summaryrefslogtreecommitdiffstats
path: root/src/test/librbd/test_librbd.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
commite6918187568dbd01842d8d1d2c808ce16a894239 (patch)
tree64f88b554b444a49f656b6c656111a145cbbaa28 /src/test/librbd/test_librbd.cc
parentInitial commit. (diff)
downloadceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz
ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/test/librbd/test_librbd.cc')
-rw-r--r--src/test/librbd/test_librbd.cc12647
1 files changed, 12647 insertions, 0 deletions
diff --git a/src/test/librbd/test_librbd.cc b/src/test/librbd/test_librbd.cc
new file mode 100644
index 000000000..b09b67793
--- /dev/null
+++ b/src/test/librbd/test_librbd.cc
@@ -0,0 +1,12647 @@
+// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
+// vim: ts=8 sw=2 smarttab
+/*
+ * Ceph - scalable distributed file system
+ *
+ * Copyright (C) 2011 New Dream Network
+ *
+ * This is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License version 2, as published by the Free Software
+ * Foundation. See file COPYING.
+ *
+ */
+
+#include "include/int_types.h"
+#include "include/rados/librados.h"
+#include "include/rbd_types.h"
+#include "include/rbd/librbd.h"
+#include "include/rbd/librbd.hpp"
+#include "include/event_type.h"
+#include "include/err.h"
+#include "common/ceph_mutex.h"
+#include "json_spirit/json_spirit.h"
+#include "test/librados/crimson_utils.h"
+
+#include "gtest/gtest.h"
+
+#include <errno.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <sys/types.h>
+#include <poll.h>
+#include <time.h>
+#include <unistd.h>
+#include <algorithm>
+#include <chrono>
+#include <condition_variable>
+#include <iostream>
+#include <sstream>
+#include <list>
+#include <set>
+#include <thread>
+#include <vector>
+#include <limits>
+
+#include "test/librados/test.h"
+#include "test/librados/test_cxx.h"
+#include "test/librbd/test_support.h"
+#include "common/event_socket.h"
+#include "include/interval_set.h"
+#include "include/stringify.h"
+
+#include <boost/assign/list_of.hpp>
+#include <boost/scope_exit.hpp>
+
+#ifdef HAVE_EVENTFD
+#include <sys/eventfd.h>
+#endif
+
+#pragma GCC diagnostic ignored "-Wpragmas"
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
+
+using namespace std;
+
+using std::chrono::seconds;
+
+#define ASSERT_PASSED0(x) \
+ do { \
+ bool passed = false; \
+ x(&passed); \
+ ASSERT_TRUE(passed); \
+ } while(0)
+
+#define ASSERT_PASSED(x, args...) \
+ do { \
+ bool passed = false; \
+ x(args, &passed); \
+ ASSERT_TRUE(passed); \
+ } while(0)
+
+void register_test_librbd() {
+}
+
+static int get_features(bool *old_format, uint64_t *features)
+{
+ const char *c = getenv("RBD_FEATURES");
+ if (c && strlen(c) > 0) {
+ stringstream ss;
+ ss << c;
+ ss >> *features;
+ if (ss.fail())
+ return -EINVAL;
+ *old_format = false;
+ cout << "using new format!" << std::endl;
+ } else {
+ *old_format = true;
+ *features = 0;
+ cout << "using old format" << std::endl;
+ }
+
+ return 0;
+}
+
+static int create_image_full(rados_ioctx_t ioctx, const char *name,
+ uint64_t size, int *order, int old_format,
+ uint64_t features)
+{
+ if (old_format) {
+ // ensure old-format tests actually use the old format
+ int r = rados_conf_set(rados_ioctx_get_cluster(ioctx),
+ "rbd_default_format", "1");
+ if (r < 0) {
+ return r;
+ }
+ return rbd_create(ioctx, name, size, order);
+ } else if ((features & RBD_FEATURE_STRIPINGV2) != 0) {
+ uint64_t stripe_unit = IMAGE_STRIPE_UNIT;
+ if (*order) {
+ // use a conservative stripe_unit for non default order
+ stripe_unit = (1ull << (*order-1));
+ }
+
+ printf("creating image with stripe unit: %" PRIu64 ", "
+ "stripe count: %" PRIu64 "\n",
+ stripe_unit, IMAGE_STRIPE_COUNT);
+ return rbd_create3(ioctx, name, size, features, order,
+ stripe_unit, IMAGE_STRIPE_COUNT);
+ } else {
+ return rbd_create2(ioctx, name, size, features, order);
+ }
+}
+
+static int clone_image(rados_ioctx_t p_ioctx,
+ rbd_image_t p_image, const char *p_name,
+ const char *p_snap_name, rados_ioctx_t c_ioctx,
+ const char *c_name, uint64_t features, int *c_order)
+{
+ uint64_t stripe_unit, stripe_count;
+
+ int r;
+ r = rbd_get_stripe_unit(p_image, &stripe_unit);
+ if (r != 0) {
+ return r;
+ }
+
+ r = rbd_get_stripe_count(p_image, &stripe_count);
+ if (r != 0) {
+ return r;
+ }
+
+ return rbd_clone2(p_ioctx, p_name, p_snap_name, c_ioctx,
+ c_name, features, c_order, stripe_unit, stripe_count);
+}
+
+
+static int create_image(rados_ioctx_t ioctx, const char *name,
+ uint64_t size, int *order)
+{
+ bool old_format;
+ uint64_t features;
+
+ int r = get_features(&old_format, &features);
+ if (r < 0)
+ return r;
+ return create_image_full(ioctx, name, size, order, old_format, features);
+}
+
+static int create_image_pp(librbd::RBD &rbd,
+ librados::IoCtx &ioctx,
+ const char *name,
+ uint64_t size, int *order) {
+ bool old_format;
+ uint64_t features;
+ int r = get_features(&old_format, &features);
+ if (r < 0)
+ return r;
+ if (old_format) {
+ librados::Rados rados(ioctx);
+ int r = rados.conf_set("rbd_default_format", "1");
+ if (r < 0) {
+ return r;
+ }
+ return rbd.create(ioctx, name, size, order);
+ } else {
+ return rbd.create2(ioctx, name, size, features, order);
+ }
+}
+
+
+
+void simple_write_cb(rbd_completion_t cb, void *arg)
+{
+ printf("write completion cb called!\n");
+}
+
+void simple_read_cb(rbd_completion_t cb, void *arg)
+{
+ printf("read completion cb called!\n");
+}
+
+void aio_write_test_data_and_poll(rbd_image_t image, int fd, const char *test_data,
+ uint64_t off, size_t len, uint32_t iohint, bool *passed)
+{
+ rbd_completion_t comp;
+ uint64_t data = 0x123;
+ rbd_aio_create_completion((void*)&data, (rbd_callback_t) simple_write_cb, &comp);
+ printf("created completion\n");
+ printf("started write\n");
+ if (iohint)
+ rbd_aio_write2(image, off, len, test_data, comp, iohint);
+ else
+ rbd_aio_write(image, off, len, test_data, comp);
+
+ struct pollfd pfd;
+ pfd.fd = fd;
+ pfd.events = POLLIN;
+
+ ASSERT_EQ(1, poll(&pfd, 1, -1));
+ ASSERT_TRUE(pfd.revents & POLLIN);
+
+ rbd_completion_t comps[1];
+ ASSERT_EQ(1, rbd_poll_io_events(image, comps, 1));
+ uint64_t count;
+ ASSERT_EQ(static_cast<ssize_t>(sizeof(count)),
+ read(fd, &count, sizeof(count)));
+ int r = rbd_aio_get_return_value(comps[0]);
+ ASSERT_TRUE(rbd_aio_is_complete(comps[0]));
+ ASSERT_TRUE(*(uint64_t*)rbd_aio_get_arg(comps[0]) == data);
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(0, r);
+ printf("finished write\n");
+ rbd_aio_release(comps[0]);
+ *passed = true;
+}
+
+void aio_write_test_data(rbd_image_t image, const char *test_data, uint64_t off, size_t len, uint32_t iohint, bool *passed)
+{
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp);
+ printf("created completion\n");
+ if (iohint)
+ rbd_aio_write2(image, off, len, test_data, comp, iohint);
+ else
+ rbd_aio_write(image, off, len, test_data, comp);
+ printf("started write\n");
+ rbd_aio_wait_for_complete(comp);
+ int r = rbd_aio_get_return_value(comp);
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(0, r);
+ printf("finished write\n");
+ rbd_aio_release(comp);
+ *passed = true;
+}
+
+void write_test_data(rbd_image_t image, const char *test_data, uint64_t off, size_t len, uint32_t iohint, bool *passed)
+{
+ ssize_t written;
+ if (iohint)
+ written = rbd_write2(image, off, len, test_data, iohint);
+ else
+ written = rbd_write(image, off, len, test_data);
+ printf("wrote: %d\n", (int) written);
+ ASSERT_EQ(len, static_cast<size_t>(written));
+ *passed = true;
+}
+
+void aio_discard_test_data(rbd_image_t image, uint64_t off, uint64_t len, bool *passed)
+{
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp);
+ rbd_aio_discard(image, off, len, comp);
+ rbd_aio_wait_for_complete(comp);
+ int r = rbd_aio_get_return_value(comp);
+ ASSERT_EQ(0, r);
+ printf("aio discard: %d~%d = %d\n", (int)off, (int)len, (int)r);
+ rbd_aio_release(comp);
+ *passed = true;
+}
+
+void discard_test_data(rbd_image_t image, uint64_t off, size_t len, bool *passed)
+{
+ ssize_t written;
+ written = rbd_discard(image, off, len);
+ printf("discard: %d~%d = %d\n", (int)off, (int)len, (int)written);
+ ASSERT_EQ(len, static_cast<size_t>(written));
+ *passed = true;
+}
+
+void aio_read_test_data_and_poll(rbd_image_t image, int fd, const char *expected,
+ uint64_t off, size_t len, uint32_t iohint, bool *passed)
+{
+ rbd_completion_t comp;
+ char *result = (char *)malloc(len + 1);
+
+ ASSERT_NE(static_cast<char *>(NULL), result);
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ printf("created completion\n");
+ printf("started read\n");
+ if (iohint)
+ rbd_aio_read2(image, off, len, result, comp, iohint);
+ else
+ rbd_aio_read(image, off, len, result, comp);
+
+ struct pollfd pfd;
+ pfd.fd = fd;
+ pfd.events = POLLIN;
+
+ ASSERT_EQ(1, poll(&pfd, 1, -1));
+ ASSERT_TRUE(pfd.revents & POLLIN);
+
+ rbd_completion_t comps[1];
+ ASSERT_EQ(1, rbd_poll_io_events(image, comps, 1));
+ uint64_t count;
+ ASSERT_EQ(static_cast<ssize_t>(sizeof(count)),
+ read(fd, &count, sizeof(count)));
+
+ int r = rbd_aio_get_return_value(comps[0]);
+ ASSERT_TRUE(rbd_aio_is_complete(comps[0]));
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(len, static_cast<size_t>(r));
+ rbd_aio_release(comps[0]);
+ if (memcmp(result, expected, len)) {
+ printf("read: %s\nexpected: %s\n", result, expected);
+ ASSERT_EQ(0, memcmp(result, expected, len));
+ }
+ free(result);
+ *passed = true;
+}
+
+void aio_read_test_data(rbd_image_t image, const char *expected, uint64_t off, size_t len, uint32_t iohint, bool *passed)
+{
+ rbd_completion_t comp;
+ char *result = (char *)malloc(len + 1);
+
+ ASSERT_NE(static_cast<char *>(NULL), result);
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ printf("created completion\n");
+ if (iohint)
+ rbd_aio_read2(image, off, len, result, comp, iohint);
+ else
+ rbd_aio_read(image, off, len, result, comp);
+ printf("started read\n");
+ rbd_aio_wait_for_complete(comp);
+ int r = rbd_aio_get_return_value(comp);
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(len, static_cast<size_t>(r));
+ rbd_aio_release(comp);
+ if (memcmp(result, expected, len)) {
+ printf("read: %s\nexpected: %s\n", result, expected);
+ ASSERT_EQ(0, memcmp(result, expected, len));
+ }
+ free(result);
+ *passed = true;
+}
+
+void read_test_data(rbd_image_t image, const char *expected, uint64_t off, size_t len, uint32_t iohint, bool *passed)
+{
+ ssize_t read;
+ char *result = (char *)malloc(len + 1);
+
+ ASSERT_NE(static_cast<char *>(NULL), result);
+ if (iohint)
+ read = rbd_read2(image, off, len, result, iohint);
+ else
+ read = rbd_read(image, off, len, result);
+ printf("read: %d\n", (int) read);
+ ASSERT_EQ(len, static_cast<size_t>(read));
+ result[len] = '\0';
+ if (memcmp(result, expected, len)) {
+ printf("read: %s\nexpected: %s\n", result, expected);
+ ASSERT_EQ(0, memcmp(result, expected, len));
+ }
+ free(result);
+ *passed = true;
+}
+
+void aio_writesame_test_data(rbd_image_t image, const char *test_data, uint64_t off, uint64_t len,
+ uint64_t data_len, uint32_t iohint, bool *passed)
+{
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp);
+ printf("created completion\n");
+ int r;
+ r = rbd_aio_writesame(image, off, len, test_data, data_len, comp, iohint);
+ printf("started writesame\n");
+ if (len % data_len) {
+ ASSERT_EQ(-EINVAL, r);
+ printf("expected fail, finished writesame\n");
+ rbd_aio_release(comp);
+ *passed = true;
+ return;
+ }
+
+ rbd_aio_wait_for_complete(comp);
+ r = rbd_aio_get_return_value(comp);
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(0, r);
+ printf("finished writesame\n");
+ rbd_aio_release(comp);
+
+ //verify data
+ printf("to verify the data\n");
+ ssize_t read;
+ char *result = (char *)malloc(data_len+ 1);
+ ASSERT_NE(static_cast<char *>(NULL), result);
+ uint64_t left = len;
+ while (left > 0) {
+ read = rbd_read(image, off, data_len, result);
+ ASSERT_EQ(data_len, static_cast<size_t>(read));
+ result[data_len] = '\0';
+ if (memcmp(result, test_data, data_len)) {
+ printf("read: %d ~ %d\n", (int) off, (int) read);
+ printf("read: %s\nexpected: %s\n", result, test_data);
+ ASSERT_EQ(0, memcmp(result, test_data, data_len));
+ }
+ off += data_len;
+ left -= data_len;
+ }
+ ASSERT_EQ(0U, left);
+ free(result);
+ printf("verified\n");
+
+ *passed = true;
+}
+
+void writesame_test_data(rbd_image_t image, const char *test_data, uint64_t off, uint64_t len,
+ uint64_t data_len, uint32_t iohint, bool *passed)
+{
+ ssize_t written;
+ written = rbd_writesame(image, off, len, test_data, data_len, iohint);
+ if (len % data_len) {
+ ASSERT_EQ(-EINVAL, written);
+ printf("expected fail, finished writesame\n");
+ *passed = true;
+ return;
+ }
+ ASSERT_EQ(len, static_cast<size_t>(written));
+ printf("wrote: %d\n", (int) written);
+
+ //verify data
+ printf("to verify the data\n");
+ ssize_t read;
+ char *result = (char *)malloc(data_len+ 1);
+ ASSERT_NE(static_cast<char *>(NULL), result);
+ uint64_t left = len;
+ while (left > 0) {
+ read = rbd_read(image, off, data_len, result);
+ ASSERT_EQ(data_len, static_cast<size_t>(read));
+ result[data_len] = '\0';
+ if (memcmp(result, test_data, data_len)) {
+ printf("read: %d ~ %d\n", (int) off, (int) read);
+ printf("read: %s\nexpected: %s\n", result, test_data);
+ ASSERT_EQ(0, memcmp(result, test_data, data_len));
+ }
+ off += data_len;
+ left -= data_len;
+ }
+ ASSERT_EQ(0U, left);
+ free(result);
+ printf("verified\n");
+
+ *passed = true;
+}
+
+void aio_compare_and_write_test_data(rbd_image_t image, const char *cmp_data,
+ const char *test_data, uint64_t off,
+ size_t len, uint32_t iohint, bool *passed)
+{
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_write_cb, &comp);
+ printf("created completion\n");
+
+ uint64_t mismatch_offset;
+ rbd_aio_compare_and_write(image, off, len, cmp_data, test_data, comp, &mismatch_offset, iohint);
+ printf("started aio compare and write\n");
+ rbd_aio_wait_for_complete(comp);
+ int r = rbd_aio_get_return_value(comp);
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(0, r);
+ printf("finished aio compare and write\n");
+ rbd_aio_release(comp);
+ *passed = true;
+}
+
+void compare_and_write_test_data(rbd_image_t image, const char *cmp_data,
+ const char *test_data, uint64_t off, size_t len,
+ uint64_t *mismatch_off, uint32_t iohint, bool *passed)
+{
+ printf("start compare and write\n");
+ ssize_t written;
+ written = rbd_compare_and_write(image, off, len, cmp_data, test_data, mismatch_off, iohint);
+ printf("compare and wrote: %d\n", (int) written);
+ ASSERT_EQ(len, static_cast<size_t>(written));
+ *passed = true;
+}
+
+class TestLibRBD : public ::testing::Test {
+public:
+
+ TestLibRBD() : m_pool_number() {
+ }
+
+ static void SetUpTestCase() {
+ _pool_names.clear();
+ _unique_pool_names.clear();
+ _image_number = 0;
+ ASSERT_EQ("", connect_cluster(&_cluster));
+ ASSERT_EQ("", connect_cluster_pp(_rados));
+
+ create_optional_data_pool();
+ }
+
+ static void TearDownTestCase() {
+ rados_shutdown(_cluster);
+ _rados.wait_for_latest_osdmap();
+ _pool_names.insert(_pool_names.end(), _unique_pool_names.begin(),
+ _unique_pool_names.end());
+ for (size_t i = 1; i < _pool_names.size(); ++i) {
+ ASSERT_EQ(0, _rados.pool_delete(_pool_names[i].c_str()));
+ }
+ if (!_pool_names.empty()) {
+ ASSERT_EQ(0, destroy_one_pool_pp(_pool_names[0], _rados));
+ }
+ }
+
+ void SetUp() override {
+ ASSERT_NE("", m_pool_name = create_pool());
+ }
+
+ bool is_skip_partial_discard_enabled() {
+ std::string value;
+ EXPECT_EQ(0, _rados.conf_get("rbd_skip_partial_discard", value));
+ return value == "true";
+ }
+
+ bool is_skip_partial_discard_enabled(rbd_image_t image) {
+ if (is_skip_partial_discard_enabled()) {
+ rbd_flush(image);
+ uint64_t features;
+ EXPECT_EQ(0, rbd_get_features(image, &features));
+ return !(features & RBD_FEATURE_DIRTY_CACHE);
+ }
+ return false;
+ }
+
+ bool is_skip_partial_discard_enabled(librbd::Image& image) {
+ if (is_skip_partial_discard_enabled()) {
+ image.flush();
+ uint64_t features;
+ EXPECT_EQ(0, image.features(&features));
+ return !(features & RBD_FEATURE_DIRTY_CACHE);
+ }
+ return false;
+ }
+
+ void validate_object_map(rbd_image_t image, bool *passed) {
+ uint64_t flags;
+ ASSERT_EQ(0, rbd_get_flags(image, &flags));
+ *passed = ((flags & RBD_FLAG_OBJECT_MAP_INVALID) == 0);
+ }
+
+ void validate_object_map(librbd::Image &image, bool *passed) {
+ uint64_t flags;
+ ASSERT_EQ(0, image.get_flags(&flags));
+ *passed = ((flags & RBD_FLAG_OBJECT_MAP_INVALID) == 0);
+ }
+
+ static std::string get_temp_image_name() {
+ ++_image_number;
+ return "image" + stringify(_image_number);
+ }
+
+ static void create_optional_data_pool() {
+ bool created = false;
+ std::string data_pool;
+ ASSERT_EQ(0, create_image_data_pool(_rados, data_pool, &created));
+ if (!data_pool.empty()) {
+ printf("using image data pool: %s\n", data_pool.c_str());
+ if (created) {
+ _unique_pool_names.push_back(data_pool);
+ }
+ }
+ }
+
+ std::string create_pool(bool unique = false) {
+ librados::Rados rados;
+ std::string pool_name;
+ if (unique) {
+ pool_name = get_temp_pool_name("test-librbd-");
+ EXPECT_EQ("", create_one_pool_pp(pool_name, rados));
+ _unique_pool_names.push_back(pool_name);
+ } else if (m_pool_number < _pool_names.size()) {
+ pool_name = _pool_names[m_pool_number];
+ } else {
+ pool_name = get_temp_pool_name("test-librbd-");
+ EXPECT_EQ("", create_one_pool_pp(pool_name, rados));
+ _pool_names.push_back(pool_name);
+ }
+ ++m_pool_number;
+ return pool_name;
+ }
+
+ void test_io(rbd_image_t image) {
+ bool skip_discard = is_skip_partial_discard_enabled(image);
+
+ char test_data[TEST_IO_SIZE + 1];
+ char zero_data[TEST_IO_SIZE + 1];
+ char mismatch_data[TEST_IO_SIZE + 1];
+ int i;
+ uint64_t mismatch_offset;
+
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ test_data[TEST_IO_SIZE] = '\0';
+ memset(zero_data, 0, sizeof(zero_data));
+ memset(mismatch_data, 9, sizeof(mismatch_data));
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_write_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, 0);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(compare_and_write_test_data, image, test_data, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, &mismatch_offset, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_compare_and_write_test_data, image, test_data, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_read_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, 0);
+
+ // discard 2nd, 4th sections.
+ ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE);
+ ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE);
+
+ ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2,
+ TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE*3, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4,
+ TEST_IO_SIZE, 0);
+
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ } else {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ }
+ }
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE,
+ 0);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE,
+ 0);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data,
+ TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data,
+ TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ } else {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ }
+ }
+
+ rbd_image_info_t info;
+ rbd_completion_t comp;
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ // can't read or write starting past end
+ ASSERT_EQ(-EINVAL, rbd_write(image, info.size, 1, test_data));
+ ASSERT_EQ(-EINVAL, rbd_read(image, info.size, 1, test_data));
+ // reading through end returns amount up to end
+ ASSERT_EQ(10, rbd_read(image, info.size - 10, 100, test_data));
+ // writing through end returns amount up to end
+ ASSERT_EQ(10, rbd_write(image, info.size - 10, 100, test_data));
+
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ ASSERT_EQ(0, rbd_aio_write(image, info.size, 1, test_data, comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ ASSERT_EQ(0, rbd_aio_read(image, info.size, 1, test_data, comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+
+ ASSERT_PASSED(write_test_data, image, zero_data, 0, TEST_IO_SIZE,
+ LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ mismatch_offset = 123;
+ ASSERT_EQ(-EILSEQ, rbd_compare_and_write(image, 0, TEST_IO_SIZE,
+ mismatch_data, mismatch_data, &mismatch_offset, 0));
+ ASSERT_EQ(0U, mismatch_offset);
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ mismatch_offset = 123;
+ ASSERT_EQ(0, rbd_aio_compare_and_write(image, 0, TEST_IO_SIZE, mismatch_data,
+ mismatch_data, comp, &mismatch_offset, 0));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EILSEQ, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(0U, mismatch_offset);
+ rbd_aio_release(comp);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ static std::vector<std::string> _pool_names;
+ static std::vector<std::string> _unique_pool_names;
+ static rados_t _cluster;
+ static librados::Rados _rados;
+ static uint64_t _image_number;
+
+ std::string m_pool_name;
+ uint32_t m_pool_number;
+
+};
+
+std::vector<std::string> TestLibRBD::_pool_names;
+std::vector<std::string> TestLibRBD::_unique_pool_names;
+rados_t TestLibRBD::_cluster;
+librados::Rados TestLibRBD::_rados;
+uint64_t TestLibRBD::_image_number = 0;
+
+TEST_F(TestLibRBD, CreateAndStat)
+{
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+
+ rbd_image_info_t info;
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ printf("image has size %llu and order %d\n", (unsigned long long) info.size, info.order);
+ ASSERT_EQ(info.size, size);
+ ASSERT_EQ(info.order, order);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, CreateWithSameDataPool)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+
+ rbd_image_t image;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ bool old_format;
+ uint64_t features;
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ rbd_image_options_t image_options;
+ rbd_image_options_create(&image_options);
+ BOOST_SCOPE_EXIT( (&image_options) ) {
+ rbd_image_options_destroy(image_options);
+ } BOOST_SCOPE_EXIT_END;
+
+ ASSERT_EQ(0, rbd_image_options_set_uint64(image_options,
+ RBD_IMAGE_OPTION_FEATURES,
+ features));
+ ASSERT_EQ(0, rbd_image_options_set_string(image_options,
+ RBD_IMAGE_OPTION_DATA_POOL,
+ m_pool_name.c_str()));
+
+ ASSERT_EQ(0, rbd_create4(ioctx, name.c_str(), size, image_options));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, CreateAndStatPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::image_info_t info;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+ ASSERT_EQ(0, image.stat(info, sizeof(info)));
+ ASSERT_EQ(info.size, size);
+ ASSERT_EQ(info.order, order);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, GetId)
+{
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), 0, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ char id[4096];
+ if (!is_feature_enabled(0)) {
+ // V1 image
+ ASSERT_EQ(-EINVAL, rbd_get_id(image, id, sizeof(id)));
+ } else {
+ ASSERT_EQ(-ERANGE, rbd_get_id(image, id, 0));
+ ASSERT_EQ(0, rbd_get_id(image, id, sizeof(id)));
+ ASSERT_LT(0U, strlen(id));
+
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_open_by_id(ioctx, id, &image, NULL));
+ size_t name_len = 0;
+ ASSERT_EQ(-ERANGE, rbd_get_name(image, NULL, &name_len));
+ ASSERT_EQ(name_len, name.size() + 1);
+ char image_name[name_len];
+ ASSERT_EQ(0, rbd_get_name(image, image_name, &name_len));
+ ASSERT_STREQ(name.c_str(), image_name);
+ }
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, GetIdPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+
+ std::string id;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), 0, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+ if (!is_feature_enabled(0)) {
+ // V1 image
+ ASSERT_EQ(-EINVAL, image.get_id(&id));
+ } else {
+ ASSERT_EQ(0, image.get_id(&id));
+ ASSERT_LT(0U, id.size());
+
+ ASSERT_EQ(0, image.close());
+ ASSERT_EQ(0, rbd.open_by_id(ioctx, image, id.c_str(), NULL));
+ std::string image_name;
+ ASSERT_EQ(0, image.get_name(&image_name));
+ ASSERT_EQ(name, image_name);
+ }
+}
+
+TEST_F(TestLibRBD, GetBlockNamePrefix)
+{
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), 0, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ char prefix[4096];
+ ASSERT_EQ(-ERANGE, rbd_get_block_name_prefix(image, prefix, 0));
+ ASSERT_EQ(0, rbd_get_block_name_prefix(image, prefix, sizeof(prefix)));
+ ASSERT_LT(0U, strlen(prefix));
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, GetBlockNamePrefixPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), 0, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+ ASSERT_LT(0U, image.get_block_name_prefix().size());
+}
+
+TEST_F(TestLibRBD, TestGetCreateTimestamp)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), 0, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ struct timespec timestamp;
+ ASSERT_EQ(0, rbd_get_create_timestamp(image, &timestamp));
+ ASSERT_LT(0, timestamp.tv_sec);
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, GetCreateTimestampPP)
+{
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), 0, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ struct timespec timestamp;
+ ASSERT_EQ(0, image.get_create_timestamp(&timestamp));
+ ASSERT_LT(0, timestamp.tv_sec);
+}
+
+TEST_F(TestLibRBD, OpenAio)
+{
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+
+ rbd_image_info_t info;
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+
+ rbd_completion_t open_comp;
+ ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &open_comp));
+ ASSERT_EQ(0, rbd_aio_open(ioctx, name.c_str(), &image, NULL, open_comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(open_comp));
+ ASSERT_EQ(1, rbd_aio_is_complete(open_comp));
+ ASSERT_EQ(0, rbd_aio_get_return_value(open_comp));
+ rbd_aio_release(open_comp);
+
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ printf("image has size %llu and order %d\n", (unsigned long long) info.size, info.order);
+ ASSERT_EQ(info.size, size);
+ ASSERT_EQ(info.order, order);
+
+ rbd_completion_t close_comp;
+ ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &close_comp));
+ ASSERT_EQ(0, rbd_aio_close(image, close_comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(close_comp));
+ ASSERT_EQ(1, rbd_aio_is_complete(close_comp));
+ ASSERT_EQ(0, rbd_aio_get_return_value(close_comp));
+ rbd_aio_release(close_comp);
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, OpenAioFail)
+{
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+
+ std::string name = get_temp_image_name();
+ rbd_image_t image;
+ rbd_completion_t open_comp;
+ ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &open_comp));
+ ASSERT_EQ(0, rbd_aio_open(ioctx, name.c_str(), &image, NULL, open_comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(open_comp));
+ ASSERT_EQ(1, rbd_aio_is_complete(open_comp));
+ ASSERT_EQ(-ENOENT, rbd_aio_get_return_value(open_comp));
+ rbd_aio_release(open_comp);
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, OpenAioPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::image_info_t info;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::RBD::AioCompletion *open_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, rbd.aio_open(ioctx, image, name.c_str(), NULL, open_comp));
+ ASSERT_EQ(0, open_comp->wait_for_complete());
+ ASSERT_EQ(1, open_comp->is_complete());
+ ASSERT_EQ(0, open_comp->get_return_value());
+ open_comp->release();
+
+ ASSERT_EQ(0, image.stat(info, sizeof(info)));
+ ASSERT_EQ(info.size, size);
+ ASSERT_EQ(info.order, order);
+
+ // reopen
+ open_comp = new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, rbd.aio_open(ioctx, image, name.c_str(), NULL, open_comp));
+ ASSERT_EQ(0, open_comp->wait_for_complete());
+ ASSERT_EQ(1, open_comp->is_complete());
+ ASSERT_EQ(0, open_comp->get_return_value());
+ open_comp->release();
+
+ // close
+ librbd::RBD::AioCompletion *close_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_close(close_comp));
+ ASSERT_EQ(0, close_comp->wait_for_complete());
+ ASSERT_EQ(1, close_comp->is_complete());
+ ASSERT_EQ(0, close_comp->get_return_value());
+ close_comp->release();
+
+ // close closed image
+ close_comp = new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(-EINVAL, image.aio_close(close_comp));
+ close_comp->release();
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, OpenAioFailPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ std::string name = get_temp_image_name();
+
+ librbd::RBD::AioCompletion *open_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, rbd.aio_open(ioctx, image, name.c_str(), NULL, open_comp));
+ ASSERT_EQ(0, open_comp->wait_for_complete());
+ ASSERT_EQ(1, open_comp->is_complete());
+ ASSERT_EQ(-ENOENT, open_comp->get_return_value());
+ open_comp->release();
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, ResizeAndStat)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_info_t info;
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_resize(image, size * 4));
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ ASSERT_EQ(info.size, size * 4);
+
+ ASSERT_EQ(0, rbd_resize(image, size / 2));
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ ASSERT_EQ(info.size, size / 2);
+
+ // downsizing without allowing shrink should fail
+ // and image size should not change
+ ASSERT_EQ(-EINVAL, rbd_resize2(image, size / 4, false, NULL, NULL));
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ ASSERT_EQ(info.size, size / 2);
+
+ ASSERT_EQ(0, rbd_resize2(image, size / 4, true, NULL, NULL));
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ ASSERT_EQ(info.size, size / 4);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, ResizeAndStatPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::image_info_t info;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image.resize(size * 4));
+ ASSERT_EQ(0, image.stat(info, sizeof(info)));
+ ASSERT_EQ(info.size, size * 4);
+
+ ASSERT_EQ(0, image.resize(size / 2));
+ ASSERT_EQ(0, image.stat(info, sizeof(info)));
+ ASSERT_EQ(info.size, size / 2);
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, UpdateWatchAndResize)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ struct Watcher {
+ rbd_image_t &m_image;
+ std::mutex m_lock;
+ std::condition_variable m_cond;
+ size_t m_size = 0;
+ static void cb(void *arg) {
+ Watcher *watcher = static_cast<Watcher *>(arg);
+ watcher->handle_notify();
+ }
+ explicit Watcher(rbd_image_t &image) : m_image(image) {}
+ void handle_notify() {
+ rbd_image_info_t info;
+ ASSERT_EQ(0, rbd_stat(m_image, &info, sizeof(info)));
+ std::lock_guard<std::mutex> locker(m_lock);
+ m_size = info.size;
+ m_cond.notify_one();
+ }
+ void wait_for_size(size_t size) {
+ std::unique_lock<std::mutex> locker(m_lock);
+ ASSERT_TRUE(m_cond.wait_for(locker, seconds(5),
+ [size, this] {
+ return this->m_size == size;}));
+ }
+ } watcher(image);
+ uint64_t handle;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_update_watch(image, &handle, Watcher::cb, &watcher));
+
+ ASSERT_EQ(0, rbd_resize(image, size * 4));
+ watcher.wait_for_size(size * 4);
+
+ ASSERT_EQ(0, rbd_resize(image, size / 2));
+ watcher.wait_for_size(size / 2);
+
+ ASSERT_EQ(0, rbd_update_unwatch(image, handle));
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, UpdateWatchAndResizePP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ struct Watcher : public librbd::UpdateWatchCtx {
+ explicit Watcher(librbd::Image &image) : m_image(image) {
+ }
+ void handle_notify() override {
+ librbd::image_info_t info;
+ ASSERT_EQ(0, m_image.stat(info, sizeof(info)));
+ std::lock_guard<std::mutex> locker(m_lock);
+ m_size = info.size;
+ m_cond.notify_one();
+ }
+ void wait_for_size(size_t size) {
+ std::unique_lock<std::mutex> locker(m_lock);
+ ASSERT_TRUE(m_cond.wait_for(locker, seconds(5),
+ [size, this] {
+ return this->m_size == size;}));
+ }
+ librbd::Image &m_image;
+ std::mutex m_lock;
+ std::condition_variable m_cond;
+ size_t m_size = 0;
+ } watcher(image);
+ uint64_t handle;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image.update_watch(&watcher, &handle));
+
+ ASSERT_EQ(0, image.resize(size * 4));
+ watcher.wait_for_size(size * 4);
+
+ ASSERT_EQ(0, image.resize(size / 2));
+ watcher.wait_for_size(size / 2);
+
+ ASSERT_EQ(0, image.update_unwatch(handle));
+ }
+
+ ioctx.close();
+}
+
+int test_ls(rados_ioctx_t io_ctx, size_t num_expected, ...)
