1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# $Id: InstructionTestGen.py $
"""
Instruction Test Generator.
"""
from __future__ import print_function;
__copyright__ = \
"""
Copyright (C) 2012-2020 Oracle Corporation
This file is part of VirtualBox Open Source Edition (OSE), as
available from http://www.virtualbox.org. This file is free software;
you can redistribute it and/or modify it under the terms of the GNU
General Public License (GPL) as published by the Free Software
Foundation, in version 2 as it comes in the "COPYING" file of the
VirtualBox OSE distribution. VirtualBox OSE is distributed in the
hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
"""
__version__ = "$Revision: 135976 $";
# pylint: disable=C0103,R0913
# Standard python imports.
import io;
import os;
from optparse import OptionParser
import random;
import sys;
## @name Exit codes
## @{
RTEXITCODE_SUCCESS = 0;
RTEXITCODE_SYNTAX = 2;
## @}
## @name Various C macros we're used to.
## @{
UINT8_MAX = 0xff
UINT16_MAX = 0xffff
UINT32_MAX = 0xffffffff
UINT64_MAX = 0xffffffffffffffff
def RT_BIT_32(iBit): # pylint: disable=C0103
""" 32-bit one bit mask. """
return 1 << iBit;
def RT_BIT_64(iBit): # pylint: disable=C0103
""" 64-bit one bit mask. """
return 1 << iBit;
## @}
## @name ModR/M
## @{
X86_MODRM_RM_MASK = 0x07;
X86_MODRM_REG_MASK = 0x38;
X86_MODRM_REG_SMASK = 0x07;
X86_MODRM_REG_SHIFT = 3;
X86_MODRM_MOD_MASK = 0xc0;
X86_MODRM_MOD_SMASK = 0x03;
X86_MODRM_MOD_SHIFT = 6;
## @}
## @name SIB
## @{
X86_SIB_BASE_MASK = 0x07;
X86_SIB_INDEX_MASK = 0x38;
X86_SIB_INDEX_SMASK = 0x07;
X86_SIB_INDEX_SHIFT = 3;
X86_SIB_SCALE_MASK = 0xc0;
X86_SIB_SCALE_SMASK = 0x03;
X86_SIB_SCALE_SHIFT = 6;
## @}
## @name Prefixes
## @
X86_OP_PRF_CS = 0x2e;
X86_OP_PRF_SS = 0x36;
X86_OP_PRF_DS = 0x3e;
X86_OP_PRF_ES = 0x26;
X86_OP_PRF_FS = 0x64;
X86_OP_PRF_GS = 0x65;
X86_OP_PRF_SIZE_OP = 0x66;
X86_OP_PRF_SIZE_ADDR = 0x67;
X86_OP_PRF_LOCK = 0xf0;
X86_OP_PRF_REPNZ = 0xf2;
X86_OP_PRF_REPZ = 0xf3;
X86_OP_REX_B = 0x41;
X86_OP_REX_X = 0x42;
X86_OP_REX_R = 0x44;
X86_OP_REX_W = 0x48;
## @}
## @name General registers
## @
X86_GREG_xAX = 0
X86_GREG_xCX = 1
X86_GREG_xDX = 2
X86_GREG_xBX = 3
X86_GREG_xSP = 4
X86_GREG_xBP = 5
X86_GREG_xSI = 6
X86_GREG_xDI = 7
X86_GREG_x8 = 8
X86_GREG_x9 = 9
X86_GREG_x10 = 10
X86_GREG_x11 = 11
X86_GREG_x12 = 12
X86_GREG_x13 = 13
X86_GREG_x14 = 14
X86_GREG_x15 = 15
## @}
## @name Register names.
## @{
g_asGRegs64NoSp = ('rax', 'rcx', 'rdx', 'rbx', None, 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15');
g_asGRegs64 = ('rax', 'rcx', 'rdx', 'rbx', 'rsp', 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15');
g_asGRegs32NoSp = ('eax', 'ecx', 'edx', 'ebx', None, 'ebp', 'esi', 'edi',
'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d');
g_asGRegs32 = ('eax', 'ecx', 'edx', 'ebx', 'esp', 'ebp', 'esi', 'edi',
'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d');
g_asGRegs16NoSp = ('ax', 'cx', 'dx', 'bx', None, 'bp', 'si', 'di',
'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w');
g_asGRegs16 = ('ax', 'cx', 'dx', 'bx', 'sp', 'bp', 'si', 'di',
'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w');
g_asGRegs8 = ('al', 'cl', 'dl', 'bl', 'ah', 'ch', 'dh', 'bh');
g_asGRegs8Rex = ('al', 'cl', 'dl', 'bl', 'spl', 'bpl', 'sil', 'dil',
'r8b', 'r9b', 'r10b', 'r11b', 'r12b', 'r13b', 'r14b', 'r15b',
'ah', 'ch', 'dh', 'bh');
## @}
## @name EFLAGS/RFLAGS/EFLAGS
## @{
X86_EFL_CF = RT_BIT_32(0);
X86_EFL_CF_BIT = 0;
X86_EFL_1 = RT_BIT_32(1);
X86_EFL_PF = RT_BIT_32(2);
X86_EFL_AF = RT_BIT_32(4);
X86_EFL_AF_BIT = 4;
X86_EFL_ZF = RT_BIT_32(6);
X86_EFL_ZF_BIT = 6;
X86_EFL_SF = RT_BIT_32(7);
X86_EFL_SF_BIT = 7;
X86_EFL_TF = RT_BIT_32(8);
X86_EFL_IF = RT_BIT_32(9);
X86_EFL_DF = RT_BIT_32(10);
X86_EFL_OF = RT_BIT_32(11);
X86_EFL_OF_BIT = 11;
X86_EFL_IOPL = (RT_BIT_32(12) | RT_BIT_32(13));
X86_EFL_NT = RT_BIT_32(14);
X86_EFL_RF = RT_BIT_32(16);
X86_EFL_VM = RT_BIT_32(17);
X86_EFL_AC = RT_BIT_32(18);
X86_EFL_VIF = RT_BIT_32(19);
X86_EFL_VIP = RT_BIT_32(20);
X86_EFL_ID = RT_BIT_32(21);
X86_EFL_LIVE_MASK = 0x003f7fd5;
X86_EFL_RA1_MASK = RT_BIT_32(1);
X86_EFL_IOPL_SHIFT = 12;
X86_EFL_STATUS_BITS = ( X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF );
## @}
## @name Random
## @{
g_iMyRandSeed = int((os.urandom(4)).encode('hex'), 16);
#g_iMyRandSeed = 286523426;
#g_iMyRandSeed = 1994382324;
g_oMyRand = random.Random(g_iMyRandSeed);
#g_oMyRand = random.SystemRandom();
def randU8():
""" Unsigned 8-bit random number. """
return g_oMyRand.getrandbits(8);
def randU16():
""" Unsigned 16-bit random number. """
return g_oMyRand.getrandbits(16);
def randU32():
""" Unsigned 32-bit random number. """
return g_oMyRand.getrandbits(32);
def randU64():
""" Unsigned 64-bit random number. """
return g_oMyRand.getrandbits(64);
def randUxx(cBits):
""" Unsigned 8-, 16-, 32-, or 64-bit random number. """
return g_oMyRand.getrandbits(cBits);
def randSxx(cBits):
""" Signed 8-, 16-, 32-, or 64-bit random number. """
uVal = randUxx(cBits);
iRet = uVal & ((1 << (cBits - 1)) - 1);
if iRet != uVal:
iRet = -iRet;
return iRet;
def randUxxList(cBits, cElements):
""" List of unsigned 8-, 16-, 32-, or 64-bit random numbers. """
return [randUxx(cBits) for _ in range(cElements)];
## @}
## @name Instruction Emitter Helpers
## @{
def calcRexPrefixForTwoModRmRegs(iReg, iRm, bOtherRexPrefixes = 0):
"""
Calculates a rex prefix if neccessary given the two registers
and optional rex size prefixes.
Returns an empty array if not necessary.
"""
bRex = bOtherRexPrefixes;
if iReg >= 8:
bRex |= X86_OP_REX_R;
if iRm >= 8:
bRex |= X86_OP_REX_B;
if bRex == 0:
return [];
return [bRex,];
def calcModRmForTwoRegs(iReg, iRm):
"""
Calculate the RM byte for two registers.
Returns an array with one byte in it.
"""
bRm = (0x3 << X86_MODRM_MOD_SHIFT) \
| ((iReg << X86_MODRM_REG_SHIFT) & X86_MODRM_REG_MASK) \
| (iRm & X86_MODRM_RM_MASK);
return [bRm,];
## @}
## @name Misc
## @{
def convU32ToSigned(u32):
""" Converts a 32-bit unsigned value to 32-bit signed. """
if u32 < 0x80000000:
return u32;
return u32 - UINT32_MAX - 1;
def rotateLeftUxx(cBits, uVal, cShift):
""" Rotate a xx-bit wide unsigned number to the left. """
assert cShift < cBits;
if cBits == 16:
uMask = UINT16_MAX;
elif cBits == 32:
uMask = UINT32_MAX;
elif cBits == 64:
uMask = UINT64_MAX;
else:
assert cBits == 8;
uMask = UINT8_MAX;
uVal &= uMask;
uRet = (uVal << cShift) & uMask;
uRet |= (uVal >> (cBits - cShift));
return uRet;
def rotateRightUxx(cBits, uVal, cShift):
""" Rotate a xx-bit wide unsigned number to the right. """
assert cShift < cBits;
if cBits == 16:
uMask = UINT16_MAX;
elif cBits == 32:
uMask = UINT32_MAX;
elif cBits == 64:
uMask = UINT64_MAX;
else:
assert cBits == 8;
uMask = UINT8_MAX;
uVal &= uMask;
uRet = (uVal >> cShift);
uRet |= (uVal << (cBits - cShift)) & uMask;
return uRet;
def gregName(iReg, cBits, fRexByteRegs = True):
""" Gets the name of a general register by index and width. """
if cBits == 64:
return g_asGRegs64[iReg];
if cBits == 32:
return g_asGRegs32[iReg];
if cBits == 16:
return g_asGRegs16[iReg];
assert cBits == 8;
if fRexByteRegs:
return g_asGRegs8Rex[iReg];
return g_asGRegs8[iReg];
## @}
class TargetEnv(object):
"""
Target Runtime Environment.
