1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
/* $Id: PGMR0Pool.cpp $ */
/** @file
* PGM Shadow Page Pool, ring-0 specific bits.
*/
/*
* Copyright (C) 2006-2020 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_POOL
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/hm.h>
#include "PGMInternal.h"
#include <VBox/vmm/vmcc.h>
#include "PGMInline.h"
#include <VBox/log.h>
#include <VBox/err.h>
#include <iprt/mem.h>
#include <iprt/memobj.h>
/**
* Grows the shadow page pool.
*
* I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
*
* @returns VBox status code.
* @param pGVM The ring-0 VM structure.
*/
VMMR0_INT_DECL(int) PGMR0PoolGrow(PGVM pGVM)
{
PPGMPOOL pPool = pGVM->pgm.s.pPoolR0;
AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
AssertReturn(pPool->pVMR3 == pGVM->pVMR3, VERR_PGM_POOL_IPE);
AssertReturn(pPool->pVMR0 == pGVM, VERR_PGM_POOL_IPE);
/* With 32-bit guests and no EPT, the CR3 limits the root pages to low
(below 4 GB) memory. */
/** @todo change the pool to handle ROOT page allocations specially when
* required. */
bool const fCanUseHighMemory = HMIsNestedPagingActive(pGVM);
STAM_REL_PROFILE_START(&pPool->StatGrow, a);
int rc = RTCritSectEnter(&pGVM->pgmr0.s.PoolGrowCritSect);
AssertRCReturn(rc, rc);
/*
* Figure out how many pages should allocate.
*/
uint32_t const cMaxPages = RT_MIN(pPool->cMaxPages, PGMPOOL_IDX_LAST);
uint32_t const cCurPages = RT_MIN(pPool->cCurPages, cMaxPages);
if (cCurPages < cMaxPages)
{
uint32_t cNewPages = cMaxPages - cCurPages;
if (cNewPages > PGMPOOL_CFG_MAX_GROW)
cNewPages = PGMPOOL_CFG_MAX_GROW;
LogFlow(("PGMR3PoolGrow: Growing the pool by %u (%#x) pages to %u (%#x) pages. fCanUseHighMemory=%RTbool\n",
cNewPages, cNewPages, cCurPages + cNewPages, cCurPages + cNewPages, fCanUseHighMemory));
/* Check that the handles in the arrays entry are both NIL. */
uintptr_t const idxMemHandle = cCurPages / (PGMPOOL_CFG_MAX_GROW);
AssertCompile( (PGMPOOL_IDX_LAST + (PGMPOOL_CFG_MAX_GROW - 1)) / PGMPOOL_CFG_MAX_GROW
<= RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMemObjs));
AssertCompile(RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMemObjs) == RT_ELEMENTS(pGVM->pgmr0.s.ahPoolMapObjs));
AssertLogRelMsgReturnStmt( pGVM->pgmr0.s.ahPoolMemObjs[idxMemHandle] == NIL_RTR0MEMOBJ
&& pGVM->pgmr0.s.ahPoolMapObjs[idxMemHandle] == NIL_RTR0MEMOBJ,
("idxMemHandle=%#x\n", idxMemHandle), RTCritSectLeave(&pGVM->pgmr0.s.PoolGrowCritSect),
VERR_PGM_POOL_IPE);
/*
* Allocate the new pages and map them into ring-3.
*/
RTR0MEMOBJ hMemObj = NIL_RTR0MEMOBJ;
if (fCanUseHighMemory)
rc = RTR0MemObjAllocPage(&hMemObj, cNewPages * PAGE_SIZE, false /*fExecutable*/);
else
rc = RTR0MemObjAllocLow(&hMemObj, cNewPages * PAGE_SIZE, false /*fExecutable*/);
if (RT_SUCCESS(rc))
{
RTR0MEMOBJ hMapObj = NIL_RTR0MEMOBJ;
rc = RTR0MemObjMapUser(&hMapObj, hMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS);
if (RT_SUCCESS(rc))
{
pGVM->pgmr0.s.ahPoolMemObjs[idxMemHandle] = hMemObj;
pGVM->pgmr0.s.ahPoolMapObjs[idxMemHandle] = hMapObj;
uint8_t *pbRing0 = (uint8_t *)RTR0MemObjAddress(hMemObj);
RTR3PTR pbRing3 = RTR0MemObjAddressR3(hMapObj);
AssertPtr(pbRing0);
Assert(((uintptr_t)pbRing0 & PAGE_OFFSET_MASK) == 0);
Assert(pbRing3 != NIL_RTR3PTR);
Assert((pbRing3 & PAGE_OFFSET_MASK) == 0);
/*
* Initialize the new pages.
*/
for (unsigned iNewPage = 0; iNewPage < cNewPages; iNewPage++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[cCurPages + iNewPage];
pPage->pvPageR0 = &pbRing0[iNewPage * PAGE_SIZE];
pPage->pvPageR3 = pbRing3 + iNewPage * PAGE_SIZE;
pPage->Core.Key = RTR0MemObjGetPagePhysAddr(hMemObj, iNewPage);
AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory);
pPage->GCPhys = NIL_RTGCPHYS;
pPage->enmKind = PGMPOOLKIND_FREE;
pPage->idx = pPage - &pPool->aPages[0];
LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
pPage->iNext = pPool->iFreeHead;
pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
pPage->iAgeNext = NIL_PGMPOOL_IDX;
pPage->iAgePrev = NIL_PGMPOOL_IDX;
/* commit it */
bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
pPool->iFreeHead = cCurPages + iNewPage;
pPool->cCurPages = cCurPages + iNewPage + 1;
}
STAM_REL_PROFILE_STOP(&pPool->StatGrow, a);
RTCritSectLeave(&pGVM->pgmr0.s.PoolGrowCritSect);
return VINF_SUCCESS;
}
RTR0MemObjFree(hMemObj, true /*fFreeMappings*/);
}
if (cCurPages > 64)
LogRelMax(5, ("PGMR0PoolGrow: rc=%Rrc cNewPages=%#x cCurPages=%#x cMaxPages=%#x fCanUseHighMemory=%d\n",
rc, cNewPages, cCurPages, cMaxPages, fCanUseHighMemory));
else
LogRel(("PGMR0PoolGrow: rc=%Rrc cNewPages=%#x cCurPages=%#x cMaxPages=%#x fCanUseHighMemory=%d\n",
rc, cNewPages, cCurPages, cMaxPages, fCanUseHighMemory));
}
RTCritSectLeave(&pGVM->pgmr0.s.PoolGrowCritSect);
return rc;
}
|