+{
+ int num_images, i;
+ char *names, *cur_name;
+ va_list ap;
+ size_t max_size = 1024;
+
+ names = (char *) malloc(sizeof(char) * 1024);
+ int len = rbd_list(io_ctx, names, &max_size);
+
+ std::set<std::string> image_names;
+ for (i = 0, num_images = 0, cur_name = names; cur_name < names + len; i++) {
+ printf("image: %s\n", cur_name);
+ image_names.insert(cur_name);
+ cur_name += strlen(cur_name) + 1;
+ num_images++;
+ }
+ free(names);
+
+ va_start(ap, num_expected);
+ for (i = num_expected; i > 0; i--) {
+ char *expected = va_arg(ap, char *);
+ printf("expected = %s\n", expected);
+ std::set<std::string>::iterator it = image_names.find(expected);
+ if (it != image_names.end()) {
+ printf("found %s\n", expected);
+ image_names.erase(it);
+ printf("erased %s\n", expected);
+ } else {
+ ADD_FAILURE() << "Unable to find image " << expected;
+ va_end(ap);
+ return -ENOENT;
+ }
+ }
+ va_end(ap);
+
+ if (!image_names.empty()) {
+ ADD_FAILURE() << "Unexpected images discovered";
+ return -EINVAL;
+ }
+ return num_images;
+}
+
+TEST_F(TestLibRBD, TestCreateLsDelete)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, create_pool(true).c_str(), &ioctx);
+
+ int order = 0;
+ std::string name = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, test_ls(ioctx, 0));
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(1, test_ls(ioctx, 1, name.c_str()));
+ ASSERT_EQ(0, create_image(ioctx, name2.c_str(), size, &order));
+ ASSERT_EQ(2, test_ls(ioctx, 2, name.c_str(), name2.c_str()));
+ ASSERT_EQ(0, rbd_remove(ioctx, name.c_str()));
+ ASSERT_EQ(1, test_ls(ioctx, 1, name2.c_str()));
+
+ ASSERT_EQ(-ENOENT, rbd_remove(ioctx, name.c_str()));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+int test_ls_pp(librbd::RBD& rbd, librados::IoCtx& io_ctx, size_t num_expected, ...)
+{
+ int r;
+ size_t i;
+ va_list ap;
+ vector<string> names;
+ r = rbd.list(io_ctx, names);
+ if (r == -ENOENT)
+ r = 0;
+ EXPECT_TRUE(r >= 0);
+ cout << "num images is: " << names.size() << std::endl
+ << "expected: " << num_expected << std::endl;
+ int num = names.size();
+
+ for (i = 0; i < names.size(); i++) {
+ cout << "image: " << names[i] << std::endl;
+ }
+
+ va_start(ap, num_expected);
+ for (i = num_expected; i > 0; i--) {
+ char *expected = va_arg(ap, char *);
+ cout << "expected = " << expected << std::endl;
+ vector<string>::iterator listed_name = find(names.begin(), names.end(), string(expected));
+ if (listed_name == names.end()) {
+ ADD_FAILURE() << "Unable to find image " << expected;
+ va_end(ap);
+ return -ENOENT;
+ }
+ names.erase(listed_name);
+ }
+ va_end(ap);
+
+ if (!names.empty()) {
+ ADD_FAILURE() << "Unexpected images discovered";
+ return -EINVAL;
+ }
+ return num;
+}
+
+TEST_F(TestLibRBD, TestCreateLsDeletePP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(create_pool(true).c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(1, test_ls_pp(rbd, ioctx, 1, name.c_str()));
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name2.c_str(), size, &order));
+ ASSERT_EQ(2, test_ls_pp(rbd, ioctx, 2, name.c_str(), name2.c_str()));
+ ASSERT_EQ(0, rbd.remove(ioctx, name.c_str()));
+ ASSERT_EQ(1, test_ls_pp(rbd, ioctx, 1, name2.c_str()));
+ }
+
+ ioctx.close();
+}
+
+
+static int print_progress_percent(uint64_t offset, uint64_t src_size,
+ void *data)
+{
+ float percent = ((float)offset * 100) / src_size;
+ printf("%3.2f%% done\n", percent);
+ return 0;
+}
+
+TEST_F(TestLibRBD, TestCopy)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, create_pool(true).c_str(), &ioctx);
+
+ rbd_image_t image;
+ rbd_image_t image2;
+ rbd_image_t image3;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+ std::string name3 = get_temp_image_name();
+
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(1, test_ls(ioctx, 1, name.c_str()));
+
+ size_t sum_key_len = 0;
+ size_t sum_value_len = 0;
+ std::string key;
+ std::string val;
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_set(image, key.c_str(), val.c_str()));
+
+ sum_key_len += (key.size() + 1);
+ sum_value_len += (val.size() + 1);
+ }
+
+ char keys[1024];
+ char vals[1024];
+ size_t keys_len = sizeof(keys);
+ size_t vals_len = sizeof(vals);
+
+ char value[1024];
+ size_t value_len = sizeof(value);
+
+ ASSERT_EQ(0, rbd_copy(image, ioctx, name2.c_str()));
+ ASSERT_EQ(2, test_ls(ioctx, 2, name.c_str(), name2.c_str()));
+ ASSERT_EQ(0, rbd_open(ioctx, name2.c_str(), &image2, NULL));
+ ASSERT_EQ(0, rbd_metadata_list(image2, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, sum_key_len);
+ ASSERT_EQ(vals_len, sum_value_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(image2, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+
+ ASSERT_EQ(0, rbd_copy_with_progress(image, ioctx, name3.c_str(),
+ print_progress_percent, NULL));
+ ASSERT_EQ(3, test_ls(ioctx, 3, name.c_str(), name2.c_str(), name3.c_str()));
+
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ ASSERT_EQ(0, rbd_open(ioctx, name3.c_str(), &image3, NULL));
+ ASSERT_EQ(0, rbd_metadata_list(image3, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, sum_key_len);
+ ASSERT_EQ(vals_len, sum_value_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(image3, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_close(image2));
+ ASSERT_EQ(0, rbd_close(image3));
+ rados_ioctx_destroy(ioctx);
+}
+
+class PrintProgress : public librbd::ProgressContext
+{
+public:
+ int update_progress(uint64_t offset, uint64_t src_size) override
+ {
+ float percent = ((float)offset * 100) / src_size;
+ printf("%3.2f%% done\n", percent);
+ return 0;
+ }
+};
+
+TEST_F(TestLibRBD, TestCopyPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(create_pool(true).c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ librbd::Image image2;
+ librbd::Image image3;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+ std::string name3 = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ PrintProgress pp;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string key;
+ std::string val;
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, image.metadata_set(key, val));
+ }
+
+ ASSERT_EQ(1, test_ls_pp(rbd, ioctx, 1, name.c_str()));
+ ASSERT_EQ(0, image.copy(ioctx, name2.c_str()));
+ ASSERT_EQ(2, test_ls_pp(rbd, ioctx, 2, name.c_str(), name2.c_str()));
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name2.c_str(), NULL));
+
+ map<string, bufferlist> pairs;
+ std::string value;
+ ASSERT_EQ(0, image2.metadata_list("", 70, &pairs));
+ ASSERT_EQ(70U, pairs.size());
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, image2.metadata_get(key.c_str(), &value));
+ ASSERT_STREQ(val.c_str(), value.c_str());
+ }
+
+ ASSERT_EQ(0, image.copy_with_progress(ioctx, name3.c_str(), pp));
+ ASSERT_EQ(3, test_ls_pp(rbd, ioctx, 3, name.c_str(), name2.c_str(),
+ name3.c_str()));
+ ASSERT_EQ(0, rbd.open(ioctx, image3, name3.c_str(), NULL));
+
+ pairs.clear();
+ ASSERT_EQ(0, image3.metadata_list("", 70, &pairs));
+ ASSERT_EQ(70U, pairs.size());
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, image3.metadata_get(key.c_str(), &value));
+ ASSERT_STREQ(val.c_str(), value.c_str());
+ }
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestDeepCopy)
+{
+ REQUIRE_FORMAT_V2();
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, create_pool(true).c_str(), &ioctx);
+ BOOST_SCOPE_EXIT_ALL( (&ioctx) ) {
+ rados_ioctx_destroy(ioctx);
+ };
+
+ rbd_image_t image;
+ rbd_image_t image2;
+ rbd_image_t image3;
+ rbd_image_t image4;
+ rbd_image_t image5;
+ rbd_image_t image6;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+ std::string name3 = get_temp_image_name();
+ std::string name4 = get_temp_image_name();
+ std::string name5 = get_temp_image_name();
+ std::string name6 = get_temp_image_name();
+
+ uint64_t size = 2 << 20;
+
+ rbd_image_options_t opts;
+ rbd_image_options_create(&opts);
+ BOOST_SCOPE_EXIT_ALL( (&opts) ) {
+ rbd_image_options_destroy(opts);
+ };
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ BOOST_SCOPE_EXIT_ALL( (&image) ) {
+ ASSERT_EQ(0, rbd_close(image));
+ };
+ ASSERT_EQ(1, test_ls(ioctx, 1, name.c_str()));
+
+ size_t sum_key_len = 0;
+ size_t sum_value_len = 0;
+ std::string key;
+ std::string val;
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_set(image, key.c_str(), val.c_str()));
+
+ sum_key_len += (key.size() + 1);
+ sum_value_len += (val.size() + 1);
+ }
+
+ char keys[1024];
+ char vals[1024];
+ size_t keys_len = sizeof(keys);
+ size_t vals_len = sizeof(vals);
+
+ char value[1024];
+ size_t value_len = sizeof(value);
+
+ ASSERT_EQ(0, rbd_deep_copy(image, ioctx, name2.c_str(), opts));
+ ASSERT_EQ(2, test_ls(ioctx, 2, name.c_str(), name2.c_str()));
+ ASSERT_EQ(0, rbd_open(ioctx, name2.c_str(), &image2, NULL));
+ BOOST_SCOPE_EXIT_ALL( (&image2) ) {
+ ASSERT_EQ(0, rbd_close(image2));
+ };
+ ASSERT_EQ(0, rbd_metadata_list(image2, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, sum_key_len);
+ ASSERT_EQ(vals_len, sum_value_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(image2, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+
+ ASSERT_EQ(0, rbd_deep_copy_with_progress(image, ioctx, name3.c_str(), opts,
+ print_progress_percent, NULL));
+ ASSERT_EQ(3, test_ls(ioctx, 3, name.c_str(), name2.c_str(), name3.c_str()));
+
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ ASSERT_EQ(0, rbd_open(ioctx, name3.c_str(), &image3, NULL));
+ BOOST_SCOPE_EXIT_ALL( (&image3) ) {
+ ASSERT_EQ(0, rbd_close(image3));
+ };
+ ASSERT_EQ(0, rbd_metadata_list(image3, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, sum_key_len);
+ ASSERT_EQ(vals_len, sum_value_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(image3, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+
+ ASSERT_EQ(0, rbd_snap_create(image, "deep_snap"));
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, "deep_snap"));
+ ASSERT_EQ(0, rbd_snap_protect(image, "deep_snap"));
+ ASSERT_EQ(0, rbd_clone3(ioctx, name.c_str(), "deep_snap", ioctx,
+ name4.c_str(), opts));
+
+ ASSERT_EQ(4, test_ls(ioctx, 4, name.c_str(), name2.c_str(), name3.c_str(),
+ name4.c_str()));
+ ASSERT_EQ(0, rbd_open(ioctx, name4.c_str(), &image4, NULL));
+ BOOST_SCOPE_EXIT_ALL( (&image4) ) {
+ ASSERT_EQ(0, rbd_close(image4));
+ };
+ ASSERT_EQ(0, rbd_snap_create(image4, "deep_snap"));
+
+ ASSERT_EQ(0, rbd_deep_copy(image4, ioctx, name5.c_str(), opts));
+ ASSERT_EQ(5, test_ls(ioctx, 5, name.c_str(), name2.c_str(), name3.c_str(),
+ name4.c_str(), name5.c_str()));
+ ASSERT_EQ(0, rbd_open(ioctx, name5.c_str(), &image5, NULL));
+ BOOST_SCOPE_EXIT_ALL( (&image5) ) {
+ ASSERT_EQ(0, rbd_close(image5));
+ };
+ ASSERT_EQ(0, rbd_metadata_list(image5, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, sum_key_len);
+ ASSERT_EQ(vals_len, sum_value_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(image5, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+
+ ASSERT_EQ(0, rbd_deep_copy_with_progress(image4, ioctx, name6.c_str(), opts,
+ print_progress_percent, NULL));
+ ASSERT_EQ(6, test_ls(ioctx, 6, name.c_str(), name2.c_str(), name3.c_str(),
+ name4.c_str(), name5.c_str(), name6.c_str()));
+
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ ASSERT_EQ(0, rbd_open(ioctx, name6.c_str(), &image6, NULL));
+ BOOST_SCOPE_EXIT_ALL( (&image6) ) {
+ ASSERT_EQ(0, rbd_close(image6));
+ };
+ ASSERT_EQ(0, rbd_metadata_list(image6, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, sum_key_len);
+ ASSERT_EQ(vals_len, sum_value_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(image6, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+}
+
+TEST_F(TestLibRBD, TestDeepCopyPP)
+{
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(create_pool(true).c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ librbd::Image image2;
+ librbd::Image image3;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+ std::string name3 = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ librbd::ImageOptions opts;
+ PrintProgress pp;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string key;
+ std::string val;
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, image.metadata_set(key, val));
+ }
+
+ ASSERT_EQ(1, test_ls_pp(rbd, ioctx, 1, name.c_str()));
+ ASSERT_EQ(0, image.deep_copy(ioctx, name2.c_str(), opts));
+ ASSERT_EQ(2, test_ls_pp(rbd, ioctx, 2, name.c_str(), name2.c_str()));
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name2.c_str(), NULL));
+
+ map<string, bufferlist> pairs;
+ std::string value;
+ ASSERT_EQ(0, image2.metadata_list("", 70, &pairs));
+ ASSERT_EQ(70U, pairs.size());
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, image2.metadata_get(key.c_str(), &value));
+ ASSERT_STREQ(val.c_str(), value.c_str());
+ }
+
+ ASSERT_EQ(0, image.deep_copy_with_progress(ioctx, name3.c_str(), opts, pp));
+ ASSERT_EQ(3, test_ls_pp(rbd, ioctx, 3, name.c_str(), name2.c_str(),
+ name3.c_str()));
+ ASSERT_EQ(0, rbd.open(ioctx, image3, name3.c_str(), NULL));
+
+ pairs.clear();
+ ASSERT_EQ(0, image3.metadata_list("", 70, &pairs));
+ ASSERT_EQ(70U, pairs.size());
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, image3.metadata_get(key.c_str(), &value));
+ ASSERT_STREQ(val.c_str(), value.c_str());
+ }
+ }
+
+ ioctx.close();
+}
+
+int test_ls_snaps(rbd_image_t image, int num_expected, ...)
+{
+ int num_snaps, i, j, max_size = 10;
+ va_list ap;
+ rbd_snap_info_t snaps[max_size];
+ num_snaps = rbd_snap_list(image, snaps, &max_size);
+ printf("num snaps is: %d\nexpected: %d\n", num_snaps, num_expected);
+
+ for (i = 0; i < num_snaps; i++) {
+ printf("snap: %s\n", snaps[i].name);
+ }
+
+ va_start(ap, num_expected);
+ for (i = num_expected; i > 0; i--) {
+ char *expected = va_arg(ap, char *);
+ uint64_t expected_size = va_arg(ap, uint64_t);
+ bool found = false;
+ for (j = 0; j < num_snaps; j++) {
+ if (snaps[j].name == NULL)
+ continue;
+ if (strcmp(snaps[j].name, expected) == 0) {
+ printf("found %s with size %llu\n", snaps[j].name, (unsigned long long) snaps[j].size);
+ EXPECT_EQ(expected_size, snaps[j].size);
+ free((void *) snaps[j].name);
+ snaps[j].name = NULL;
+ found = true;
+ break;
+ }
+ }
+ EXPECT_TRUE(found);
+ }
+ va_end(ap);
+
+ for (i = 0; i < num_snaps; i++) {
+ EXPECT_EQ((const char *)0, snaps[i].name);
+ }
+
+ return num_snaps;
+}
+
+TEST_F(TestLibRBD, TestCreateLsDeleteSnap)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ uint64_t size2 = 4 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_snap_create(image, "snap1"));
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "snap1", size));
+ ASSERT_EQ(0, rbd_resize(image, size2));
+ ASSERT_EQ(0, rbd_snap_create(image, "snap2"));
+ ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1", size, "snap2", size2));
+ ASSERT_EQ(0, rbd_snap_remove(image, "snap1"));
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "snap2", size2));
+ ASSERT_EQ(0, rbd_snap_remove(image, "snap2"));
+ ASSERT_EQ(0, test_ls_snaps(image, 0));
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+int test_get_snapshot_timestamp(rbd_image_t image, uint64_t snap_id)
+{
+ struct timespec timestamp;
+ EXPECT_EQ(0, rbd_snap_get_timestamp(image, snap_id, &timestamp));
+ EXPECT_LT(0, timestamp.tv_sec);
+ return 0;
+}
+
+TEST_F(TestLibRBD, TestGetSnapShotTimeStamp)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int num_snaps, max_size = 10;
+ rbd_snap_info_t snaps[max_size];
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_snap_create(image, "snap1"));
+ num_snaps = rbd_snap_list(image, snaps, &max_size);
+ ASSERT_EQ(1, num_snaps);
+ ASSERT_EQ(0, test_get_snapshot_timestamp(image, snaps[0].id));
+ free((void *)snaps[0].name);
+
+ ASSERT_EQ(0, rbd_snap_create(image, "snap2"));
+ num_snaps = rbd_snap_list(image, snaps, &max_size);
+ ASSERT_EQ(2, num_snaps);
+ ASSERT_EQ(0, test_get_snapshot_timestamp(image, snaps[0].id));
+ ASSERT_EQ(0, test_get_snapshot_timestamp(image, snaps[1].id));
+ free((void *)snaps[0].name);
+ free((void *)snaps[1].name);
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+
+int test_ls_snaps(librbd::Image& image, size_t num_expected, ...)
+{
+ int r;
+ size_t i, j;
+ va_list ap;
+ vector<librbd::snap_info_t> snaps;
+ r = image.snap_list(snaps);
+ EXPECT_TRUE(r >= 0);
+ cout << "num snaps is: " << snaps.size() << std::endl
+ << "expected: " << num_expected << std::endl;
+
+ for (i = 0; i < snaps.size(); i++) {
+ cout << "snap: " << snaps[i].name << std::endl;
+ }
+
+ va_start(ap, num_expected);
+ for (i = num_expected; i > 0; i--) {
+ char *expected = va_arg(ap, char *);
+ uint64_t expected_size = va_arg(ap, uint64_t);
+ int found = 0;
+ for (j = 0; j < snaps.size(); j++) {
+ if (snaps[j].name == "")
+ continue;
+ if (strcmp(snaps[j].name.c_str(), expected) == 0) {
+ cout << "found " << snaps[j].name << " with size " << snaps[j].size
+ << std::endl;
+ EXPECT_EQ(expected_size, snaps[j].size);
+ snaps[j].name = "";
+ found = 1;
+ break;
+ }
+ }
+ EXPECT_TRUE(found);
+ }
+ va_end(ap);
+
+ for (i = 0; i < snaps.size(); i++) {
+ EXPECT_EQ("", snaps[i].name);
+ }
+
+ return snaps.size();
+}
+
+TEST_F(TestLibRBD, TestCreateLsDeleteSnapPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ uint64_t size2 = 4 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool exists;
+ ASSERT_EQ(0, image.snap_exists2("snap1", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ(0, image.snap_exists2("snap1", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "snap1", size));
+ ASSERT_EQ(0, image.resize(size2));
+ ASSERT_EQ(0, image.snap_exists2("snap2", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, image.snap_create("snap2"));
+ ASSERT_EQ(0, image.snap_exists2("snap2", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1", size, "snap2", size2));
+ ASSERT_EQ(0, image.snap_remove("snap1"));
+ ASSERT_EQ(0, image.snap_exists2("snap1", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "snap2", size2));
+ ASSERT_EQ(0, image.snap_remove("snap2"));
+ ASSERT_EQ(0, image.snap_exists2("snap2", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, test_ls_snaps(image, 0));
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestGetNameIdSnapPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ(0, image.snap_create("snap2"));
+ ASSERT_EQ(0, image.snap_create("snap3"));
+ vector<librbd::snap_info_t> snaps;
+ int r = image.snap_list(snaps);
+ EXPECT_TRUE(r >= 0);
+
+ for (size_t i = 0; i < snaps.size(); ++i) {
+ std::string expected_snap_name;
+ image.snap_get_name(snaps[i].id, &expected_snap_name);
+ ASSERT_EQ(expected_snap_name, snaps[i].name);
+ }
+
+ for (size_t i = 0; i < snaps.size(); ++i) {
+ uint64_t expected_snap_id;
+ image.snap_get_id(snaps[i].name, &expected_snap_id);
+ ASSERT_EQ(expected_snap_id, snaps[i].id);
+ }
+
+ ASSERT_EQ(0, image.snap_remove("snap1"));
+ ASSERT_EQ(0, image.snap_remove("snap2"));
+ ASSERT_EQ(0, image.snap_remove("snap3"));
+ ASSERT_EQ(0, test_ls_snaps(image, 0));
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCreateLsRenameSnapPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ uint64_t size2 = 4 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool exists;
+ ASSERT_EQ(0, image.snap_exists2("snap1", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ(0, image.snap_exists2("snap1", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "snap1", size));
+ ASSERT_EQ(0, image.resize(size2));
+ ASSERT_EQ(0, image.snap_exists2("snap2", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, image.snap_create("snap2"));
+ ASSERT_EQ(0, image.snap_exists2("snap2", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1", size, "snap2", size2));
+ ASSERT_EQ(0, image.snap_rename("snap1","snap1-rename"));
+ ASSERT_EQ(2, test_ls_snaps(image, 2, "snap1-rename", size, "snap2", size2));
+ ASSERT_EQ(0, image.snap_exists2("snap1", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, image.snap_exists2("snap1-rename", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(0, image.snap_remove("snap1-rename"));
+ ASSERT_EQ(0, image.snap_rename("snap2","snap2-rename"));
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "snap2-rename", size2));
+ ASSERT_EQ(0, image.snap_exists2("snap2", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, image.snap_exists2("snap2-rename", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(0, image.snap_remove("snap2-rename"));
+ ASSERT_EQ(0, test_ls_snaps(image, 0));
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, ConcurrentCreatesUnvalidatedPool)
+{
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, create_pool(true).c_str(),
+ &ioctx));
+
+ std::vector<std::string> names;
+ for (int i = 0; i < 4; i++) {
+ names.push_back(get_temp_image_name());
+ }
+ uint64_t size = 2 << 20;
+
+ std::vector<std::thread> threads;
+ for (const auto& name : names) {
+ threads.emplace_back([ioctx, &name, size]() {
+ int order = 0;
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ });
+ }
+ for (auto& thread : threads) {
+ thread.join();
+ }
+
+ for (const auto& name : names) {
+ ASSERT_EQ(0, rbd_remove(ioctx, name.c_str()));
+ }
+ rados_ioctx_destroy(ioctx);
+}
+
+static void remove_full_try(rados_ioctx_t ioctx, const std::string& image_name,
+ const std::string& data_pool_name)
+{
+ int order = 0;
+ uint64_t quota = 10 << 20;
+ uint64_t size = 5 * quota;
+ ASSERT_EQ(0, create_image(ioctx, image_name.c_str(), size, &order));
+
+ std::string cmdstr = "{\"prefix\": \"osd pool set-quota\", \"pool\": \"" +
+ data_pool_name + "\", \"field\": \"max_bytes\", \"val\": \"" +
+ std::to_string(quota) + "\"}";
+ char *cmd[1];
+ cmd[0] = (char *)cmdstr.c_str();
+ ASSERT_EQ(0, rados_mon_command(rados_ioctx_get_cluster(ioctx),
+ (const char **)cmd, 1, "", 0, nullptr, 0,
+ nullptr, 0));
+
+ rados_set_pool_full_try(ioctx);
+
+ rbd_image_t image;
+ ASSERT_EQ(0, rbd_open(ioctx, image_name.c_str(), &image, nullptr));
+
+ uint64_t off;
+ size_t len = 1 << 20;
+ ssize_t ret;
+ for (off = 0; off < size; off += len) {
+ ret = rbd_write_zeroes(image, off, len,
+ RBD_WRITE_ZEROES_FLAG_THICK_PROVISION,
+ LIBRADOS_OP_FLAG_FADVISE_FUA);
+ if (ret < 0) {
+ break;
+ }
+ ASSERT_EQ(ret, len);
+ sleep(1);
+ }
+ ASSERT_TRUE(off >= quota && off < size);
+ ASSERT_EQ(ret, -EDQUOT);
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ // make sure we have latest map that marked the pool full
+ ASSERT_EQ(0, rados_wait_for_latest_osdmap(rados_ioctx_get_cluster(ioctx)));
+ ASSERT_EQ(0, rbd_remove(ioctx, image_name.c_str()));
+}
+
+TEST_F(TestLibRBD, RemoveFullTry)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+ REQUIRE(!is_librados_test_stub(_rados));
+
+ rados_ioctx_t ioctx;
+ auto pool_name = create_pool(true);
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, pool_name.c_str(), &ioctx));
+ // cancel out rbd_default_data_pool -- we need an image without
+ // a separate data pool
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "conf_rbd_default_data_pool",
+ pool_name.c_str()));
+
+ int order = 0;
+ auto image_name = get_temp_image_name();
+ // FIXME: this is a workaround for rbd_trash object being created
+ // on the first remove -- pre-create it to avoid bumping into quota
+ ASSERT_EQ(0, create_image(ioctx, image_name.c_str(), 0, &order));
+ ASSERT_EQ(0, rbd_remove(ioctx, image_name.c_str()));
+ remove_full_try(ioctx, image_name, pool_name);
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, RemoveFullTryDataPool)
+{
+ REQUIRE_FORMAT_V2();
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+ REQUIRE(!is_librados_test_stub(_rados));
+
+ rados_ioctx_t ioctx;
+ auto pool_name = create_pool(true);
+ auto data_pool_name = create_pool(true);
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, pool_name.c_str(), &ioctx));
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "conf_rbd_default_data_pool",
+ data_pool_name.c_str()));
+
+ auto image_name = get_temp_image_name();
+ remove_full_try(ioctx, image_name, data_pool_name);
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestIO)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rados_conf_set(_cluster, "rbd_read_from_replica_policy", "balance"));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ test_io(image);
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestEncryptionLUKS1)
+{
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 32 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rados_conf_set(
+ _cluster, "rbd_read_from_replica_policy", "balance"));
+
+ rbd_image_t image;
+ rbd_encryption_luks1_format_options_t luks1_opts = {
+ .alg = RBD_ENCRYPTION_ALGORITHM_AES256,
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ rbd_encryption_luks2_format_options_t luks2_opts = {
+ .alg = RBD_ENCRYPTION_ALGORITHM_AES256,
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ rbd_encryption_luks_format_options_t luks_opts = {
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+#ifndef HAVE_LIBCRYPTSETUP
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+#else
+ ASSERT_EQ(-EINVAL, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+ ASSERT_EQ(0, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_EQ(-EEXIST, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+
+ test_io(image);
+
+ ASSERT_PASSED(write_test_data, image, "test", 0, 4, 0);
+ ASSERT_EQ(0, rbd_close(image));
+
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(-EINVAL, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_EQ(0, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_PASSED(read_test_data, image, "test", 0, 4, 0);
+ ASSERT_EQ(0, rbd_close(image));
+
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(-EINVAL, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_EQ(0, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+ ASSERT_PASSED(read_test_data, image, "test", 0, 4, 0);
+#endif
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestEncryptionLUKS2)
+{
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 32 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rados_conf_set(
+ _cluster, "rbd_read_from_replica_policy", "balance"));
+
+ rbd_image_t image;
+ rbd_encryption_luks1_format_options_t luks1_opts = {
+ .alg = RBD_ENCRYPTION_ALGORITHM_AES256,
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ rbd_encryption_luks2_format_options_t luks2_opts = {
+ .alg = RBD_ENCRYPTION_ALGORITHM_AES256,
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ rbd_encryption_luks_format_options_t luks_opts = {
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+#ifndef HAVE_LIBCRYPTSETUP
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+ ASSERT_EQ(-ENOTSUP, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+#else
+ ASSERT_EQ(-EINVAL, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+ ASSERT_EQ(0, rbd_encryption_format(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_EQ(-EEXIST, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+
+ test_io(image);
+
+ ASSERT_PASSED(write_test_data, image, "test", 0, 4, 0);
+ ASSERT_EQ(0, rbd_close(image));
+
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(-EINVAL, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_EQ(0, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)));
+ ASSERT_PASSED(read_test_data, image, "test", 0, 4, 0);
+ ASSERT_EQ(0, rbd_close(image));
+
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(-EINVAL, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)));
+ ASSERT_EQ(0, rbd_encryption_load(
+ image, RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)));
+ ASSERT_PASSED(read_test_data, image, "test", 0, 4, 0);
+#endif
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+}
+
+#ifdef HAVE_LIBCRYPTSETUP
+
+TEST_F(TestLibRBD, TestCloneEncryption)
+{
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+ ASSERT_EQ(0, rados_conf_set(
+ _cluster, "rbd_read_from_replica_policy", "balance"));
+
+ // create base image, write 'a's
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 256 << 20;
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+
+ rbd_image_t image;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_PASSED(write_test_data, image, "aaaa", 0, 4, 0);
+ ASSERT_EQ(0, rbd_flush(image));
+
+ // clone, encrypt with LUKS1, write 'b's
+ ASSERT_EQ(0, rbd_snap_create(image, "snap"));
+ ASSERT_EQ(0, rbd_snap_protect(image, "snap"));
+
+ rbd_image_options_t image_opts;
+ rbd_image_options_create(&image_opts);
+ BOOST_SCOPE_EXIT_ALL( (&image_opts) ) {
+ rbd_image_options_destroy(image_opts);
+ };
+ std::string child1_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd_clone3(ioctx, name.c_str(), "snap", ioctx,
+ child1_name.c_str(), image_opts));
+
+ rbd_image_t child1;
+ ASSERT_EQ(0, rbd_open(ioctx, child1_name.c_str(), &child1, NULL));
+
+ rbd_encryption_luks1_format_options_t child1_opts = {
+ .alg = RBD_ENCRYPTION_ALGORITHM_AES256,
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ ASSERT_EQ(-EINVAL, rbd_encryption_load(
+ child1, RBD_ENCRYPTION_FORMAT_LUKS1, &child1_opts,
+ sizeof(child1_opts)));
+ ASSERT_EQ(0, rbd_encryption_format(
+ child1, RBD_ENCRYPTION_FORMAT_LUKS1, &child1_opts,
+ sizeof(child1_opts)));
+ ASSERT_EQ(0, rbd_encryption_load(
+ child1, RBD_ENCRYPTION_FORMAT_LUKS1, &child1_opts,
+ sizeof(child1_opts)));
+ ASSERT_PASSED(write_test_data, child1, "bbbb", 64 << 20, 4, 0);
+ ASSERT_EQ(0, rbd_flush(child1));
+
+ // clone, encrypt with LUKS2 (same passphrase), write 'c's
+ ASSERT_EQ(0, rbd_snap_create(child1, "snap"));
+ ASSERT_EQ(0, rbd_snap_protect(child1, "snap"));
+
+ std::string child2_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd_clone3(ioctx, child1_name.c_str(), "snap", ioctx,
+ child2_name.c_str(), image_opts));
+
+ rbd_image_t child2;
+ ASSERT_EQ(0, rbd_open(ioctx, child2_name.c_str(), &child2, NULL));
+
+ rbd_encryption_luks2_format_options_t child2_opts = {
+ .alg = RBD_ENCRYPTION_ALGORITHM_AES256,
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ ASSERT_EQ(0, rbd_encryption_format(
+ child2, RBD_ENCRYPTION_FORMAT_LUKS2, &child2_opts,
+ sizeof(child2_opts)));
+ rbd_encryption_luks_format_options_t child2_lopts = {
+ .passphrase = "password",
+ .passphrase_size = 8,
+ };
+ ASSERT_EQ(0, rbd_encryption_load(
+ child2, RBD_ENCRYPTION_FORMAT_LUKS, &child2_lopts,
+ sizeof(child2_lopts)));
+ ASSERT_PASSED(write_test_data, child2, "cccc", 128 << 20, 4, 0);
+ ASSERT_EQ(0, rbd_flush(child2));
+
+ // clone, encrypt with LUKS2 (different passphrase)
+ ASSERT_EQ(0, rbd_snap_create(child2, "snap"));