"""
## @name CPU Modes
## @{
ksCpuMode_Real = 'real';
ksCpuMode_Protect = 'prot';
ksCpuMode_Paged = 'paged';
ksCpuMode_Long = 'long';
ksCpuMode_V86 = 'v86';
## @}
## @name Instruction set.
## @{
ksInstrSet_16 = '16';
ksInstrSet_32 = '32';
ksInstrSet_64 = '64';
## @}
def __init__(self, sName,
sInstrSet = ksInstrSet_32,
sCpuMode = ksCpuMode_Paged,
iRing = 3,
):
self.sName = sName;
self.sInstrSet = sInstrSet;
self.sCpuMode = sCpuMode;
self.iRing = iRing;
self.asGRegs = g_asGRegs64 if self.is64Bit() else g_asGRegs32;
self.asGRegsNoSp = g_asGRegs64NoSp if self.is64Bit() else g_asGRegs32NoSp;
def isUsingIprt(self):
""" Whether it's an IPRT environment or not. """
return self.sName.startswith('iprt');
def is64Bit(self):
""" Whether it's a 64-bit environment or not. """
return self.sInstrSet == self.ksInstrSet_64;
def getDefOpBits(self):
""" Get the default operand size as a bit count. """
if self.sInstrSet == self.ksInstrSet_16:
return 16;
return 32;
def getDefOpBytes(self):
""" Get the default operand size as a byte count. """
return self.getDefOpBits() / 8;
def getMaxOpBits(self):
""" Get the max operand size as a bit count. """
if self.sInstrSet == self.ksInstrSet_64:
return 64;
return 32;
def getMaxOpBytes(self):
""" Get the max operand size as a byte count. """
return self.getMaxOpBits() / 8;
def getDefAddrBits(self):
""" Get the default address size as a bit count. """
if self.sInstrSet == self.ksInstrSet_16:
return 16;
if self.sInstrSet == self.ksInstrSet_32:
return 32;
return 64;
def getDefAddrBytes(self):
""" Get the default address size as a byte count. """
return self.getDefAddrBits() / 8;
def getGRegCount(self, cbEffBytes = 4):
""" Get the number of general registers. """
if self.sInstrSet == self.ksInstrSet_64:
if cbEffBytes == 1:
return 16 + 4;
return 16;
return 8;
def randGRegNoSp(self, cbEffBytes = 4):
""" Returns a random general register number, excluding the SP register. """
iReg = randU16() % self.getGRegCount(cbEffBytes);
while iReg == X86_GREG_xSP:
iReg = randU16() % self.getGRegCount(cbEffBytes);
return iReg;
def randGRegNoSpList(self, cItems, cbEffBytes = 4):
""" List of randGRegNoSp values. """
aiRegs = [];
for _ in range(cItems):
aiRegs.append(self.randGRegNoSp(cbEffBytes));
return aiRegs;
def getAddrModes(self):
""" Gets a list of addressing mode (16, 32, or/and 64). """
if self.sInstrSet == self.ksInstrSet_16:
return [16, 32];
if self.sInstrSet == self.ksInstrSet_32:
return [32, 16];
return [64, 32];
def is8BitHighGReg(self, cbEffOp, iGReg):
""" Checks if the given register is a high 8-bit general register (AH, CH, DH or BH). """
assert cbEffOp in [1, 2, 4, 8];
if cbEffOp == 1:
if iGReg >= 16:
return True;
if iGReg >= 4 and not self.is64Bit():
return True;
return False;
def gregNameBits(self, iReg, cBits):
""" Gets the name of the given register for the specified width (bits). """
return gregName(iReg, cBits, self.is64Bit());
def gregNameBytes(self, iReg, cbWidth):
""" Gets the name of the given register for the specified with (in bytes). """
return gregName(iReg, cbWidth * 8, self.is64Bit());
## Target environments.
g_dTargetEnvs = {
'iprt-r3-32': TargetEnv('iprt-r3-32', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 3),
'iprt-r3-64': TargetEnv('iprt-r3-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 3),
'bs2-r0-64': TargetEnv('bs2-r0-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0),
'bs2-r0-64-big': TargetEnv('bs2-r0-64-big', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0),
'bs2-r0-32-big': TargetEnv('bs2-r0-32-big', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 0),
};
class InstrTestBase(object):
"""
Base class for testing one instruction.
"""
def __init__(self, sName, sInstr = None):
self.sName = sName;
self.sInstr = sInstr if sInstr else sName.split()[0];
def isApplicable(self, oGen):
"""
Tests if the instruction test is applicable to the selected environment.
"""
_ = oGen;
return True;
def generateTest(self, oGen, sTestFnName):
"""
Emits the test assembly code.
"""
oGen.write(';; @todo not implemented. This is for the linter: %s, %s\n' % (oGen, sTestFnName));
return True;
def generateInputs(self, cbEffOp, cbMaxOp, oGen, fLong = False):
""" Generate a list of inputs. """
if fLong:
#
# Try do extremes as well as different ranges of random numbers.
#
auRet = [0, 1, ];
if cbMaxOp >= 1:
auRet += [ UINT8_MAX / 2, UINT8_MAX / 2 + 1, UINT8_MAX ];
if cbMaxOp >= 2:
auRet += [ UINT16_MAX / 2, UINT16_MAX / 2 + 1, UINT16_MAX ];
if cbMaxOp >= 4:
auRet += [ UINT32_MAX / 2, UINT32_MAX / 2 + 1, UINT32_MAX ];
if cbMaxOp >= 8:
auRet += [ UINT64_MAX / 2, UINT64_MAX / 2 + 1, UINT64_MAX ];
if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
for cBits, cValues in ( (8, 4), (16, 4), (32, 8), (64, 8) ):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, cValues);
cWanted = 16;
elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
for cBits, cValues in ( (8, 8), (16, 8), (24, 2), (32, 16), (40, 1), (48, 1), (56, 1), (64, 16) ):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, cValues);
cWanted = 64;
else:
for cBits, cValues in ( (8, 16), (16, 16), (24, 4), (32, 64), (40, 4), (48, 4), (56, 4), (64, 64) ):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, cValues);
cWanted = 168;
if len(auRet) < cWanted:
auRet += randUxxList(cbEffOp * 8, cWanted - len(auRet));
else:
#
# Short list, just do some random numbers.
#
auRet = [];
if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
auRet += randUxxList(cbMaxOp, 1);
elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
auRet += randUxxList(cbMaxOp, 2);
else:
auRet = [];
for cBits in (8, 16, 32, 64):
if cBits < cbMaxOp * 8:
auRet += randUxxList(cBits, 1);
return auRet;
class InstrTest_MemOrGreg_2_Greg(InstrTestBase):
"""
Instruction reading memory or general register and writing the result to a
general register.
"""
def __init__(self, sName, fnCalcResult, sInstr = None, acbOpVars = None):
InstrTestBase.__init__(self, sName, sInstr);
self.fnCalcResult = fnCalcResult;
self.acbOpVars = [ 1, 2, 4, 8 ] if not acbOpVars else list(acbOpVars);
self.fTestRegForm = True;
self.fTestMemForm = True;
## @name Test Instruction Writers
## @{
def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen):
""" Writes the instruction with two general registers as operands. """
oGen.write(' %s %s, %s\n'
% ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),));
return True;
def writeInstrGregPureRM(self, cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen):
""" Writes the instruction with two general registers as operands. """
oGen.write(' ');
if iOp2 == 13 and iMod == 0 and cAddrBits == 64:
oGen.write('altrexb '); # Alternative encoding for rip relative addressing.
oGen.write('%s %s, [' % (self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp),));
if (iOp2 == 5 or iOp2 == 13) and iMod == 0:
oGen.write('VBINSTST_NAME(g_u%sData)' % (cbEffOp * 8,))
if oGen.oTarget.is64Bit():
oGen.write(' wrt rip');
else:
if iMod == 1:
oGen.write('byte %d + ' % (offDisp,));
elif iMod == 2:
oGen.write('dword %d + ' % (offDisp,));
else:
assert iMod == 0;
if cAddrBits == 64:
oGen.write(g_asGRegs64[iOp2]);
elif cAddrBits == 32:
oGen.write(g_asGRegs32[iOp2]);
elif cAddrBits == 16:
assert False; ## @todo implement 16-bit addressing.
