summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/tests/testthat/test-dplyr-funcs-conditional.R
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
commite6918187568dbd01842d8d1d2c808ce16a894239 (patch)
tree64f88b554b444a49f656b6c656111a145cbbaa28 /src/arrow/r/tests/testthat/test-dplyr-funcs-conditional.R
parentInitial commit. (diff)
downloadceph-upstream/18.2.2.tar.xz
ceph-upstream/18.2.2.zip
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/arrow/r/tests/testthat/test-dplyr-funcs-conditional.R')
-rw-r--r--src/arrow/r/tests/testthat/test-dplyr-funcs-conditional.R409
1 files changed, 409 insertions, 0 deletions
diff --git a/src/arrow/r/tests/testthat/test-dplyr-funcs-conditional.R b/src/arrow/r/tests/testthat/test-dplyr-funcs-conditional.R
new file mode 100644
index 000000000..4f2700795
--- /dev/null
+++ b/src/arrow/r/tests/testthat/test-dplyr-funcs-conditional.R
@@ -0,0 +1,409 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied. See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+skip_if_not_available("dataset")
+
+library(dplyr, warn.conflicts = FALSE)
+suppressPackageStartupMessages(library(bit64))
+
+
+tbl <- example_data
+tbl$verses <- verses[[1]]
+tbl$another_chr <- tail(letters, 10)
+
+test_that("if_else and ifelse", {
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(int > 5, 1, 0)
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(int > 5, int, 0L)
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ expect_error(
+ Table$create(tbl) %>%
+ mutate(
+ y = if_else(int > 5, 1, FALSE)
+ ) %>%
+ collect(),
+ "NotImplemented: Function if_else has no kernel matching input types"
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(int > 5, 1, NA_real_)
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = ifelse(int > 5, 1, 0)
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(dbl > 5, TRUE, FALSE)
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(chr %in% letters[1:3], 1L, 3L)
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(int > 5, "one", "zero")
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(int > 5, chr, another_chr)
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(int > 5, "true", chr, missing = "MISSING")
+ ) %>%
+ collect(),
+ tbl
+ )
+
+ # TODO: remove the mutate + warning after ARROW-13358 is merged and Arrow
+ # supports factors in if(_)else
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(int > 5, fct, factor("a"))
+ ) %>%
+ collect() %>%
+ # This is a no-op on the Arrow side, but necessary to make the results equal
+ mutate(y = as.character(y)),
+ tbl,
+ warning = "Dictionaries .* are currently converted to strings .* in if_else and ifelse"
+ )
+
+ # detecting NA and NaN works just fine
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(is.na(dbl), chr, "false", missing = "MISSING")
+ ) %>%
+ collect(),
+ example_data_for_sorting
+ )
+
+ # However, currently comparisons with NaNs return false and not NaNs or NAs
+ skip("ARROW-13364")
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ y = if_else(dbl > 5, chr, another_chr, missing = "MISSING")
+ ) %>%
+ collect(),
+ example_data_for_sorting
+ )
+
+ skip("TODO: could? should? we support the autocasting in ifelse")
+ compare_dplyr_binding(
+ .input %>%
+ mutate(y = ifelse(int > 5, 1, FALSE)) %>%
+ collect(),
+ tbl
+ )
+})
+
+test_that("case_when()", {
+ compare_dplyr_binding(
+ .input %>%
+ transmute(cw = case_when(lgl ~ dbl, !false ~ dbl + dbl2)) %>%
+ collect(),
+ tbl
+ )
+ compare_dplyr_binding(
+ .input %>%
+ mutate(cw = case_when(int > 5 ~ 1, TRUE ~ 0)) %>%
+ collect(),
+ tbl
+ )
+ compare_dplyr_binding(
+ .input %>%
+ transmute(cw = case_when(chr %in% letters[1:3] ~ 1L) + 41L) %>%
+ collect(),
+ tbl
+ )
+ compare_dplyr_binding(
+ .input %>%
+ filter(case_when(
+ dbl + int - 1.1 == dbl2 ~ TRUE,
+ NA ~ NA,
+ TRUE ~ FALSE
+ ) & !is.na(dbl2)) %>%
+ collect(),
+ tbl
+ )
+
+ # dplyr::case_when() errors if values on right side of formulas do not have
+ # exactly the same type, but the Arrow case_when kernel allows compatible types
+ expect_equal(
+ tbl %>%
+ mutate(i64 = as.integer64(1e10)) %>%
+ Table$create() %>%
+ transmute(cw = case_when(
+ is.na(fct) ~ int,
+ is.na(chr) ~ dbl,
+ TRUE ~ i64
+ )) %>%
+ collect(),
+ tbl %>%
+ transmute(
+ cw = ifelse(is.na(fct), int, ifelse(is.na(chr), dbl, 1e10))