+ ASSERT_EQ(0, rbd_snap_protect(child2, "snap"));
+
+ std::string child3_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd_clone3(ioctx, child2_name.c_str(), "snap", ioctx,
+ child3_name.c_str(), image_opts));
+
+ rbd_image_t child3;
+ ASSERT_EQ(0, rbd_open(ioctx, child3_name.c_str(), &child3, NULL));
+
+ rbd_encryption_luks2_format_options_t child3_opts = {
+ .alg = RBD_ENCRYPTION_ALGORITHM_AES256,
+ .passphrase = "12345678",
+ .passphrase_size = 8,
+ };
+ ASSERT_EQ(0, rbd_encryption_format(
+ child3, RBD_ENCRYPTION_FORMAT_LUKS2, &child3_opts,
+ sizeof(child3_opts)));
+ ASSERT_EQ(-EPERM, rbd_encryption_load(
+ child3, RBD_ENCRYPTION_FORMAT_LUKS2, &child3_opts,
+ sizeof(child3_opts)));
+
+ // verify child3 data
+ rbd_encryption_spec_t specs[] = {
+ { .format = RBD_ENCRYPTION_FORMAT_LUKS2,
+ .opts = &child3_opts,
+ .opts_size = sizeof(child3_opts)},
+ { .format = RBD_ENCRYPTION_FORMAT_LUKS2,
+ .opts = &child2_opts,
+ .opts_size = sizeof(child2_opts)},
+ { .format = RBD_ENCRYPTION_FORMAT_LUKS1,
+ .opts = &child1_opts,
+ .opts_size = sizeof(child1_opts)}
+ };
+
+ ASSERT_EQ(0, rbd_encryption_load2(child3, specs, 3));
+
+ ASSERT_PASSED(read_test_data, child3, "aaaa", 0, 4, 0);
+ ASSERT_PASSED(read_test_data, child3, "bbbb", 64 << 20, 4, 0);
+ ASSERT_PASSED(read_test_data, child3, "cccc", 128 << 20, 4, 0);
+
+ // clone without formatting
+ ASSERT_EQ(0, rbd_snap_create(child3, "snap"));
+ ASSERT_EQ(0, rbd_snap_protect(child3, "snap"));
+
+ std::string child4_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd_clone3(ioctx, child3_name.c_str(), "snap", ioctx,
+ child4_name.c_str(), image_opts));
+
+ rbd_image_t child4;
+ ASSERT_EQ(0, rbd_open(ioctx, child4_name.c_str(), &child4, NULL));
+
+ rbd_encryption_spec_t child4_specs[] = {
+ { .format = RBD_ENCRYPTION_FORMAT_LUKS2,
+ .opts = &child3_opts,
+ .opts_size = sizeof(child3_opts)},
+ { .format = RBD_ENCRYPTION_FORMAT_LUKS2,
+ .opts = &child3_opts,
+ .opts_size = sizeof(child3_opts)},
+ { .format = RBD_ENCRYPTION_FORMAT_LUKS2,
+ .opts = &child2_opts,
+ .opts_size = sizeof(child2_opts)},
+ { .format = RBD_ENCRYPTION_FORMAT_LUKS1,
+ .opts = &child1_opts,
+ .opts_size = sizeof(child1_opts)}
+ };
+
+ ASSERT_EQ(0, rbd_encryption_load2(child4, child4_specs, 4));
+
+ // flatten child4
+ ASSERT_EQ(0, rbd_flatten(child4));
+
+ // reopen child4 and load encryption
+ ASSERT_EQ(0, rbd_close(child4));
+ ASSERT_EQ(0, rbd_open(ioctx, child4_name.c_str(), &child4, NULL));
+ ASSERT_EQ(0, rbd_encryption_load(
+ child4, RBD_ENCRYPTION_FORMAT_LUKS2, &child3_opts,
+ sizeof(child3_opts)));
+
+ // verify flattend image
+ ASSERT_PASSED(read_test_data, child4, "aaaa", 0, 4, 0);
+ ASSERT_PASSED(read_test_data, child4, "bbbb", 64 << 20, 4, 0);
+ ASSERT_PASSED(read_test_data, child4, "cccc", 128 << 20, 4, 0);
+
+ ASSERT_EQ(0, rbd_close(child4));
+ ASSERT_EQ(0, rbd_remove(ioctx, child4_name.c_str()));
+ ASSERT_EQ(0, rbd_snap_unprotect(child3, "snap"));
+ ASSERT_EQ(0, rbd_snap_remove(child3, "snap"));
+ ASSERT_EQ(0, rbd_close(child3));
+ ASSERT_EQ(0, rbd_remove(ioctx, child3_name.c_str()));
+ ASSERT_EQ(0, rbd_snap_unprotect(child2, "snap"));
+ ASSERT_EQ(0, rbd_snap_remove(child2, "snap"));
+ ASSERT_EQ(0, rbd_close(child2));
+ ASSERT_EQ(0, rbd_remove(ioctx, child2_name.c_str()));
+ ASSERT_EQ(0, rbd_snap_unprotect(child1, "snap"));
+ ASSERT_EQ(0, rbd_snap_remove(child1, "snap"));
+ ASSERT_EQ(0, rbd_close(child1));
+ ASSERT_EQ(0, rbd_remove(ioctx, child1_name.c_str()));
+ ASSERT_EQ(0, rbd_snap_unprotect(image, "snap"));
+ ASSERT_EQ(0, rbd_snap_remove(image, "snap"));
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_remove(ioctx, name.c_str()));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, LUKS1UnderLUKS2WithoutResize)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string parent_name = get_temp_image_name();
+ std::string clone_name = get_temp_image_name();
+ uint64_t data_size = 25 << 20;
+ uint64_t luks1_meta_size = 4 << 20;
+ uint64_t luks2_meta_size = 16 << 20;
+ std::string parent_passphrase = "parent passphrase";
+ std::string clone_passphrase = "clone passphrase";
+
+ {
+ int order = 22;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(),
+ luks1_meta_size + data_size, &order));
+ librbd::Image parent;
+ ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), nullptr));
+
+ librbd::encryption_luks1_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, parent_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+
+ ASSERT_EQ(0, parent.snap_create("snap"));
+ ASSERT_EQ(0, parent.snap_protect("snap"));
+ uint64_t features;
+ ASSERT_EQ(0, parent.features(&features));
+ ASSERT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap", ioctx,
+ clone_name.c_str(), features, &order));
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_EQ(0, rbd.open(ioctx, clone, clone_name.c_str(), nullptr));
+
+ librbd::encryption_luks2_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, clone_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+
+ librbd::encryption_luks_format_options_t opts1 = {parent_passphrase};
+ librbd::encryption_luks_format_options_t opts2 = {clone_passphrase};
+ librbd::encryption_spec_t specs[] = {
+ {RBD_ENCRYPTION_FORMAT_LUKS, &opts2, sizeof(opts2)},
+ {RBD_ENCRYPTION_FORMAT_LUKS, &opts1, sizeof(opts1)}};
+ ASSERT_EQ(0, clone.encryption_load2(specs, std::size(specs)));
+
+ uint64_t size;
+ ASSERT_EQ(0, clone.size(&size));
+ EXPECT_EQ(data_size + luks1_meta_size - luks2_meta_size, size);
+ uint64_t overlap;
+ ASSERT_EQ(0, clone.overlap(&overlap));
+ EXPECT_EQ(data_size + luks1_meta_size - luks2_meta_size, overlap);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(
+ data_size + luks1_meta_size - luks2_meta_size, 'a'));
+
+ ceph::bufferlist read_bl;
+ ASSERT_EQ(expected_bl.length(),
+ clone.read(0, expected_bl.length(), read_bl));
+ EXPECT_TRUE(expected_bl.contents_equal(read_bl));
+ }
+}
+
+TEST_F(TestLibRBD, LUKS2UnderLUKS1WithoutResize)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string parent_name = get_temp_image_name();
+ std::string clone_name = get_temp_image_name();
+ uint64_t data_size = 25 << 20;
+ uint64_t luks1_meta_size = 4 << 20;
+ uint64_t luks2_meta_size = 16 << 20;
+ std::string parent_passphrase = "parent passphrase";
+ std::string clone_passphrase = "clone passphrase";
+
+ {
+ int order = 22;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(),
+ luks2_meta_size + data_size, &order));
+ librbd::Image parent;
+ ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), nullptr));
+
+ librbd::encryption_luks2_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, parent_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+
+ ASSERT_EQ(0, parent.snap_create("snap"));
+ ASSERT_EQ(0, parent.snap_protect("snap"));
+ uint64_t features;
+ ASSERT_EQ(0, parent.features(&features));
+ ASSERT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap", ioctx,
+ clone_name.c_str(), features, &order));
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_EQ(0, rbd.open(ioctx, clone, clone_name.c_str(), nullptr));
+
+ librbd::encryption_luks1_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, clone_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+
+ librbd::encryption_luks_format_options_t opts1 = {parent_passphrase};
+ librbd::encryption_luks_format_options_t opts2 = {clone_passphrase};
+ librbd::encryption_spec_t specs[] = {
+ {RBD_ENCRYPTION_FORMAT_LUKS, &opts2, sizeof(opts2)},
+ {RBD_ENCRYPTION_FORMAT_LUKS, &opts1, sizeof(opts1)}};
+ ASSERT_EQ(0, clone.encryption_load2(specs, std::size(specs)));
+
+ uint64_t size;
+ ASSERT_EQ(0, clone.size(&size));
+ EXPECT_EQ(data_size + luks2_meta_size - luks1_meta_size, size);
+ uint64_t overlap;
+ ASSERT_EQ(0, clone.overlap(&overlap));
+ EXPECT_EQ(data_size, overlap);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(data_size, 'a'));
+ expected_bl.append_zero(luks2_meta_size - luks1_meta_size);
+
+ ceph::bufferlist read_bl;
+ ASSERT_EQ(expected_bl.length(),
+ clone.read(0, expected_bl.length(), read_bl));
+ EXPECT_TRUE(expected_bl.contents_equal(read_bl));
+ }
+}
+
+TEST_F(TestLibRBD, EncryptionFormatNoData)
+{
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ auto name = get_temp_image_name();
+ uint64_t luks1_meta_size = 4 << 20;
+ std::string passphrase = "some passphrase";
+
+ {
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), luks1_meta_size - 1,
+ &order));
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ librbd::encryption_luks1_format_options_t opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ ASSERT_EQ(-ENOSPC, image.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1,
+ &opts, sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(luks1_meta_size - 1, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+ ASSERT_EQ(0, image.resize(luks1_meta_size));
+
+ librbd::encryption_luks1_format_options_t opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ ASSERT_EQ(0, image.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(0, size);
+ }
+}
+
+TEST_F(TestLibRBD, EncryptionLoadBadSize)
+{
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ auto name = get_temp_image_name();
+ uint64_t luks1_meta_size = 4 << 20;
+ std::string passphrase = "some passphrase";
+
+ {
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), luks1_meta_size,
+ &order));
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ librbd::encryption_luks1_format_options_t opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ ASSERT_EQ(0, image.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &opts,
+ sizeof(opts)));
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(0, image.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(0, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+ ASSERT_EQ(0, image.resize(luks1_meta_size - 1));
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(-EINVAL, image.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(luks1_meta_size - 1, size);
+ }
+}
+
+TEST_F(TestLibRBD, EncryptionLoadBadStripePattern)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_STRIPINGV2);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ bool old_format;
+ uint64_t features;
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ librbd::RBD rbd;
+ auto name1 = get_temp_image_name();
+ auto name2 = get_temp_image_name();
+ auto name3 = get_temp_image_name();
+ std::string passphrase = "some passphrase";
+
+ {
+ int order = 22;
+ ASSERT_EQ(0, rbd.create3(ioctx, name1.c_str(), 20 << 20, features, &order,
+ 2 << 20, 2));
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name1.c_str(), nullptr));
+
+ librbd::encryption_luks1_format_options_t opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ ASSERT_EQ(0, image.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(12 << 20, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name1.c_str(), nullptr));
+
+ // different but compatible striping pattern
+ librbd::ImageOptions image_opts;
+ ASSERT_EQ(0, image_opts.set(RBD_IMAGE_OPTION_STRIPE_UNIT, 1 << 20));
+ ASSERT_EQ(0, image_opts.set(RBD_IMAGE_OPTION_STRIPE_COUNT, 2));
+ ASSERT_EQ(0, image.deep_copy(ioctx, name2.c_str(), image_opts));
+ }
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name2.c_str(), nullptr));
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(0, image.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(12 << 20, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name1.c_str(), nullptr));
+
+ // incompatible striping pattern
+ librbd::ImageOptions image_opts;
+ ASSERT_EQ(0, image_opts.set(RBD_IMAGE_OPTION_STRIPE_UNIT, 1 << 20));
+ ASSERT_EQ(0, image_opts.set(RBD_IMAGE_OPTION_STRIPE_COUNT, 3));
+ ASSERT_EQ(0, image.deep_copy(ioctx, name3.c_str(), image_opts));
+ }
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name3.c_str(), nullptr));
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(-EINVAL, image.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(20 << 20, size);
+ }
+}
+
+TEST_F(TestLibRBD, EncryptionLoadFormatMismatch)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name1 = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+ std::string name3 = get_temp_image_name();
+ std::string passphrase = "some passphrase";
+
+ librbd::encryption_luks1_format_options_t luks1_opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ librbd::encryption_luks2_format_options_t luks2_opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ librbd::encryption_luks_format_options_t luks_opts = {passphrase};
+
+#define LUKS_ONE {RBD_ENCRYPTION_FORMAT_LUKS1, &luks1_opts, sizeof(luks1_opts)}
+#define LUKS_TWO {RBD_ENCRYPTION_FORMAT_LUKS2, &luks2_opts, sizeof(luks2_opts)}
+#define LUKS_ANY {RBD_ENCRYPTION_FORMAT_LUKS, &luks_opts, sizeof(luks_opts)}
+
+ const std::vector<librbd::encryption_spec_t> bad_specs[] = {
+ {},
+ {LUKS_ONE},
+ {LUKS_TWO},
+ {LUKS_ONE, LUKS_ONE},
+ {LUKS_ONE, LUKS_TWO},
+ {LUKS_ONE, LUKS_ANY},
+ {LUKS_TWO, LUKS_TWO},
+ {LUKS_ANY, LUKS_TWO},
+ {LUKS_ONE, LUKS_ONE, LUKS_ONE},
+ {LUKS_ONE, LUKS_ONE, LUKS_TWO},
+ {LUKS_ONE, LUKS_ONE, LUKS_ANY},
+ {LUKS_ONE, LUKS_TWO, LUKS_ONE},
+ {LUKS_ONE, LUKS_TWO, LUKS_TWO},
+ {LUKS_ONE, LUKS_TWO, LUKS_ANY},
+ {LUKS_ONE, LUKS_ANY, LUKS_ONE},
+ {LUKS_ONE, LUKS_ANY, LUKS_TWO},
+ {LUKS_ONE, LUKS_ANY, LUKS_ANY},
+ {LUKS_TWO, LUKS_ONE, LUKS_TWO},
+ {LUKS_TWO, LUKS_TWO, LUKS_ONE},
+ {LUKS_TWO, LUKS_TWO, LUKS_TWO},
+ {LUKS_TWO, LUKS_TWO, LUKS_ANY},
+ {LUKS_TWO, LUKS_ANY, LUKS_TWO},
+ {LUKS_ANY, LUKS_ONE, LUKS_TWO},
+ {LUKS_ANY, LUKS_TWO, LUKS_ONE},
+ {LUKS_ANY, LUKS_TWO, LUKS_TWO},
+ {LUKS_ANY, LUKS_TWO, LUKS_ANY},
+ {LUKS_ANY, LUKS_ANY, LUKS_TWO},
+ {LUKS_ANY, LUKS_ANY, LUKS_ANY, LUKS_ANY}};
+
+ const std::vector<librbd::encryption_spec_t> good_specs[] = {
+ {LUKS_ANY},
+ {LUKS_TWO, LUKS_ONE},
+ {LUKS_TWO, LUKS_ANY},
+ {LUKS_ANY, LUKS_ONE},
+ {LUKS_ANY, LUKS_ANY},
+ {LUKS_TWO, LUKS_ONE, LUKS_ONE},
+ {LUKS_TWO, LUKS_ONE, LUKS_ANY},
+ {LUKS_TWO, LUKS_ANY, LUKS_ONE},
+ {LUKS_TWO, LUKS_ANY, LUKS_ANY},
+ {LUKS_ANY, LUKS_ONE, LUKS_ONE},
+ {LUKS_ANY, LUKS_ONE, LUKS_ANY},
+ {LUKS_ANY, LUKS_ANY, LUKS_ONE},
+ {LUKS_ANY, LUKS_ANY, LUKS_ANY}};
+
+ static_assert(std::size(bad_specs) + std::size(good_specs) == 1 + 3 + 9 + 27 + 1);
+
+#undef LUKS_ONE
+#undef LUKS_TWO
+#undef LUKS_ANY
+
+ {
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name1.c_str(), 20 << 20, &order));
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name1.c_str(), nullptr));
+ ASSERT_EQ(0, image1.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1,
+ &luks1_opts, sizeof(luks1_opts)));
+
+ ASSERT_EQ(0, image1.snap_create("snap"));
+ ASSERT_EQ(0, image1.snap_protect("snap"));
+ uint64_t features;
+ ASSERT_EQ(0, image1.features(&features));
+ ASSERT_EQ(0, rbd.clone(ioctx, name1.c_str(), "snap", ioctx, name2.c_str(),
+ features, &order));
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name2.c_str(), nullptr));
+ ASSERT_EQ(0, image2.snap_create("snap"));
+ ASSERT_EQ(0, image2.snap_protect("snap"));
+ ASSERT_EQ(0, rbd.clone(ioctx, name2.c_str(), "snap", ioctx, name3.c_str(),
+ features, &order));
+
+ librbd::Image image3;
+ ASSERT_EQ(0, rbd.open(ioctx, image3, name3.c_str(), nullptr));
+ ASSERT_EQ(0, image3.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2,
+ &luks2_opts, sizeof(luks2_opts)));
+ }
+
+ {
+ librbd::Image image3;
+ ASSERT_EQ(0, rbd.open(ioctx, image3, name3.c_str(), nullptr));
+ for (auto& specs : bad_specs) {
+ ASSERT_EQ(-EINVAL, image3.encryption_load2(specs.data(), specs.size()));
+ }
+ }
+
+ for (auto& specs : good_specs) {
+ librbd::Image image3;
+ ASSERT_EQ(0, rbd.open(ioctx, image3, name3.c_str(), nullptr));
+ ASSERT_EQ(0, image3.encryption_load2(specs.data(), specs.size()));
+ }
+}
+
+TEST_F(TestLibRBD, EncryptedResize)
+{
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ auto name = get_temp_image_name();
+ uint64_t luks2_meta_size = 16 << 20;
+ uint64_t data_size = 10 << 20;
+ std::string passphrase = "some passphrase";
+
+ {
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(),
+ luks2_meta_size + data_size, &order));
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(luks2_meta_size + data_size, size);
+
+ librbd::encryption_luks2_format_options_t opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ ASSERT_EQ(0, image.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &opts,
+ sizeof(opts)));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(data_size, size);
+ ASSERT_EQ(0, image.resize(data_size * 3));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(data_size * 3, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(luks2_meta_size + data_size * 3, size);
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(0, image.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(data_size * 3, size);
+ ASSERT_EQ(0, image.resize(data_size / 2));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(data_size / 2, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(luks2_meta_size + data_size / 2, size);
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(0, image.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(data_size / 2, size);
+ ASSERT_EQ(0, image.resize(0));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(0, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(luks2_meta_size, size);
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(0, image.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(0, size);
+ ASSERT_EQ(0, image.resize(data_size));
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(data_size, size);
+ }
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ ASSERT_EQ(luks2_meta_size + data_size, size);
+ }
+}
+
+TEST_F(TestLibRBD, EncryptedFlattenSmallData)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string parent_name = get_temp_image_name();
+ std::string clone_name = get_temp_image_name();
+ uint64_t data_size = 5000;
+ uint64_t luks2_meta_size = 16 << 20;
+ std::string passphrase = "some passphrase";
+
+ {
+ int order = 22;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(),
+ luks2_meta_size + data_size, &order));
+ librbd::Image parent;
+ ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), nullptr));
+
+ librbd::encryption_luks2_format_options_t opts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &opts,
+ sizeof(opts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+
+ ASSERT_EQ(0, parent.snap_create("snap"));
+ ASSERT_EQ(0, parent.snap_protect("snap"));
+ uint64_t features;
+ ASSERT_EQ(0, parent.features(&features));
+ ASSERT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap", ioctx,
+ clone_name.c_str(), features, &order));
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_EQ(0, rbd.open(ioctx, clone, clone_name.c_str(), nullptr));
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(0, clone.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, clone.size(&size));
+ ASSERT_EQ(data_size, size);
+ uint64_t overlap;
+ ASSERT_EQ(0, clone.overlap(&overlap));
+ ASSERT_EQ(data_size, overlap);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(data_size, 'a'));
+
+ ceph::bufferlist read_bl1;
+ ASSERT_EQ(data_size, clone.read(0, data_size, read_bl1));
+ ASSERT_TRUE(expected_bl.contents_equal(read_bl1));
+
+ ASSERT_EQ(0, clone.flatten());
+
+ ceph::bufferlist read_bl2;
+ ASSERT_EQ(data_size, clone.read(0, data_size, read_bl2));
+ ASSERT_TRUE(expected_bl.contents_equal(read_bl2));
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_EQ(0, rbd.open(ioctx, clone, clone_name.c_str(), nullptr));
+
+ librbd::encryption_luks_format_options_t opts = {passphrase};
+ ASSERT_EQ(0, clone.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts)));
+ uint64_t size;
+ ASSERT_EQ(0, clone.size(&size));
+ ASSERT_EQ(data_size, size);
+ uint64_t overlap;
+ ASSERT_EQ(0, clone.overlap(&overlap));
+ ASSERT_EQ(0, overlap);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(data_size, 'a'));
+
+ ceph::bufferlist read_bl;
+ ASSERT_EQ(data_size, clone.read(0, data_size, read_bl));
+ ASSERT_TRUE(expected_bl.contents_equal(read_bl));
+ }
+}
+
+struct LUKSOnePassphrase {
+ int load(librbd::Image& clone) {
+ librbd::encryption_luks_format_options_t opts = {m_passphrase};
+ return clone.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts));
+ }
+
+ int load_flattened(librbd::Image& clone) {
+ return load(clone);
+ }
+
+ std::string m_passphrase = "some passphrase";
+};
+
+struct LUKSTwoPassphrases {
+ int load(librbd::Image& clone) {
+ librbd::encryption_luks_format_options_t opts1 = {m_parent_passphrase};
+ librbd::encryption_luks_format_options_t opts2 = {m_clone_passphrase};
+ librbd::encryption_spec_t specs[] = {
+ {RBD_ENCRYPTION_FORMAT_LUKS, &opts2, sizeof(opts2)},
+ {RBD_ENCRYPTION_FORMAT_LUKS, &opts1, sizeof(opts1)}};
+ return clone.encryption_load2(specs, std::size(specs));
+ }
+
+ int load_flattened(librbd::Image& clone) {
+ librbd::encryption_luks_format_options_t opts = {m_clone_passphrase};
+ return clone.encryption_load(RBD_ENCRYPTION_FORMAT_LUKS, &opts,
+ sizeof(opts));
+ }
+
+ std::string m_parent_passphrase = "parent passphrase";
+ std::string m_clone_passphrase = "clone passphrase";
+};
+
+struct PlaintextUnderLUKS1 : LUKSOnePassphrase {
+protected:
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+
+ // before taking a parent snapshot, (temporarily) add extra space
+ // to the parent to account for upcoming LUKS1 header in the clone,
+ // making the clone able to reach all parent data
+ uint64_t luks1_meta_size = 4 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks1_meta_size));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ librbd::encryption_luks1_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, m_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+ *passed = true;
+ }
+};
+
+struct PlaintextUnderLUKS2 : LUKSOnePassphrase {
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+
+ // before taking a parent snapshot, (temporarily) add extra space
+ // to the parent to account for upcoming LUKS2 header in the clone,
+ // making the clone able to reach all parent data
+ uint64_t luks2_meta_size = 16 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks2_meta_size));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ librbd::encryption_luks2_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, m_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+ *passed = true;
+ }
+};
+
+struct UnformattedLUKS1 : LUKSOnePassphrase {
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ uint64_t luks1_meta_size = 4 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks1_meta_size));
+ librbd::encryption_luks1_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, m_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ *passed = true;
+ }
+};
+
+struct LUKS1UnderLUKS1 : LUKSTwoPassphrases {
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ uint64_t luks1_meta_size = 4 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks1_meta_size));
+ librbd::encryption_luks1_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, m_parent_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ librbd::encryption_luks1_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, m_clone_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+ *passed = true;
+ }
+};
+
+struct LUKS1UnderLUKS2 : LUKSTwoPassphrases {
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ uint64_t luks1_meta_size = 4 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks1_meta_size));
+ librbd::encryption_luks1_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, m_parent_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+
+ // before taking a parent snapshot, (temporarily) add extra space
+ // to the parent to account for upcoming LUKS2 header in the clone,
+ // making the clone able to reach all parent data
+ // space taken by LUKS1 header in the parent would be reused
+ uint64_t luks2_meta_size = 16 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks2_meta_size - luks1_meta_size));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ librbd::encryption_luks2_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, m_clone_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+ *passed = true;
+ }
+};
+
+struct UnformattedLUKS2 : LUKSOnePassphrase {
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ uint64_t luks2_meta_size = 16 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks2_meta_size));
+ librbd::encryption_luks2_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, m_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ *passed = true;
+ }
+};
+
+struct LUKS2UnderLUKS2 : LUKSTwoPassphrases {
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ uint64_t luks2_meta_size = 16 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks2_meta_size));
+ librbd::encryption_luks2_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, m_parent_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ librbd::encryption_luks2_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, m_clone_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+ *passed = true;
+ }
+};
+
+struct LUKS2UnderLUKS1 : LUKSTwoPassphrases {
+ void setup_parent(librbd::Image& parent, uint64_t data_size, bool* passed) {
+ uint64_t luks2_meta_size = 16 << 20;
+ ASSERT_EQ(0, parent.resize(data_size + luks2_meta_size));
+ librbd::encryption_luks2_format_options_t fopts = {
+ RBD_ENCRYPTION_ALGORITHM_AES256, m_parent_passphrase};
+ ASSERT_EQ(0, parent.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS2, &fopts,
+ sizeof(fopts)));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(data_size, 'a'));
+ ASSERT_EQ(data_size, parent.write(0, data_size, bl));
+ *passed = true;
+ }
+
+ void setup_clone(librbd::Image& clone, uint64_t data_size, bool* passed) {
+ librbd::encryption_luks1_format_options_t fopts =
+ {RBD_ENCRYPTION_ALGORITHM_AES256, m_clone_passphrase};
+ ASSERT_EQ(0, clone.encryption_format(RBD_ENCRYPTION_FORMAT_LUKS1, &fopts,
+ sizeof(fopts)));
+
+ // after loading encryption on the clone, one can get rid of
+ // unneeded space allowance in the clone arising from LUKS2 header
+ // in the parent being bigger than LUKS1 header in the clone
+ ASSERT_EQ(0, load(clone));
+ ASSERT_EQ(0, clone.resize(data_size));
+ *passed = true;
+ }
+};
+
+template <typename FormatPolicy>
+class EncryptedFlattenTest : public TestLibRBD, FormatPolicy {
+protected:
+ void create_and_setup(bool* passed) {
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), m_ioctx));
+
+ int order = 22;
+ ASSERT_EQ(0, create_image_pp(m_rbd, m_ioctx, m_parent_name.c_str(),
+ m_data_size, &order));
+ librbd::Image parent;
+ ASSERT_EQ(0, m_rbd.open(m_ioctx, parent, m_parent_name.c_str(), nullptr));
+ ASSERT_PASSED(FormatPolicy::setup_parent, parent, m_data_size);
+
+ ASSERT_EQ(0, parent.snap_create("snap"));
+ ASSERT_EQ(0, parent.snap_protect("snap"));
+ uint64_t features;
+ ASSERT_EQ(0, parent.features(&features));
+ ASSERT_EQ(0, m_rbd.clone(m_ioctx, m_parent_name.c_str(), "snap", m_ioctx,
+ m_clone_name.c_str(), features, &order));
+ librbd::Image clone;
+ ASSERT_EQ(0, m_rbd.open(m_ioctx, clone, m_clone_name.c_str(), nullptr));
+ ASSERT_PASSED(FormatPolicy::setup_clone, clone, m_data_size);
+
+ *passed = true;
+ }
+
+ void open_and_load(librbd::Image& clone, bool* passed) {
+ ASSERT_EQ(0, m_rbd.open(m_ioctx, clone, m_clone_name.c_str(), nullptr));
+ ASSERT_EQ(0, FormatPolicy::load(clone));
+ *passed = true;
+ }
+
+ void open_and_load_flattened(librbd::Image& clone, bool* passed) {
+ ASSERT_EQ(0, m_rbd.open(m_ioctx, clone, m_clone_name.c_str(), nullptr));
+ ASSERT_EQ(0, FormatPolicy::load_flattened(clone));
+ *passed = true;
+ }
+
+ void verify_size_and_overlap(librbd::Image& image, uint64_t expected_size,
+ uint64_t expected_overlap) {
+ uint64_t size;
+ ASSERT_EQ(0, image.size(&size));
+ EXPECT_EQ(expected_size, size);
+ uint64_t overlap;
+ ASSERT_EQ(0, image.overlap(&overlap));
+ EXPECT_EQ(expected_overlap, overlap);
+ }
+
+ void verify_data(librbd::Image& image, const ceph::bufferlist& expected_bl) {
+ ceph::bufferlist read_bl;
+ ASSERT_EQ(expected_bl.length(),
+ image.read(0, expected_bl.length(), read_bl));
+ EXPECT_TRUE(expected_bl.contents_equal(read_bl));
+ }
+
+ librados::IoCtx m_ioctx;
+ librbd::RBD m_rbd;
+ std::string m_parent_name = get_temp_image_name();
+ std::string m_clone_name = get_temp_image_name();
+ uint64_t m_data_size = 25 << 20;
+};
+
+using EncryptedFlattenTestTypes =
+ ::testing::Types<PlaintextUnderLUKS1, PlaintextUnderLUKS2,
+ UnformattedLUKS1, LUKS1UnderLUKS1, LUKS1UnderLUKS2,
+ UnformattedLUKS2, LUKS2UnderLUKS2, LUKS2UnderLUKS1>;
+TYPED_TEST_SUITE(EncryptedFlattenTest, EncryptedFlattenTestTypes);
+
+TYPED_TEST(EncryptedFlattenTest, Simple)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ ASSERT_PASSED0(this->create_and_setup);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(this->m_data_size, 'a'));
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load, clone);
+ this->verify_size_and_overlap(clone, this->m_data_size, this->m_data_size);
+ this->verify_data(clone, expected_bl);
+ ASSERT_EQ(0, clone.flatten());
+ this->verify_data(clone, expected_bl);
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load_flattened, clone);
+ this->verify_size_and_overlap(clone, this->m_data_size, 0);
+ this->verify_data(clone, expected_bl);
+ }
+}
+
+TYPED_TEST(EncryptedFlattenTest, Grow)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ ASSERT_PASSED0(this->create_and_setup);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(this->m_data_size, 'a'));
+ expected_bl.append_zero(1);
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load, clone);
+ ASSERT_EQ(0, clone.resize(this->m_data_size + 1));
+ this->verify_size_and_overlap(clone, this->m_data_size + 1,
+ this->m_data_size);
+ this->verify_data(clone, expected_bl);
+ ASSERT_EQ(0, clone.flatten());
+ this->verify_data(clone, expected_bl);
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load_flattened, clone);
+ this->verify_size_and_overlap(clone, this->m_data_size + 1, 0);
+ this->verify_data(clone, expected_bl);
+ }
+}
+
+TYPED_TEST(EncryptedFlattenTest, Shrink)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ ASSERT_PASSED0(this->create_and_setup);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(this->m_data_size - 1, 'a'));
