summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/darwin/semeventmulti-r0drv-darwin.cpp
blob: 220f500746ad9d804985803fac1b391856de72b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/* $Id: semeventmulti-r0drv-darwin.cpp $ */
/** @file
 * IPRT - Multiple Release Event Semaphores, Ring-0 Driver, Darwin.
 */

/*
 * Copyright (C) 2006-2020 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
 * VirtualBox OSE distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#define RTSEMEVENTMULTI_WITHOUT_REMAPPING
#define RTMEM_NO_WRAP_TO_EF_APIS /* rtR0MemObjNativeProtect depends on this code, so no electrical fences here or we'll \#DF. */
#include "the-darwin-kernel.h"
#include "internal/iprt.h"
#include <iprt/semaphore.h>

#include <iprt/assert.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/err.h>
#include <iprt/lockvalidator.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/thread.h>
#include <iprt/time.h>

#include "internal/magics.h"


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
/** @name fStateAndGen values
 * @{ */
/** The state bit number. */
#define RTSEMEVENTMULTIDARWIN_STATE_BIT         0
/** The state mask. */
#define RTSEMEVENTMULTIDARWIN_STATE_MASK        RT_BIT_32(RTSEMEVENTMULTIDARWIN_STATE_BIT)
/** The generation mask. */
#define RTSEMEVENTMULTIDARWIN_GEN_MASK          ~RTSEMEVENTMULTIDARWIN_STATE_MASK
/** The generation shift. */
#define RTSEMEVENTMULTIDARWIN_GEN_SHIFT         1
/** The initial variable value. */
#define RTSEMEVENTMULTIDARWIN_STATE_GEN_INIT    UINT32_C(0xfffffffc)
/** @}  */


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * Darwin multiple release event semaphore.
 */
typedef struct RTSEMEVENTMULTIINTERNAL
{
    /** Magic value (RTSEMEVENTMULTI_MAGIC). */
    uint32_t volatile   u32Magic;
    /** The object state bit and generation counter.
     * The generation counter is incremented every time the object is
     * signalled. */
    uint32_t volatile   fStateAndGen;
    /** Reference counter. */
    uint32_t volatile   cRefs;
    /** Set if there are blocked threads. */
    bool volatile       fHaveBlockedThreads;
    /** The spinlock protecting us. */
    lck_spin_t         *pSpinlock;
} RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL;



RTDECL(int)  RTSemEventMultiCreate(PRTSEMEVENTMULTI phEventMultiSem)
{
    return RTSemEventMultiCreateEx(phEventMultiSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
}


RTDECL(int)  RTSemEventMultiCreateEx(PRTSEMEVENTMULTI phEventMultiSem, uint32_t fFlags, RTLOCKVALCLASS hClass,
                                     const char *pszNameFmt, ...)
{
    RT_NOREF(hClass, pszNameFmt);
    AssertReturn(!(fFlags & ~RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER);
    AssertCompile(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *));
    AssertPtrReturn(phEventMultiSem, VERR_INVALID_POINTER);
    RT_ASSERT_PREEMPTIBLE();
    IPRT_DARWIN_SAVE_EFL_AC();

    PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pThis));
    if (pThis)
    {
        pThis->u32Magic             = RTSEMEVENTMULTI_MAGIC;
        pThis->fStateAndGen         = RTSEMEVENTMULTIDARWIN_STATE_GEN_INIT;
        pThis->cRefs                = 1;
        pThis->fHaveBlockedThreads  = false;
        Assert(g_pDarwinLockGroup);
        pThis->pSpinlock = lck_spin_alloc_init(g_pDarwinLockGroup, LCK_ATTR_NULL);
        if (pThis->pSpinlock)
        {
            *phEventMultiSem = pThis;
            IPRT_DARWIN_RESTORE_EFL_AC();
            return VINF_SUCCESS;
        }

        pThis->u32Magic = 0;
        RTMemFree(pThis);
    }
    IPRT_DARWIN_RESTORE_EFL_AC();
    return VERR_NO_MEMORY;
}