else:
assert False, str(cAddrBits);
oGen.write(']\n');
return True;
def writeInstrGregSibLabel(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
""" Writes the instruction taking a register and a label (base only w/o reg), SIB form. """
assert offDisp is None; assert iBaseReg in [5, 13]; assert iIndexReg == 4; assert cAddrBits != 16;
if cAddrBits == 64:
# Note! Cannot test this in 64-bit mode in any sensible way because the disp is 32-bit
# and we cannot (yet) make assumtions about where we're loaded.
## @todo Enable testing this in environments where we can make assumptions (boot sector).
oGen.write(' %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP]\n'
% ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8,));
else:
oGen.write(' altsibx%u %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP] ; iOp1=%s cbEffOp=%s\n'
% ( iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8, iOp1, cbEffOp));
return True;
def writeInstrGregSibScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
""" Writes the instruction taking a register and disp+scaled register (no base reg), SIB form. """
assert iBaseReg in [5, 13]; assert iIndexReg != 4; assert cAddrBits != 16;
# Note! Using altsibxN to force scaled encoding. This is only really a
# necessity for iScale=1, but doesn't hurt for the rest.
oGen.write(' altsibx%u %s %s, [%s * %#x'
% (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,));
if offDisp is not None:
oGen.write(' + %#x' % (offDisp,));
oGen.write(']\n');
_ = iBaseReg;
return True;
def writeInstrGregSibBase(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
""" Writes the instruction taking a register and base only (with reg), SIB form. """
oGen.write(' altsibx%u %s %s, [%s'
% (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iBaseReg, cAddrBits),));
if offDisp is not None:
oGen.write(' + %#x' % (offDisp,));
oGen.write(']\n');
_ = iIndexReg;
return True;
def writeInstrGregSibBaseAndScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
""" Writes tinstruction taking a register and full featured SIB form address. """
# Note! From the looks of things, yasm will encode the following instructions the same way:
# mov eax, [rsi*1 + rbx]
# mov eax, [rbx + rsi*1]
# So, when there are two registers involved, the '*1' selects
# which is index and which is base.
oGen.write(' %s %s, [%s + %s * %u'
% ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp),
oGen.gregNameBits(iBaseReg, cAddrBits), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,));
if offDisp is not None:
oGen.write(' + %#x' % (offDisp,));
oGen.write(']\n');
return True;
## @}
## @name Memory setups
## @{
def generateMemSetupReadByLabel(self, oGen, cbEffOp, uInput):
""" Sets up memory for a memory read. """
oGen.pushConst(uInput);
oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,));
return True;
def generateMemSetupReadByReg(self, oGen, cAddrBits, cbEffOp, iReg1, uInput, offDisp = None):
""" Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """
oGen.pushConst(uInput);
oGen.write(' call VBINSTST_NAME(%s)\n'
% (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iReg1, offDisp = offDisp),));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iReg1],));
return True;
def generateMemSetupReadByScaledReg(self, oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp = None):
""" Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """
oGen.pushConst(uInput);
oGen.write(' call VBINSTST_NAME(%s)\n'
% (oGen.needGRegMemSetup(cAddrBits, cbEffOp, offDisp = offDisp, iIndexReg = iIndexReg, iScale = iScale),));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],));
return True;
def generateMemSetupReadByBaseAndScaledReg(self, oGen, cAddrBits, cbEffOp, iBaseReg, iIndexReg, iScale, uInput, offDisp):
""" Sets up memory for a memory read indirectly addressed thru two registers with optional displacement. """
oGen.pushConst(uInput);
oGen.write(' call VBINSTST_NAME(%s)\n'
% (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iBaseReg, offDisp = offDisp,
iIndexReg = iIndexReg, iScale = iScale),));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iBaseReg],));
return True;
def generateMemSetupPureRM(self, oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp = None):
""" Sets up memory for a pure R/M addressed read, iOp2 being the R/M value. """
oGen.pushConst(uInput);
assert offDisp is None or iMod != 0;
if (iOp2 != 5 and iOp2 != 13) or iMod != 0:
oGen.write(' call VBINSTST_NAME(%s)\n'
% (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iOp2, offDisp),));
else:
oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
return True;
## @}
def generateOneStdTestGregGreg(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult):
""" Generate one standard instr greg,greg test. """
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uInput,));
if iOp1X != iOp2X:
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],));
self.writeInstrGregGreg(cbEffOp, iOp1, iOp2, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1X, iOp2X if iOp1X != iOp2X else None),));
_ = cbMaxOp;
return True;
def generateOneStdTestGregGreg8BitHighPain(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput):
""" High 8-bit registers are a real pain! """
assert oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) or oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2);
# Figure out the register indexes of the max op sized regs involved.
iOp1X = iOp1 & 3;
iOp2X = iOp2 & 3;
oGen.write(' ; iOp1=%u iOp1X=%u iOp2=%u iOp2X=%u\n' % (iOp1, iOp1X, iOp2, iOp2X,));
# Calculate unshifted result.
if iOp1X != iOp2X:
uCur = oGen.auRegValues[iOp1X];
if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1):
uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8);
else:
uCur = uInput;
if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) != oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2):
if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1):
uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8);
else:
uCur = rotateLeftUxx(cbMaxOp * 8, uCur, 8);
uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen);
# Rotate the input and/or result to match their max-op-sized registers.
if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2):
uInput = rotateLeftUxx(cbMaxOp * 8, uInput, 8);
if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1):
uResult = rotateLeftUxx(cbMaxOp * 8, uResult, 8);
# Hand it over to an overridable worker method.
return self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult);
def generateOneStdTestGregMemNoSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult):
""" Generate mode 0, 1 and 2 test for the R/M=iOp2. """
if cAddrBits == 16:
_ = cbMaxOp;
else:
iMod = 0; # No disp, except for i=5.
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput);
self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, None, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
if iOp2 != 5 and iOp2 != 13:
iMod = 1;
for offDisp in oGen.getDispForMod(iMod):
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp);
self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
iMod = 2;
for offDisp in oGen.getDispForMod(iMod):
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp);
self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
return True;
def generateOneStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, # pylint: disable=R0913
iBaseReg, iIndexReg, iScale, uInput, uResult):
""" Generate one SIB variations. """
for offDisp in oGen.getDispForMod(iMod, cbEffOp):
if ((iBaseReg == 5 or iBaseReg == 13) and iMod == 0):
if iIndexReg == 4:
if cAddrBits == 64:
continue; # skipping.
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupReadByLabel(oGen, cbEffOp, uInput);
self.writeInstrGregSibLabel(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
sChecker = oGen.needGRegChecker(iOp1);
else:
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
self.generateMemSetupReadByScaledReg(oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp);
self.writeInstrGregSibScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
sChecker = oGen.needGRegChecker(iOp1, iIndexReg);
else:
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
if iIndexReg == 4:
self.generateMemSetupReadByReg(oGen, cAddrBits, cbEffOp, iBaseReg, uInput, offDisp);
self.writeInstrGregSibBase(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
sChecker = oGen.needGRegChecker(iOp1, iBaseReg);
else:
if iIndexReg == iBaseReg and iScale == 1 and offDisp is not None and (offDisp & 1):
if offDisp < 0: offDisp += 1;
else: offDisp -= 1;
self.generateMemSetupReadByBaseAndScaledReg(oGen, cAddrBits, cbEffOp, iBaseReg,
iIndexReg, iScale, uInput, offDisp);
self.writeInstrGregSibBaseAndScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
sChecker = oGen.needGRegChecker(iOp1, iBaseReg, iIndexReg);
oGen.pushConst(uResult);
oGen.write(' call VBINSTST_NAME(%s)\n' % (sChecker,));
_ = cbMaxOp;
return True;
def generateStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, auInputs):
""" Generate all SIB variations for the given iOp1 (reg) value. """
assert cAddrBits in [32, 64];
i = oGen.cSibBasePerRun;
while i > 0:
oGen.iSibBaseReg = (oGen.iSibBaseReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8);
if oGen.iSibBaseReg == X86_GREG_xSP: # no RSP testing atm.
continue;
j = oGen.getSibIndexPerRun();
while j > 0:
oGen.iSibIndexReg = (oGen.iSibIndexReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8);
if oGen.iSibIndexReg == iOp1 and oGen.iSibIndexReg != 4 and cAddrBits != cbMaxOp:
continue; # Don't know the high bit of the address ending up the result - skip it for now.
for iMod in [0, 1, 2]:
if oGen.iSibBaseReg == iOp1 \
and ((oGen.iSibBaseReg != 5 and oGen.iSibBaseReg != 13) or iMod != 0) \
and cAddrBits != cbMaxOp:
continue; # Don't know the high bit of the address ending up the result - skip it for now.
for _ in oGen.oSibScaleRange:
oGen.iSibScale *= 2;
if oGen.iSibScale > 8:
oGen.iSibScale = 1;
for uInput in auInputs:
oGen.newSubTest();
uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[iOp1], oGen);
self.generateOneStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod,
oGen.iSibBaseReg, oGen.iSibIndexReg, oGen.iSibScale,
uInput, uResult);
j -= 1;
i -= 1;
return True;
def generateStandardTests(self, oGen):
""" Generate standard tests. """
# Parameters.
cbDefOp = oGen.oTarget.getDefOpBytes();
cbMaxOp = oGen.oTarget.getMaxOpBytes();
auShortInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen);
auLongInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen, fLong = True);
iLongOp1 = oGen.oTarget.randGRegNoSp();
iLongOp2 = oGen.oTarget.randGRegNoSp();
# Register tests
if self.fTestRegForm:
for cbEffOp in self.acbOpVars:
if cbEffOp > cbMaxOp:
continue;
oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp));
if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
oOp2Range = [iLongOp2,];
oGen.write('; cbEffOp=%u\n' % (cbEffOp,));
for iOp1 in range(oGen.oTarget.getGRegCount(cbEffOp)):
if iOp1 == X86_GREG_xSP:
continue; # Cannot test xSP atm.
for iOp2 in oOp2Range:
if (iOp2 >= 16 and iOp1 in range(4, 16)) \
or (iOp1 >= 16 and iOp2 in range(4, 16)):
continue; # Any REX encoding turns AH,CH,DH,BH regs into SPL,BPL,SIL,DIL.
if iOp2 == X86_GREG_xSP:
continue; # Cannot test xSP atm.