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load, clone);
+ ASSERT_EQ(0, clone.resize(this->m_data_size - 1));
+ this->verify_size_and_overlap(clone, this->m_data_size - 1,
+ this->m_data_size - 1);
+ this->verify_data(clone, expected_bl);
+ ASSERT_EQ(0, clone.flatten());
+ this->verify_data(clone, expected_bl);
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load_flattened, clone);
+ this->verify_size_and_overlap(clone, this->m_data_size - 1, 0);
+ this->verify_data(clone, expected_bl);
+ }
+}
+
+TYPED_TEST(EncryptedFlattenTest, ShrinkToOne)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ ASSERT_PASSED0(this->create_and_setup);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(1, 'a'));
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load, clone);
+ ASSERT_EQ(0, clone.resize(1));
+ this->verify_size_and_overlap(clone, 1, 1);
+ this->verify_data(clone, expected_bl);
+ ASSERT_EQ(0, clone.flatten());
+ this->verify_data(clone, expected_bl);
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load_flattened, clone);
+ this->verify_size_and_overlap(clone, 1, 0);
+ this->verify_data(clone, expected_bl);
+ }
+}
+
+TYPED_TEST(EncryptedFlattenTest, ShrinkToOneAfterSnapshot)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ ASSERT_PASSED0(this->create_and_setup);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(1, 'a'));
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load, clone);
+ ASSERT_EQ(0, clone.snap_create("snap"));
+ ASSERT_EQ(0, clone.resize(1));
+ this->verify_size_and_overlap(clone, 1, 1);
+ this->verify_data(clone, expected_bl);
+ ASSERT_EQ(0, clone.flatten());
+ this->verify_data(clone, expected_bl);
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load_flattened, clone);
+ this->verify_size_and_overlap(clone, 1, 0);
+ this->verify_data(clone, expected_bl);
+ }
+}
+
+TYPED_TEST(EncryptedFlattenTest, MinOverlap)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ ASSERT_PASSED0(this->create_and_setup);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append(std::string(1, 'a'));
+ expected_bl.append_zero(this->m_data_size - 1);
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load, clone);
+ ASSERT_EQ(0, clone.resize(1));
+ ASSERT_EQ(0, clone.resize(this->m_data_size));
+ this->verify_size_and_overlap(clone, this->m_data_size, 1);
+ this->verify_data(clone, expected_bl);
+ ASSERT_EQ(0, clone.flatten());
+ this->verify_data(clone, expected_bl);
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load_flattened, clone);
+ this->verify_size_and_overlap(clone, this->m_data_size, 0);
+ this->verify_data(clone, expected_bl);
+ }
+}
+
+TYPED_TEST(EncryptedFlattenTest, ZeroOverlap)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_STRIPINGV2));
+ REQUIRE(!is_feature_enabled(RBD_FEATURE_JOURNALING));
+
+ ASSERT_PASSED0(this->create_and_setup);
+
+ ceph::bufferlist expected_bl;
+ expected_bl.append_zero(this->m_data_size);
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load, clone);
+ ASSERT_EQ(0, clone.resize(0));
+ ASSERT_EQ(0, clone.resize(this->m_data_size));
+ this->verify_size_and_overlap(clone, this->m_data_size, 0);
+ this->verify_data(clone, expected_bl);
+ ASSERT_EQ(0, clone.flatten());
+ this->verify_data(clone, expected_bl);
+ }
+
+ {
+ librbd::Image clone;
+ ASSERT_PASSED(this->open_and_load_flattened, clone);
+ this->verify_size_and_overlap(clone, this->m_data_size, 0);
+ this->verify_data(clone, expected_bl);
+ }
+}
+
+#endif
+
+TEST_F(TestLibRBD, TestIOWithIOHint)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ bool skip_discard = is_skip_partial_discard_enabled(image);
+
+ char test_data[TEST_IO_SIZE + 1];
+ char zero_data[TEST_IO_SIZE + 1];
+ char mismatch_data[TEST_IO_SIZE + 1];
+ int i;
+ uint64_t mismatch_offset;
+
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ test_data[TEST_IO_SIZE] = '\0';
+ memset(zero_data, 0, sizeof(zero_data));
+ memset(mismatch_data, 9, sizeof(mismatch_data));
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_write_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(compare_and_write_test_data, image, test_data, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, &mismatch_offset, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_compare_and_write_test_data, image, test_data, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE,
+ LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_read_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL|LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+
+ // discard 2nd, 4th sections.
+ ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE);
+ ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE);
+
+ ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE,
+ LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE, TEST_IO_SIZE,
+ LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2, TEST_IO_SIZE,
+ LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE*3, TEST_IO_SIZE,
+ LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4, TEST_IO_SIZE, 0);
+
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ } else {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ }
+ }
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ } else {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ }
+ }
+
+ rbd_image_info_t info;
+ rbd_completion_t comp;
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ // can't read or write starting past end
+ ASSERT_EQ(-EINVAL, rbd_write(image, info.size, 1, test_data));
+ ASSERT_EQ(-EINVAL, rbd_read(image, info.size, 1, test_data));
+ // reading through end returns amount up to end
+ ASSERT_EQ(10, rbd_read2(image, info.size - 10, 100, test_data,
+ LIBRADOS_OP_FLAG_FADVISE_NOCACHE));
+ // writing through end returns amount up to end
+ ASSERT_EQ(10, rbd_write2(image, info.size - 10, 100, test_data,
+ LIBRADOS_OP_FLAG_FADVISE_DONTNEED));
+
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ ASSERT_EQ(0, rbd_aio_read2(image, info.size, 1, test_data, comp,
+ LIBRADOS_OP_FLAG_FADVISE_DONTNEED));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+
+ ASSERT_PASSED(write_test_data, image, zero_data, 0, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ mismatch_offset = 123;
+ ASSERT_EQ(-EILSEQ, rbd_compare_and_write(image, 0, TEST_IO_SIZE, mismatch_data, mismatch_data,
+ &mismatch_offset, LIBRADOS_OP_FLAG_FADVISE_DONTNEED));
+ ASSERT_EQ(0U, mismatch_offset);
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ mismatch_offset = 123;
+ ASSERT_EQ(0, rbd_aio_compare_and_write(image, 0, TEST_IO_SIZE, mismatch_data, mismatch_data,
+ comp, &mismatch_offset, LIBRADOS_OP_FLAG_FADVISE_DONTNEED));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EILSEQ, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(0U, mismatch_offset);
+ rbd_aio_release(comp);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestDataPoolIO)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ std::string data_pool_name = create_pool(true);
+
+ rbd_image_t image;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ bool old_format;
+ uint64_t features;
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ rbd_image_options_t image_options;
+ rbd_image_options_create(&image_options);
+ BOOST_SCOPE_EXIT( (&image_options) ) {
+ rbd_image_options_destroy(image_options);
+ } BOOST_SCOPE_EXIT_END;
+
+ ASSERT_EQ(0, rbd_image_options_set_uint64(image_options,
+ RBD_IMAGE_OPTION_FEATURES,
+ features));
+ ASSERT_EQ(0, rbd_image_options_set_string(image_options,
+ RBD_IMAGE_OPTION_DATA_POOL,
+ data_pool_name.c_str()));
+
+ ASSERT_EQ(0, rbd_create4(ioctx, name.c_str(), size, image_options));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_NE(-1, rbd_get_data_pool_id(image));
+
+ bool skip_discard = is_skip_partial_discard_enabled(image);
+
+ char test_data[TEST_IO_SIZE + 1];
+ char zero_data[TEST_IO_SIZE + 1];
+ int i;
+
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ test_data[TEST_IO_SIZE] = '\0';
+ memset(zero_data, 0, sizeof(zero_data));
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_read_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ // discard 2nd, 4th sections.
+ ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE);
+ ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE);
+
+ ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE*3, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4, TEST_IO_SIZE, 0);
+
+ rbd_image_info_t info;
+ rbd_completion_t comp;
+ ASSERT_EQ(0, rbd_stat(image, &info, sizeof(info)));
+ // can't read or write starting past end
+ ASSERT_EQ(-EINVAL, rbd_write(image, info.size, 1, test_data));
+ ASSERT_EQ(-EINVAL, rbd_read(image, info.size, 1, test_data));
+ // reading through end returns amount up to end
+ ASSERT_EQ(10, rbd_read(image, info.size - 10, 100, test_data));
+ // writing through end returns amount up to end
+ ASSERT_EQ(10, rbd_write(image, info.size - 10, 100, test_data));
+
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ ASSERT_EQ(0, rbd_aio_write(image, info.size, 1, test_data, comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+
+ rbd_aio_create_completion(NULL, (rbd_callback_t) simple_read_cb, &comp);
+ ASSERT_EQ(0, rbd_aio_read(image, info.size, 1, test_data, comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteMismatch)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // We only support to compare and write the same amount of (len) bytes
+ std::string cmp_buffer("This is a test");
+ std::string write_buffer("Write this !!!");
+ std::string mismatch_buffer("This will fail");
+ std::string read_buffer(cmp_buffer.length(), '1');
+
+ ssize_t written = rbd_write(image, off, cmp_buffer.length(),
+ cmp_buffer.data());
+ ASSERT_EQ(cmp_buffer.length(), written);
+
+ // Compare should fail because of mismatch
+ uint64_t mismatch_off = 0;
+ written = rbd_compare_and_write(image, off, write_buffer.length(),
+ mismatch_buffer.data(), write_buffer.data(),
+ &mismatch_off, 0);
+ ASSERT_EQ(-EILSEQ, written);
+ ASSERT_EQ(5U, mismatch_off);
+
+ // check nothing was written
+ ssize_t read = rbd_read(image, off, read_buffer.length(), read_buffer.data());
+ ASSERT_EQ(read_buffer.length(), read);
+ ASSERT_EQ(cmp_buffer, read_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteMismatch)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // We only support to compare and write the same amount of (len) bytes
+ std::string cmp_buffer("This is a test");
+ std::string write_buffer("Write this !!!");
+ std::string mismatch_buffer("This will fail");
+ std::string read_buffer(cmp_buffer.length(), '1');
+
+ ssize_t written = rbd_write(image, off, cmp_buffer.length(),
+ cmp_buffer.data());
+ ASSERT_EQ(cmp_buffer.length(), written);
+
+ // Compare should fail because of mismatch
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_write(image, off, write_buffer.length(),
+ mismatch_buffer.data(),
+ write_buffer.data(), comp,
+ &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EILSEQ, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(5U, mismatch_off);
+ rbd_aio_release(comp);
+
+ // check nothing was written
+ ssize_t read = rbd_read(image, off, read_buffer.length(), read_buffer.data());
+ ASSERT_EQ(read_buffer.length(), read);
+ ASSERT_EQ(cmp_buffer, read_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteSuccess)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // We only support to compare and write the same amount of (len) bytes
+ std::string cmp_buffer("This is a test");
+ std::string write_buffer("Write this !!!");
+ std::string read_buffer(cmp_buffer.length(), '1');
+
+ ssize_t written = rbd_write(image, off, cmp_buffer.length(),
+ cmp_buffer.data());
+ ASSERT_EQ(cmp_buffer.length(), written);
+
+ /*
+ * we compare against the written buffer (cmp_buffer) and write the buffer
+ * We expect: len bytes written
+ */
+ uint64_t mismatch_off = 0;
+ written = rbd_compare_and_write(image, off, write_buffer.length(),
+ cmp_buffer.data(), write_buffer.data(),
+ &mismatch_off, 0);
+ ASSERT_EQ(write_buffer.length(), written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ ssize_t read = rbd_read(image, off, read_buffer.length(), read_buffer.data());
+ ASSERT_EQ(read_buffer.length(), read);
+ ASSERT_EQ(write_buffer, read_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteSuccess)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // We only support to compare and write the same amount of (len) bytes
+ std::string cmp_buffer("This is a test");
+ std::string write_buffer("Write this !!!");
+ std::string read_buffer(cmp_buffer.length(), '1');
+
+ ssize_t written = rbd_write(image, off, cmp_buffer.length(),
+ cmp_buffer.data());
+ ASSERT_EQ(cmp_buffer.length(), written);
+
+ /*
+ * we compare against the written buffer (cmp_buffer) and write the buffer
+ * We expect: len bytes written
+ */
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_write(image, off, write_buffer.length(),
+ cmp_buffer.data(), write_buffer.data(),
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(0, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(0U, mismatch_off);
+ rbd_aio_release(comp);
+
+ ssize_t read = rbd_read(image, off, read_buffer.length(), read_buffer.data());
+ ASSERT_EQ(read_buffer.length(), read);
+ ASSERT_EQ(write_buffer, read_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+
+TEST_F(TestLibRBD, TestCompareAndWriteStripeUnitUnaligned)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit;
+ rbd_get_stripe_unit(image, &stripe_unit);
+ std::string large_write_buffer(stripe_unit, '2');
+ std::string large_cmp_buffer(stripe_unit * 2, '4');
+
+ ssize_t written = rbd_write(image, stripe_unit, large_cmp_buffer.length(),
+ large_cmp_buffer.data());
+ ASSERT_EQ(large_cmp_buffer.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit + 1 and stripe unit size
+ * Expect fail because access exceeds stripe (unaligned)
+ */
+ uint64_t mismatch_off = 0;
+ written = rbd_compare_and_write(image, stripe_unit + 1, stripe_unit,
+ large_cmp_buffer.data(),
+ large_write_buffer.data(),
+ &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check nothing has been written
+ std::string large_read_buffer(large_cmp_buffer.length(), '5');
+ ssize_t read = rbd_read(image, stripe_unit, large_read_buffer.length(),
+ large_read_buffer.data());
+ ASSERT_EQ(large_read_buffer.length(), read);
+ auto buffer_mismatch = std::mismatch(large_cmp_buffer.begin(),
+ large_cmp_buffer.end(),
+ large_read_buffer.begin());
+ ASSERT_EQ(large_read_buffer.end(), buffer_mismatch.second);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteStripeUnitUnaligned)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit;
+ rbd_get_stripe_unit(image, &stripe_unit);
+ std::string large_write_buffer(stripe_unit, '2');
+ std::string large_cmp_buffer(stripe_unit * 2, '4');
+
+ ssize_t written = rbd_write(image, stripe_unit, large_cmp_buffer.length(),
+ large_cmp_buffer.data());
+ ASSERT_EQ(large_cmp_buffer.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit + 1 and stripe unit size
+ * Expect fail because access spans stripe unit boundary (unaligned)
+ */
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_write(image, stripe_unit + 1, stripe_unit,
+ large_cmp_buffer.data(),
+ large_write_buffer.data(),
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(0U, mismatch_off);
+ rbd_aio_release(comp);
+
+ // check nothing has been written
+ std::string large_read_buffer(large_cmp_buffer.length(), '5');
+ ssize_t read = rbd_read(image, stripe_unit, large_read_buffer.length(),
+ large_read_buffer.data());
+ ASSERT_EQ(large_read_buffer.length(), read);
+ auto buffer_mismatch = std::mismatch(large_cmp_buffer.begin(),
+ large_cmp_buffer.end(),
+ large_read_buffer.begin());
+ ASSERT_EQ(large_read_buffer.end(), buffer_mismatch.second);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteTooLarge)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit;
+ rbd_get_stripe_unit(image, &stripe_unit);
+ std::string large_write_buffer(stripe_unit * 2, '2');
+ std::string large_cmp_buffer(large_write_buffer.length(), '4');
+
+ ssize_t written = rbd_write(image, stripe_unit, large_cmp_buffer.length(),
+ large_cmp_buffer.data());
+ ASSERT_EQ(large_cmp_buffer.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit and stripe unit size + 1
+ * Expect fail because access is larger than stripe unit size
+ */
+ uint64_t mismatch_off = 0;
+ written = rbd_compare_and_write(image, stripe_unit, stripe_unit + 1,
+ large_cmp_buffer.data(),
+ large_write_buffer.data(),
+ &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check nothing has been written
+ std::string large_read_buffer(large_cmp_buffer.length(), '5');
+ ssize_t read = rbd_read(image, stripe_unit, large_read_buffer.length(),
+ large_read_buffer.data());
+ ASSERT_EQ(large_read_buffer.length(), read);
+ auto buffer_mismatch = std::mismatch(large_cmp_buffer.begin(),
+ large_cmp_buffer.end(),
+ large_read_buffer.begin());
+ ASSERT_EQ(large_read_buffer.end(), buffer_mismatch.second);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteTooLarge)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit;
+ rbd_get_stripe_unit(image, &stripe_unit);
+ std::string large_write_buffer(stripe_unit * 2, '2');
+ std::string large_cmp_buffer(large_write_buffer.length(), '4');
+
+ ssize_t written = rbd_write(image, stripe_unit, large_cmp_buffer.length(),
+ large_cmp_buffer.data());
+ ASSERT_EQ(large_cmp_buffer.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit and stripe unit size + 1
+ * Expect fail because access is larger than stripe unit size
+ */
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_write(image, stripe_unit, stripe_unit + 1,
+ large_cmp_buffer.data(),
+ large_write_buffer.data(),
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(0U, mismatch_off);
+ rbd_aio_release(comp);
+
+ // check nothing has been written
+ std::string large_read_buffer(large_cmp_buffer.length(), '5');
+ ssize_t read = rbd_read(image, stripe_unit, large_read_buffer.length(),
+ large_read_buffer.data());
+ ASSERT_EQ(large_read_buffer.length(), read);
+ auto buffer_mismatch = std::mismatch(large_cmp_buffer.begin(),
+ large_cmp_buffer.end(),
+ large_read_buffer.begin());
+ ASSERT_EQ(large_read_buffer.end(), buffer_mismatch.second);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteStripeUnitSuccess)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit;
+ rbd_get_stripe_unit(image, &stripe_unit);
+ std::string large_write_buffer(stripe_unit, '2');
+ std::string large_cmp_buffer(stripe_unit * 2, '4');
+
+ ssize_t written = rbd_write(image, stripe_unit, large_cmp_buffer.length(),
+ large_cmp_buffer.data());
+ ASSERT_EQ(large_cmp_buffer.length(), written);
+
+ // aligned stripe unit size access => expect success
+ uint64_t mismatch_off = 0;
+ written = rbd_compare_and_write(image, stripe_unit, stripe_unit,
+ large_cmp_buffer.data(),
+ large_write_buffer.data(),
+ &mismatch_off, 0);
+ ASSERT_EQ(stripe_unit, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check stripe_unit bytes of large_write_buffer were written
+ std::string large_read_buffer(large_cmp_buffer.length(), '5');
+ ssize_t read = rbd_read(image, stripe_unit, large_read_buffer.length(),
+ large_read_buffer.data());
+ ASSERT_EQ(large_read_buffer.length(), read);
+ auto buffer_mismatch = std::mismatch(large_read_buffer.begin(),
+ large_read_buffer.begin() + stripe_unit,
+ large_write_buffer.begin());
+ ASSERT_EQ(large_write_buffer.end(), buffer_mismatch.second);
+ // check data beyond stripe_unit size was not overwritten
+ buffer_mismatch = std::mismatch(large_read_buffer.begin() + stripe_unit,
+ large_read_buffer.end(),
+ large_cmp_buffer.begin());
+ ASSERT_EQ(large_cmp_buffer.begin() + stripe_unit, buffer_mismatch.second);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteStripeUnitSuccess)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit;
+ rbd_get_stripe_unit(image, &stripe_unit);
+ std::string large_write_buffer(stripe_unit, '2');
+ std::string large_cmp_buffer(stripe_unit * 2, '4');
+
+ ssize_t written = rbd_write(image, stripe_unit, large_cmp_buffer.length(),
+ large_cmp_buffer.data());
+ ASSERT_EQ(large_cmp_buffer.length(), written);
+
+ // aligned stripe unit size access => expect success
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_write(image, stripe_unit, stripe_unit,
+ large_cmp_buffer.data(),
+ large_write_buffer.data(),
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(0, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(0U, mismatch_off);
+ rbd_aio_release(comp);
+
+ // check stripe_unit bytes of large_write_buffer were written
+ std::string large_read_buffer(large_cmp_buffer.length(), '5');
+ ssize_t read = rbd_read(image, stripe_unit, large_read_buffer.length(),
+ large_read_buffer.data());
+ ASSERT_EQ(large_read_buffer.length(), read);
+ auto buffer_mismatch = std::mismatch(large_read_buffer.begin(),
+ large_read_buffer.begin() + stripe_unit,
+ large_write_buffer.begin());
+ ASSERT_EQ(large_write_buffer.end(), buffer_mismatch.second);
+ // check data beyond stripe_unit size was not overwritten
+ buffer_mismatch = std::mismatch(large_read_buffer.begin() + stripe_unit,
+ large_read_buffer.end(),
+ large_cmp_buffer.begin());
+ ASSERT_EQ(large_cmp_buffer.begin() + stripe_unit, buffer_mismatch.second);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteVIovecLenDiffers)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ std::string cmp_buffer("This is a test");
+ size_t cmp_len = cmp_buffer.length();
+
+ std::string write_buffer("Write this !!!");
+ struct iovec write_iovs[] = {
+ {.iov_base = &write_buffer[0], .iov_len = 6},
+ {.iov_base = &write_buffer[6], .iov_len = 5},
+ {.iov_base = &write_buffer[11], .iov_len = 3}
+ };
+
+ ASSERT_EQ(cmp_len, rbd_write(image, off, cmp_len, cmp_buffer.data()));
+
+ // should fail because compare iovec len cannot be different to write iovec len
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_writev(image, off,
+ write_iovs /* cmp_iovs */, 1,
+ write_iovs, std::size(write_iovs),
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, ret);
+ ASSERT_EQ(0U, mismatch_off);
+ rbd_aio_release(comp);
+
+ // check nothing was written
+ std::string read_buffer(cmp_buffer.length(), '1');
+ ssize_t read = rbd_read(image, off, read_buffer.length(), read_buffer.data());
+ ASSERT_EQ(read_buffer.length(), read);
+ ASSERT_EQ(cmp_buffer, read_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteVMismatch)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ std::string cmp_buffer("This is a test");
+ int cmp_len = cmp_buffer.length();
+
+ std::string write_buffer("Write this !!!");
+ struct iovec write_iovs[] = {
+ {.iov_base = &write_buffer[0], .iov_len = 6},
+ {.iov_base = &write_buffer[6], .iov_len = 5},
+ {.iov_base = &write_buffer[11], .iov_len = 3}
+ };
+
+ std::string mismatch_buffer("This will fail");
+ struct iovec mismatch_iovs[] = {
+ {.iov_base = &mismatch_buffer[0], .iov_len = 5},
+ {.iov_base = &mismatch_buffer[5], .iov_len = 5},
+ {.iov_base = &mismatch_buffer[10], .iov_len = 4}
+ };
+
+ ASSERT_EQ(cmp_len, rbd_write(image, off, cmp_len, cmp_buffer.data()));
+
+ // this should execute the compare but fail because of mismatch
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_writev(image, off,
+ mismatch_iovs /* cmp_iovs */,
+ std::size(mismatch_iovs),
+ write_iovs, std::size(write_iovs),
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(-EILSEQ, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(5U, mismatch_off);
+ rbd_aio_release(comp);
+
+ // check nothing was written
+ std::string read_buffer(cmp_buffer.length(), '1');
+ ssize_t read = rbd_read(image, off, read_buffer.length(), read_buffer.data());
+ ASSERT_EQ(read_buffer.length(), read);
+ ASSERT_EQ(cmp_buffer, read_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteVSuccess)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ std::string cmp_buffer("This is a test");
+ struct iovec cmp_iovs[] = {
+ {.iov_base = &cmp_buffer[0], .iov_len = 5},
+ {.iov_base = &cmp_buffer[5], .iov_len = 3},
+ {.iov_base = &cmp_buffer[8], .iov_len = 2},
+ {.iov_base = &cmp_buffer[10], .iov_len = 4}
+ };
+ size_t cmp_len = cmp_buffer.length();
+
+ std::string write_buffer("Write this !!!");
+ struct iovec write_iovs[] = {
+ {.iov_base = &write_buffer[0], .iov_len = 6},
+ {.iov_base = &write_buffer[6], .iov_len = 5},
+ {.iov_base = &write_buffer[11], .iov_len = 3}
+ };
+
+ ASSERT_EQ(cmp_len, rbd_write(image, off, cmp_len, cmp_buffer.data()));
+
+ // compare against the buffer written before => should succeed
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ uint64_t mismatch_off = 0;
+ int ret = rbd_aio_compare_and_writev(image, off,
+ cmp_iovs, std::size(cmp_iovs),
+ write_iovs, std::size(write_iovs),
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(0, rbd_aio_get_return_value(comp));
+ ASSERT_EQ(0U, mismatch_off);
+ rbd_aio_release(comp);
+
+ // check data was successfully written
+ std::string read_buffer(cmp_buffer.length(), '1');
+ ssize_t read = rbd_read(image, off, read_buffer.length(), read_buffer.data());
+ ASSERT_EQ(read_buffer.length(), read);
+ ASSERT_EQ(write_buffer, read_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestScatterGatherIO)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ std::string write_buffer("This is a test");
+ // These iovecs should produce a length overflow
+ struct iovec bad_iovs[] = {
+ {.iov_base = &write_buffer[0], .iov_len = 5},
+ {.iov_base = NULL, .iov_len = std::numeric_limits<size_t>::max()}
+ };
+ struct iovec write_iovs[] = {
+ {.iov_base = &write_buffer[0], .iov_len = 5},
+ {.iov_base = &write_buffer[5], .iov_len = 3},
+ {.iov_base = &write_buffer[8], .iov_len = 2},
+ {.iov_base = &write_buffer[10], .iov_len = 4}
+ };
+
+ rbd_completion_t comp;
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ ASSERT_EQ(-EINVAL, rbd_aio_writev(image, write_iovs, 0, 0, comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_writev(image, bad_iovs, 2, 0, comp));
+ ASSERT_EQ(0, rbd_aio_writev(image, write_iovs,
+ sizeof(write_iovs) / sizeof(struct iovec),
+ 1<<order, comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(0, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+
+ std::string read_buffer(write_buffer.size(), '1');
+ struct iovec read_iovs[] = {
+ {.iov_base = &read_buffer[0], .iov_len = 4},
+ {.iov_base = &read_buffer[8], .iov_len = 4},
+ {.iov_base = &read_buffer[12], .iov_len = 2}
+ };
+
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ ASSERT_EQ(-EINVAL, rbd_aio_readv(image, read_iovs, 0, 0, comp));
+ ASSERT_EQ(-EINVAL, rbd_aio_readv(image, bad_iovs, 2, 0, comp));
+ ASSERT_EQ(0, rbd_aio_readv(image, read_iovs,
+ sizeof(read_iovs) / sizeof(struct iovec),
+ 1<<order, comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(10, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+ ASSERT_EQ("This1111 is a ", read_buffer);
+
+ std::string linear_buffer(write_buffer.size(), '1');
+ struct iovec linear_iovs[] = {
+ {.iov_base = &linear_buffer[4], .iov_len = 4}
+ };
+ rbd_aio_create_completion(NULL, NULL, &comp);
+ ASSERT_EQ(0, rbd_aio_readv(image, linear_iovs,
+ sizeof(linear_iovs) / sizeof(struct iovec),
+ 1<<order, comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comp));
+ ASSERT_EQ(4, rbd_aio_get_return_value(comp));
+ rbd_aio_release(comp);
+ ASSERT_EQ("1111This111111", linear_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestEmptyDiscard)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_PASSED(aio_discard_test_data, image, 0, 1*1024*1024);
+ ASSERT_PASSED(aio_discard_test_data, image, 0, 4*1024*1024);
+ ASSERT_PASSED(aio_discard_test_data, image, 3*1024*1024, 1*1024*1024);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestFUA)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image_write;
+ rbd_image_t image_read;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image_write, NULL));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image_read, NULL));
+
+ // enable writeback cache
+ rbd_flush(image_write);
+
+ char test_data[TEST_IO_SIZE + 1];
+ int i;
+
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ test_data[TEST_IO_SIZE] = '\0';
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(write_test_data, image_write, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_FUA);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(read_test_data, image_read, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_write_test_data, image_write, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_FUA);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_read_test_data, image_read, test_data,
+ TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ ASSERT_PASSED(validate_object_map, image_write);
+ ASSERT_PASSED(validate_object_map, image_read);
+ ASSERT_EQ(0, rbd_close(image_write));
+ ASSERT_EQ(0, rbd_close(image_read));
+ ASSERT_EQ(0, rbd_remove(ioctx, name.c_str()));
+ rados_ioctx_destroy(ioctx);
+}
+
+void simple_write_cb_pp(librbd::completion_t cb, void *arg)
+{
+ cout << "write completion cb called!" << std::endl;
+}
+
+void simple_read_cb_pp(librbd::completion_t cb, void *arg)
+{
+ cout << "read completion cb called!" << std::endl;
+}
+
+void aio_write_test_data(librbd::Image& image, const char *test_data,
+ off_t off, uint32_t iohint, bool *passed)
+{
+ ceph::bufferlist bl;
+ bl.append(test_data, strlen(test_data));
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_write_cb_pp);
+ printf("created completion\n");
+ if (iohint)
+ image.aio_write2(off, strlen(test_data), bl, comp, iohint);
+ else
+ image.aio_write(off, strlen(test_data), bl, comp);
+ printf("started write\n");
+ comp->wait_for_complete();
+ int r = comp->get_return_value();
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(0, r);
+ printf("finished write\n");
+ comp->release();
+ *passed = true;
+}
+
+void aio_discard_test_data(librbd::Image& image, off_t off, size_t len, bool *passed)
+{
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_write_cb_pp);
+ image.aio_discard(off, len, comp);
+ comp->wait_for_complete();
+ int r = comp->get_return_value();
+ ASSERT_EQ(0, r);
+ comp->release();
+ *passed = true;
+}
+
+void write_test_data(librbd::Image& image, const char *test_data, off_t off, uint32_t iohint, bool *passed)