+ )
+ )
+
+ # expected errors (which are caught by abandon_ship() and changed to warnings)
+ # TODO: Find a way to test these directly without abandon_ship() interfering
+ expect_error(
+ # no cases
+ expect_warning(
+ tbl %>%
+ Table$create() %>%
+ transmute(cw = case_when()),
+ "case_when"
+ )
+ )
+ expect_error(
+ # argument not a formula
+ expect_warning(
+ tbl %>%
+ Table$create() %>%
+ transmute(cw = case_when(TRUE ~ FALSE, TRUE)),
+ "case_when"
+ )
+ )
+ expect_error(
+ # non-logical R scalar on left side of formula
+ expect_warning(
+ tbl %>%
+ Table$create() %>%
+ transmute(cw = case_when(0L ~ FALSE, TRUE ~ FALSE)),
+ "case_when"
+ )
+ )
+ expect_error(
+ # non-logical Arrow column reference on left side of formula
+ expect_warning(
+ tbl %>%
+ Table$create() %>%
+ transmute(cw = case_when(int ~ FALSE)),
+ "case_when"
+ )
+ )
+ expect_error(
+ # non-logical Arrow expression on left side of formula
+ expect_warning(
+ tbl %>%
+ Table$create() %>%
+ transmute(cw = case_when(dbl + 3.14159 ~ TRUE)),
+ "case_when"
+ )
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ transmute(cw = case_when(lgl ~ "abc")) %>%
+ collect(),
+ tbl
+ )
+ compare_dplyr_binding(
+ .input %>%
+ transmute(cw = case_when(lgl ~ verses, !false ~ paste(chr, chr))) %>%
+ collect(),
+ tbl
+ )
+
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ cw = case_when(!(!(!(lgl))) ~ factor(chr), TRUE ~ fct)
+ ) %>%
+ collect(),
+ tbl,
+ warning = TRUE
+ )
+})
+
+test_that("coalesce()", {
+ # character
+ df <- tibble(
+ w = c(NA_character_, NA_character_, NA_character_),
+ x = c(NA_character_, NA_character_, "c"),
+ y = c(NA_character_, "b", "c"),
+ z = c("a", "b", "c")
+ )
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ cw = coalesce(w),
+ cz = coalesce(z),
+ cwx = coalesce(w, x),
+ cwxy = coalesce(w, x, y),
+ cwxyz = coalesce(w, x, y, z)
+ ) %>%
+ collect(),
+ df
+ )
+
+ # integer
+ df <- tibble(
+ w = c(NA_integer_, NA_integer_, NA_integer_),
+ x = c(NA_integer_, NA_integer_, 3L),
+ y = c(NA_integer_, 2L, 3L),
+ z = 1:3
+ )
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ cw = coalesce(w),
+ cz = coalesce(z),
+ cwx = coalesce(w, x),
+ cwxy = coalesce(w, x, y),
+ cwxyz = coalesce(w, x, y, z)
+ ) %>%
+ collect(),
+ df
+ )
+
+ # double with NaNs
+ df <- tibble(
+ w = c(NA_real_, NaN, NA_real_),
+ x = c(NA_real_, NaN, 3.3),
+ y = c(NA_real_, 2.2, 3.3),
+ z = c(1.1, 2.2, 3.3)
+ )
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ cw = coalesce(w),
+ cz = coalesce(z),
+ cwx = coalesce(w, x),
+ cwxy = coalesce(w, x, y),
+ cwxyz = coalesce(w, x, y, z)
+ ) %>%
+ collect(),
+ df
+ )
+ # NaNs stay NaN and are not converted to NA in the results
+ # (testing this requires expect_identical())
+ expect_identical(
+ df %>% Table$create() %>% mutate(cwx = coalesce(w, x)) %>% collect(),
+ df %>% mutate(cwx = coalesce(w, x))
+ )
+ expect_identical(
+ df %>% Table$create() %>% transmute(cw = coalesce(w)) %>% collect(),
+ df %>% transmute(cw = coalesce(w))
+ )
+ expect_identical(
+ df %>% Table$create() %>% transmute(cn = coalesce(NaN)) %>% collect(),
+ df %>% transmute(cn = coalesce(NaN))
+ )
+ # singles stay single
+ expect_equal(
+ (df %>%
+ Table$create(schema = schema(
+ w = float32(),
+ x = float32(),
+ y = float32(),
+ z = float32()
+ )) %>%
+ transmute(c = coalesce(w, x, y, z)) %>%
+ compute()
+ )$schema[[1]]$type,
+ float32()
+ )
+ # with R literal values
+ compare_dplyr_binding(
+ .input %>%
+ mutate(
+ c1 = coalesce(4.4),
+ c2 = coalesce(NA_real_),
+ c3 = coalesce(NaN),
+ c4 = coalesce(w, x, y, 5.5),
+ c5 = coalesce(w, x, y, NA_real_),
+ c6 = coalesce(w, x, y, NaN)
+ ) %>%
+ collect(),
+ df
+ )
+
+ # factors
+ # TODO: remove the mutate + warning after ARROW-14167 is merged and Arrow
+ # supports factors in coalesce
+ df <- tibble(
+ x = factor("a", levels = c("a", "z")),
+ y = factor("b", levels = c("a", "b", "c"))
+ )
+ compare_dplyr_binding(
+ .input %>%
+ mutate(c = coalesce(x, y)) %>%
+ collect() %>%
+ # This is a no-op on the Arrow side, but necessary to make the results equal
+ mutate(c = as.character(c)),
+ df,
+ warning = "Dictionaries .* are currently converted to strings .* in coalesce"
+ )
+
+ # no arguments
+ expect_error(
+ nse_funcs$coalesce(),
+ "At least one argument must be supplied to coalesce()",
+ fixed = TRUE
+ )
+})