR_CIPHER_OSSL_ENCRYPT_INIT_FAILED;

# if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
        EVP_CIPHER_CTX_free(pCipherCtx);
# else
        EVP_CIPHER_CTX_cleanup(&CipherCtx);
# endif
    }
    return rc;
}


RTDECL(int) RTCrCipherDecrypt(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                              void const *pvInitVector, size_t cbInitVector,
                              void const *pvEncrypted, size_t cbEncrypted,
                              void *pvPlainText, size_t cbPlainText, size_t *pcbPlainText)
{
    /*
     * Validate input.
     */
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, VERR_INVALID_HANDLE);
    AssertMsgReturn((ssize_t)cbKey == EVP_CIPHER_key_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbKey, EVP_CIPHER_key_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_KEY_LENGTH);
    AssertMsgReturn((ssize_t)cbInitVector == EVP_CIPHER_iv_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbInitVector, EVP_CIPHER_iv_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_INITIALIZATION_VECTOR_LENGTH);
    AssertReturn(cbPlainText > 0, VERR_NO_DATA);

    Assert(EVP_CIPHER_block_size(pThis->pCipher) <= 1); /** @todo more complicated ciphers later */
    size_t const cbNeeded = cbEncrypted;
    if (pcbPlainText)
    {
        *pcbPlainText = cbNeeded;
        AssertReturn(cbPlainText >= cbNeeded, VERR_BUFFER_OVERFLOW);
    }
    else
        AssertReturn(cbPlainText == cbNeeded, VERR_INVALID_PARAMETER);
    AssertReturn((size_t)(int)cbEncrypted == cbEncrypted && (int)cbEncrypted > 0, VERR_OUT_OF_RANGE);

    /*
     * Allocate and initialize the cipher context.
     */
    int rc = VERR_NO_MEMORY;
# if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
    EVP_CIPHER_CTX *pCipherCtx = EVP_CIPHER_CTX_new();
    if (pCipherCtx)
# else
    EVP_CIPHER_CTX  CipherCtx;
    EVP_CIPHER_CTX *pCipherCtx = &CipherCtx;
    RT_ZERO(CipherCtx);
# endif
    {
        int rcOssl = EVP_DecryptInit(pCipherCtx, pThis->pCipher, (unsigned char const *)pvKey,
                                     (unsigned char const *)pvInitVector);
        if (rcOssl > 0)
        {
            /*
             * Do the decryption.
             */
            int cbDecrypted1 = 0;
            rcOssl = EVP_DecryptUpdate(pCipherCtx, (unsigned char *)pvPlainText, &cbDecrypted1,
                                       (unsigned char const *)pvEncrypted, (int)cbEncrypted);
            if (rcOssl > 0)
            {
                Assert(cbDecrypted1 <= (ssize_t)cbNeeded);
                int cbDecrypted2 = 0;
                rcOssl = EVP_DecryptFinal(pCipherCtx, (unsigned char *)pvPlainText + cbDecrypted1, &cbDecrypted2);
                if (rcOssl > 0)
                {
                    Assert(cbDecrypted1 + cbDecrypted2 == (ssize_t)cbNeeded);
                    if (pcbPlainText)
                        *pcbPlainText = cbDecrypted1 + cbDecrypted2;
                    rc = VINF_SUCCESS;
                }
                else
                    rc = VERR_CR_CIPHER_OSSL_DECRYPT_FINAL_FAILED;
            }
            else
                rc = VERR_CR_CIPHER_OSSL_DECRYPT_UPDATE_FAILED;
        }
        else
            rc = VERR_CR_CIPHER_OSSL_DECRYPT_INIT_FAILED;

# if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
        EVP_CIPHER_CTX_free(pCipherCtx);
# else
        EVP_CIPHER_CTX_cleanup(&CipherCtx);
# endif
    }
    return rc;
}

#endif /* IPRT_WITH_OPENSSL */