+{
+ size_t written;
+ size_t len = strlen(test_data);
+ ceph::bufferlist bl;
+ bl.append(test_data, len);
+ if (iohint)
+ written = image.write2(off, len, bl, iohint);
+ else
+ written = image.write(off, len, bl);
+ printf("wrote: %u\n", (unsigned int) written);
+ ASSERT_EQ(bl.length(), written);
+ *passed = true;
+}
+
+void discard_test_data(librbd::Image& image, off_t off, size_t len, bool *passed)
+{
+ size_t written;
+ written = image.discard(off, len);
+ printf("discard: %u~%u\n", (unsigned)off, (unsigned)len);
+ ASSERT_EQ(len, written);
+ *passed = true;
+}
+
+void aio_read_test_data(librbd::Image& image, const char *expected, off_t off, size_t expected_len, uint32_t iohint, bool *passed)
+{
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_read_cb_pp);
+ ceph::bufferlist bl;
+ printf("created completion\n");
+ if (iohint)
+ image.aio_read2(off, expected_len, bl, comp, iohint);
+ else
+ image.aio_read(off, expected_len, bl, comp);
+ printf("started read\n");
+ comp->wait_for_complete();
+ int r = comp->get_return_value();
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(TEST_IO_SIZE, r);
+ ASSERT_EQ(0, memcmp(expected, bl.c_str(), TEST_IO_SIZE));
+ printf("finished read\n");
+ comp->release();
+ *passed = true;
+}
+
+void read_test_data(librbd::Image& image, const char *expected, off_t off, size_t expected_len, uint32_t iohint, bool *passed)
+{
+ int read;
+ size_t len = expected_len;
+ ceph::bufferlist bl;
+ if (iohint)
+ read = image.read2(off, len, bl, iohint);
+ else
+ read = image.read(off, len, bl);
+ ASSERT_TRUE(read >= 0);
+ std::string bl_str(bl.c_str(), read);
+
+ printf("read: %u\n", (unsigned int) read);
+ int result = memcmp(bl_str.c_str(), expected, expected_len);
+ if (result != 0) {
+ printf("read: %s\nexpected: %s\n", bl_str.c_str(), expected);
+ ASSERT_EQ(0, result);
+ }
+ *passed = true;
+}
+
+void aio_writesame_test_data(librbd::Image& image, const char *test_data, off_t off,
+ size_t len, size_t data_len, uint32_t iohint, bool *passed)
+{
+ ceph::bufferlist bl;
+ bl.append(test_data, data_len);
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_write_cb_pp);
+ printf("created completion\n");
+ int r;
+ r = image.aio_writesame(off, len, bl, comp, iohint);
+ printf("started writesame\n");
+ if (len % data_len) {
+ ASSERT_EQ(-EINVAL, r);
+ printf("expected fail, finished writesame\n");
+ comp->release();
+ *passed = true;
+ return;
+ }
+
+ comp->wait_for_complete();
+ r = comp->get_return_value();
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(0, r);
+ printf("finished writesame\n");
+ comp->release();
+
+ //verify data
+ printf("to verify the data\n");
+ int read;
+ uint64_t left = len;
+ while (left > 0) {
+ ceph::bufferlist bl;
+ read = image.read(off, data_len, bl);
+ ASSERT_EQ(data_len, static_cast<size_t>(read));
+ std::string bl_str(bl.c_str(), read);
+ int result = memcmp(bl_str.c_str(), test_data, data_len);
+ if (result !=0 ) {
+ printf("read: %u ~ %u\n", (unsigned int) off, (unsigned int) read);
+ printf("read: %s\nexpected: %s\n", bl_str.c_str(), test_data);
+ ASSERT_EQ(0, result);
+ }
+ off += data_len;
+ left -= data_len;
+ }
+ ASSERT_EQ(0U, left);
+ printf("verified\n");
+
+ *passed = true;
+}
+
+void writesame_test_data(librbd::Image& image, const char *test_data, off_t off,
+ ssize_t len, size_t data_len, uint32_t iohint,
+ bool *passed)
+{
+ ssize_t written;
+ ceph::bufferlist bl;
+ bl.append(test_data, data_len);
+ written = image.writesame(off, len, bl, iohint);
+ if (len % data_len) {
+ ASSERT_EQ(-EINVAL, written);
+ printf("expected fail, finished writesame\n");
+ *passed = true;
+ return;
+ }
+ ASSERT_EQ(len, written);
+ printf("wrote: %u\n", (unsigned int) written);
+ *passed = true;
+
+ //verify data
+ printf("to verify the data\n");
+ int read;
+ uint64_t left = len;
+ while (left > 0) {
+ ceph::bufferlist bl;
+ read = image.read(off, data_len, bl);
+ ASSERT_EQ(data_len, static_cast<size_t>(read));
+ std::string bl_str(bl.c_str(), read);
+ int result = memcmp(bl_str.c_str(), test_data, data_len);
+ if (result !=0 ) {
+ printf("read: %u ~ %u\n", (unsigned int) off, (unsigned int) read);
+ printf("read: %s\nexpected: %s\n", bl_str.c_str(), test_data);
+ ASSERT_EQ(0, result);
+ }
+ off += data_len;
+ left -= data_len;
+ }
+ ASSERT_EQ(0U, left);
+ printf("verified\n");
+
+ *passed = true;
+}
+
+void aio_compare_and_write_test_data(librbd::Image& image, const char *cmp_data,
+ const char *test_data, off_t off, ssize_t len,
+ uint32_t iohint, bool *passed)
+{
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(cmp_data, strlen(cmp_data));
+ ceph::bufferlist test_bl;
+ test_bl.append(test_data, strlen(test_data));
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL, (librbd::callback_t) simple_write_cb_pp);
+ printf("created completion\n");
+
+ uint64_t mismatch_offset;
+ image.aio_compare_and_write(off, len, cmp_bl, test_bl, comp, &mismatch_offset, iohint);
+ printf("started aio compare and write\n");
+ comp->wait_for_complete();
+ int r = comp->get_return_value();
+ printf("return value is: %d\n", r);
+ ASSERT_EQ(0, r);
+ printf("finished aio compare and write\n");
+ comp->release();
+ *passed = true;
+}
+
+void compare_and_write_test_data(librbd::Image& image, const char *cmp_data, const char *test_data,
+ off_t off, ssize_t len, uint64_t *mismatch_off, uint32_t iohint, bool *passed)
+{
+ size_t written;
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(cmp_data, strlen(cmp_data));
+ ceph::bufferlist test_bl;
+ test_bl.append(test_data, strlen(test_data));
+ printf("start compare and write\n");
+ written = image.compare_and_write(off, len, cmp_bl, test_bl, mismatch_off, iohint);
+ printf("compare and wrote: %d\n", (int) written);
+ ASSERT_EQ(len, static_cast<ssize_t>(written));
+ *passed = true;
+}
+
+TEST_F(TestLibRBD, TestIOPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool skip_discard = this->is_skip_partial_discard_enabled(image);
+
+ char test_data[TEST_IO_SIZE + 1];
+ char zero_data[TEST_IO_SIZE + 1];
+ int i;
+ uint64_t mismatch_offset;
+
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ test_data[TEST_IO_SIZE] = '\0';
+ memset(zero_data, 0, sizeof(zero_data));
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(write_test_data, image, test_data, strlen(test_data) * i, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_write_test_data, image, test_data, strlen(test_data) * i, 0);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, &mismatch_offset, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_compare_and_write_test_data, image, test_data, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE, 0);
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(read_test_data, image, test_data, strlen(test_data) * i, TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_read_test_data, image, test_data, strlen(test_data) * i, TEST_IO_SIZE, 0);
+
+ // discard 2nd, 4th sections.
+ ASSERT_PASSED(discard_test_data, image, TEST_IO_SIZE, TEST_IO_SIZE);
+ ASSERT_PASSED(aio_discard_test_data, image, TEST_IO_SIZE*3, TEST_IO_SIZE);
+
+ ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*2, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, skip_discard ? test_data : zero_data,
+ TEST_IO_SIZE*3, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(read_test_data, image, test_data, TEST_IO_SIZE*4, TEST_IO_SIZE, 0);
+
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ } else {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ }
+ }
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, 0);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE + i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ } else {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i, TEST_IO_SIZE * i * 32, TEST_IO_SIZE, 0);
+ }
+ }
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+static void compare_written(librbd::Image& image, off_t off, size_t len,
+ const std::string& buffer, bool *passed)
+{
+ bufferlist read_bl;
+ ssize_t read = image.read(off, len, read_bl);
+ ASSERT_EQ(len, read);
+ std::string read_buffer(read_bl.c_str(), read);
+ ASSERT_EQ(buffer.substr(0, len), read_buffer);
+ *passed = true;
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteCompareTooSmallPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ std::string small_buffer("Too small");
+ ceph::bufferlist small_bl;
+ small_bl.append(&small_buffer[0], 4);
+ small_bl.append(&small_buffer[4], 4);
+
+ // should fail because compare bufferlist cannot be smaller than len
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(off, cmp_bl.length(),
+ small_bl, /* cmp_bl */
+ write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteCompareTooSmallPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ std::string small_buffer("Too small");
+ ceph::bufferlist small_bl;
+ small_bl.append(&small_buffer[0], 4);
+ small_bl.append(&small_buffer[4], 4);
+
+ // should fail because compare bufferlist cannot be smaller than len
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(off, cmp_bl.length(),
+ small_bl, /* cmp_bl */
+ write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, ret);
+ ASSERT_EQ(0U, mismatch_off);
+ comp->release();
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteWriteTooSmallPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ std::string small_buffer("Too small");
+ ceph::bufferlist small_bl;
+ small_bl.append(&small_buffer[0], 4);
+ small_bl.append(&small_buffer[4], 4);
+
+ // should fail because write bufferlist cannot be smaller than len
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(off, cmp_bl.length(),
+ cmp_bl,
+ small_bl, /* write_bl */
+ &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteWriteTooSmallPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ std::string small_buffer("Too small");
+ ceph::bufferlist small_bl;
+ small_bl.append(&small_buffer[0], 4);
+ small_bl.append(&small_buffer[4], 4);
+
+ // should fail because write bufferlist cannot be smaller than len
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(off, cmp_bl.length(),
+ cmp_bl,
+ small_bl, /* write_bl */
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, ret);
+ ASSERT_EQ(0U, mismatch_off);
+ comp->release();
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteMismatchPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ std::string mismatch_buffer("This will fail");
+ ceph::bufferlist mismatch_bl;
+ mismatch_bl.append(&mismatch_buffer[0], 5);
+ mismatch_bl.append(&mismatch_buffer[5], 5);
+ mismatch_bl.append(&mismatch_buffer[10], 4);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ // this should execute the compare but fail because of mismatch
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(off, write_bl.length(),
+ mismatch_bl, /* cmp_bl */
+ write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(-EILSEQ, written);
+ ASSERT_EQ(5U, mismatch_off);
+
+ // check that nothing was written
+ ASSERT_PASSED(compare_written, image, off, cmp_bl.length(), cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteMismatchPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ std::string mismatch_buffer("This will fail");
+ ceph::bufferlist mismatch_bl;
+ mismatch_bl.append(&mismatch_buffer[0], 5);
+ mismatch_bl.append(&mismatch_buffer[5], 5);
+ mismatch_bl.append(&mismatch_buffer[10], 4);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ // this should execute the compare but fail because of mismatch
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(off, write_bl.length(),
+ mismatch_bl, /* cmp_bl */
+ write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ comp->wait_for_complete();
+ ssize_t aio_ret = comp->get_return_value();
+ ASSERT_EQ(-EILSEQ, aio_ret);
+ ASSERT_EQ(5U, mismatch_off);
+ comp->release();
+
+ // check that nothing was written
+ ASSERT_PASSED(compare_written, image, off, cmp_bl.length(), cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteMismatchBufferlistGreaterLenPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ std::string mismatch_buffer("This will fail");
+ ceph::bufferlist mismatch_bl;
+ mismatch_bl.append(&mismatch_buffer[0], 5);
+ mismatch_bl.append(&mismatch_buffer[5], 5);
+ mismatch_bl.append(&mismatch_buffer[10], 4);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ /*
+ * we allow cmp_bl and write_bl to be greater than len so this
+ * should execute the compare but fail because of mismatch
+ */
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(off, cmp_bl.length() - 1,
+ mismatch_bl, /* cmp_bl */
+ write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(-EILSEQ, written);
+ ASSERT_EQ(5U, mismatch_off);
+
+ // check that nothing was written
+ ASSERT_PASSED(compare_written, image, off, cmp_bl.length(), cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteMismatchBufferlistGreaterLenPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ std::string mismatch_buffer("This will fail");
+ ceph::bufferlist mismatch_bl;
+ mismatch_bl.append(&mismatch_buffer[0], 5);
+ mismatch_bl.append(&mismatch_buffer[5], 5);
+ mismatch_bl.append(&mismatch_buffer[10], 4);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ /*
+ * we allow cmp_bl and write_bl to be greater than len so this
+ * should execute the compare but fail because of mismatch
+ */
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(off, cmp_bl.length() - 1,
+ mismatch_bl, /* cmp_bl */
+ write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ comp->wait_for_complete();
+ ssize_t aio_ret = comp->get_return_value();
+ ASSERT_EQ(-EILSEQ, aio_ret);
+ ASSERT_EQ(5U, mismatch_off);
+ comp->release();
+
+ // check that nothing was written
+ ASSERT_PASSED(compare_written, image, off, cmp_bl.length(), cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteSuccessPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ // compare against the buffer written before => should succeed
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(off, cmp_bl.length(),
+ cmp_bl,
+ write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(write_bl.length(), written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check write_bl was written
+ ASSERT_PASSED(compare_written, image, off, write_bl.length(), write_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteSuccessPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ ssize_t written = image.write(off, cmp_bl.length(), cmp_bl);
+ ASSERT_EQ(cmp_bl.length(), written);
+
+ // compare against the buffer written before => should succeed
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(off, write_bl.length(),
+ cmp_bl,
+ write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ comp->wait_for_complete();
+ ssize_t aio_ret = comp->get_return_value();
+ ASSERT_EQ(0, aio_ret);
+ ASSERT_EQ(0U, mismatch_off);
+ comp->release();
+
+ // check write_bl was written
+ ASSERT_PASSED(compare_written, image, off, write_bl.length(), write_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteSuccessBufferlistGreaterLenPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ std::string mismatch_buffer("This will fail");
+ ceph::bufferlist mismatch_bl;
+ mismatch_bl.append(&mismatch_buffer[0], 5);
+ mismatch_bl.append(&mismatch_buffer[5], 5);
+ mismatch_bl.append(&mismatch_buffer[10], 4);
+
+ /*
+ * Test len < cmp_bl & write_bl => should succeed but only compare
+ * len bytes resp. only write len bytes
+ */
+ ssize_t written = image.write(off, mismatch_bl.length(), mismatch_bl);
+ ASSERT_EQ(mismatch_bl.length(), written);
+
+ size_t len_m1 = cmp_bl.length() - 1;
+ written = image.write(off, len_m1, cmp_bl);
+ ASSERT_EQ(len_m1, written);
+ // the content of the image at off should now be "This is a tesl"
+
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(off, len_m1,
+ cmp_bl,
+ write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(len_m1, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check that only write_bl.length() - 1 bytes were written
+ ASSERT_PASSED(compare_written, image, off, len_m1, write_buffer);
+ ASSERT_PASSED(compare_written, image, off + len_m1, 1, std::string("l"));
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteSuccessBufferlistGreaterLenPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+ off_t off = 512;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string cmp_buffer("This is a test");
+ ceph::bufferlist cmp_bl;
+ cmp_bl.append(&cmp_buffer[0], 5);
+ cmp_bl.append(&cmp_buffer[5], 3);
+ cmp_bl.append(&cmp_buffer[8], 2);
+ cmp_bl.append(&cmp_buffer[10], 4);
+
+ std::string write_buffer("Write this !!!");
+ ceph::bufferlist write_bl;
+ write_bl.append(&write_buffer[0], 6);
+ write_bl.append(&write_buffer[6], 5);
+ write_bl.append(&write_buffer[11], 3);
+
+ std::string mismatch_buffer("This will fail");
+ ceph::bufferlist mismatch_bl;
+ mismatch_bl.append(&mismatch_buffer[0], 5);
+ mismatch_bl.append(&mismatch_buffer[5], 5);
+ mismatch_bl.append(&mismatch_buffer[10], 4);
+
+ /*
+ * Test len < cmp_bl & write_bl => should succeed but only compare
+ * len bytes resp. only write len bytes
+ */
+ ssize_t written = image.write(off, mismatch_bl.length(), mismatch_bl);
+ ASSERT_EQ(mismatch_bl.length(), written);
+
+ size_t len_m1 = cmp_bl.length() - 1;
+ written = image.write(off, len_m1, cmp_bl);
+ ASSERT_EQ(len_m1, written);
+ // the content of the image at off should now be "This is a tesl"
+
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(off, len_m1,
+ cmp_bl,
+ write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ comp->wait_for_complete();
+ ssize_t aio_ret = comp->get_return_value();
+ ASSERT_EQ(0, aio_ret);
+ ASSERT_EQ(0U, mismatch_off);
+ comp->release();
+
+ // check that only write_bl.length() - 1 bytes were written
+ ASSERT_PASSED(compare_written, image, off, len_m1, write_buffer);
+ ASSERT_PASSED(compare_written, image, off + len_m1, 1, std::string("l"));
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteStripeUnitUnalignedPP)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit = image.get_stripe_unit();
+ std::string large_write_buffer(stripe_unit, '2');
+ ceph::bufferlist large_write_bl;
+ large_write_bl.append(large_write_buffer.data(),
+ large_write_buffer.length());
+
+ std::string large_cmp_buffer(stripe_unit * 2, '3');
+ ceph::bufferlist large_cmp_bl;
+ large_cmp_bl.append(large_cmp_buffer.data(), large_cmp_buffer.length());
+
+ ssize_t written = image.write(stripe_unit, large_cmp_bl.length(),
+ large_cmp_bl);
+ ASSERT_EQ(large_cmp_bl.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit + 1 and stripe unit size
+ * Expect fail because access exceeds stripe
+ */
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(stripe_unit + 1, stripe_unit,
+ large_cmp_bl,
+ large_write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check nothing has been written
+ ASSERT_PASSED(compare_written, image, stripe_unit, large_cmp_bl.length(),
+ large_cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteStripeUnitUnalignedPP)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit = image.get_stripe_unit();
+ std::string large_write_buffer(stripe_unit, '2');
+ ceph::bufferlist large_write_bl;
+ large_write_bl.append(large_write_buffer.data(),
+ large_write_buffer.length());
+
+ std::string large_cmp_buffer(stripe_unit * 2, '3');
+ ceph::bufferlist large_cmp_bl;
+ large_cmp_bl.append(large_cmp_buffer.data(), large_cmp_buffer.length());
+
+ ssize_t written = image.write(stripe_unit, large_cmp_bl.length(),
+ large_cmp_bl);
+ ASSERT_EQ(large_cmp_bl.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit + 1 and stripe unit size
+ * Expect fail because access exceeds stripe
+ */
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(stripe_unit + 1, stripe_unit,
+ large_cmp_bl,
+ large_write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ comp->wait_for_complete();
+ ssize_t aio_ret = comp->get_return_value();
+ ASSERT_EQ(-EINVAL, aio_ret);
+ ASSERT_EQ(0U, mismatch_off);
+ comp->release();
+
+ // check nothing has been written
+ ASSERT_PASSED(compare_written, image, stripe_unit, large_cmp_bl.length(),
+ large_cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteTooLargePP)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit = image.get_stripe_unit();
+ std::string large_write_buffer(stripe_unit * 2, '2');
+ ceph::bufferlist large_write_bl;
+ large_write_bl.append(large_write_buffer.data(),
+ large_write_buffer.length());
+
+ std::string large_cmp_buffer(stripe_unit * 2, '3');
+ ceph::bufferlist large_cmp_bl;
+ large_cmp_bl.append(large_cmp_buffer.data(), large_cmp_buffer.length());
+
+ ssize_t written = image.write(stripe_unit, large_cmp_bl.length(),
+ large_cmp_bl);
+ ASSERT_EQ(large_cmp_bl.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit and stripe unit size + 1
+ * Expect fail because access is larger than stripe unit size
+ */
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(stripe_unit, stripe_unit + 1,
+ large_cmp_bl,
+ large_write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(-EINVAL, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check nothing has been written
+ ASSERT_PASSED(compare_written, image, stripe_unit, large_cmp_bl.length(),
+ large_cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteTooLargePP)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit = image.get_stripe_unit();
+ std::string large_write_buffer(stripe_unit * 2, '2');
+ ceph::bufferlist large_write_bl;
+ large_write_bl.append(large_write_buffer.data(),
+ large_write_buffer.length());
+
+ std::string large_cmp_buffer(stripe_unit * 2, '3');
+ ceph::bufferlist large_cmp_bl;
+ large_cmp_bl.append(large_cmp_buffer.data(), large_cmp_buffer.length());
+
+ ssize_t written = image.write(stripe_unit, large_cmp_bl.length(),
+ large_cmp_bl);
+ ASSERT_EQ(large_cmp_bl.length(), written);
+
+ /*
+ * compare and write at offset stripe_unit and stripe unit size + 1
+ * Expect fail because access is larger than stripe unit size
+ */
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(stripe_unit, stripe_unit + 1,
+ large_cmp_bl,
+ large_write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ comp->wait_for_complete();
+ ssize_t aio_ret = comp->get_return_value();
+ ASSERT_EQ(-EINVAL, aio_ret);
+ ASSERT_EQ(0U, mismatch_off);
+ comp->release();
+
+ // check nothing has been written
+ ASSERT_PASSED(compare_written, image, stripe_unit, large_cmp_bl.length(),
+ large_cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestCompareAndWriteStripeUnitSuccessPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit = image.get_stripe_unit();
+ std::string large_write_buffer(stripe_unit * 2, '2');
+ ceph::bufferlist large_write_bl;
+ large_write_bl.append(large_write_buffer.data(),
+ large_write_buffer.length());
+
+ std::string large_cmp_buffer(stripe_unit * 2, '3');
+ ceph::bufferlist large_cmp_bl;
+ large_cmp_bl.append(large_cmp_buffer.data(), large_cmp_buffer.length());
+
+ ssize_t written = image.write(stripe_unit, large_cmp_bl.length(),
+ large_cmp_bl);
+ ASSERT_EQ(large_cmp_bl.length(), written);
+
+ // aligned stripe unit size access => expect success
+ uint64_t mismatch_off = 0;
+ written = image.compare_and_write(stripe_unit, stripe_unit,
+ large_cmp_bl,
+ large_write_bl,
+ &mismatch_off, 0);
+ ASSERT_EQ(stripe_unit, written);
+ ASSERT_EQ(0U, mismatch_off);
+
+ // check large_write_bl was written and nothing beyond
+ ASSERT_PASSED(compare_written, image, stripe_unit, stripe_unit,
+ large_write_buffer);
+ ASSERT_PASSED(compare_written, image, stripe_unit * 2, stripe_unit,
+ large_cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestAioCompareAndWriteStripeUnitSuccessPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 20 << 20; /* 20MiB */
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // large write test => we allow stripe unit size writes (aligned)
+ uint64_t stripe_unit = image.get_stripe_unit();
+ std::string large_write_buffer(stripe_unit * 2, '2');
+ ceph::bufferlist large_write_bl;
+ large_write_bl.append(large_write_buffer.data(),
+ large_write_buffer.length());
+
+ std::string large_cmp_buffer(stripe_unit * 2, '3');
+ ceph::bufferlist large_cmp_bl;
+ large_cmp_bl.append(large_cmp_buffer.data(),
+ large_cmp_buffer.length());
+
+ ssize_t written = image.write(stripe_unit, large_cmp_bl.length(),
+ large_cmp_bl);
+ ASSERT_EQ(large_cmp_bl.length(), written);
+
+ // aligned stripe unit size access => expect success
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) simple_write_cb_pp);
+ uint64_t mismatch_off = 0;
+ int ret = image.aio_compare_and_write(stripe_unit, stripe_unit,
+ large_cmp_bl,
+ large_write_bl,
+ comp, &mismatch_off, 0);
+ ASSERT_EQ(0, ret);
+ comp->wait_for_complete();
+ ssize_t aio_ret = comp->get_return_value();
+ ASSERT_EQ(0, aio_ret);
+ ASSERT_EQ(0U, mismatch_off);
+ comp->release();
+
+ // check large_write_bl was written and nothing beyond
+ ASSERT_PASSED(compare_written, image, stripe_unit, stripe_unit,
+ large_write_buffer);
+ ASSERT_PASSED(compare_written, image, stripe_unit * 2, stripe_unit,
+ large_cmp_buffer);
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, TestIOPPWithIOHint)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ char test_data[TEST_IO_SIZE + 1];
+ char zero_data[TEST_IO_SIZE + 1];
+ test_data[TEST_IO_SIZE] = '\0';
+ int i;
+
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ memset(zero_data, 0, sizeof(zero_data));
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(write_test_data, image, test_data, strlen(test_data) * i,
+ LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_write_test_data, image, test_data, strlen(test_data) * i,
+ LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+
+ ASSERT_PASSED(read_test_data, image, test_data, strlen(test_data),
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_RANDOM);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_read_test_data, image, test_data, strlen(test_data) * i,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_SEQUENTIAL|LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE + i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE + i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ } else {
+ ASSERT_PASSED(writesame_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ ASSERT_PASSED(writesame_test_data, image, zero_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+ }
+ }
+ for (i = 0; i < 15; ++i) {
+ if (i % 3 == 2) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32 + i, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ } else if (i % 3 == 1) {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE + i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE + i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ } else {
+ ASSERT_PASSED(aio_writesame_test_data, image, test_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ ASSERT_PASSED(aio_writesame_test_data, image, zero_data, TEST_IO_SIZE * i,
+ TEST_IO_SIZE * i * 32, TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_DONTNEED);
+ }
+ }
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+
+
+TEST_F(TestLibRBD, TestIOToSnapshot)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t isize = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), isize, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ int i, r;
+ rbd_image_t image_at_snap;
+ char orig_data[TEST_IO_TO_SNAP_SIZE + 1];
+ char test_data[TEST_IO_TO_SNAP_SIZE + 1];
+
+ for (i = 0; i < TEST_IO_TO_SNAP_SIZE; ++i)
+ test_data[i] = (char) (i + 48);
+ test_data[TEST_IO_TO_SNAP_SIZE] = '\0';
+ orig_data[TEST_IO_TO_SNAP_SIZE] = '\0';
+
+ r = rbd_read(image, 0, TEST_IO_TO_SNAP_SIZE, orig_data);
+ ASSERT_EQ(r, TEST_IO_TO_SNAP_SIZE);
+
+ ASSERT_EQ(0, test_ls_snaps(image, 0));
+ ASSERT_EQ(0, rbd_snap_create(image, "orig"));
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "orig", isize));
+ ASSERT_PASSED(read_test_data, image, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+
+ printf("write test data!\n");
+ ASSERT_PASSED(write_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+ ASSERT_EQ(0, rbd_snap_create(image, "written"));
+ ASSERT_EQ(2, test_ls_snaps(image, 2, "orig", isize, "written", isize));
+
+ ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+
+ rbd_snap_set(image, "orig");
+ ASSERT_PASSED(read_test_data, image, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+
+ rbd_snap_set(image, "written");
+ ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+
+ rbd_snap_set(image, "orig");
+
+ r = rbd_write(image, 0, TEST_IO_TO_SNAP_SIZE, test_data);
+ printf("write to snapshot returned %d\n", r);
+ ASSERT_LT(r, 0);
+ cout << strerror(-r) << std::endl;
+
+ ASSERT_PASSED(read_test_data, image, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+ rbd_snap_set(image, "written");
+ ASSERT_PASSED(read_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+
+ r = rbd_snap_rollback(image, "orig");
+ ASSERT_EQ(r, -EROFS);
+
+ r = rbd_snap_set(image, NULL);
+ ASSERT_EQ(r, 0);
+ r = rbd_snap_rollback(image, "orig");
+ ASSERT_EQ(r, 0);
+
+ ASSERT_PASSED(write_test_data, image, test_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+
+ rbd_flush(image);
+
+ printf("opening testimg@orig\n");
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image_at_snap, "orig"));
+ ASSERT_PASSED(read_test_data, image_at_snap, orig_data, 0, TEST_IO_TO_SNAP_SIZE, 0);
+ r = rbd_write(image_at_snap, 0, TEST_IO_TO_SNAP_SIZE, test_data);
+ printf("write to snapshot returned %d\n", r);
+ ASSERT_LT(r, 0);
+ cout << strerror(-r) << std::endl;
+ ASSERT_EQ(0, rbd_close(image_at_snap));
+
+ ASSERT_EQ(2, test_ls_snaps(image, 2, "orig", isize, "written", isize));
+ ASSERT_EQ(0, rbd_snap_remove(image, "written"));
+ ASSERT_EQ(1, test_ls_snaps(image, 1, "orig", isize));
+ ASSERT_EQ(0, rbd_snap_remove(image, "orig"));
+ ASSERT_EQ(0, test_ls_snaps(image, 0));
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestSnapshotDeletedIo)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t isize = 2 << 20;
+
+ int r;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), isize, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(0, rbd_snap_create(image, "orig"));
+
+ r = rbd_snap_set(image, "orig");
+ ASSERT_EQ(r, 0);
+
+ ASSERT_EQ(0, rbd_snap_remove(image, "orig"));
+ char test[20];