oGen.write('; iOp2=%u cbEffOp=%u\n' % (iOp2, cbEffOp));
for uInput in (auLongInputs if iOp1 == iLongOp1 and iOp2 == iLongOp2 else auShortInputs):
oGen.newSubTest();
if not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) and not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2):
uCur = oGen.auRegValues[iOp1 & 15] if iOp1 != iOp2 else uInput;
uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen);
self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1 & 15, iOp2, iOp2 & 15,
uInput, uResult);
else:
self.generateOneStdTestGregGreg8BitHighPain(oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput);
# Memory test.
if self.fTestMemForm:
for cAddrBits in oGen.oTarget.getAddrModes():
for cbEffOp in self.acbOpVars:
if cbEffOp > cbMaxOp:
continue;
for _ in oGen.getModRegRange(cbEffOp):
oGen.iModReg = (oGen.iModReg + 1) % oGen.oTarget.getGRegCount(cbEffOp);
if oGen.iModReg == X86_GREG_xSP:
continue; # Cannot test xSP atm.
if oGen.iModReg > 15:
continue; ## TODO AH,CH,DH,BH
auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs;
for _ in oGen.oModRmRange:
oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8);
if oGen.iModRm != 4 or cAddrBits == 16:
for uInput in auInputs:
oGen.newSubTest();
if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 \
and oGen.iModRm != 13 and cbEffOp != cbMaxOp:
continue; # Don't know the high bit of the address ending up the result - skip it for now.
uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen);
self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp,
oGen.iModReg, oGen.iModRm, uInput, uResult);
else:
# SIB - currently only short list of inputs or things may get seriously out of hand.
self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs);
return True;
def generateTest(self, oGen, sTestFnName):
oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,));
self.generateStandardTests(oGen);
oGen.write(' ret\n');
oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,));
return True;
class InstrTest_Mov_Gv_Ev(InstrTest_MemOrGreg_2_Greg):
"""
Tests MOV Gv,Ev.
"""
def __init__(self):
InstrTest_MemOrGreg_2_Greg.__init__(self, 'mov Gv,Ev', self.calc_mov);
@staticmethod
def calc_mov(cbEffOp, uInput, uCur, oGen):
""" Calculates the result of a mov instruction."""
if cbEffOp == 8:
return uInput & UINT64_MAX;
if cbEffOp == 4:
return uInput & UINT32_MAX;
if cbEffOp == 2:
return (uCur & 0xffffffffffff0000) | (uInput & UINT16_MAX);
assert cbEffOp == 1; _ = oGen;
return (uCur & 0xffffffffffffff00) | (uInput & UINT8_MAX);
class InstrTest_MovSxD_Gv_Ev(InstrTest_MemOrGreg_2_Greg):
"""
Tests MOVSXD Gv,Ev.
"""
def __init__(self):
InstrTest_MemOrGreg_2_Greg.__init__(self, 'movsxd Gv,Ev', self.calc_movsxd, acbOpVars = [ 8, 4, 2, ]);
self.fTestMemForm = False; # drop this...
def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen):
""" Writes the instruction with two general registers as operands. """
if cbEffOp == 8:
oGen.write(' movsxd %s, %s\n'
% ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp / 2),));
else:
oGen.write(' oddmovsxd %s, %s\n'
% ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),));
return True;
def isApplicable(self, oGen):
return oGen.oTarget.is64Bit();
@staticmethod
def calc_movsxd(cbEffOp, uInput, uCur, oGen):
"""
Calculates the result of a movxsd instruction.
Returns the result value (cbMaxOp sized).
"""
_ = oGen;
if cbEffOp == 8 and (uInput & RT_BIT_32(31)):
return (UINT32_MAX << 32) | (uInput & UINT32_MAX);
if cbEffOp == 2:
return (uCur & 0xffffffffffff0000) | (uInput & 0xffff);
return uInput & UINT32_MAX;
class InstrTest_DivIDiv(InstrTestBase):
"""
Tests IDIV and DIV instructions.
"""
def __init__(self, fIsIDiv):
if not fIsIDiv:
InstrTestBase.__init__(self, 'div Gv,Ev', 'div');
else:
InstrTestBase.__init__(self, 'idiv Gv,Ev', 'idiv');
self.fIsIDiv = fIsIDiv;
def generateInputEdgeCases(self, cbEffOp, fLong, fXcpt):
""" Generate edge case inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """
# Test params.
uStep = 1 << (cbEffOp * 8);
if self.fIsIDiv:
uStep /= 2;
# edge tests
auRet = [];
uDivisor = 1 if fLong else 3;
uDividend = uStep * uDivisor - 1;
for i in range(5 if fLong else 3):
auRet.append([uDividend + fXcpt, uDivisor]);
if self.fIsIDiv:
auRet.append([-uDividend - fXcpt, -uDivisor]);
auRet.append([-(uDividend + uDivisor + fXcpt), uDivisor]);
auRet.append([ (uDividend + uDivisor + fXcpt), -uDivisor]);
if i <= 3 and fLong:
auRet.append([uDividend - 1 + fXcpt*3, uDivisor]);
if self.fIsIDiv:
auRet.append([-(uDividend - 1 + fXcpt*3), -uDivisor]);
uDivisor += 1;
uDividend += uStep;
uDivisor = uStep - 1;
uDividend = uStep * uDivisor - 1;
for _ in range(3 if fLong else 1):
auRet.append([uDividend + fXcpt, uDivisor]);
if self.fIsIDiv:
auRet.append([-uDividend - fXcpt, -uDivisor]);
uDivisor -= 1;
uDividend -= uStep;
if self.fIsIDiv:
uDivisor = -uStep;
for _ in range(3 if fLong else 1):
auRet.append([uDivisor * (-uStep - 1) - (not fXcpt), uDivisor]);
uDivisor += 1
uDivisor = uStep - 1;
for _ in range(3 if fLong else 1):
auRet.append([-(uDivisor * (uStep + 1) - (not fXcpt)), uDivisor]);
uDivisor -= 1
return auRet;
def generateInputsNoXcpt(self, cbEffOp, fLong = False):
""" Generate inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """
# Test params.
uStep = 1 << (cbEffOp * 8);
if self.fIsIDiv:
uStep /= 2;
# edge tests
auRet = self.generateInputEdgeCases(cbEffOp, fLong, False)
# random tests.
if self.fIsIDiv:
for _ in range(6 if fLong else 2):
while True:
uDivisor = randSxx(cbEffOp * 8);
if uDivisor == 0 or uDivisor >= uStep or uDivisor < -uStep:
continue;
uDividend = randSxx(cbEffOp * 16);
uResult = uDividend / uDivisor;
if uResult >= uStep or uResult <= -uStep: # exclude difficulties
continue;
break;
auRet.append([uDividend, uDivisor]);
else:
for _ in range(6 if fLong else 2):
while True:
uDivisor = randUxx(cbEffOp * 8);
if uDivisor == 0 or uDivisor >= uStep:
continue;
uDividend = randUxx(cbEffOp * 16);
uResult = uDividend / uDivisor;
if uResult >= uStep:
continue;
break;
auRet.append([uDividend, uDivisor]);
return auRet;
def generateOneStdTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
""" Generate code of one '[I]DIV rDX:rAX,<GREG>' test. """
cbMaxOp = oGen.oTarget.getMaxOpBytes();
fEffOp = ((1 << (cbEffOp *8) ) - 1);
fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
fTopOp = fMaxOp - fEffOp;
fFullOp1 = ((1 << (cbEffOp*16)) - 1);
uAX = iDividend & fFullOp1; # full with unsigned
uDX = uAX >> (cbEffOp*8);
uAX &= fEffOp;
uOp2Val = iDivisor & fEffOp;
iQuotient = iDividend / iDivisor;
iReminder = iDividend % iDivisor;
if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division.
iQuotient += 1;
iReminder -= iDivisor;
uAXResult = iQuotient & fEffOp;
uDXResult = iReminder & fEffOp;
if cbEffOp < cbMaxOp:
uAX |= randUxx(cbMaxOp * 8) & fTopOp;
uDX |= randUxx(cbMaxOp * 8) & fTopOp;
uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp;
if cbEffOp < 4:
uAXResult |= uAX & fTopOp;
uDXResult |= uDX & fTopOp;
oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n'
% ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor,
iQuotient & fEffOp, iQuotient, iReminder & fEffOp, iReminder, ));
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,));
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
oGen.pushConst(uDXResult);
oGen.pushConst(uAXResult);
oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),));
return True;
def generateOneStdTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
""" Generate code of one '[I]DIV AX,<GREG>' test (8-bit). """
cbMaxOp = oGen.oTarget.getMaxOpBytes();
fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2;
assert iOp2X != X86_GREG_xAX;
uAX = iDividend & UINT16_MAX; # full with unsigned
uOp2Val = iDivisor & UINT8_MAX;
iQuotient = iDividend / iDivisor;
iReminder = iDividend % iDivisor;
if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division.
iQuotient += 1;
iReminder -= iDivisor;
uAXResult = (iQuotient & UINT8_MAX) | ((iReminder & UINT8_MAX) << 8);
uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX);
uAXResult |= uAX & (fMaxOp - UINT16_MAX);
uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX);
if iOp2X != iOp2:
uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8);
oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n'
% ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor,
iQuotient & UINT8_MAX, iQuotient, iReminder & UINT8_MAX, iReminder, ));
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],));
oGen.pushConst(uAXResult);
oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),));
return;
def generateStandardTests(self, oGen):
""" Generates test that causes no exceptions. """
# Parameters.
iLongOp2 = oGen.oTarget.randGRegNoSp();
# Register tests
if True:
for cbEffOp in ( 8, 4, 2, 1 ):
if cbEffOp > oGen.oTarget.getMaxOpBytes():
continue;
oGen.write('; cbEffOp=%u\n' % (cbEffOp,));
oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp));
if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
oOp2Range = [iLongOp2,];
for iOp2 in oOp2Range:
if iOp2 == X86_GREG_xSP:
continue; # Cannot test xSP atm.