/**
 * Retain a reference to the semaphore.
 *
 * @param   pThis       The semaphore.
 */
DECLINLINE(void) rtR0SemEventMultiDarwinRetain(PRTSEMEVENTMULTIINTERNAL pThis)
{
    uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs);
    Assert(cRefs && cRefs < 100000);
    RT_NOREF_PV(cRefs);
}


/**
 * Release a reference, destroy the thing if necessary.
 *
 * @param   pThis       The semaphore.
 */
DECLINLINE(void) rtR0SemEventMultiDarwinRelease(PRTSEMEVENTMULTIINTERNAL pThis)
{
    if (RT_UNLIKELY(ASMAtomicDecU32(&pThis->cRefs) == 0))
    {
        IPRT_DARWIN_SAVE_EFL_AC();
        Assert(pThis->u32Magic != RTSEMEVENTMULTI_MAGIC);

        lck_spin_destroy(pThis->pSpinlock, g_pDarwinLockGroup);
        RTMemFree(pThis);

        IPRT_DARWIN_RESTORE_EFL_AC();
    }
}


RTDECL(int)  RTSemEventMultiDestroy(RTSEMEVENTMULTI hEventMultiSem)
{
    PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
    if (pThis == NIL_RTSEMEVENTMULTI)
        return VINF_SUCCESS;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
    Assert(pThis->cRefs > 0);
    RT_ASSERT_INTS_ON();
    IPRT_DARWIN_SAVE_EFL_AC();

    RTCCUINTREG const fIntSaved = ASMIntDisableFlags();
    lck_spin_lock(pThis->pSpinlock);

    ASMAtomicWriteU32(&pThis->u32Magic, ~RTSEMEVENTMULTI_MAGIC); /* make the handle invalid */
    ASMAtomicAndU32(&pThis->fStateAndGen, RTSEMEVENTMULTIDARWIN_GEN_MASK);
    if (pThis->fHaveBlockedThreads)
    {
        /* abort waiting threads. */
        thread_wakeup_prim((event_t)pThis, FALSE /* all threads */, THREAD_RESTART);
    }

    lck_spin_unlock(pThis->pSpinlock);
    ASMSetFlags(fIntSaved);
    rtR0SemEventMultiDarwinRelease(pThis);

    IPRT_DARWIN_RESTORE_EFL_AC();
    return VINF_SUCCESS;
}


RTDECL(int)  RTSemEventMultiSignal(RTSEMEVENTMULTI hEventMultiSem)
{
    PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
    RT_ASSERT_PREEMPT_CPUID_VAR();

    /*
     * Coming here with interrupts disabled should be okay.  The thread_wakeup_prim KPI is used
     * by the interrupt handler IOFilterInterruptEventSource::disableInterruptOccurred() via
     * signalWorkAvailable().  The only problem is if we have to destroy the event structure,
     * as RTMemFree does not work with interrupts disabled (IOFree/kfree takes zone mutex).
     */
    //RT_ASSERT_INTS_ON(); - we may be called from interrupt context, which seems to be perfectly fine if we disable interrupts.

    IPRT_DARWIN_SAVE_EFL_AC();

    RTCCUINTREG const fIntSaved = ASMIntDisableFlags();
    rtR0SemEventMultiDarwinRetain(pThis);
    lck_spin_lock(pThis->pSpinlock);

    /*
     * Set the signal and increment the generation counter.
     */
    uint32_t fNew = ASMAtomicUoReadU32(&pThis->fStateAndGen);
    fNew += 1 << RTSEMEVENTMULTIDARWIN_GEN_SHIFT;
    fNew |= RTSEMEVENTMULTIDARWIN_STATE_MASK;
    ASMAtomicWriteU32(&pThis->fStateAndGen, fNew);