+ ASSERT_EQ(-ENOENT, rbd_read(image, 20, 20, test));
+
+ r = rbd_snap_set(image, NULL);
+ ASSERT_EQ(r, 0);
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestClone)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ ASSERT_EQ(0, rados_conf_set(_cluster, "rbd_default_clone_format", "1"));
+ BOOST_SCOPE_EXIT_ALL(&) {
+ ASSERT_EQ(0, rados_conf_set(_cluster, "rbd_default_clone_format", "auto"));
+ };
+
+ rados_ioctx_t ioctx;
+ rbd_image_info_t pinfo, cinfo;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ bool old_format;
+ uint64_t features;
+ rbd_image_t parent, child;
+ int order = 0;
+
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ std::string parent_name = get_temp_image_name();
+ std::string child_name = get_temp_image_name();
+
+ // make a parent to clone from
+ ASSERT_EQ(0, create_image_full(ioctx, parent_name.c_str(), 4<<20, &order,
+ false, features));
+ ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, NULL));
+ printf("made parent image \"parent\"\n");
+
+ char *data = (char *)"testdata";
+ ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 0, strlen(data), data));
+
+ // can't clone a non-snapshot, expect failure
+ EXPECT_NE(0, clone_image(ioctx, parent, parent_name.c_str(), NULL, ioctx,
+ child_name.c_str(), features, &order));
+
+ // verify that there is no parent info on "parent"
+ ASSERT_EQ(-ENOENT, rbd_get_parent_info(parent, NULL, 0, NULL, 0, NULL, 0));
+ printf("parent has no parent info\n");
+
+ // create 70 metadatas to verify we can clone all key/value pairs
+ std::string key;
+ std::string val;
+ size_t sum_key_len = 0;
+ size_t sum_value_len = 0;
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_set(parent, key.c_str(), val.c_str()));
+
+ sum_key_len += (key.size() + 1);
+ sum_value_len += (val.size() + 1);
+ }
+
+ char keys[1024];
+ char vals[1024];
+ size_t keys_len = sizeof(keys);
+ size_t vals_len = sizeof(vals);
+
+ char value[1024];
+ size_t value_len = sizeof(value);
+
+ // create a snapshot, reopen as the parent we're interested in
+ ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap"));
+ printf("made snapshot \"parent@parent_snap\"\n");
+ ASSERT_EQ(0, rbd_close(parent));
+ ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, "parent_snap"));
+
+ ASSERT_EQ(-EINVAL, clone_image(ioctx, parent, parent_name.c_str(), "parent_snap",
+ ioctx, child_name.c_str(), features, &order));
+
+ // unprotected image should fail unprotect
+ ASSERT_EQ(-EINVAL, rbd_snap_unprotect(parent, "parent_snap"));
+ printf("can't unprotect an unprotected snap\n");
+
+ ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap"));
+ // protecting again should fail
+ ASSERT_EQ(-EBUSY, rbd_snap_protect(parent, "parent_snap"));
+ printf("can't protect a protected snap\n");
+
+ // This clone and open should work
+ ASSERT_EQ(0, clone_image(ioctx, parent, parent_name.c_str(), "parent_snap",
+ ioctx, child_name.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, child_name.c_str(), &child, NULL));
+ printf("made and opened clone \"child\"\n");
+
+ // check read
+ ASSERT_PASSED(read_test_data, child, data, 0, strlen(data), 0);
+
+ // check write
+ ASSERT_EQ((ssize_t)strlen(data), rbd_write(child, 20, strlen(data), data));
+ ASSERT_PASSED(read_test_data, child, data, 20, strlen(data), 0);
+ ASSERT_PASSED(read_test_data, child, data, 0, strlen(data), 0);
+
+ // check attributes
+ ASSERT_EQ(0, rbd_stat(parent, &pinfo, sizeof(pinfo)));
+ ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo)));
+ EXPECT_EQ(cinfo.size, pinfo.size);
+ uint64_t overlap;
+ rbd_get_overlap(child, &overlap);
+ EXPECT_EQ(overlap, pinfo.size);
+ EXPECT_EQ(cinfo.obj_size, pinfo.obj_size);
+ EXPECT_EQ(cinfo.order, pinfo.order);
+ printf("sizes and overlaps are good between parent and child\n");
+
+ // check key/value pairs in child image
+ ASSERT_EQ(0, rbd_metadata_list(child, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(sum_key_len, keys_len);
+ ASSERT_EQ(sum_value_len, vals_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(child, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+ printf("child image successfully cloned all image-meta pairs\n");
+
+ // sizing down child results in changing overlap and size, not parent size
+ ASSERT_EQ(0, rbd_resize(child, 2UL<<20));
+ ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo)));
+ rbd_get_overlap(child, &overlap);
+ ASSERT_EQ(overlap, 2UL<<20);
+ ASSERT_EQ(cinfo.size, 2UL<<20);
+ ASSERT_EQ(0, rbd_resize(child, 4UL<<20));
+ ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo)));
+ rbd_get_overlap(child, &overlap);
+ ASSERT_EQ(overlap, 2UL<<20);
+ ASSERT_EQ(cinfo.size, 4UL<<20);
+ printf("sized down clone, changed overlap\n");
+
+ // sizing back up doesn't change that
+ ASSERT_EQ(0, rbd_resize(child, 5UL<<20));
+ ASSERT_EQ(0, rbd_stat(child, &cinfo, sizeof(cinfo)));
+ rbd_get_overlap(child, &overlap);
+ ASSERT_EQ(overlap, 2UL<<20);
+ ASSERT_EQ(cinfo.size, 5UL<<20);
+ ASSERT_EQ(0, rbd_stat(parent, &pinfo, sizeof(pinfo)));
+ printf("parent info: size %llu obj_size %llu parent_pool %llu\n",
+ (unsigned long long)pinfo.size, (unsigned long long)pinfo.obj_size,
+ (unsigned long long)pinfo.parent_pool);
+ ASSERT_EQ(pinfo.size, 4UL<<20);
+ printf("sized up clone, changed size but not overlap or parent's size\n");
+
+ ASSERT_PASSED(validate_object_map, child);
+ ASSERT_EQ(0, rbd_close(child));
+
+ ASSERT_PASSED(validate_object_map, parent);
+ ASSERT_EQ(-EBUSY, rbd_snap_remove(parent, "parent_snap"));
+ printf("can't remove parent while child still exists\n");
+ ASSERT_EQ(0, rbd_remove(ioctx, child_name.c_str()));
+ ASSERT_EQ(-EBUSY, rbd_snap_remove(parent, "parent_snap"));
+ printf("can't remove parent while still protected\n");
+ ASSERT_EQ(0, rbd_snap_unprotect(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_snap_remove(parent, "parent_snap"));
+ printf("removed parent snap after unprotecting\n");
+
+ ASSERT_EQ(0, rbd_close(parent));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestClone2)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ ASSERT_EQ(0, rados_conf_set(_cluster, "rbd_default_clone_format", "2"));
+ BOOST_SCOPE_EXIT_ALL(&) {
+ ASSERT_EQ(0, rados_conf_set(_cluster, "rbd_default_clone_format", "auto"));
+ };
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ bool old_format;
+ uint64_t features;
+ rbd_image_t parent, child;
+ int order = 0;
+
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ std::string parent_name = get_temp_image_name();
+ std::string child_name = get_temp_image_name();
+
+ // make a parent to clone from
+ ASSERT_EQ(0, create_image_full(ioctx, parent_name.c_str(), 4<<20, &order,
+ false, features));
+ ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, NULL));
+ printf("made parent image \"parent\"\n");
+
+ char *data = (char *)"testdata";
+ char *childata = (char *)"childata";
+ ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 0, strlen(data), data));
+ ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 12, strlen(data), data));
+
+ // can't clone a non-snapshot, expect failure
+ EXPECT_NE(0, clone_image(ioctx, parent, parent_name.c_str(), NULL, ioctx,
+ child_name.c_str(), features, &order));
+
+ // verify that there is no parent info on "parent"
+ ASSERT_EQ(-ENOENT, rbd_get_parent_info(parent, NULL, 0, NULL, 0, NULL, 0));
+ printf("parent has no parent info\n");
+
+ // create 70 metadatas to verify we can clone all key/value pairs
+ std::string key;
+ std::string val;
+ size_t sum_key_len = 0;
+ size_t sum_value_len = 0;
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_set(parent, key.c_str(), val.c_str()));
+
+ sum_key_len += (key.size() + 1);
+ sum_value_len += (val.size() + 1);
+ }
+
+ char keys[1024];
+ char vals[1024];
+ size_t keys_len = sizeof(keys);
+ size_t vals_len = sizeof(vals);
+
+ char value[1024];
+ size_t value_len = sizeof(value);
+
+ // create a snapshot, reopen as the parent we're interested in
+ ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap"));
+ printf("made snapshot \"parent@parent_snap\"\n");
+ ASSERT_EQ(0, rbd_close(parent));
+ ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, "parent_snap"));
+
+ // This clone and open should work
+ ASSERT_EQ(0, clone_image(ioctx, parent, parent_name.c_str(), "parent_snap",
+ ioctx, child_name.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, child_name.c_str(), &child, NULL));
+ printf("made and opened clone \"child\"\n");
+
+ // check key/value pairs in child image
+ ASSERT_EQ(0, rbd_metadata_list(child, "key", 70, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(sum_key_len, keys_len);
+ ASSERT_EQ(sum_value_len, vals_len);
+
+ for (int i = 1; i <= 70; i++) {
+ key = "key" + stringify(i);
+ val = "value" + stringify(i);
+ ASSERT_EQ(0, rbd_metadata_get(child, key.c_str(), value, &value_len));
+ ASSERT_STREQ(val.c_str(), value);
+
+ value_len = sizeof(value);
+ }
+ printf("child image successfully cloned all image-meta pairs\n");
+
+ // write something in
+ ASSERT_EQ((ssize_t)strlen(childata), rbd_write(child, 20, strlen(childata), childata));
+
+ char test[strlen(data) * 2];
+ ASSERT_EQ((ssize_t)strlen(data), rbd_read(child, 20, strlen(data), test));
+ ASSERT_EQ(0, memcmp(test, childata, strlen(childata)));
+
+ // overlap
+ ASSERT_EQ((ssize_t)sizeof(test), rbd_read(child, 20 - strlen(data), sizeof(test), test));
+ ASSERT_EQ(0, memcmp(test, data, strlen(data)));
+ ASSERT_EQ(0, memcmp(test + strlen(data), childata, strlen(childata)));
+
+ // all parent
+ ASSERT_EQ((ssize_t)sizeof(test), rbd_read(child, 0, sizeof(test), test));
+ ASSERT_EQ(0, memcmp(test, data, strlen(data)));
+
+ ASSERT_PASSED(validate_object_map, child);
+ ASSERT_PASSED(validate_object_map, parent);
+
+ rbd_snap_info_t snaps[2];
+ int max_snaps = 2;
+ ASSERT_EQ(1, rbd_snap_list(parent, snaps, &max_snaps));
+ rbd_snap_list_end(snaps);
+
+ ASSERT_EQ(0, rbd_snap_remove_by_id(parent, snaps[0].id));
+
+ rbd_snap_namespace_type_t snap_namespace_type;
+ ASSERT_EQ(0, rbd_snap_get_namespace_type(parent, snaps[0].id,
+ &snap_namespace_type));
+ ASSERT_EQ(RBD_SNAP_NAMESPACE_TYPE_TRASH, snap_namespace_type);
+
+ char original_name[32];
+ ASSERT_EQ(0, rbd_snap_get_trash_namespace(parent, snaps[0].id,
+ original_name,
+ sizeof(original_name)));
+ ASSERT_EQ(0, strcmp("parent_snap", original_name));
+
+ ASSERT_EQ(0, rbd_close(child));
+ ASSERT_EQ(0, rbd_close(parent));
+ rados_ioctx_destroy(ioctx);
+}
+
+static void test_list_children(rbd_image_t image, ssize_t num_expected, ...)
+{
+ va_list ap;
+ va_start(ap, num_expected);
+ size_t pools_len = 100;
+ size_t children_len = 100;
+ char *pools = NULL;
+ char *children = NULL;
+ ssize_t num_children;
+
+ do {
+ free(pools);
+ free(children);
+ pools = (char *) malloc(pools_len);
+ children = (char *) malloc(children_len);
+ num_children = rbd_list_children(image, pools, &pools_len,
+ children, &children_len);
+ } while (num_children == -ERANGE);
+
+ ASSERT_EQ(num_expected, num_children);
+ for (ssize_t i = num_expected; i > 0; --i) {
+ char *expected_pool = va_arg(ap, char *);
+ char *expected_image = va_arg(ap, char *);
+ char *pool = pools;
+ char *image = children;
+ bool found = 0;
+ printf("\ntrying to find %s/%s\n", expected_pool, expected_image);
+ for (ssize_t j = 0; j < num_children; ++j) {
+ printf("checking %s/%s\n", pool, image);
+ if (strcmp(expected_pool, pool) == 0 &&
+ strcmp(expected_image, image) == 0) {
+ printf("found child %s/%s\n\n", pool, image);
+ found = 1;
+ break;
+ }
+ pool += strlen(pool) + 1;
+ image += strlen(image) + 1;
+ if (j == num_children - 1) {
+ ASSERT_EQ(pool - pools - 1, (ssize_t) pools_len);
+ ASSERT_EQ(image - children - 1, (ssize_t) children_len);
+ }
+ }
+ ASSERT_TRUE(found);
+ }
+ va_end(ap);
+
+ if (pools)
+ free(pools);
+ if (children)
+ free(children);
+}
+
+static void test_list_children2(rbd_image_t image, int num_expected, ...)
+{
+ int num_children, i, j, max_size = 10;
+ va_list ap;
+ rbd_child_info_t children[max_size];
+ num_children = rbd_list_children2(image, children, &max_size);
+ printf("num children is: %d\nexpected: %d\n", num_children, num_expected);
+
+ for (i = 0; i < num_children; i++) {
+ printf("child: %s\n", children[i].image_name);
+ }
+
+ va_start(ap, num_expected);
+ for (i = num_expected; i > 0; i--) {
+ char *expected_id = va_arg(ap, char *);
+ char *expected_pool = va_arg(ap, char *);
+ char *expected_image = va_arg(ap, char *);
+ bool expected_trash = va_arg(ap, int);
+ bool found = false;
+ for (j = 0; j < num_children; j++) {
+ if (children[j].pool_name == NULL ||
+ children[j].image_name == NULL ||
+ children[j].image_id == NULL)
+ continue;
+ if (strcmp(children[j].image_id, expected_id) == 0 &&
+ strcmp(children[j].pool_name, expected_pool) == 0 &&
+ strcmp(children[j].image_name, expected_image) == 0 &&
+ children[j].trash == expected_trash) {
+ printf("found child %s/%s/%s\n\n", children[j].pool_name, children[j].image_name, children[j].image_id);
+ rbd_list_child_cleanup(&children[j]);
+ children[j].pool_name = NULL;
+ children[j].image_name = NULL;
+ children[j].image_id = NULL;
+ found = true;
+ break;
+ }
+ }
+ EXPECT_TRUE(found);
+ }
+ va_end(ap);
+
+ for (i = 0; i < num_children; i++) {
+ EXPECT_EQ((const char *)0, children[i].pool_name);
+ EXPECT_EQ((const char *)0, children[i].image_name);
+ EXPECT_EQ((const char *)0, children[i].image_id);
+ }
+}
+
+TEST_F(TestLibRBD, ListChildren)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librbd::RBD rbd;
+ rados_ioctx_t ioctx1, ioctx2;
+ string pool_name1 = create_pool(true);
+ string pool_name2 = create_pool(true);
+ ASSERT_NE("", pool_name2);
+
+ rados_ioctx_create(_cluster, pool_name1.c_str(), &ioctx1);
+ rados_ioctx_create(_cluster, pool_name2.c_str(), &ioctx2);
+
+ rbd_image_t image1;
+ rbd_image_t image2;
+ rbd_image_t image3;
+ rbd_image_t image4;
+
+ bool old_format;
+ uint64_t features;
+ rbd_image_t parent;
+ int order = 0;
+
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ std::string parent_name = get_temp_image_name();
+ std::string child_name1 = get_temp_image_name();
+ std::string child_name2 = get_temp_image_name();
+ std::string child_name3 = get_temp_image_name();
+ std::string child_name4 = get_temp_image_name();
+
+ char child_id1[4096];
+ char child_id2[4096];
+ char child_id3[4096];
+ char child_id4[4096];
+
+ // make a parent to clone from
+ ASSERT_EQ(0, create_image_full(ioctx1, parent_name.c_str(), 4<<20, &order,
+ false, features));
+ ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, NULL));
+ // create a snapshot, reopen as the parent we're interested in
+ ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_snap_set(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap"));
+
+ ASSERT_EQ(0, rbd_close(parent));
+ ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, "parent_snap"));
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx2, child_name1.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name1.c_str(), &image1, NULL));
+ ASSERT_EQ(0, rbd_get_id(image1, child_id1, sizeof(child_id1)));
+ test_list_children(parent, 1, pool_name2.c_str(), child_name1.c_str());
+ test_list_children2(parent, 1,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false);
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx1, child_name2.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx1, child_name2.c_str(), &image2, NULL));
+ ASSERT_EQ(0, rbd_get_id(image2, child_id2, sizeof(child_id2)));
+ test_list_children(parent, 2, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str());
+ test_list_children2(parent, 2,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false);
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx2, child_name3.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name3.c_str(), &image3, NULL));
+ ASSERT_EQ(0, rbd_get_id(image3, child_id3, sizeof(child_id3)));
+ test_list_children(parent, 3, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name3.c_str());
+ test_list_children2(parent, 3,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), false);
+
+ librados::IoCtx ioctx3;
+ ASSERT_EQ(0, _rados.ioctx_create(pool_name2.c_str(), ioctx3));
+ ASSERT_EQ(0, rbd_close(image3));
+ ASSERT_EQ(0, rbd.trash_move(ioctx3, child_name3.c_str(), 0));
+ test_list_children(parent, 2, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str());
+ test_list_children2(parent, 3,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), true);
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx2, child_name4.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name4.c_str(), &image4, NULL));
+ ASSERT_EQ(0, rbd_get_id(image4, child_id4, sizeof(child_id4)));
+ test_list_children(parent, 3, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 4,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), true,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd.trash_restore(ioctx3, child_id3, ""));
+ test_list_children(parent, 4, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name3.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 4,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), false,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd_close(image1));
+ ASSERT_EQ(0, rbd_remove(ioctx2, child_name1.c_str()));
+ test_list_children(parent, 3,
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name3.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 3,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), false,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd_remove(ioctx2, child_name3.c_str()));
+ test_list_children(parent, 2,
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 2,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd_close(image4));
+ ASSERT_EQ(0, rbd_remove(ioctx2, child_name4.c_str()));
+ test_list_children(parent, 1,
+ pool_name1.c_str(), child_name2.c_str());
+ test_list_children2(parent, 1,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false);
+
+
+ ASSERT_EQ(0, rbd_close(image2));
+ ASSERT_EQ(0, rbd_remove(ioctx1, child_name2.c_str()));
+ test_list_children(parent, 0);
+ test_list_children2(parent, 0);
+
+ ASSERT_EQ(0, rbd_snap_unprotect(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_snap_remove(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_close(parent));
+ ASSERT_EQ(0, rbd_remove(ioctx1, parent_name.c_str()));
+ rados_ioctx_destroy(ioctx1);
+ rados_ioctx_destroy(ioctx2);
+}
+
+TEST_F(TestLibRBD, ListChildrenTiered)
+{
+ SKIP_IF_CRIMSON();
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librbd::RBD rbd;
+ string pool_name1 = create_pool(true);
+ string pool_name2 = create_pool(true);
+ string pool_name3 = create_pool(true);
+ ASSERT_NE("", pool_name1);
+ ASSERT_NE("", pool_name2);
+ ASSERT_NE("", pool_name3);
+
+ std::string cmdstr = "{\"prefix\": \"osd tier add\", \"pool\": \"" +
+ pool_name1 + "\", \"tierpool\":\"" + pool_name3 + "\", \"force_nonempty\":\"\"}";
+ char *cmd[1];
+ cmd[0] = (char *)cmdstr.c_str();
+ ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0));
+
+ cmdstr = "{\"prefix\": \"osd tier cache-mode\", \"pool\": \"" +
+ pool_name3 + "\", \"mode\":\"writeback\"}";
+ cmd[0] = (char *)cmdstr.c_str();
+ ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0));
+
+ cmdstr = "{\"prefix\": \"osd tier set-overlay\", \"pool\": \"" +
+ pool_name1 + "\", \"overlaypool\":\"" + pool_name3 + "\"}";
+ cmd[0] = (char *)cmdstr.c_str();
+ ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0));
+
+ EXPECT_EQ(0, rados_wait_for_latest_osdmap(_cluster));
+
+ string parent_name = get_temp_image_name();
+ string child_name1 = get_temp_image_name();
+ string child_name2 = get_temp_image_name();
+ string child_name3 = get_temp_image_name();
+ string child_name4 = get_temp_image_name();
+
+ char child_id1[4096];
+ char child_id2[4096];
+ char child_id3[4096];
+ char child_id4[4096];
+
+ rbd_image_t image1;
+ rbd_image_t image2;
+ rbd_image_t image3;
+ rbd_image_t image4;
+
+ rados_ioctx_t ioctx1, ioctx2;
+ rados_ioctx_create(_cluster, pool_name1.c_str(), &ioctx1);
+ rados_ioctx_create(_cluster, pool_name2.c_str(), &ioctx2);
+
+ bool old_format;
+ uint64_t features;
+ rbd_image_t parent;
+ int order = 0;
+
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ // make a parent to clone from
+ ASSERT_EQ(0, create_image_full(ioctx1, parent_name.c_str(), 4<<20, &order,
+ false, features));
+ ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, NULL));
+ // create a snapshot, reopen as the parent we're interested in
+ ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_snap_set(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap"));
+
+ ASSERT_EQ(0, rbd_close(parent));
+ ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, "parent_snap"));
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx2, child_name1.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name1.c_str(), &image1, NULL));
+ ASSERT_EQ(0, rbd_get_id(image1, child_id1, sizeof(child_id1)));
+ test_list_children(parent, 1, pool_name2.c_str(), child_name1.c_str());
+ test_list_children2(parent, 1,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false);
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx1, child_name2.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx1, child_name2.c_str(), &image2, NULL));
+ ASSERT_EQ(0, rbd_get_id(image2, child_id2, sizeof(child_id2)));
+ test_list_children(parent, 2, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str());
+ test_list_children2(parent, 2,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false);
+
+ // read from the cache to populate it
+ rbd_image_t tier_image;
+ ASSERT_EQ(0, rbd_open(ioctx1, child_name2.c_str(), &tier_image, NULL));
+ size_t len = 4 * 1024 * 1024;
+ char* buf = (char*)malloc(len);
+ ssize_t size = rbd_read(tier_image, 0, len, buf);
+ ASSERT_GT(size, 0);
+ free(buf);
+ ASSERT_EQ(0, rbd_close(tier_image));
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx2, child_name3.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name3.c_str(), &image3, NULL));
+ ASSERT_EQ(0, rbd_get_id(image3, child_id3, sizeof(child_id3)));
+ test_list_children(parent, 3, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name3.c_str());
+ test_list_children2(parent, 3,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), false);
+
+ librados::IoCtx ioctx3;
+ ASSERT_EQ(0, _rados.ioctx_create(pool_name2.c_str(), ioctx3));
+ ASSERT_EQ(0, rbd_close(image3));
+ ASSERT_EQ(0, rbd.trash_move(ioctx3, child_name3.c_str(), 0));
+ test_list_children(parent, 2, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str());
+ test_list_children2(parent, 3,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), true);
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "parent_snap",
+ ioctx2, child_name4.c_str(), features, &order));
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name4.c_str(), &image4, NULL));
+ ASSERT_EQ(0, rbd_get_id(image4, child_id4, sizeof(child_id4)));
+ test_list_children(parent, 3, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 4,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), true,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd.trash_restore(ioctx3, child_id3, ""));
+ test_list_children(parent, 4, pool_name2.c_str(), child_name1.c_str(),
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name3.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 4,
+ child_id1, pool_name2.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), false,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd_close(image1));
+ ASSERT_EQ(0, rbd_remove(ioctx2, child_name1.c_str()));
+ test_list_children(parent, 3,
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name3.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 3,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, pool_name2.c_str(), child_name3.c_str(), false,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd_remove(ioctx2, child_name3.c_str()));
+ test_list_children(parent, 2,
+ pool_name1.c_str(), child_name2.c_str(),
+ pool_name2.c_str(), child_name4.c_str());
+ test_list_children2(parent, 2,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id4, pool_name2.c_str(), child_name4.c_str(), false);
+
+ ASSERT_EQ(0, rbd_close(image4));
+ ASSERT_EQ(0, rbd_remove(ioctx2, child_name4.c_str()));
+ test_list_children(parent, 1,
+ pool_name1.c_str(), child_name2.c_str());
+ test_list_children2(parent, 1,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false);
+
+ ASSERT_EQ(0, rbd_close(image2));
+ ASSERT_EQ(0, rbd_remove(ioctx1, child_name2.c_str()));
+ test_list_children(parent, 0);
+ test_list_children2(parent, 0);
+
+ ASSERT_EQ(0, rbd_snap_unprotect(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_snap_remove(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_close(parent));
+ ASSERT_EQ(0, rbd_remove(ioctx1, parent_name.c_str()));
+ rados_ioctx_destroy(ioctx1);
+ rados_ioctx_destroy(ioctx2);
+ cmdstr = "{\"prefix\": \"osd tier remove-overlay\", \"pool\": \"" +
+ pool_name1 + "\"}";
+ cmd[0] = (char *)cmdstr.c_str();
+ ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0));
+ cmdstr = "{\"prefix\": \"osd tier remove\", \"pool\": \"" +
+ pool_name1 + "\", \"tierpool\":\"" + pool_name3 + "\"}";
+ cmd[0] = (char *)cmdstr.c_str();
+ ASSERT_EQ(0, rados_mon_command(_cluster, (const char **)cmd, 1, "", 0, NULL, 0, NULL, 0));
+}
+
+TEST_F(TestLibRBD, LockingPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ std::string cookie1 = "foo";
+ std::string cookie2 = "bar";
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // no lockers initially
+ std::list<librbd::locker_t> lockers;
+ std::string tag;
+ bool exclusive;
+ ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag));
+ ASSERT_EQ(0u, lockers.size());
+ ASSERT_EQ("", tag);
+
+ // exclusive lock is exclusive
+ ASSERT_EQ(0, image.lock_exclusive(cookie1));
+ ASSERT_EQ(-EEXIST, image.lock_exclusive(cookie1));
+ ASSERT_EQ(-EBUSY, image.lock_exclusive(""));
+ ASSERT_EQ(-EEXIST, image.lock_shared(cookie1, ""));
+ ASSERT_EQ(-EBUSY, image.lock_shared(cookie1, "test"));
+ ASSERT_EQ(-EBUSY, image.lock_shared("", "test"));
+ ASSERT_EQ(-EBUSY, image.lock_shared("", ""));
+
+ // list exclusive
+ ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag));
+ ASSERT_TRUE(exclusive);
+ ASSERT_EQ("", tag);
+ ASSERT_EQ(1u, lockers.size());
+ ASSERT_EQ(cookie1, lockers.front().cookie);
+
+ // unlock
+ ASSERT_EQ(-ENOENT, image.unlock(""));
+ ASSERT_EQ(-ENOENT, image.unlock(cookie2));
+ ASSERT_EQ(0, image.unlock(cookie1));
+ ASSERT_EQ(-ENOENT, image.unlock(cookie1));
+ ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag));
+ ASSERT_EQ(0u, lockers.size());
+
+ ASSERT_EQ(0, image.lock_shared(cookie1, ""));
+ ASSERT_EQ(-EEXIST, image.lock_shared(cookie1, ""));
+ ASSERT_EQ(0, image.lock_shared(cookie2, ""));
+ ASSERT_EQ(-EEXIST, image.lock_shared(cookie2, ""));
+ ASSERT_EQ(-EEXIST, image.lock_exclusive(cookie1));
+ ASSERT_EQ(-EEXIST, image.lock_exclusive(cookie2));
+ ASSERT_EQ(-EBUSY, image.lock_exclusive(""));
+ ASSERT_EQ(-EBUSY, image.lock_exclusive("test"));
+
+ // list shared
+ ASSERT_EQ(0, image.list_lockers(&lockers, &exclusive, &tag));
+ ASSERT_EQ(2u, lockers.size());
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, FlushAio)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ size_t num_aios = 256;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ char test_data[TEST_IO_SIZE + 1];
+ size_t i;
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+
+ rbd_completion_t write_comps[num_aios];
+ for (i = 0; i < num_aios; ++i) {
+ ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &write_comps[i]));
+ uint64_t offset = rand() % (size - TEST_IO_SIZE);
+ ASSERT_EQ(0, rbd_aio_write(image, offset, TEST_IO_SIZE, test_data,
+ write_comps[i]));
+ }
+
+ rbd_completion_t flush_comp;
+ ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &flush_comp));
+ ASSERT_EQ(0, rbd_aio_flush(image, flush_comp));
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(flush_comp));
+ ASSERT_EQ(1, rbd_aio_is_complete(flush_comp));
+ rbd_aio_release(flush_comp);
+
+ for (i = 0; i < num_aios; ++i) {
+ ASSERT_EQ(1, rbd_aio_is_complete(write_comps[i]));
+ rbd_aio_release(write_comps[i]);
+ }
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_remove(ioctx, name.c_str()));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, FlushAioPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ const size_t num_aios = 256;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ char test_data[TEST_IO_SIZE + 1];
+ size_t i;
+ for (i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ test_data[TEST_IO_SIZE] = '\0';
+
+ librbd::RBD::AioCompletion *write_comps[num_aios];
+ ceph::bufferlist bls[num_aios];
+ for (i = 0; i < num_aios; ++i) {
+ bls[i].append(test_data, strlen(test_data));
+ write_comps[i] = new librbd::RBD::AioCompletion(NULL, NULL);
+ uint64_t offset = rand() % (size - TEST_IO_SIZE);
+ ASSERT_EQ(0, image.aio_write(offset, TEST_IO_SIZE, bls[i],
+ write_comps[i]));
+ }
+
+ librbd::RBD::AioCompletion *flush_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_flush(flush_comp));
+ ASSERT_EQ(0, flush_comp->wait_for_complete());
+ ASSERT_EQ(1, flush_comp->is_complete());
+ flush_comp->release();
+
+ for (i = 0; i < num_aios; ++i) {
+ librbd::RBD::AioCompletion *comp = write_comps[i];
+ ASSERT_EQ(1, comp->is_complete());
+ comp->release();
+ }
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+
+int iterate_cb(uint64_t off, size_t len, int exists, void *arg)
+{
+ //cout << "iterate_cb " << off << "~" << len << std::endl;
+ interval_set<uint64_t> *diff = static_cast<interval_set<uint64_t> *>(arg);
+ diff->insert(off, len);
+ return 0;
+}
+
+static int iterate_error_cb(uint64_t off, size_t len, int exists, void *arg)
+{
+ return -EINVAL;
+}
+
+void scribble(librbd::Image& image, int n, int max, bool skip_discard,
+ interval_set<uint64_t> *exists,
+ interval_set<uint64_t> *what)
+{
+ uint64_t size;
+ image.size(&size);
+ interval_set<uint64_t> exists_at_start = *exists;
+
+ for (int i=0; i<n; i++) {
+ uint64_t off = rand() % (size - max + 1);
+ uint64_t len = 1 + rand() % max;
+ if (!skip_discard && rand() % 4 == 0) {
+ ASSERT_EQ((int)len, image.discard(off, len));
+ interval_set<uint64_t> w;
+ w.insert(off, len);
+
+ // the zeroed bit no longer exists...