if iOp2 == X86_GREG_xAX or (cbEffOp > 1 and iOp2 == X86_GREG_xDX):
continue; # Will overflow or be too complicated to get right.
if cbEffOp == 1 and iOp2 == (16 if oGen.oTarget.is64Bit() else 4):
continue; # Avoid dividing by AH, same reasons as above.
for iDividend, iDivisor in self.generateInputsNoXcpt(cbEffOp, iOp2 == iLongOp2):
oGen.newSubTest();
if cbEffOp > 1:
self.generateOneStdTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor);
else:
self.generateOneStdTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor);
## Memory test.
#if False:
# for cAddrBits in oGen.oTarget.getAddrModes():
# for cbEffOp in self.acbOpVars:
# if cbEffOp > cbMaxOp:
# continue;
#
# auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs;
# for _ in oGen.oModRmRange:
# oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8);
# if oGen.iModRm != 4 or cAddrBits == 16:
# for uInput in auInputs:
# oGen.newSubTest();
# if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 and oGen.iModRm != 13 and cbEffOp != cbMaxOp:
# continue; # Don't know the high bit of the address ending up the result - skip it for now.
# uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen);
# self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp,
# oGen.iModReg, oGen.iModRm, uInput, uResult);
# else:
# # SIB - currently only short list of inputs or things may get seriously out of hand.
# self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs);
#
return True;
def generateInputsXcpt(self, cbEffOp, fLong = False):
"""
Generate inputs for cbEffOp that will overflow or underflow.
Returns a list of pairs, dividen + divisor.
"""
# Test params.
uStep = 1 << (cbEffOp * 8);
if self.fIsIDiv:
uStep /= 2;
# edge tests
auRet = self.generateInputEdgeCases(cbEffOp, fLong, True);
auRet.extend([[0, 0], [1, 0], [ uStep * uStep / 2 - 1, 0]]);
# random tests.
if self.fIsIDiv:
for _ in range(6 if fLong else 2):
while True:
uDivisor = randSxx(cbEffOp * 8);
uDividend = randSxx(cbEffOp * 16);
if uDivisor >= uStep or uDivisor < -uStep:
continue;
if uDivisor != 0:
uResult = uDividend / uDivisor;
if (uResult <= uStep and uResult >= 0) or (uResult >= -uStep and uResult < 0):
continue; # exclude difficulties
break;
auRet.append([uDividend, uDivisor]);
else:
for _ in range(6 if fLong else 2):
while True:
uDivisor = randUxx(cbEffOp * 8);
uDividend = randUxx(cbEffOp * 16);
if uDivisor >= uStep:
continue;
if uDivisor != 0:
uResult = uDividend / uDivisor;
if uResult < uStep:
continue;
break;
auRet.append([uDividend, uDivisor]);
return auRet;
def generateOneDivideErrorTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
""" Generate code of one '[I]DIV rDX:rAX,<GREG>' test that causes #DE. """
cbMaxOp = oGen.oTarget.getMaxOpBytes();
fEffOp = ((1 << (cbEffOp *8) ) - 1);
fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
fTopOp = fMaxOp - fEffOp;
fFullOp1 = ((1 << (cbEffOp*16)) - 1);
uAX = iDividend & fFullOp1; # full with unsigned
uDX = uAX >> (cbEffOp*8);
uAX &= fEffOp;
uOp2Val = iDivisor & fEffOp;
if cbEffOp < cbMaxOp:
uAX |= randUxx(cbMaxOp * 8) & fTopOp;
uDX |= randUxx(cbMaxOp * 8) & fTopOp;
uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp;
oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
% ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor,));
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,));
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX],));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX],));
oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n'
% (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),));
return True;
def generateOneDivideErrorTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
""" Generate code of one '[I]DIV AX,<GREG>' test that causes #DE (8-bit). """
if not oGen.oTarget.is64Bit() and iOp2 == 4: # Avoid AH.
iOp2 = 5;
cbMaxOp = oGen.oTarget.getMaxOpBytes();
fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2;
assert iOp2X != X86_GREG_xAX;
uAX = iDividend & UINT16_MAX; # full with unsigned
uOp2Val = iDivisor & UINT8_MAX;
uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX);
uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX);
if iOp2X != iOp2:
uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8);
oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
% ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor,));
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,));
oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],));
oGen.write(' push sAX\n');
oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n'
% (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),));
return;
def generateDivideErrorTests(self, oGen):
""" Generate divide error tests (raises X86_XCPT_DE). """
oGen.write('%ifdef VBINSTST_CAN_DO_TRAPS\n');
# We do one register variation here, assuming the standard test has got them covered.
# Register tests
if True:
iOp2 = oGen.oTarget.randGRegNoSp();
while iOp2 == X86_GREG_xAX or iOp2 == X86_GREG_xDX:
iOp2 = oGen.oTarget.randGRegNoSp();
for cbEffOp in ( 8, 4, 2, 1 ):
if cbEffOp > oGen.oTarget.getMaxOpBytes():
continue;
oGen.write('; cbEffOp=%u iOp2=%u\n' % (cbEffOp, iOp2,));
for iDividend, iDivisor in self.generateInputsXcpt(cbEffOp, fLong = not oGen.isTiny()):
oGen.newSubTest();
if cbEffOp > 1:
self.generateOneDivideErrorTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor);
else:
self.generateOneDivideErrorTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor);
oGen.write('%endif ; VBINSTST_CAN_DO_TRAPS\n');
return True;
def generateTest(self, oGen, sTestFnName):
oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,));
#oGen.write(' int3\n');
self.generateStandardTests(oGen);
self.generateDivideErrorTests(oGen);
#oGen.write(' int3\n');
oGen.write(' ret\n');
oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,));
return True;
class InstrTest_DaaDas(InstrTestBase):
""" Tests the DAA and DAS instructions. """
def __init__(self, fIsDas):
InstrTestBase.__init__(self, 'das' if fIsDas else 'daa');
self.fIsDas = fIsDas;
def isApplicable(self, oGen):
return not oGen.oTarget.is64Bit();
def generateTest(self, oGen, sTestFnName):
if self.fIsDas: from itgTableDas import g_aItgDasResults as aItgResults;
else: from itgTableDaa import g_aItgDaaResults as aItgResults;
cMax = len(aItgResults);
if oGen.isTiny():
cMax = 64;
oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,));
oGen.write(' xor ebx, ebx\n');
oGen.write('.das_loop:\n');
# Save the loop variable so we can load known values.
oGen.write(' push ebx\n');
oGen.newSubTestEx('ebx');
# Push the results.
oGen.write(' movzx eax, byte [.abAlResults + ebx]\n');
oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,));
oGen.write(' push eax\n');
oGen.write(' movzx eax, byte [.aFlagsResults + ebx]\n');
oGen.write(' push eax\n');
# Calc and push the inputs.
oGen.write(' mov eax, ebx\n');
oGen.write(' shr eax, 2\n');
oGen.write(' and eax, 0ffh\n');
oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,));
oGen.write(' push eax\n');
oGen.write(' pushfd\n')
oGen.write(' and dword [xSP], ~(X86_EFL_CF | X86_EFL_AF)\n');
oGen.write(' mov al, bl\n');
oGen.write(' and al, 2\n');
oGen.write(' shl al, X86_EFL_AF_BIT - 1\n');
oGen.write(' or [xSP], al\n');
oGen.write(' mov al, bl\n');
oGen.write(' and al, X86_EFL_CF\n');
oGen.write(' or [xSP], al\n');
# Load register values and do the test.
oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
oGen.write(' popfd\n');
oGen.write(' pop eax\n');
if self.fIsDas:
oGen.write(' das\n');
else:
oGen.write(' daa\n');
# Verify the results.
fFlagsToCheck = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_ZF;
oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needFlagsGRegChecker(fFlagsToCheck, X86_GREG_xAX),));
# Restore the loop variable and advance.
oGen.write(' pop ebx\n');
oGen.write(' inc ebx\n');
oGen.write(' cmp ebx, %#x\n' % (cMax,));
oGen.write(' jb .das_loop\n');
oGen.write(' ret\n');
oGen.write('.abAlResults:\n');
for i in range(cMax):
oGen.write(' db %#x\n' % (aItgResults[i][0],));
oGen.write('.aFlagsResults:\n');
for i in range(cMax):
oGen.write(' db %#x\n' % (aItgResults[i][1],));
oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,));
return True;
##
# Instruction Tests.
#
g_aoInstructionTests = [
InstrTest_Mov_Gv_Ev(),
InstrTest_MovSxD_Gv_Ev(),
InstrTest_DivIDiv(fIsIDiv = False),
InstrTest_DivIDiv(fIsIDiv = True),
InstrTest_DaaDas(fIsDas = False),
InstrTest_DaaDas(fIsDas = True),
];
class InstructionTestGen(object): # pylint: disable=R0902
"""
Instruction Test Generator.