    /*
     * Wake up all sleeping threads.
     */
    if (pThis->fHaveBlockedThreads)
    {
        ASMAtomicWriteBool(&pThis->fHaveBlockedThreads, false);
        thread_wakeup_prim((event_t)pThis, FALSE /* all threads */, THREAD_AWAKENED);
    }

    lck_spin_unlock(pThis->pSpinlock);
    ASMSetFlags(fIntSaved);
    rtR0SemEventMultiDarwinRelease(pThis);

    RT_ASSERT_PREEMPT_CPUID();
    AssertMsg((fSavedEfl & X86_EFL_IF) == (ASMGetFlags() & X86_EFL_IF), ("fSavedEfl=%#x cur=%#x\n",(uint32_t)fSavedEfl, ASMGetFlags()));
    IPRT_DARWIN_RESTORE_EFL_AC();
    return VINF_SUCCESS;
}


RTDECL(int)  RTSemEventMultiReset(RTSEMEVENTMULTI hEventMultiSem)
{
    PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
    RT_ASSERT_PREEMPT_CPUID_VAR();
    RT_ASSERT_INTS_ON();
    IPRT_DARWIN_SAVE_EFL_AC();

    RTCCUINTREG const fIntSaved = ASMIntDisableFlags();
    rtR0SemEventMultiDarwinRetain(pThis);
    lck_spin_lock(pThis->pSpinlock);

    ASMAtomicAndU32(&pThis->fStateAndGen, ~RTSEMEVENTMULTIDARWIN_STATE_MASK);

    lck_spin_unlock(pThis->pSpinlock);
    ASMSetFlags(fIntSaved);
    rtR0SemEventMultiDarwinRelease(pThis);

    RT_ASSERT_PREEMPT_CPUID();
    IPRT_DARWIN_RESTORE_EFL_AC();
    return VINF_SUCCESS;
}


/**
 * Worker for RTSemEventMultiWaitEx and RTSemEventMultiWaitExDebug.
 *
 * @returns VBox status code.
 * @param   pThis           The event semaphore.
 * @param   fFlags          See RTSemEventMultiWaitEx.
 * @param   uTimeout        See RTSemEventMultiWaitEx.
 * @param   pSrcPos         The source code position of the wait.
 */
static int rtR0SemEventMultiDarwinWait(PRTSEMEVENTMULTIINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout,
                                       PCRTLOCKVALSRCPOS pSrcPos)
{
    RT_NOREF(pSrcPos);

    /*
     * Validate input.
     */
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
    AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER);
    if (uTimeout != 0 || (fFlags & RTSEMWAIT_FLAGS_INDEFINITE))
        RT_ASSERT_PREEMPTIBLE();
    IPRT_DARWIN_SAVE_EFL_AC();

    RTCCUINTREG const fIntSaved = ASMIntDisableFlags();
    rtR0SemEventMultiDarwinRetain(pThis);
    lck_spin_lock(pThis->pSpinlock);

    /*
     * Is the event already signalled or do we have to wait?
     */
    int rc;
    uint32_t const fOrgStateAndGen = ASMAtomicUoReadU32(&pThis->fStateAndGen);
    if (fOrgStateAndGen & RTSEMEVENTMULTIDARWIN_STATE_MASK)
        rc = VINF_SUCCESS;
    else
    {
        /*
         * We have to wait. So, we'll need to convert the timeout and figure
         * out if it's indefinite or not.
         */
        uint64_t uNsAbsTimeout = 1;
        if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE))
        {
            if (fFlags & RTSEMWAIT_FLAGS_MILLISECS)
                uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000)
                         ? uTimeout * UINT32_C(1000000)
                         : UINT64_MAX;
            if (uTimeout == UINT64_MAX)
                fFlags |= RTSEMWAIT_FLAGS_INDEFINITE;
            else
            {
                uint64_t u64Now;
                if (fFlags & RTSEMWAIT_FLAGS_RELATIVE)
                {
                    if (uTimeout != 0)
                    {
                        u64Now = RTTimeSystemNanoTS();
                        uNsAbsTimeout = u64Now + uTimeout;
                        if (uNsAbsTimeout < u64Now) /* overflow */
                            fFlags |= RTSEMWAIT_FLAGS_INDEFINITE;
                    }
                }
                else
                {
                    uNsAbsTimeout = uTimeout;
                    u64Now        = RTTimeSystemNanoTS();
                    uTimeout      = u64Now < uTimeout ? uTimeout - u64Now : 0;
                }
            }
        }