+ w.intersection_of(*exists);
+ exists->subtract(w);
+
+ // the bits we discarded are no long written...
+ interval_set<uint64_t> w2 = w;
+ w2.intersection_of(*what);
+ what->subtract(w2);
+
+ // except for the extents that existed at the start that we overwrote.
+ interval_set<uint64_t> w3;
+ w3.insert(off, len);
+ w3.intersection_of(exists_at_start);
+ what->union_of(w3);
+
+ } else {
+ bufferlist bl;
+ bl.append(buffer::create(len));
+ bl.zero();
+ ASSERT_EQ((int)len, image.write(off, len, bl));
+ interval_set<uint64_t> w;
+ w.insert(off, len);
+ what->union_of(w);
+ exists->union_of(w);
+ }
+ }
+}
+
+interval_set<uint64_t> round_diff_interval(const interval_set<uint64_t>& diff,
+ uint64_t object_size)
+{
+ if (object_size == 0) {
+ return diff;
+ }
+
+ interval_set<uint64_t> rounded_diff;
+ for (interval_set<uint64_t>::const_iterator it = diff.begin();
+ it != diff.end(); ++it) {
+ uint64_t off = it.get_start();
+ uint64_t len = it.get_len();
+ off -= off % object_size;
+ len += (object_size - (len % object_size));
+ interval_set<uint64_t> interval;
+ interval.insert(off, len);
+ rounded_diff.union_of(interval);
+ }
+ return rounded_diff;
+}
+
+TEST_F(TestLibRBD, SnapDiff)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_FAST_DIFF);
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string image_name = get_temp_image_name();
+ uint64_t size = 100 << 20;
+ ASSERT_EQ(0, create_image(ioctx, image_name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, image_name.c_str(), &image, nullptr));
+
+ char test_data[TEST_IO_SIZE + 1];
+ for (size_t i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+ test_data[TEST_IO_SIZE] = '\0';
+
+ ASSERT_PASSED(write_test_data, image, test_data, 0,
+ TEST_IO_SIZE, LIBRADOS_OP_FLAG_FADVISE_NOCACHE);
+
+ interval_set<uint64_t> diff;
+ ASSERT_EQ(0, rbd_diff_iterate2(image, nullptr, 0, size, true, true,
+ iterate_cb, &diff));
+ EXPECT_EQ(1 << order, diff.size());
+
+ ASSERT_EQ(0, rbd_snap_create(image, "snap1"));
+ ASSERT_EQ(0, rbd_snap_create(image, "snap2"));
+
+ diff.clear();
+ ASSERT_EQ(0, rbd_diff_iterate2(image, nullptr, 0, size, true, true,
+ iterate_cb, &diff));
+ EXPECT_EQ(1 << order, diff.size());
+
+ diff.clear();
+ ASSERT_EQ(0, rbd_diff_iterate2(image, "snap1", 0, size, true, true,
+ iterate_cb, &diff));
+ EXPECT_EQ(0, diff.size());
+
+ diff.clear();
+ ASSERT_EQ(0, rbd_diff_iterate2(image, "snap2", 0, size, true, true,
+ iterate_cb, &diff));
+ EXPECT_EQ(0, diff.size());
+
+ ASSERT_EQ(0, rbd_snap_remove(image, "snap1"));
+ ASSERT_EQ(0, rbd_snap_remove(image, "snap2"));
+
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_remove(ioctx, image_name.c_str()));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+template <typename T>
+class DiffIterateTest : public TestLibRBD {
+public:
+ static const uint8_t whole_object = T::whole_object;
+};
+
+template <bool _whole_object>
+class DiffIterateParams {
+public:
+ static const uint8_t whole_object = _whole_object;
+};
+
+typedef ::testing::Types<DiffIterateParams<false>,
+ DiffIterateParams<true> > DiffIterateTypes;
+TYPED_TEST_SUITE(DiffIterateTest, DiffIterateTypes);
+
+TYPED_TEST(DiffIterateTest, DiffIterate)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = this->get_temp_image_name();
+ uint64_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool skip_discard = this->is_skip_partial_discard_enabled(image);
+
+ uint64_t object_size = 0;
+ if (this->whole_object) {
+ object_size = 1 << order;
+ }
+
+ interval_set<uint64_t> exists;
+ interval_set<uint64_t> one, two;
+ scribble(image, 10, 102400, skip_discard, &exists, &one);
+ cout << " wrote " << one << std::endl;
+ ASSERT_EQ(0, image.snap_create("one"));
+ scribble(image, 10, 102400, skip_discard, &exists, &two);
+
+ two = round_diff_interval(two, object_size);
+ cout << " wrote " << two << std::endl;
+
+ interval_set<uint64_t> diff;
+ ASSERT_EQ(0, image.diff_iterate2("one", 0, size, true, this->whole_object,
+ iterate_cb, (void *)&diff));
+ cout << " diff was " << diff << std::endl;
+ if (!two.subset_of(diff)) {
+ interval_set<uint64_t> i;
+ i.intersection_of(two, diff);
+ interval_set<uint64_t> l = two;
+ l.subtract(i);
+ cout << " ... two - (two*diff) = " << l << std::endl;
+ }
+ ASSERT_TRUE(two.subset_of(diff));
+ }
+ ioctx.close();
+}
+
+struct diff_extent {
+ diff_extent(uint64_t _offset, uint64_t _length, bool _exists,
+ uint64_t object_size) :
+ offset(_offset), length(_length), exists(_exists)
+ {
+ if (object_size != 0) {
+ offset -= offset % object_size;
+ length = object_size;
+ }
+ }
+ uint64_t offset;
+ uint64_t length;
+ bool exists;
+ bool operator==(const diff_extent& o) const {
+ return offset == o.offset && length == o.length && exists == o.exists;
+ }
+};
+
+ostream& operator<<(ostream & o, const diff_extent& e) {
+ return o << '(' << e.offset << '~' << e.length << ' ' << (e.exists ? "true" : "false") << ')';
+}
+
+int vector_iterate_cb(uint64_t off, size_t len, int exists, void *arg)
+{
+ cout << "iterate_cb " << off << "~" << len << std::endl;
+ vector<diff_extent> *diff = static_cast<vector<diff_extent> *>(arg);
+ diff->push_back(diff_extent(off, len, exists, 0));
+ return 0;
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateDiscard)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = this->get_temp_image_name();
+ uint64_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ uint64_t object_size = 0;
+ if (this->whole_object) {
+ object_size = 1 << order;
+ }
+ vector<diff_extent> extents;
+ ceph::bufferlist bl;
+
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(0u, extents.size());
+
+ char data[256];
+ memset(data, 1, sizeof(data));
+ bl.append(data, 256);
+ ASSERT_EQ(256, image.write(0, 256, bl));
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(1u, extents.size());
+ ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]);
+
+ int obj_ofs = 256;
+ ASSERT_EQ(1 << order, image.discard(0, 1 << order));
+
+ extents.clear();
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(0u, extents.size());
+
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ(256, image.write(0, 256, bl));
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(1u, extents.size());
+ ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]);
+ ASSERT_EQ(0, image.snap_create("snap2"));
+
+ ASSERT_EQ(obj_ofs, image.discard(0, obj_ofs));
+
+ extents.clear();
+ ASSERT_EQ(0, image.snap_set("snap2"));
+ ASSERT_EQ(0, image.diff_iterate2("snap1", 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(1u, extents.size());
+ ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]);
+
+ ASSERT_EQ(0, image.snap_set(NULL));
+ ASSERT_EQ(1 << order, image.discard(0, 1 << order));
+ ASSERT_EQ(0, image.snap_create("snap3"));
+ ASSERT_EQ(0, image.snap_set("snap3"));
+
+ extents.clear();
+ ASSERT_EQ(0, image.diff_iterate2("snap1", 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(1u, extents.size());
+ ASSERT_EQ(diff_extent(0, 256, false, object_size), extents[0]);
+ ASSERT_PASSED(this->validate_object_map, image);
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateStress)
+{
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)this->_rados.cct()));
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = this->get_temp_image_name();
+ uint64_t size = 400 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool skip_discard = this->is_skip_partial_discard_enabled(image);
+
+ uint64_t object_size = 0;
+ if (this->whole_object) {
+ object_size = 1 << order;
+ }
+
+ interval_set<uint64_t> curexists;
+ vector<interval_set<uint64_t> > wrote;
+ vector<interval_set<uint64_t> > exists;
+ vector<string> snap;
+ int n = 20;
+ for (int i=0; i<n; i++) {
+ interval_set<uint64_t> w;
+ scribble(image, 10, 8192000, skip_discard, &curexists, &w);
+ cout << " i=" << i << " exists " << curexists << " wrote " << w << std::endl;
+ string s = "snap" + stringify(i);
+ ASSERT_EQ(0, image.snap_create(s.c_str()));
+ wrote.push_back(w);
+ exists.push_back(curexists);
+ snap.push_back(s);
+ }
+
+ for (int h=0; h<n-1; h++) {
+ for (int i=0; i<n-h-1; i++) {
+ for (int j=(h==0 ? i+1 : n-1); j<n; j++) {
+ interval_set<uint64_t> diff, actual, uex;
+ for (int k=i+1; k<=j; k++)
+ diff.union_of(wrote[k]);
+ cout << "from " << i << " to "
+ << (h != 0 ? string("HEAD") : stringify(j)) << " diff "
+ << round_diff_interval(diff, object_size) << std::endl;
+
+ // limit to extents that exists both at the beginning and at the end
+ uex.union_of(exists[i], exists[j]);
+ diff.intersection_of(uex);
+ diff = round_diff_interval(diff, object_size);
+ cout << " limited diff " << diff << std::endl;
+
+ ASSERT_EQ(0, image.snap_set(h==0 ? snap[j].c_str() : NULL));
+ ASSERT_EQ(0, image.diff_iterate2(snap[i].c_str(), 0, size, true,
+ this->whole_object, iterate_cb,
+ (void *)&actual));
+ cout << " actual was " << actual << std::endl;
+ if (!diff.subset_of(actual)) {
+ interval_set<uint64_t> i;
+ i.intersection_of(diff, actual);
+ interval_set<uint64_t> l = diff;
+ l.subtract(i);
+ cout << " ... diff - (actual*diff) = " << l << std::endl;
+ }
+ ASSERT_TRUE(diff.subset_of(actual));
+ }
+ }
+ ASSERT_EQ(0, image.snap_set(NULL));
+ ASSERT_EQ(0, image.snap_remove(snap[n-h-1].c_str()));
+ }
+
+ ASSERT_PASSED(this->validate_object_map, image);
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateRegression6926)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = this->get_temp_image_name();
+ uint64_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ uint64_t object_size = 0;
+ if (this->whole_object) {
+ object_size = 1 << order;
+ }
+ vector<diff_extent> extents;
+ ceph::bufferlist bl;
+
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(0u, extents.size());
+
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ char data[256];
+ memset(data, 1, sizeof(data));
+ bl.append(data, 256);
+ ASSERT_EQ(256, image.write(0, 256, bl));
+
+ extents.clear();
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(1u, extents.size());
+ ASSERT_EQ(diff_extent(0, 256, true, object_size), extents[0]);
+
+ ASSERT_EQ(0, image.snap_set("snap1"));
+ extents.clear();
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, (void *) &extents));
+ ASSERT_EQ(static_cast<size_t>(0), extents.size());
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateParent)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 22;
+ std::string name = this->get_temp_image_name();
+ ssize_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ uint64_t features;
+ ASSERT_EQ(0, image.features(&features));
+ uint64_t object_size = 0;
+ if (this->whole_object) {
+ object_size = 1 << order;
+ }
+
+ ceph::bufferlist bl;
+ bl.append(std::string(size, '1'));
+ ASSERT_EQ(size, image.write(0, size, bl));
+ ASSERT_EQ(0, image.snap_create("snap"));
+ ASSERT_EQ(0, image.snap_protect("snap"));
+
+ std::string clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "snap", ioctx,
+ clone_name.c_str(), features, &order));
+ librbd::Image clone;
+ ASSERT_EQ(0, rbd.open(ioctx, clone, clone_name.c_str(), NULL));
+
+ std::vector<diff_extent> extents;
+ ASSERT_EQ(0, clone.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, &extents));
+ ASSERT_EQ(5u, extents.size());
+ ASSERT_EQ(diff_extent(0, 4194304, true, object_size), extents[0]);
+ ASSERT_EQ(diff_extent(4194304, 4194304, true, object_size), extents[1]);
+ ASSERT_EQ(diff_extent(8388608, 4194304, true, object_size), extents[2]);
+ ASSERT_EQ(diff_extent(12582912, 4194304, true, object_size), extents[3]);
+ ASSERT_EQ(diff_extent(16777216, 4194304, true, object_size), extents[4]);
+ extents.clear();
+
+ ASSERT_EQ(0, clone.resize(size / 2));
+ ASSERT_EQ(0, clone.resize(size));
+ ASSERT_EQ(1, clone.write(size - 1, 1, bl));
+
+ ASSERT_EQ(0, clone.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, &extents));
+ ASSERT_EQ(4u, extents.size());
+ ASSERT_EQ(diff_extent(0, 4194304, true, object_size), extents[0]);
+ ASSERT_EQ(diff_extent(4194304, 4194304, true, object_size), extents[1]);
+ ASSERT_EQ(diff_extent(8388608, 2097152, true, object_size), extents[2]);
+ // hole (parent overlap = 10M) followed by copyup'ed object
+ ASSERT_EQ(diff_extent(16777216, 4194304, true, object_size), extents[3]);
+
+ ASSERT_PASSED(this->validate_object_map, image);
+ ASSERT_PASSED(this->validate_object_map, clone);
+ }
+
+ ioctx.close();
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateIgnoreParent)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ std::string name = this->get_temp_image_name();
+ uint64_t size = 20 << 20;
+ int order = 0;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool skip_discard = this->is_skip_partial_discard_enabled(image);
+
+ uint64_t features;
+ ASSERT_EQ(0, image.features(&features));
+ uint64_t object_size = 0;
+ if (this->whole_object) {
+ object_size = 1 << order;
+ }
+
+ bufferlist bl;
+ bl.append(buffer::create(size));
+ bl.zero();
+ interval_set<uint64_t> one;
+ one.insert(0, size);
+ ASSERT_EQ((int)size, image.write(0, size, bl));
+ ASSERT_EQ(0, image.snap_create("one"));
+ ASSERT_EQ(0, image.snap_protect("one"));
+
+ std::string clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "one", ioctx, clone_name.c_str(),
+ features, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, clone_name.c_str(), NULL));
+
+ interval_set<uint64_t> exists;
+ interval_set<uint64_t> two;
+ scribble(image, 10, 102400, skip_discard, &exists, &two);
+ two = round_diff_interval(two, object_size);
+ cout << " wrote " << two << " to clone" << std::endl;
+
+ interval_set<uint64_t> diff;
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, false, this->whole_object,
+ iterate_cb, (void *)&diff));
+ cout << " diff was " << diff << std::endl;
+ if (!this->whole_object) {
+ ASSERT_FALSE(one.subset_of(diff));
+ }
+ ASSERT_TRUE(two.subset_of(diff));
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateCallbackError)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = this->get_temp_image_name();
+ uint64_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool skip_discard = this->is_skip_partial_discard_enabled(image);
+
+ interval_set<uint64_t> exists;
+ interval_set<uint64_t> one;
+ scribble(image, 10, 102400, skip_discard, &exists, &one);
+ cout << " wrote " << one << std::endl;
+
+ interval_set<uint64_t> diff;
+ ASSERT_EQ(-EINVAL, image.diff_iterate2(NULL, 0, size, true,
+ this->whole_object,
+ iterate_error_cb, NULL));
+ }
+ ioctx.close();
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateParentDiscard)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ std::string name = this->get_temp_image_name();
+ uint64_t size = 20 << 20;
+ int order = 0;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool skip_discard = this->is_skip_partial_discard_enabled(image);
+
+ uint64_t features;
+ ASSERT_EQ(0, image.features(&features));
+ uint64_t object_size = 0;
+ if (this->whole_object) {
+ object_size = 1 << order;
+ }
+
+ interval_set<uint64_t> exists;
+ interval_set<uint64_t> one;
+ scribble(image, 10, 102400, skip_discard, &exists, &one);
+ ASSERT_EQ(0, image.snap_create("one"));
+
+ ASSERT_EQ(1 << order, image.discard(0, 1 << order));
+ ASSERT_EQ(0, image.snap_create("two"));
+ ASSERT_EQ(0, image.snap_protect("two"));
+ exists.clear();
+ one.clear();
+
+ std::string clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "two", ioctx,
+ clone_name.c_str(), features, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, clone_name.c_str(), NULL));
+
+ interval_set<uint64_t> two;
+ scribble(image, 10, 102400, skip_discard, &exists, &two);
+ two = round_diff_interval(two, object_size);
+
+ interval_set<uint64_t> diff;
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ iterate_cb, (void *)&diff));
+ ASSERT_TRUE(two.subset_of(diff));
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateUnalignedSmall)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 0;
+ std::string name = this->get_temp_image_name();
+ ssize_t size = 10 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(size, '1'));
+ ASSERT_EQ(size, image.write(0, size, bl));
+
+ std::vector<diff_extent> extents;
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 5000005, 1234, true,
+ this->whole_object, vector_iterate_cb,
+ &extents));
+ ASSERT_EQ(1u, extents.size());
+ ASSERT_EQ(diff_extent(5000005, 1234, true, 0), extents[0]);
+
+ ASSERT_PASSED(this->validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateUnaligned)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 22;
+ std::string name = this->get_temp_image_name();
+ ssize_t size = 20 << 20;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(size, '1'));
+ ASSERT_EQ(size, image.write(0, size, bl));
+
+ std::vector<diff_extent> extents;
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 8376263, 4260970, true,
+ this->whole_object, vector_iterate_cb,
+ &extents));
+ ASSERT_EQ(3u, extents.size());
+ ASSERT_EQ(diff_extent(8376263, 12345, true, 0), extents[0]);
+ ASSERT_EQ(diff_extent(8388608, 4194304, true, 0), extents[1]);
+ ASSERT_EQ(diff_extent(12582912, 54321, true, 0), extents[2]);
+
+ ASSERT_PASSED(this->validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TYPED_TEST(DiffIterateTest, DiffIterateStriping)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_STRIPINGV2);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, this->_rados.ioctx_create(this->m_pool_name.c_str(), ioctx));
+
+ bool old_format;
+ uint64_t features;
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 22;
+ std::string name = this->get_temp_image_name();
+ ssize_t size = 24 << 20;
+
+ ASSERT_EQ(0, rbd.create3(ioctx, name.c_str(), size, features, &order,
+ 1 << 20, 3));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ ceph::bufferlist bl;
+ bl.append(std::string(size, '1'));
+ ASSERT_EQ(size, image.write(0, size, bl));
+
+ std::vector<diff_extent> extents;
+ ASSERT_EQ(0, image.diff_iterate2(NULL, 0, size, true, this->whole_object,
+ vector_iterate_cb, &extents));
+ ASSERT_EQ(2u, extents.size());
+ ASSERT_EQ(diff_extent(0, 12 << 20, true, 0), extents[0]);
+ ASSERT_EQ(diff_extent(12 << 20, 12 << 20, true, 0), extents[1]);
+ extents.clear();
+
+ ASSERT_EQ(0, image.snap_create("one"));
+ ASSERT_EQ(size, image.discard(0, size));
+
+ ASSERT_EQ(0, image.diff_iterate2("one", 0, size, true, this->whole_object,
+ vector_iterate_cb, &extents));
+ ASSERT_EQ(2u, extents.size());
+ ASSERT_EQ(diff_extent(0, 12 << 20, false, 0), extents[0]);
+ ASSERT_EQ(diff_extent(12 << 20, 12 << 20, false, 0), extents[1]);
+ extents.clear();
+
+ ASSERT_EQ(1 << 20, image.write(0, 1 << 20, bl));
+ ASSERT_EQ(2 << 20, image.write(2 << 20, 2 << 20, bl));
+ ASSERT_EQ(2 << 20, image.write(5 << 20, 2 << 20, bl));
+ ASSERT_EQ(2 << 20, image.write(8 << 20, 2 << 20, bl));
+ ASSERT_EQ(13 << 20, image.write(11 << 20, 13 << 20, bl));
+
+ ASSERT_EQ(0, image.diff_iterate2("one", 0, size, true, this->whole_object,
+ vector_iterate_cb, &extents));
+ ASSERT_EQ(10u, extents.size());
+ ASSERT_EQ(diff_extent(0, 1 << 20, true, 0), extents[0]);
+ ASSERT_EQ(diff_extent(1 << 20, 1 << 20, false, 0), extents[1]);
+ ASSERT_EQ(diff_extent(2 << 20, 2 << 20, true, 0), extents[2]);
+ ASSERT_EQ(diff_extent(4 << 20, 1 << 20, false, 0), extents[3]);
+ ASSERT_EQ(diff_extent(5 << 20, 2 << 20, true, 0), extents[4]);
+ ASSERT_EQ(diff_extent(7 << 20, 1 << 20, false, 0), extents[5]);
+ ASSERT_EQ(diff_extent(8 << 20, 2 << 20, true, 0), extents[6]);
+ ASSERT_EQ(diff_extent(10 << 20, 1 << 20, false, 0), extents[7]);
+ ASSERT_EQ(diff_extent(11 << 20, 1 << 20, true, 0), extents[8]);
+ ASSERT_EQ(diff_extent(12 << 20, 12 << 20, true, 0), extents[9]);
+
+ ASSERT_PASSED(this->validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, ZeroLengthWrite)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ char read_data[1];
+ ASSERT_EQ(0, rbd_write(image, 0, 0, NULL));
+ ASSERT_EQ(1, rbd_read(image, 0, 1, read_data));
+ ASSERT_EQ('\0', read_data[0]);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+
+TEST_F(TestLibRBD, ZeroLengthDiscard)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ const char data[] = "blah";
+ char read_data[sizeof(data)];
+ ASSERT_EQ((int)strlen(data), rbd_write(image, 0, strlen(data), data));
+ ASSERT_EQ(0, rbd_discard(image, 0, 0));
+ ASSERT_EQ((int)strlen(data), rbd_read(image, 0, strlen(data), read_data));
+ ASSERT_EQ(0, memcmp(data, read_data, strlen(data)));
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, ZeroLengthRead)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ char read_data[1];
+ ASSERT_EQ(0, rbd_read(image, 0, 0, read_data));
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, LargeCacheRead)
+{
+ std::string config_value;
+ ASSERT_EQ(0, _rados.conf_get("rbd_cache", config_value));
+ if (config_value == "false") {
+ GTEST_SKIP() << "Skipping due to disabled cache";
+ }
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ uint32_t new_cache_size = 1 << 20;
+ std::string orig_cache_size;
+ ASSERT_EQ(0, _rados.conf_get("rbd_cache_size", orig_cache_size));
+ ASSERT_EQ(0, _rados.conf_set("rbd_cache_size",
+ stringify(new_cache_size).c_str()));
+ ASSERT_EQ(0, _rados.conf_get("rbd_cache_size", config_value));
+ ASSERT_EQ(stringify(new_cache_size), config_value);
+ BOOST_SCOPE_EXIT( (orig_cache_size) ) {
+ ASSERT_EQ(0, _rados.conf_set("rbd_cache_size", orig_cache_size.c_str()));
+ } BOOST_SCOPE_EXIT_END;
+
+ rbd_image_t image;
+ int order = 21;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << order;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ std::string buffer(1 << order, '1');
+
+ ASSERT_EQ(static_cast<ssize_t>(buffer.size()),
+ rbd_write(image, 0, buffer.size(), buffer.c_str()));
+
+ ASSERT_EQ(0, rbd_invalidate_cache(image));
+
+ ASSERT_EQ(static_cast<ssize_t>(buffer.size()),
+ rbd_read(image, 0, buffer.size(), &buffer[0]));
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestPendingAio)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ bool old_format;
+ uint64_t features;
+ rbd_image_t image;
+ int order = 0;
+
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 4 << 20;
+ ASSERT_EQ(0, create_image_full(ioctx, name.c_str(), size, &order,
+ false, features));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_invalidate_cache(image));
+
+ char test_data[TEST_IO_SIZE];
+ for (size_t i = 0; i < TEST_IO_SIZE; ++i) {
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ }
+
+ size_t num_aios = 256;
+ rbd_completion_t comps[num_aios];
+ for (size_t i = 0; i < num_aios; ++i) {
+ ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &comps[i]));
+ uint64_t offset = rand() % (size - TEST_IO_SIZE);
+ ASSERT_EQ(0, rbd_aio_write(image, offset, TEST_IO_SIZE, test_data,
+ comps[i]));
+ }
+ for (size_t i = 0; i < num_aios; ++i) {
+ ASSERT_EQ(0, rbd_aio_wait_for_complete(comps[i]));
+ rbd_aio_release(comps[i]);
+ }
+ ASSERT_EQ(0, rbd_invalidate_cache(image));
+
+ for (size_t i = 0; i < num_aios; ++i) {
+ ASSERT_EQ(0, rbd_aio_create_completion(NULL, NULL, &comps[i]));
+ uint64_t offset = rand() % (size - TEST_IO_SIZE);
+ ASSERT_LE(0, rbd_aio_read(image, offset, TEST_IO_SIZE, test_data,
+ comps[i]));
+ }
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+ for (size_t i = 0; i < num_aios; ++i) {
+ ASSERT_EQ(1, rbd_aio_is_complete(comps[i]));
+ rbd_aio_release(comps[i]);
+ }
+
+ rados_ioctx_destroy(ioctx);
+}
+
+void compare_and_write_copyup(librados::IoCtx &ioctx, bool deep_copyup,
+ bool *passed)
+{
+ librbd::RBD rbd;
+ std::string parent_name = TestLibRBD::get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), size, &order));
+
+ librbd::Image parent_image;
+ ASSERT_EQ(0, rbd.open(ioctx, parent_image, parent_name.c_str(), NULL));
+
+ bufferlist bl;
+ bl.append(std::string(4096, '1'));
+ ASSERT_EQ((ssize_t)bl.length(), parent_image.write(0, bl.length(), bl));
+
+ ASSERT_EQ(0, parent_image.snap_create("snap1"));
+ ASSERT_EQ(0, parent_image.snap_protect("snap1"));
+
+ uint64_t features;
+ ASSERT_EQ(0, parent_image.features(&features));
+
+ std::string clone_name = TestLibRBD::get_temp_image_name();
+ EXPECT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap1", ioctx,
+ clone_name.c_str(), features, &order));
+
+ librbd::Image clone_image;
+ ASSERT_EQ(0, rbd.open(ioctx, clone_image, clone_name.c_str(), NULL));
+ if (deep_copyup) {
+ ASSERT_EQ(0, clone_image.snap_create("snap1"));
+ }
+
+ bufferlist cmp_bl;
+ cmp_bl.append(std::string(512, '1'));
+ bufferlist write_bl;
+ write_bl.append(std::string(512, '2'));
+ uint64_t mismatch_off = 0;
+ ASSERT_EQ((ssize_t)write_bl.length(),
+ clone_image.compare_and_write(512, write_bl.length(), cmp_bl,
+ write_bl, &mismatch_off, 0));
+ ASSERT_EQ(0U, mismatch_off);
+ bufferlist read_bl;
+ ASSERT_EQ(4096, clone_image.read(0, 4096, read_bl));
+
+ bufferlist expected_bl;
+ expected_bl.append(std::string(512, '1'));
+ expected_bl.append(std::string(512, '2'));
+ expected_bl.append(std::string(3072, '1'));
+ ASSERT_TRUE(expected_bl.contents_equal(read_bl));
+ *passed = true;
+}
+
+TEST_F(TestLibRBD, CompareAndWriteCopyup)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ ASSERT_PASSED(compare_and_write_copyup, ioctx, false);
+ ASSERT_PASSED(compare_and_write_copyup, ioctx, true);
+}
+
+void compare_and_write_copyup_mismatch(librados::IoCtx &ioctx,
+ bool deep_copyup, bool *passed)
+{
+ librbd::RBD rbd;
+ std::string parent_name = TestLibRBD::get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), size, &order));
+
+ librbd::Image parent_image;
+ ASSERT_EQ(0, rbd.open(ioctx, parent_image, parent_name.c_str(), NULL));
+
+ bufferlist bl;
+ bl.append(std::string(4096, '1'));
+ ASSERT_EQ((ssize_t)bl.length(), parent_image.write(0, bl.length(), bl));
+
+ ASSERT_EQ(0, parent_image.snap_create("snap1"));
+ ASSERT_EQ(0, parent_image.snap_protect("snap1"));
+
+ uint64_t features;
+ ASSERT_EQ(0, parent_image.features(&features));
+
+ std::string clone_name = TestLibRBD::get_temp_image_name();
+ EXPECT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap1", ioctx,
+ clone_name.c_str(), features, &order));
+
+ librbd::Image clone_image;
+ ASSERT_EQ(0, rbd.open(ioctx, clone_image, clone_name.c_str(), NULL));
+ if (deep_copyup) {
+ ASSERT_EQ(0, clone_image.snap_create("snap1"));
+ }
+
+ bufferlist cmp_bl;
+ cmp_bl.append(std::string(48, '1'));
+ cmp_bl.append(std::string(464, '3'));
+ bufferlist write_bl;
+ write_bl.append(std::string(512, '2'));
+ uint64_t mismatch_off = 0;
+ ASSERT_EQ(-EILSEQ,
+ clone_image.compare_and_write(512, write_bl.length(), cmp_bl,
+ write_bl, &mismatch_off, 0));
+ ASSERT_EQ(48U, mismatch_off);
+
+ bufferlist read_bl;
+ ASSERT_EQ(4096, clone_image.read(0, 4096, read_bl));
+
+ ASSERT_TRUE(bl.contents_equal(read_bl));
+ *passed = true;
+}
+
+TEST_F(TestLibRBD, CompareAndWriteCopyupMismatch)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ ASSERT_PASSED(compare_and_write_copyup_mismatch, ioctx, false);
+ ASSERT_PASSED(compare_and_write_copyup_mismatch, ioctx, true);
+}
+
+TEST_F(TestLibRBD, Flatten)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string parent_name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), size, &order));
+
+ librbd::Image parent_image;
+ ASSERT_EQ(0, rbd.open(ioctx, parent_image, parent_name.c_str(), NULL));
+
+ bufferlist bl;
+ bl.append(std::string(4096, '1'));
+ ASSERT_EQ((ssize_t)bl.length(), parent_image.write(0, bl.length(), bl));
+
+ ASSERT_EQ(0, parent_image.snap_create("snap1"));
+ ASSERT_EQ(0, parent_image.snap_protect("snap1"));
+
+ uint64_t features;
+ ASSERT_EQ(0, parent_image.features(&features));
+
+ std::string clone_name = get_temp_image_name();
+ EXPECT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap1", ioctx,
+ clone_name.c_str(), features, &order));
+
+ librbd::Image clone_image;
+ ASSERT_EQ(0, rbd.open(ioctx, clone_image, clone_name.c_str(), NULL));
+ ASSERT_EQ(0, clone_image.flatten());
+
+ librbd::RBD::AioCompletion *read_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ bufferlist read_bl;
+ clone_image.aio_read(0, bl.length(), read_bl, read_comp);
+ ASSERT_EQ(0, read_comp->wait_for_complete());