"""
## @name Test size
## @{
ksTestSize_Large = 'large';
ksTestSize_Medium = 'medium';
ksTestSize_Tiny = 'tiny';
## @}
kasTestSizes = ( ksTestSize_Large, ksTestSize_Medium, ksTestSize_Tiny );
## The prefix for the checker functions.
ksCheckerPrefix = 'Common_Check_'
def __init__(self, oOptions):
self.oOptions = oOptions;
self.oTarget = g_dTargetEnvs[oOptions.sTargetEnv];
# Calculate the number of output files.
self.cFiles = 1;
if len(g_aoInstructionTests) > self.oOptions.cInstrPerFile:
self.cFiles = len(g_aoInstructionTests) / self.oOptions.cInstrPerFile;
if self.cFiles * self.oOptions.cInstrPerFile < len(g_aoInstructionTests):
self.cFiles += 1;
# Fix the known register values.
self.au64Regs = randUxxList(64, 16);
self.au32Regs = [(self.au64Regs[i] & UINT32_MAX) for i in range(8)];
self.au16Regs = [(self.au64Regs[i] & UINT16_MAX) for i in range(8)];
self.auRegValues = self.au64Regs if self.oTarget.is64Bit() else self.au32Regs;
# Declare state variables used while generating.
self.oFile = sys.stderr;
self.iFile = -1;
self.sFile = '';
self._dCheckFns = dict();
self._dMemSetupFns = dict();
self._d64BitConsts = dict();
# State variables used while generating test convenientely placed here (lazy bird)...
self.iModReg = 0;
self.iModRm = 0;
self.iSibBaseReg = 0;
self.iSibIndexReg = 0;
self.iSibScale = 1;
if self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
self._oModRegRange = range(2);
self._oModRegRange8 = range(2);
self.oModRmRange = range(2);
self.cSibBasePerRun = 1;
self._cSibIndexPerRun = 2;
self.oSibScaleRange = range(1);
elif self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
self._oModRegRange = range( 5 if self.oTarget.is64Bit() else 4);
self._oModRegRange8 = range( 6 if self.oTarget.is64Bit() else 4);
self.oModRmRange = range(5);
self.cSibBasePerRun = 5;
self._cSibIndexPerRun = 4
self.oSibScaleRange = range(2);
else:
self._oModRegRange = range(16 if self.oTarget.is64Bit() else 8);
self._oModRegRange8 = range(20 if self.oTarget.is64Bit() else 8);
self.oModRmRange = range(16 if self.oTarget.is64Bit() else 8);
self.cSibBasePerRun = 8;
self._cSibIndexPerRun = 9;
self.oSibScaleRange = range(4);
self.iSibIndexRange = 0;
#
# Methods used by instruction tests.
#
def write(self, sText):
""" Writes to the current output file. """
return self.oFile.write(unicode(sText));
def writeln(self, sText):
""" Writes a line to the current output file. """
self.write(sText);
return self.write('\n');
def writeInstrBytes(self, abInstr):
"""
Emits an instruction given as a sequence of bytes values.
"""
self.write(' db %#04x' % (abInstr[0],));
for i in range(1, len(abInstr)):
self.write(', %#04x' % (abInstr[i],));
return self.write('\n');
def newSubTest(self):
"""
Indicates that a new subtest has started.
"""
self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], __LINE__\n');
return True;
def newSubTestEx(self, sIndicator):
"""
Indicates that a new subtest has started.
"""
self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], %s\n' % (sIndicator, ));
return True;
def needGRegChecker(self, iReg1, iReg2 = None, iReg3 = None):
"""
Records the need for a given register checker function, returning its label.
"""
if iReg2 is not None:
if iReg3 is not None:
sName = '%s_%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2], self.oTarget.asGRegs[iReg3],);
else:
sName = '%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2],);
else:
sName = '%s' % (self.oTarget.asGRegs[iReg1],);
assert iReg3 is None;
if sName in self._dCheckFns:
self._dCheckFns[sName] += 1;
else:
self._dCheckFns[sName] = 1;
return self.ksCheckerPrefix + sName;
def needFlagsGRegChecker(self, fFlagsToCheck, iReg1, iReg2 = None, iReg3 = None):
"""
Records the need for a given rFLAGS + register checker function, returning its label.
"""
sWorkerName = self.needGRegChecker(iReg1, iReg2, iReg3);
sName = 'eflags_%#x_%s' % (fFlagsToCheck, sWorkerName[len(self.ksCheckerPrefix):]);
if sName in self._dCheckFns:
self._dCheckFns[sName] += 1;
else:
self._dCheckFns[sName] = 1;
return self.ksCheckerPrefix + sName;
def needGRegMemSetup(self, cAddrBits, cbEffOp, iBaseReg = None, offDisp = None, iIndexReg = None, iScale = 1):
"""
Records the need for a given register checker function, returning its label.
"""
assert cAddrBits in [64, 32, 16];
assert cbEffOp in [8, 4, 2, 1];
assert iScale in [1, 2, 4, 8];
sName = '%ubit_U%u' % (cAddrBits, cbEffOp * 8,);
if iBaseReg is not None:
sName += '_%s' % (gregName(iBaseReg, cAddrBits),);
sName += '_x%u' % (iScale,);
if iIndexReg is not None:
sName += '_%s' % (gregName(iIndexReg, cAddrBits),);
if offDisp is not None:
sName += '_%#010x' % (offDisp & UINT32_MAX, );
if sName in self._dMemSetupFns:
self._dMemSetupFns[sName] += 1;
else:
self._dMemSetupFns[sName] = 1;
return 'Common_MemSetup_' + sName;
def need64BitConstant(self, uVal):
"""
Records the need for a 64-bit constant, returning its label.
These constants are pooled to attempt reduce the size of the whole thing.
"""
assert uVal >= 0 and uVal <= UINT64_MAX;
if uVal in self._d64BitConsts:
self._d64BitConsts[uVal] += 1;
else:
self._d64BitConsts[uVal] = 1;
return 'g_u64Const_0x%016x' % (uVal, );
def pushConst(self, uResult):
"""
Emits a push constant value, taking care of high values on 64-bit hosts.
"""
if self.oTarget.is64Bit() and uResult >= 0x80000000:
self.write(' push qword [%s wrt rip]\n' % (self.need64BitConstant(uResult),));
else:
self.write(' push dword 0x%x\n' % (uResult,));
return True;
def getDispForMod(self, iMod, cbAlignment = 1):
"""
Get a set of address dispositions for a given addressing mode.
The alignment restriction is for SIB scaling.
"""
assert cbAlignment in [1, 2, 4, 8];
if iMod == 0:
aoffDisp = [ None, ];
elif iMod == 1:
aoffDisp = [ 127 & ~(cbAlignment - 1), -128 ];
elif iMod == 2:
aoffDisp = [ 2147483647 & ~(cbAlignment - 1), -2147483648 ];
else: assert False;
return aoffDisp;
def getModRegRange(self, cbEffOp):
"""
The Mod R/M register range varies with the effective operand size, for
8-bit registers we have 4 more.
"""
if cbEffOp == 1:
return self._oModRegRange8;
return self._oModRegRange;
def getSibIndexPerRun(self):
"""
We vary the SIB index test range a little to try cover more operand
combinations and avoid repeating the same ones.
"""
self.iSibIndexRange += 1;
self.iSibIndexRange %= 3;
if self.iSibIndexRange == 0:
return self._cSibIndexPerRun - 1;
return self._cSibIndexPerRun;
def isTiny(self):
""" Checks if we're in tiny mode."""
return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny;
def isMedium(self):
""" Checks if we're in medium mode."""
return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium;
#
# Forwarding calls for oTarget to shorted typing and lessen the attacks
# on the right margin.
#
def gregNameBits(self, iReg, cBitsWide):
""" Target: Get the name of a general register for the given size (in bits). """
return self.oTarget.gregNameBits(iReg, cBitsWide);
def gregNameBytes(self, iReg, cbWide):
""" Target: Get the name of a general register for the given size (in bytes). """
return self.oTarget.gregNameBytes(iReg, cbWide);
def is64Bit(self):
""" Target: Is the target 64-bit? """
return self.oTarget.is64Bit();
#
# Internal machinery.
#
def _randInitIndexes(self):
"""
Initializes the Mod R/M and SIB state index with random numbers prior
to generating a test.
Note! As with all other randomness and variations we do, we cannot
test all combinations for each and every instruction so we try
get coverage over time.
"""
self.iModReg = randU8();
self.iModRm = randU8();
self.iSibBaseReg = randU8();
self.iSibIndexReg = randU8();
self.iSibScale = 1 << (randU8() & 3);
self.iSibIndexRange = randU8();
return True;
def _calcTestFunctionName(self, oInstrTest, iInstrTest):
"""
Calc a test function name for the given instruction test.
"""
sName = 'TestInstr%03u_%s' % (iInstrTest, oInstrTest.sName);
return sName.replace(',', '_').replace(' ', '_').replace('%', '_');
def _generateFileHeader(self, ):
"""
Writes the file header.
Raises exception on trouble.
"""
self.write('; $Id: InstructionTestGen.py $\n'
';; @file %s\n'
'; Autogenerate by %s %s. DO NOT EDIT\n'
';\n'
'\n'
';\n'
'; Headers\n'
';\n'
'%%include "env-%s.mac"\n'
% ( os.path.basename(self.sFile),
os.path.basename(__file__), __version__[11:-1],
self.oTarget.sName,
) );
# Target environment specific init stuff.
#
# Global variables.
#
self.write('\n\n'
';\n'
'; Globals\n'
';\n');
self.write('VBINSTST_BEGINDATA\n'
'VBINSTST_GLOBALNAME_EX g_pvLow16Mem4K, data hidden\n'
' dq 0\n'
'VBINSTST_GLOBALNAME_EX g_pvLow32Mem4K, data hidden\n'
' dq 0\n'
'VBINSTST_GLOBALNAME_EX g_pvMem4K, data hidden\n'
' dq 0\n'
'VBINSTST_GLOBALNAME_EX g_uVBInsTstSubTestIndicator, data hidden\n'
' dd 0\n'
'%ifdef VBINSTST_CAN_DO_TRAPS\n'
'VBINSTST_TRAP_RECS_BEGIN\n'
'%endif\n'
'VBINSTST_BEGINCODE\n'
);
self.write('%ifdef RT_ARCH_AMD64\n');
for i in range(len(g_asGRegs64)):
self.write('g_u64KnownValue_%s: dq 0x%x\n' % (g_asGRegs64[i], self.au64Regs[i]));
self.write('%endif\n\n')