        if (   !(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)
            && uTimeout == 0)
        {
            /*
             * Poll call, we already checked the condition above so no need to
             * wait for anything.
             */
            rc = VERR_TIMEOUT;
        }
        else
        {
            for (;;)
            {
                /*
                 * Do the actual waiting.
                 */
                ASMAtomicWriteBool(&pThis->fHaveBlockedThreads, true);
                wait_interrupt_t fInterruptible = fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE ? THREAD_ABORTSAFE : THREAD_UNINT;
                wait_result_t    rcWait;
                if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE)
                    rcWait = lck_spin_sleep(pThis->pSpinlock, LCK_SLEEP_DEFAULT, (event_t)pThis, fInterruptible);
                else
                {
                    uint64_t u64AbsTime;
                    nanoseconds_to_absolutetime(uNsAbsTimeout, &u64AbsTime);
                    rcWait = lck_spin_sleep_deadline(pThis->pSpinlock, LCK_SLEEP_DEFAULT,
                                                     (event_t)pThis, fInterruptible, u64AbsTime);
                }

                /*
                 * Deal with the wait result.
                 */
                if (RT_LIKELY(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC))
                {
                    switch (rcWait)
                    {
                        case THREAD_AWAKENED:
                            if (RT_LIKELY(ASMAtomicUoReadU32(&pThis->fStateAndGen) != fOrgStateAndGen))
                                rc = VINF_SUCCESS;
                            else if (fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE)
                                rc = VERR_INTERRUPTED;
                            else
                                continue; /* Seen this happen after fork/exec/something. */
                            break;

                        case THREAD_TIMED_OUT:
                            Assert(!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE));
                            rc = VERR_TIMEOUT;
                            break;

                        case THREAD_INTERRUPTED:
                            Assert(fInterruptible != THREAD_UNINT);
                            rc = VERR_INTERRUPTED;
                            break;

                        case THREAD_RESTART:
                            AssertMsg(pThis->u32Magic == ~RTSEMEVENTMULTI_MAGIC, ("%#x\n", pThis->u32Magic));
                            rc = VERR_SEM_DESTROYED;
                            break;

                        default:
                            AssertMsgFailed(("rcWait=%d\n", rcWait));
                            rc = VERR_INTERNAL_ERROR_3;
                            break;
                    }
                }
                else
                    rc = VERR_SEM_DESTROYED;
                break;
            }
        }
    }

    lck_spin_unlock(pThis->pSpinlock);
    ASMSetFlags(fIntSaved);
    rtR0SemEventMultiDarwinRelease(pThis);

    IPRT_DARWIN_RESTORE_EFL_AC();
    return rc;
}

RTDECL(int)  RTSemEventMultiWaitEx(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout)
{
#ifndef RTSEMEVENT_STRICT
    return rtR0SemEventMultiDarwinWait(hEventMultiSem, fFlags, uTimeout, NULL);
#else
    RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
    return rtR0SemEventMultiDarwinWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
#endif
}


RTDECL(int)  RTSemEventMultiWaitExDebug(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout,
                                        RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
    RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
    return rtR0SemEventMultiDarwinWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
}


RTDECL(uint32_t) RTSemEventMultiGetResolution(void)
{
    uint64_t cNs;
    absolutetime_to_nanoseconds(1, &cNs);
    return (uint32_t)cNs ? (uint32_t)cNs : 0;
}