1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
/*
* Copyright © 2016 Red Hat, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without
* fee, provided that the above copyright notice appear in all copies
* and that both that copyright notice and this permission notice
* appear in supporting documentation, and that the name of Red Hat
* not be used in advertising or publicity pertaining to distribution
* of the software without specific, written prior permission. Red
* Hat makes no representations about the suitability of this software
* for any purpose. It is provided "as is" without express or implied
* warranty.
*
* THE AUTHORS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
* NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "bezier.h"
const struct bezier_control_point bezier_defaults[4] = {
{ 0.0, 0.0 },
{ 0.0, 0.0 },
{ 1.0, 1.0 },
{ 1.0, 1.0 },
};
struct point {
int x, y;
};
/**
* de Casteljau's algorithm. See this page here
* https://pomax.github.io/bezierinfo/#extended
*
* To play with bezier curve shapes, I used
* http://cubic-bezier.com/
*/
static struct point
decasteljau(const struct point *controls,
size_t ncontrols,
double t)
{
struct point new_controls[ncontrols];
if (ncontrols == 1)
return controls[0];
for (int i = 0; i < ncontrols - 1; i++) {
new_controls[i].x = (1.0 - t) * controls[i].x + t * controls[i + 1].x;
new_controls[i].y = (1.0 - t) * controls[i].y + t * controls[i + 1].y;
}
return decasteljau(new_controls, ncontrols - 1, t);
}
/**
* Given a Bézier curve defined by the control points, reduce the curve to
* one with ncurve_points.
*/
static void
flatten_curve(const struct point *controls,
size_t ncontrols,
struct point *curve,
size_t ncurve_points)
{
ncurve_points--; /* make sure we end up with 100/100 as last point */
for (int i = 0; i <= ncurve_points; i++) {
double t = 1.0 * i/ncurve_points;
struct point p;
p = decasteljau(controls, ncontrols, t);
curve[i] = p;
}
}
/**
* Calculate line through a and b, set curve[x] for each x between
* [a.x, b.x].
*
* Note: pcurve must be at least b.x size.
*/
static void
line_between(struct point a, struct point b,
struct point *curve, size_t curve_sz)
{
double slope;
double offset;
assert(b.x < curve_sz);
if (a.x == b.x) {
curve[a.x].x = a.x;
curve[a.x].y = a.y;
return;
}
slope = (double)(b.y - a.y)/(b.x - a.x);
offset = a.y - slope * a.x;
for (int x = a.x; x <= b.x; x++) {
struct point p;
p.x = x;
p.y = slope * x + offset;
curve[x] = p;
}
}
bool
cubic_bezier(const struct bezier_control_point controls[4],
int *bezier_out,
size_t bezier_sz)
{
const int nsegments = 50;
const int range = bezier_sz - 1;
struct point curve[nsegments];
struct point bezier[bezier_sz];
struct point zero = { 0, 0 },
max = { range, range};
/* Scale control points into the [0, bezier_sz) range */
struct point ctrls[4];
for (int i = 0; i < 4; i++) {
if (controls[i].x < 0.0 || controls[i].x > 1.0 ||
controls[i].y < 0.0 || controls[i].y > 1.0)
return false;
ctrls[i].x = controls[i].x * range;
ctrls[i].y = controls[i].y * range;
}
for (int i = 0; i < 3; i++) {
if (ctrls[i].x > ctrls[i+1].x)
return false;
}
/* Reduce curve to nsegments, because this isn't a drawing program */
flatten_curve(ctrls, 4, curve, nsegments);
/* we now have nsegments points in curve that represent the bezier
curve (already in the [0, bezier_sz) range). Run through the
points and draw a straight line between each point and voila, we
have our curve.
If the first control points (x0/y0) is not at x == 0 or the last
control point (x3/y3) is not at the max value, draw a line
between from 0/0 to x0/y0 and from x3/y3 to xmax/y3.
*/
line_between(zero, curve[0], bezier, bezier_sz);
for (int i = 0; i < nsegments - 1; i++)
line_between(curve[i], curve[i+1], bezier, bezier_sz);
if (curve[nsegments - 1].x < max.x)
line_between(curve[nsegments - 1], max, bezier, bezier_sz);
for (int i = 0; i < bezier_sz; i++)
bezier_out[i] = bezier[i].y;
return true;
}
|