#
# Common functions.
#
# Loading common values.
self.write('\n\n'
'VBINSTST_BEGINPROC Common_LoadKnownValues\n'
'%ifdef RT_ARCH_AMD64\n');
for i in range(len(g_asGRegs64NoSp)):
if g_asGRegs64NoSp[i]:
self.write(' mov %s, 0x%x\n' % (g_asGRegs64NoSp[i], self.au64Regs[i],));
self.write('%else\n');
for i in range(8):
if g_asGRegs32NoSp[i]:
self.write(' mov %s, 0x%x\n' % (g_asGRegs32NoSp[i], self.au32Regs[i],));
self.write('%endif\n'
' ret\n'
'VBINSTST_ENDPROC Common_LoadKnownValues\n'
'\n');
self.write('VBINSTST_BEGINPROC Common_CheckKnownValues\n'
'%ifdef RT_ARCH_AMD64\n');
for i in range(len(g_asGRegs64NoSp)):
if g_asGRegs64NoSp[i]:
self.write(' cmp %s, [g_u64KnownValue_%s wrt rip]\n'
' je .ok_%u\n'
' push %u ; register number\n'
' push %s ; actual\n'
' push qword [g_u64KnownValue_%s wrt rip] ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n'
'.ok_%u:\n'
% ( g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i, i, g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i,));
self.write('%else\n');
for i in range(8):
if g_asGRegs32NoSp[i]:
self.write(' cmp %s, 0x%x\n'
' je .ok_%u\n'
' push %u ; register number\n'
' push %s ; actual\n'
' push dword 0x%x ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n'
'.ok_%u:\n'
% ( g_asGRegs32NoSp[i], self.au32Regs[i], i, i, g_asGRegs32NoSp[i], self.au32Regs[i], i,));
self.write('%endif\n'
' ret\n'
'VBINSTST_ENDPROC Common_CheckKnownValues\n'
'\n');
return True;
def _generateMemSetupFunctions(self): # pylint: disable=R0915
"""
Generates the memory setup functions.
"""
cDefAddrBits = self.oTarget.getDefAddrBits();
for sName in self._dMemSetupFns:
# Unpack it.
asParams = sName.split('_');
cAddrBits = int(asParams[0][:-3]); assert asParams[0][-3:] == 'bit';
cEffOpBits = int(asParams[1][1:]); assert asParams[1][0] == 'U';
if cAddrBits == 64: asAddrGRegs = g_asGRegs64;
elif cAddrBits == 32: asAddrGRegs = g_asGRegs32;
else: asAddrGRegs = g_asGRegs16;
i = 2;
iBaseReg = None;
sBaseReg = None;
if i < len(asParams) and asParams[i] in asAddrGRegs:
sBaseReg = asParams[i];
iBaseReg = asAddrGRegs.index(sBaseReg);
i += 1
assert i < len(asParams); assert asParams[i][0] == 'x';
iScale = iScale = int(asParams[i][1:]); assert iScale in [1, 2, 4, 8], '%u %s' % (iScale, sName);
i += 1;
sIndexReg = None;
iIndexReg = None;
if i < len(asParams) and asParams[i] in asAddrGRegs:
sIndexReg = asParams[i];
iIndexReg = asAddrGRegs.index(sIndexReg);
i += 1;
u32Disp = None;
if i < len(asParams) and len(asParams[i]) == 10:
u32Disp = long(asParams[i], 16);
i += 1;
assert i == len(asParams), 'i=%d len=%d len[i]=%d (%s)' % (i, len(asParams), len(asParams[i]), asParams[i],);
assert iScale == 1 or iIndexReg is not None;
# Find a temporary register.
iTmpReg1 = X86_GREG_xCX;
while iTmpReg1 in [iBaseReg, iIndexReg]:
iTmpReg1 += 1;
# Prologue.
self.write('\n\n'
'; cAddrBits=%s cEffOpBits=%s iBaseReg=%s u32Disp=%s iIndexReg=%s iScale=%s\n'
'VBINSTST_BEGINPROC Common_MemSetup_%s\n'
' MY_PUSH_FLAGS\n'
' push %s\n'
% ( cAddrBits, cEffOpBits, iBaseReg, u32Disp, iIndexReg, iScale,
sName, self.oTarget.asGRegs[iTmpReg1], ));
# Figure out what to use.
if cEffOpBits == 64:
sTmpReg1 = g_asGRegs64[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u64Data)';
elif cEffOpBits == 32:
sTmpReg1 = g_asGRegs32[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u32Data)';
elif cEffOpBits == 16:
sTmpReg1 = g_asGRegs16[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u16Data)';
else:
assert cEffOpBits == 8; assert iTmpReg1 < 4;
sTmpReg1 = g_asGRegs8Rex[iTmpReg1];
sDataVar = 'VBINSTST_NAME(g_u8Data)';
# Special case: reg + reg * [2,4,8]
if iBaseReg == iIndexReg and iBaseReg is not None and iScale != 1:
iTmpReg2 = X86_GREG_xBP;
while iTmpReg2 in [iBaseReg, iIndexReg, iTmpReg1]:
iTmpReg2 += 1;
sTmpReg2 = self.gregNameBits(iTmpReg2, cAddrBits);
self.write(' push sAX\n'
' push %s\n'
' push sDX\n'
% (self.oTarget.asGRegs[iTmpReg2],));
if cAddrBits == 16:
self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sTmpReg2,));
else:
self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sTmpReg2,));
self.write(' add %s, 0x200\n' % (sTmpReg2,));
self.write(' mov %s, %s\n' % (self.gregNameBits(X86_GREG_xAX, cAddrBits), sTmpReg2,));
if u32Disp is not None:
self.write(' sub %s, %d\n'
% ( self.gregNameBits(X86_GREG_xAX, cAddrBits), convU32ToSigned(u32Disp), ));
self.write(' xor edx, edx\n'
'%if xCB == 2\n'
' push 0\n'
'%endif\n');
self.write(' push %u\n' % (iScale + 1,));
self.write(' div %s [xSP]\n' % ('qword' if cAddrBits == 64 else 'dword',));
self.write(' sub %s, %s\n' % (sTmpReg2, self.gregNameBits(X86_GREG_xDX, cAddrBits),));
self.write(' pop sDX\n'
' pop sDX\n'); # sTmpReg2 is eff address; sAX is sIndexReg value.
# Note! sTmpReg1 can be xDX and that's no problem now.
self.write(' mov %s, [xSP + sCB*3 + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,));
self.write(' mov [%s], %s\n' % (sTmpReg2, sTmpReg1,)); # Value in place.
self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg2],));
if iBaseReg == X86_GREG_xAX:
self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg1],));
else:
self.write(' mov %s, %s\n' % (sBaseReg, self.gregNameBits(X86_GREG_xAX, cAddrBits),));
self.write(' pop sAX\n');
else:
# Load the value and mem address, storing the value there.
# Note! ASSUMES that the scale and disposition works fine together.
sAddrReg = sBaseReg if sBaseReg is not None else sIndexReg;
self.write(' mov %s, [xSP + sCB + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,));
if cAddrBits >= cDefAddrBits:
self.write(' mov [%s xWrtRIP], %s\n' % (sDataVar, sTmpReg1,));
self.write(' lea %s, [%s xWrtRIP]\n' % (sAddrReg, sDataVar,));
else:
if cAddrBits == 16:
self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sAddrReg,));
else:
self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sAddrReg,));
self.write(' add %s, %s\n' % (sAddrReg, (randU16() << cEffOpBits) & 0xfff, ));
self.write(' mov [%s], %s\n' % (sAddrReg, sTmpReg1, ));
# Adjust for disposition and scaling.
if u32Disp is not None:
self.write(' sub %s, %d\n' % ( sAddrReg, convU32ToSigned(u32Disp), ));
if iIndexReg is not None:
if iBaseReg == iIndexReg:
assert iScale == 1;
assert u32Disp is None or (u32Disp & 1) == 0;
self.write(' shr %s, 1\n' % (sIndexReg,));
elif sBaseReg is not None:
uIdxRegVal = randUxx(cAddrBits);
if cAddrBits == 64:
self.write(' mov %s, %u\n'
' sub %s, %s\n'
' mov %s, %u\n'
% ( sIndexReg, (uIdxRegVal * iScale) & UINT64_MAX,
sBaseReg, sIndexReg,
sIndexReg, uIdxRegVal, ));
else:
assert cAddrBits == 32;
self.write(' mov %s, %u\n'
' sub %s, %#06x\n'
% ( sIndexReg, uIdxRegVal, sBaseReg, (uIdxRegVal * iScale) & UINT32_MAX, ));
elif iScale == 2:
assert u32Disp is None or (u32Disp & 1) == 0;
self.write(' shr %s, 1\n' % (sIndexReg,));
elif iScale == 4:
assert u32Disp is None or (u32Disp & 3) == 0;
self.write(' shr %s, 2\n' % (sIndexReg,));
elif iScale == 8:
assert u32Disp is None or (u32Disp & 7) == 0;
self.write(' shr %s, 3\n' % (sIndexReg,));
else:
assert iScale == 1;
# Set upper bits that's supposed to be unused.
if cDefAddrBits > cAddrBits or cAddrBits == 16:
if cDefAddrBits == 64:
assert cAddrBits == 32;
if iBaseReg is not None:
self.write(' mov %s, %#018x\n'
' or %s, %s\n'
% ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000,
g_asGRegs64[iBaseReg], g_asGRegs64[iTmpReg1],));
if iIndexReg is not None and iIndexReg != iBaseReg:
self.write(' mov %s, %#018x\n'
' or %s, %s\n'
% ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000,
g_asGRegs64[iIndexReg], g_asGRegs64[iTmpReg1],));
else:
assert cDefAddrBits == 32; assert cAddrBits == 16; assert iIndexReg is None;
if iBaseReg is not None:
self.write(' or %s, %#010x\n'
% ( g_asGRegs32[iBaseReg], randU32() & 0xffff0000, ));
# Epilogue.
self.write(' pop %s\n'
' MY_POP_FLAGS\n'
' ret sCB\n'
'VBINSTST_ENDPROC Common_MemSetup_%s\n'
% ( self.oTarget.asGRegs[iTmpReg1], sName,));
def _generateFileFooter(self):
"""
Generates file footer.
"""
# Terminate the trap records.
self.write('\n\n'
';\n'
'; Terminate the trap records\n'
';\n'
'VBINSTST_BEGINDATA\n'
'%ifdef VBINSTST_CAN_DO_TRAPS\n'
'VBINSTST_TRAP_RECS_END\n'
'%endif\n'
'VBINSTST_BEGINCODE\n');
# Register checking functions.
for sName in self._dCheckFns:
asRegs = sName.split('_');
sPushSize = 'dword';
# Do we check eflags first.
if asRegs[0] == 'eflags':
asRegs.pop(0);
sFlagsToCheck = asRegs.pop(0);
self.write('\n\n'
'; Check flags and then defers to the register-only checker\n'
'; To save space, the callee cleans up the stack.'
'; Ref count: %u\n'
'VBINSTST_BEGINPROC %s%s\n'
' MY_PUSH_FLAGS\n'
' push sAX\n'
' mov sAX, [xSP + sCB]\n'
' and sAX, %s\n'
' cmp sAX, [xSP + xCB + sCB*2]\n'
' je .equal\n'
% ( self._dCheckFns[sName], self.ksCheckerPrefix, sName,
sFlagsToCheck,));
self.write(' push dword 0xef ; register number\n'
' push sAX ; actual\n'
' mov sAX, [xSP + xCB + sCB*4]\n'
' push sAX ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n');
self.write('.equal:\n'
' mov xAX, [xSP + sCB*2]\n' # Remove the expected eflags value from the stack frame.
' mov [xSP + sCB*2 + xCB + sCB - xCB], xAX\n'
' pop sAX\n'
' MY_POP_FLAGS\n'
' lea xSP, [xSP + sCB]\n'
' jmp VBINSTST_NAME(Common_Check_%s)\n'
'VBINSTST_ENDPROC %s%s\n'
% ( '_'.join(asRegs),
self.ksCheckerPrefix, sName,) );
else:
# Prologue
self.write('\n\n'
'; Checks 1 or more register values, expected values pushed on the stack.\n'
'; To save space, the callee cleans up the stack.'
'; Ref count: %u\n'
'VBINSTST_BEGINPROC %s%s\n'
' MY_PUSH_FLAGS\n'
% ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, ) );
# Register checks.
for i in range(len(asRegs)):
sReg = asRegs[i];
iReg = self.oTarget.asGRegs.index(sReg);
if i == asRegs.index(sReg): # Only check once, i.e. input = output reg.
self.write(' cmp %s, [xSP + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n'
' je .equal%u\n'
' push %s %u ; register number\n'
' push %s ; actual\n'
' mov %s, [xSP + sCB*2 + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n'
' push %s ; expected\n'
' call VBINSTST_NAME(Common_BadValue)\n'
'.equal%u:\n'
% ( sReg, i, i, sPushSize, iReg, sReg, sReg, i, sReg, i, ) );
# Restore known register values and check the other registers.
for sReg in asRegs:
if self.oTarget.is64Bit():
self.write(' mov %s, [g_u64KnownValue_%s wrt rip]\n' % (sReg, sReg,));
else:
iReg = self.oTarget.asGRegs.index(sReg)
self.write(' mov %s, 0x%x\n' % (sReg, self.au32Regs[iReg],));
self.write(' MY_POP_FLAGS\n'
' call VBINSTST_NAME(Common_CheckKnownValues)\n'
' ret sCB*%u\n'
'VBINSTST_ENDPROC %s%s\n'
% (len(asRegs), self.ksCheckerPrefix, sName,));
# memory setup functions
self._generateMemSetupFunctions();
# 64-bit constants.
if len(self._d64BitConsts) > 0:
self.write('\n\n'
';\n'
'; 64-bit constants\n'
';\n');
for uVal in self._d64BitConsts:
self.write('g_u64Const_0x%016x: dq 0x%016x ; Ref count: %d\n' % (uVal, uVal, self._d64BitConsts[uVal], ) );
return True;
def _generateTests(self):
"""
Generate the test cases.
"""
for self.iFile in range(self.cFiles):
if self.cFiles == 1:
self.sFile = '%s.asm' % (self.oOptions.sOutputBase,)
else:
self.sFile = '%s-%u.asm' % (self.oOptions.sOutputBase, self.iFile)
self.oFile = sys.stdout;
if self.oOptions.sOutputBase != '-':
self.oFile = io.open(self.sFile, 'w', buffering = 65536, encoding = 'utf-8');
self._generateFileHeader();
# Calc the range.
iInstrTestStart = self.iFile * self.oOptions.cInstrPerFile;
iInstrTestEnd = iInstrTestStart + self.oOptions.cInstrPerFile;
if iInstrTestEnd > len(g_aoInstructionTests):
iInstrTestEnd = len(g_aoInstructionTests);
# Generate the instruction tests.
for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
oInstrTest = g_aoInstructionTests[iInstrTest];
if oInstrTest.isApplicable(self):
self.write('\n'
'\n'
';\n'
'; %s\n'
';\n'
% (oInstrTest.sName,));
self._randInitIndexes();
oInstrTest.generateTest(self, self._calcTestFunctionName(oInstrTest, iInstrTest));
# Generate the main function.
self.write('\n\n'
'VBINSTST_BEGINPROC TestInstrMain\n'
' MY_PUSH_ALL\n'
' sub xSP, 40h\n'
'%ifdef VBINSTST_CAN_DO_TRAPS\n'
' VBINSTST_TRAP_RECS_INSTALL\n'
'%endif\n'
'\n');
for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
oInstrTest = g_aoInstructionTests[iInstrTest];
if oInstrTest.isApplicable(self):
self.write('%%ifdef ASM_CALL64_GCC\n'
' lea rdi, [.szInstr%03u wrt rip]\n'
'%%elifdef ASM_CALL64_MSC\n'
' lea rcx, [.szInstr%03u wrt rip]\n'
'%%else\n'
' mov xAX, .szInstr%03u\n'
' mov [xSP], xAX\n'
'%%endif\n'
' VBINSTST_CALL_FN_SUB_TEST\n'
' call VBINSTST_NAME(%s)\n'
% ( iInstrTest, iInstrTest, iInstrTest, self._calcTestFunctionName(oInstrTest, iInstrTest)));
self.write('\n'
'%ifdef VBINSTST_CAN_DO_TRAPS\n'
' VBINSTST_TRAP_RECS_UNINSTALL\n'
'%endif\n'
' add xSP, 40h\n'
' MY_POP_ALL\n'
' ret\n\n');
for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
self.write('.szInstr%03u: db \'%s\', 0\n' % (iInstrTest, g_aoInstructionTests[iInstrTest].sName,));
self.write('VBINSTST_ENDPROC TestInstrMain\n\n');
self._generateFileFooter();
if self.oOptions.sOutputBase != '-':
self.oFile.close();
self.oFile = None;
self.sFile = '';
return RTEXITCODE_SUCCESS;
def _runMakefileMode(self):
"""
Generate a list of output files on standard output.
"""
if self.cFiles == 1:
print('%s.asm' % (self.oOptions.sOutputBase,));
else:
print(' '.join('%s-%s.asm' % (self.oOptions.sOutputBase, i) for i in range(self.cFiles)));
return RTEXITCODE_SUCCESS;
def run(self):
"""
Generates the tests or whatever is required.
"""
if self.oOptions.fMakefileMode:
return self._runMakefileMode();
sys.stderr.write('InstructionTestGen.py: Seed = %s\n' % (g_iMyRandSeed,));
return self._generateTests();
@staticmethod
def main():
"""
Main function a la C/C++. Returns exit code.
"""
#
# Parse the command line.
#
oParser = OptionParser(version = __version__[11:-1].strip());
oParser.add_option('--makefile-mode', dest = 'fMakefileMode', action = 'store_true', default = False,
help = 'Special mode for use to output a list of output files for the benefit of '
'the make program (kmk).');
oParser.add_option('--split', dest = 'cInstrPerFile', metavar = '<instr-per-file>', type = 'int', default = 9999999,
help = 'Number of instruction to test per output file.');
oParser.add_option('--output-base', dest = 'sOutputBase', metavar = '<file>', default = None,
help = 'The output file base name, no suffix please. Required.');
oParser.add_option('--target', dest = 'sTargetEnv', metavar = '<target>',
default = 'iprt-r3-32',
choices = g_dTargetEnvs.keys(),
help = 'The target environment. Choices: %s'
% (', '.join(sorted(g_dTargetEnvs.keys())),));
oParser.add_option('--test-size', dest = 'sTestSize', default = InstructionTestGen.ksTestSize_Medium,
choices = InstructionTestGen.kasTestSizes,
help = 'Selects the test size.');
(oOptions, asArgs) = oParser.parse_args();
if len(asArgs) > 0:
oParser.print_help();
return RTEXITCODE_SYNTAX
if oOptions.sOutputBase is None:
print('syntax error: Missing required option --output-base.', file = sys.stderr);
return RTEXITCODE_SYNTAX
#
# Instantiate the program class and run it.
#
oProgram = InstructionTestGen(oOptions);
return oProgram.run();
if __name__ == '__main__':
sys.exit(InstructionTestGen.main());
|