+ ASSERT_EQ((ssize_t)bl.length(), read_comp->get_return_value());
+ read_comp->release();
+ ASSERT_TRUE(bl.contents_equal(read_bl));
+
+ ASSERT_PASSED(validate_object_map, clone_image);
+}
+
+TEST_F(TestLibRBD, Sparsify)
+{
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+ BOOST_SCOPE_EXIT_ALL(&ioctx) {
+ rados_ioctx_destroy(ioctx);
+ };
+
+ const size_t CHUNK_SIZE = 4096 * 2;
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = CHUNK_SIZE * 1024;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ BOOST_SCOPE_EXIT_ALL(&image) {
+ rbd_close(image);
+ };
+
+ char test_data[4 * CHUNK_SIZE + 1];
+ for (size_t i = 0; i < 4 ; ++i) {
+ for (size_t j = 0; j < CHUNK_SIZE; j++) {
+ if (i % 2) {
+ test_data[i * CHUNK_SIZE + j] = (char)(rand() % (126 - 33) + 33);
+ } else {
+ test_data[i * CHUNK_SIZE + j] = '\0';
+ }
+ }
+ }
+ test_data[4 * CHUNK_SIZE] = '\0';
+
+ ASSERT_PASSED(write_test_data, image, test_data, 0, 4 * CHUNK_SIZE, 0);
+ ASSERT_EQ(0, rbd_flush(image));
+
+ ASSERT_EQ(-EINVAL, rbd_sparsify(image, 16));
+ ASSERT_EQ(-EINVAL, rbd_sparsify(image, 1 << (order + 1)));
+ ASSERT_EQ(-EINVAL, rbd_sparsify(image, 4096 + 1));
+ ASSERT_EQ(0, rbd_sparsify(image, 4096));
+
+ ASSERT_PASSED(read_test_data, image, test_data, 0, 4 * CHUNK_SIZE, 0);
+}
+
+TEST_F(TestLibRBD, SparsifyPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 12 * 1024 * 1024;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ bufferlist bl;
+ bl.append(std::string(4096, '\0'));
+ bl.append(std::string(4096, '1'));
+ bl.append(std::string(4096, '\0'));
+ ASSERT_EQ((ssize_t)bl.length(), image.write(0, bl.length(), bl));
+ ASSERT_EQ(0, image.flush());
+
+ ASSERT_EQ(-EINVAL, image.sparsify(16));
+ ASSERT_EQ(-EINVAL, image.sparsify(1 << (order + 1)));
+ ASSERT_EQ(-EINVAL, image.sparsify(4096 + 1));
+ ASSERT_EQ(0, image.sparsify(4096));
+
+ bufferlist read_bl;
+ ASSERT_EQ((ssize_t)bl.length(), image.read(0, bl.length(), read_bl));
+ ASSERT_TRUE(bl.contents_equal(read_bl));
+
+ ASSERT_PASSED(validate_object_map, image);
+}
+
+TEST_F(TestLibRBD, SnapshotLimit)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ uint64_t limit;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_snap_get_limit(image, &limit));
+ ASSERT_EQ(UINT64_MAX, limit);
+ ASSERT_EQ(0, rbd_snap_set_limit(image, 2));
+ ASSERT_EQ(0, rbd_snap_get_limit(image, &limit));
+ ASSERT_EQ(2U, limit);
+
+ ASSERT_EQ(0, rbd_snap_create(image, "snap1"));
+ ASSERT_EQ(-ERANGE, rbd_snap_set_limit(image, 0));
+ ASSERT_EQ(0, rbd_snap_create(image, "snap2"));
+ ASSERT_EQ(-EDQUOT, rbd_snap_create(image, "snap3"));
+ ASSERT_EQ(0, rbd_snap_set_limit(image, UINT64_MAX));
+ ASSERT_EQ(0, rbd_snap_create(image, "snap3"));
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+
+TEST_F(TestLibRBD, SnapshotLimitPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ uint64_t limit;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image.snap_get_limit(&limit));
+ ASSERT_EQ(UINT64_MAX, limit);
+ ASSERT_EQ(0, image.snap_set_limit(2));
+ ASSERT_EQ(0, image.snap_get_limit(&limit));
+ ASSERT_EQ(2U, limit);
+
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ(-ERANGE, image.snap_set_limit(0));
+ ASSERT_EQ(0, image.snap_create("snap2"));
+ ASSERT_EQ(-EDQUOT, image.snap_create("snap3"));
+ ASSERT_EQ(0, image.snap_set_limit(UINT64_MAX));
+ ASSERT_EQ(0, image.snap_create("snap3"));
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, RebuildObjectMapViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK | RBD_FEATURE_OBJECT_MAP);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ std::string object_map_oid;
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ std::string image_id;
+ ASSERT_EQ(0, get_image_id(image, &image_id));
+ object_map_oid = RBD_OBJECT_MAP_PREFIX + image_id;
+ }
+
+ // corrupt the object map
+ bufferlist bl;
+ bl.append("foo");
+ ASSERT_EQ(0, ioctx.write(object_map_oid, bl, bl.length(), 0));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bool lock_owner;
+ bl.clear();
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ uint64_t flags;
+ ASSERT_EQ(0, image1.get_flags(&flags));
+ ASSERT_TRUE((flags & RBD_FLAG_OBJECT_MAP_INVALID) != 0);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ PrintProgress prog_ctx;
+ ASSERT_EQ(0, image2.rebuild_object_map(prog_ctx));
+ ASSERT_PASSED(validate_object_map, image1);
+ ASSERT_PASSED(validate_object_map, image2);
+}
+
+TEST_F(TestLibRBD, RenameViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ std::string new_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd.rename(ioctx, name.c_str(), new_name.c_str()));
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ name = new_name;
+ new_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd.rename(ioctx, name.c_str(), new_name.c_str()));
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, new_name.c_str(), NULL));
+}
+
+TEST_F(TestLibRBD, SnapCreateViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ // switch to writeback cache
+ ASSERT_EQ(0, image1.flush());
+
+ bufferlist bl;
+ bl.append(std::string(4096, '1'));
+ ASSERT_EQ((ssize_t)bl.length(), image1.write(0, bl.length(), bl));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.snap_create("snap1"));
+ bool exists;
+ ASSERT_EQ(0, image1.snap_exists2("snap1", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(0, image2.snap_exists2("snap1", &exists));
+ ASSERT_TRUE(exists);
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+}
+
+TEST_F(TestLibRBD, SnapRemoveViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_FAST_DIFF);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.snap_remove("snap1"));
+ bool exists;
+ ASSERT_EQ(0, image1.snap_exists2("snap1", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, image2.snap_exists2("snap1", &exists));
+ ASSERT_FALSE(exists);
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+}
+
+TEST_F(TestLibRBD, UpdateFeaturesViaLockOwner) {
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ librbd::RBD rbd;
+ int order = 0;
+ //creates full with rbd default features
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ bool lock_owner;
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.update_features(RBD_FEATURE_OBJECT_MAP, false));
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.update_features(RBD_FEATURE_OBJECT_MAP, true));
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+}
+
+TEST_F(TestLibRBD, EnableJournalingViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_JOURNALING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.update_features(RBD_FEATURE_JOURNALING, false));
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.update_features(RBD_FEATURE_JOURNALING, true));
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+}
+
+TEST_F(TestLibRBD, SnapRemove2)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+ bool exists;
+ ASSERT_EQ(0, image1.snap_exists2("snap1", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(0, image1.snap_protect("snap1"));
+ bool is_protected;
+ ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected));
+ ASSERT_TRUE(is_protected);
+
+ uint64_t features;
+ ASSERT_EQ(0, image1.features(&features));
+
+ std::string child_name = get_temp_image_name();
+ EXPECT_EQ(0, rbd.clone(ioctx, name.c_str(), "snap1", ioctx,
+ child_name.c_str(), features, &order));
+
+ ASSERT_EQ(0, image1.snap_exists2("snap1", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected));
+ ASSERT_TRUE(is_protected);
+
+ ASSERT_EQ(-EBUSY, image1.snap_remove("snap1"));
+ PrintProgress pp;
+ ASSERT_EQ(0, image1.snap_remove2("snap1", RBD_SNAP_REMOVE_FORCE, pp));
+ ASSERT_EQ(0, image1.snap_exists2("snap1", &exists));
+ ASSERT_FALSE(exists);
+}
+
+TEST_F(TestLibRBD, SnapRenameViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.snap_rename("snap1", "snap1-rename"));
+ bool exists;
+ ASSERT_EQ(0, image1.snap_exists2("snap1-rename", &exists));
+ ASSERT_TRUE(exists);
+ ASSERT_EQ(0, image2.snap_exists2("snap1-rename", &exists));
+ ASSERT_TRUE(exists);
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+}
+
+TEST_F(TestLibRBD, SnapProtectViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.snap_protect("snap1"));
+ bool is_protected;
+ ASSERT_EQ(0, image2.snap_is_protected("snap1", &is_protected));
+ ASSERT_TRUE(is_protected);
+ ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected));
+ ASSERT_TRUE(is_protected);
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+}
+
+TEST_F(TestLibRBD, SnapUnprotectViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING | RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+ ASSERT_EQ(0, image1.snap_protect("snap1"));
+ bool is_protected;
+ ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected));
+ ASSERT_TRUE(is_protected);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.snap_unprotect("snap1"));
+ ASSERT_EQ(0, image2.snap_is_protected("snap1", &is_protected));
+ ASSERT_FALSE(is_protected);
+ ASSERT_EQ(0, image1.snap_is_protected("snap1", &is_protected));
+ ASSERT_FALSE(is_protected);
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+}
+
+TEST_F(TestLibRBD, FlattenViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string parent_name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), size, &order));
+
+ librbd::Image parent_image;
+ ASSERT_EQ(0, rbd.open(ioctx, parent_image, parent_name.c_str(), NULL));
+ ASSERT_EQ(0, parent_image.snap_create("snap1"));
+ ASSERT_EQ(0, parent_image.snap_protect("snap1"));
+
+ uint64_t features;
+ ASSERT_EQ(0, parent_image.features(&features));
+
+ std::string name = get_temp_image_name();
+ EXPECT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "snap1", ioctx,
+ name.c_str(), features, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.flatten());
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+ ASSERT_PASSED(validate_object_map, image1);
+}
+
+TEST_F(TestLibRBD, ResizeViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.resize(0));
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+ ASSERT_PASSED(validate_object_map, image1);
+}
+
+TEST_F(TestLibRBD, SparsifyViaLockOwner)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bufferlist bl;
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image2.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, image2.sparsify(4096));
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+ ASSERT_PASSED(validate_object_map, image1);
+}
+
+TEST_F(TestLibRBD, ObjectMapConsistentSnap)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_OBJECT_MAP);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 20;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ int num_snaps = 10;
+ for (int i = 0; i < num_snaps; ++i) {
+ std::string snap_name = "snap" + stringify(i);
+ ASSERT_EQ(0, image1.snap_create(snap_name.c_str()));
+ }
+
+
+ thread writer([&image1](){
+ librbd::image_info_t info;
+ int r = image1.stat(info, sizeof(info));
+ ceph_assert(r == 0);
+ bufferlist bl;
+ bl.append("foo");
+ for (unsigned i = 0; i < info.num_objs; ++i) {
+ r = image1.write((1 << info.order) * i, bl.length(), bl);
+ ceph_assert(r == (int) bl.length());
+ }
+ });
+ writer.join();
+
+ for (int i = 0; i < num_snaps; ++i) {
+ std::string snap_name = "snap" + stringify(i);
+ ASSERT_EQ(0, image1.snap_set(snap_name.c_str()));
+ ASSERT_PASSED(validate_object_map, image1);
+ }
+
+ ASSERT_EQ(0, image1.snap_set(NULL));
+ ASSERT_PASSED(validate_object_map, image1);
+}
+
+void memset_rand(char *buf, size_t len) {
+ for (size_t i = 0; i < len; ++i) {
+ buf[i] = (char) (rand() % (126 - 33) + 33);
+ }
+}
+
+TEST_F(TestLibRBD, Metadata)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+
+ rbd_image_t image;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ rbd_image_t image1;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image1, NULL));
+
+ char keys[1024];
+ char vals[1024];
+ size_t keys_len = sizeof(keys);
+ size_t vals_len = sizeof(vals);
+
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+
+ ASSERT_EQ(0, rbd_metadata_list(image, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(0U, keys_len);
+ ASSERT_EQ(0U, vals_len);
+
+ char value[1024];
+ size_t value_len = sizeof(value);
+ memset_rand(value, value_len);
+
+ ASSERT_EQ(0, rbd_metadata_set(image1, "key1", "value1"));
+ ASSERT_EQ(0, rbd_metadata_set(image1, "key2", "value2"));
+ ASSERT_EQ(0, rbd_metadata_get(image1, "key1", value, &value_len));
+ ASSERT_STREQ(value, "value1");
+ value_len = 1;
+ ASSERT_EQ(-ERANGE, rbd_metadata_get(image1, "key1", value, &value_len));
+ ASSERT_EQ(value_len, strlen("value1") + 1);
+
+ ASSERT_EQ(-ERANGE, rbd_metadata_list(image1, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_metadata_list(image1, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1);
+ ASSERT_STREQ(keys, "key1");
+ ASSERT_STREQ(keys + strlen(keys) + 1, "key2");
+ ASSERT_STREQ(vals, "value1");
+ ASSERT_STREQ(vals + strlen(vals) + 1, "value2");
+
+ ASSERT_EQ(0, rbd_metadata_remove(image1, "key1"));
+ ASSERT_EQ(-ENOENT, rbd_metadata_remove(image1, "key3"));
+ value_len = sizeof(value);
+ ASSERT_EQ(-ENOENT, rbd_metadata_get(image1, "key3", value, &value_len));
+ ASSERT_EQ(0, rbd_metadata_list(image1, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key2") + 1);
+ ASSERT_EQ(vals_len, strlen("value2") + 1);
+ ASSERT_STREQ(keys, "key2");
+ ASSERT_STREQ(vals, "value2");
+
+ // test config setting
+ ASSERT_EQ(0, rbd_metadata_set(image1, "conf_rbd_cache", "false"));
+ ASSERT_EQ(-EINVAL, rbd_metadata_set(image1, "conf_rbd_cache", "INVALID_VAL"));
+ ASSERT_EQ(0, rbd_metadata_remove(image1, "conf_rbd_cache"));
+
+ // test metadata with snapshot adding
+ ASSERT_EQ(0, rbd_snap_create(image1, "snap1"));
+ ASSERT_EQ(0, rbd_snap_protect(image1, "snap1"));
+ ASSERT_EQ(0, rbd_snap_set(image1, "snap1"));
+
+ ASSERT_EQ(-EROFS, rbd_metadata_set(image1, "key1", "value1"));
+ ASSERT_EQ(-EROFS, rbd_metadata_remove(image1, "key2"));
+
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_metadata_list(image1, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key2") + 1);
+ ASSERT_EQ(vals_len, strlen("value2") + 1);
+ ASSERT_STREQ(keys, "key2");
+ ASSERT_STREQ(vals, "value2");
+
+ ASSERT_EQ(0, rbd_snap_set(image1, NULL));
+ ASSERT_EQ(0, rbd_metadata_set(image1, "key1", "value1"));
+ ASSERT_EQ(0, rbd_metadata_set(image1, "key3", "value3"));
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_metadata_list(image1, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len,
+ strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1);
+ ASSERT_EQ(vals_len,
+ strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1);
+ ASSERT_STREQ(keys, "key1");
+ ASSERT_STREQ(keys + strlen("key1") + 1, "key2");
+ ASSERT_STREQ(keys + strlen("key1") + 1 + strlen("key2") + 1, "key3");
+ ASSERT_STREQ(vals, "value1");
+ ASSERT_STREQ(vals + strlen("value1") + 1, "value2");
+ ASSERT_STREQ(vals + strlen("value1") + 1 + strlen("value2") + 1, "value3");
+
+ // test metadata with cloning
+ uint64_t features;
+ ASSERT_EQ(0, rbd_get_features(image1, &features));
+
+ string cname = get_temp_image_name();
+ EXPECT_EQ(0, rbd_clone(ioctx, name.c_str(), "snap1", ioctx,
+ cname.c_str(), features, &order));
+ rbd_image_t image2;
+ ASSERT_EQ(0, rbd_open(ioctx, cname.c_str(), &image2, NULL));
+ ASSERT_EQ(0, rbd_metadata_set(image2, "key4", "value4"));
+
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_metadata_list(image2, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") +
+ 1 + strlen("key4") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 +
+ strlen("value3") + 1 + strlen("value4") + 1);
+ ASSERT_STREQ(keys + strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") +
+ 1, "key4");
+ ASSERT_STREQ(vals + strlen("value1") + 1 + strlen("value2") + 1 +
+ strlen("value3") + 1, "value4");
+
+ ASSERT_EQ(0, rbd_metadata_list(image1, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len,
+ strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") + 1);
+ ASSERT_EQ(vals_len,
+ strlen("value1") + 1 + strlen("value2") + 1 + strlen("value3") + 1);
+ ASSERT_EQ(-ENOENT, rbd_metadata_get(image1, "key4", value, &value_len));
+
+ // test short buffer cases
+ keys_len = strlen("key1") + 1;
+ vals_len = strlen("value1") + 1;
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_metadata_list(image2, "key", 1, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1);
+ ASSERT_STREQ(keys, "key1");
+ ASSERT_STREQ(vals, "value1");
+
+ ASSERT_EQ(-ERANGE, rbd_metadata_list(image2, "key", 2, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1);
+
+ ASSERT_EQ(-ERANGE, rbd_metadata_list(image2, "key", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") +
+ 1 + strlen("key4") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 +
+ strlen("value3") + 1 + strlen("value4") + 1);
+
+ // test `start` param
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_metadata_list(image2, "key2", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key3") + 1 + strlen("key4") + 1);
+ ASSERT_EQ(vals_len, strlen("value3") + 1 + strlen("value4") + 1);
+ ASSERT_STREQ(keys, "key3");
+ ASSERT_STREQ(vals, "value3");
+
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_close(image1));
+ ASSERT_EQ(0, rbd_close(image2));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, MetadataPP)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ uint64_t features;
+ string value;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+ map<string, bufferlist> pairs;
+ ASSERT_EQ(0, image1.metadata_list("key", 0, &pairs));
+ ASSERT_TRUE(pairs.empty());
+
+ ASSERT_EQ(0, image1.metadata_set("key1", "value1"));
+ ASSERT_EQ(0, image1.metadata_set("key2", "value2"));
+ ASSERT_EQ(0, image1.metadata_get("key1", &value));
+ ASSERT_EQ(0, strcmp("value1", value.c_str()));
+ ASSERT_EQ(0, image1.metadata_list("key", 0, &pairs));
+ ASSERT_EQ(2U, pairs.size());
+ ASSERT_EQ(0, strncmp("value1", pairs["key1"].c_str(), 6));
+ ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6));
+
+ pairs.clear();
+ ASSERT_EQ(0, image1.metadata_remove("key1"));
+ ASSERT_EQ(-ENOENT, image1.metadata_remove("key3"));
+ ASSERT_TRUE(image1.metadata_get("key3", &value) < 0);
+ ASSERT_EQ(0, image1.metadata_list("key", 0, &pairs));
+ ASSERT_EQ(1U, pairs.size());
+ ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6));
+
+ // test config setting
+ ASSERT_EQ(0, image1.metadata_set("conf_rbd_cache", "false"));
+ ASSERT_EQ(-EINVAL, image1.metadata_set("conf_rbd_cache", "INVALID_VALUE"));
+ ASSERT_EQ(0, image1.metadata_remove("conf_rbd_cache"));
+
+ // test metadata with snapshot adding
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+ ASSERT_EQ(0, image1.snap_protect("snap1"));
+ ASSERT_EQ(0, image1.snap_set("snap1"));
+
+ pairs.clear();
+ ASSERT_EQ(-EROFS, image1.metadata_set("key1", "value1"));
+ ASSERT_EQ(-EROFS, image1.metadata_remove("key2"));
+ ASSERT_EQ(0, image1.metadata_list("key", 0, &pairs));
+ ASSERT_EQ(1U, pairs.size());
+ ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6));
+
+ ASSERT_EQ(0, image1.snap_set(NULL));
+ ASSERT_EQ(0, image1.metadata_set("key1", "value1"));
+ ASSERT_EQ(0, image1.metadata_set("key3", "value3"));
+ ASSERT_EQ(0, image1.metadata_list("key", 0, &pairs));
+ ASSERT_EQ(3U, pairs.size());
+ ASSERT_EQ(0, strncmp("value1", pairs["key1"].c_str(), 6));
+ ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6));
+ ASSERT_EQ(0, strncmp("value3", pairs["key3"].c_str(), 6));
+
+ // test metadata with cloning
+ string cname = get_temp_image_name();
+ librbd::Image image2;
+ ASSERT_EQ(0, image1.features(&features));
+ EXPECT_EQ(0, rbd.clone(ioctx, name.c_str(), "snap1", ioctx,
+ cname.c_str(), features, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image2, cname.c_str(), NULL));
+ ASSERT_EQ(0, image2.metadata_set("key4", "value4"));
+ pairs.clear();
+ ASSERT_EQ(0, image2.metadata_list("key", 0, &pairs));
+ ASSERT_EQ(4U, pairs.size());
+ pairs.clear();
+ ASSERT_EQ(0, image1.metadata_list("key", 0, &pairs));
+ ASSERT_EQ(3U, pairs.size());
+ ASSERT_EQ(-ENOENT, image1.metadata_get("key4", &value));
+}
+
+TEST_F(TestLibRBD, UpdateFeatures)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ uint8_t old_format;
+ ASSERT_EQ(0, image.old_format(&old_format));
+ if (old_format) {
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, true));
+ return;
+ }
+
+ uint64_t features;
+ ASSERT_EQ(0, image.features(&features));
+
+ // must provide a single feature
+ ASSERT_EQ(-EINVAL, image.update_features(0, true));
+
+ uint64_t disable_features;
+ disable_features = features & (RBD_FEATURE_EXCLUSIVE_LOCK |
+ RBD_FEATURE_OBJECT_MAP |
+ RBD_FEATURE_FAST_DIFF |
+ RBD_FEATURE_JOURNALING);
+ if (disable_features != 0) {
+ ASSERT_EQ(0, image.update_features(disable_features, false));
+ }
+
+ ASSERT_EQ(0, image.features(&features));
+ ASSERT_EQ(0U, features & disable_features);
+
+ // cannot enable object map nor journaling w/o exclusive lock
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_OBJECT_MAP, true));
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_JOURNALING, true));
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, true));
+
+ ASSERT_EQ(0, image.features(&features));
+ ASSERT_NE(0U, features & RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ // can enable fast diff w/o object map
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_FAST_DIFF, true));
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_OBJECT_MAP, true));
+ ASSERT_EQ(0, image.features(&features));
+ ASSERT_NE(0U, features & RBD_FEATURE_OBJECT_MAP);
+
+ uint64_t expected_flags = RBD_FLAG_OBJECT_MAP_INVALID |
+ RBD_FLAG_FAST_DIFF_INVALID;
+ uint64_t flags;
+ ASSERT_EQ(0, image.get_flags(&flags));
+ ASSERT_EQ(expected_flags, flags);
+
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, false));
+ ASSERT_EQ(0, image.features(&features));
+ ASSERT_EQ(0U, features & RBD_FEATURE_OBJECT_MAP);
+
+ // can disable object map w/ fast diff
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, true));
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, false));
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_FAST_DIFF, false));
+ ASSERT_EQ(0, image.features(&features));
+ ASSERT_EQ(0U, features & RBD_FEATURE_FAST_DIFF);
+
+ ASSERT_EQ(0, image.get_flags(&flags));
+ ASSERT_EQ(0U, flags);
+
+ // cannot disable exclusive lock w/ object map
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, true));
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, false));
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_OBJECT_MAP, false));
+
+ // cannot disable exclusive lock w/ journaling
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_JOURNALING, true));
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, false));
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_JOURNALING, false));
+
+ ASSERT_EQ(0, image.get_flags(&flags));
+ ASSERT_EQ(0U, flags);
+
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_EXCLUSIVE_LOCK, false));
+
+ ASSERT_EQ(0, image.features(&features));
+ if ((features & RBD_FEATURE_DEEP_FLATTEN) != 0) {
+ ASSERT_EQ(0, image.update_features(RBD_FEATURE_DEEP_FLATTEN, false));
+ }
+ ASSERT_EQ(-EINVAL, image.update_features(RBD_FEATURE_DEEP_FLATTEN, true));
+}
+
+TEST_F(TestLibRBD, FeaturesBitmaskString)
+{
+ librbd::RBD rbd;
+ uint64_t features = RBD_FEATURES_DEFAULT;
+
+ std::string features_str;
+ std::string expected_str = "deep-flatten,exclusive-lock,fast-diff,layering,object-map";
+ rbd.features_to_string(features, &features_str);
+ ASSERT_EQ(expected_str, features_str);
+
+ features = RBD_FEATURE_LAYERING;
+ features_str = "";
+ expected_str = "layering";
+ rbd.features_to_string(features, &features_str);
+ ASSERT_EQ(expected_str, features_str);
+
+ uint64_t features_bitmask;
+ features_str = "deep-flatten,exclusive-lock,fast-diff,layering,object-map";
+ rbd.features_from_string(features_str, &features_bitmask);
+ ASSERT_EQ(features_bitmask, RBD_FEATURES_DEFAULT);
+
+ features_str = "layering";
+ features_bitmask = 0;
+ rbd.features_from_string(features_str, &features_bitmask);
+ ASSERT_EQ(features_bitmask, RBD_FEATURE_LAYERING);
+}
+
+TEST_F(TestLibRBD, RebuildObjectMap)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 20;
+ int order = 18;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ PrintProgress prog_ctx;
+ std::string object_map_oid;
+ bufferlist bl;
+ bl.append("foo");
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ uint64_t features;
+ ASSERT_EQ(0, image.features(&features));
+ if ((features & RBD_FEATURE_OBJECT_MAP) == 0) {
+ ASSERT_EQ(-EINVAL, image.rebuild_object_map(prog_ctx));
+ return;
+ }
+
+ ASSERT_EQ((ssize_t)bl.length(), image.write(0, bl.length(), bl));
+
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ((ssize_t)bl.length(), image.write(1<<order, bl.length(), bl));
+
+ std::string image_id;
+ ASSERT_EQ(0, get_image_id(image, &image_id));
+ object_map_oid = RBD_OBJECT_MAP_PREFIX + image_id;
+ }
+
+ // corrupt the object map
+ ASSERT_EQ(0, ioctx.write(object_map_oid, bl, bl.length(), 0));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bool lock_owner;
+ bl.clear();
+ ASSERT_EQ(0, image1.write(0, 0, bl));
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ uint64_t flags;
+ ASSERT_EQ(0, image1.get_flags(&flags));
+ ASSERT_TRUE((flags & RBD_FLAG_OBJECT_MAP_INVALID) != 0);
+
+ ASSERT_EQ(0, image1.rebuild_object_map(prog_ctx));
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ bufferlist read_bl;
+ ASSERT_EQ((ssize_t)bl.length(), image2.read(0, bl.length(), read_bl));
+ ASSERT_TRUE(bl.contents_equal(read_bl));
+
+ read_bl.clear();
+ ASSERT_EQ((ssize_t)bl.length(), image2.read(1<<order, bl.length(), read_bl));
+ ASSERT_TRUE(bl.contents_equal(read_bl));
+
+ ASSERT_PASSED(validate_object_map, image1);
+ ASSERT_PASSED(validate_object_map, image2);
+}
+
+TEST_F(TestLibRBD, RebuildNewObjectMap)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_OBJECT_MAP);
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 20;
+ int order = 18;
+ uint64_t features = RBD_FEATURE_EXCLUSIVE_LOCK;
+ ASSERT_EQ(0, create_image_full(ioctx, name.c_str(), size, &order,
+ false, features));
+
+ rbd_image_t image;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(0, rbd_update_features(image, RBD_FEATURE_OBJECT_MAP, true));
+ ASSERT_EQ(0, rbd_rebuild_object_map(image, print_progress_percent, NULL));
+
+ ASSERT_PASSED(validate_object_map, image);
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, CheckObjectMap)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_OBJECT_MAP);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 20;
+ int order = 18;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ PrintProgress prog_ctx;
+ bufferlist bl1;
+ bufferlist bl2;
+ bl1.append("foo");
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ uint64_t features;
+ ASSERT_EQ(0, image.features(&features));
+
+ ASSERT_EQ((ssize_t)bl1.length(), image.write(0, bl1.length(), bl1));
+
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ((ssize_t)bl1.length(), image.write(1<<order, bl1.length(), bl1));
+ }
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ std::string image_id;
+ ASSERT_EQ(0, get_image_id(image1, &image_id));
+
+ std::string object_map_oid = RBD_OBJECT_MAP_PREFIX + image_id;
+
+ ASSERT_LT(0, ioctx.read(object_map_oid, bl2, 1024, 0));
+
+ bool lock_owner;
+ ASSERT_EQ((ssize_t)bl1.length(), image1.write(3 * (1 << 18), bl1.length(), bl1));
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ //reopen image to reread now corrupt object map from disk
+ image1.close();
+
+ bl1.clear();
+ ASSERT_LT(0, ioctx.read(object_map_oid, bl1, 1024, 0));
+ ASSERT_FALSE(bl1.contents_equal(bl2));
+
+ ASSERT_EQ(0, ioctx.write_full(object_map_oid, bl2));
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ uint64_t flags;
+ ASSERT_EQ(0, image1.get_flags(&flags));
+ ASSERT_TRUE((flags & RBD_FLAG_OBJECT_MAP_INVALID) == 0);
+
+ ASSERT_EQ(0, image1.check_object_map(prog_ctx));
+
+ ASSERT_EQ(0, image1.get_flags(&flags));
+ ASSERT_TRUE((flags & RBD_FLAG_OBJECT_MAP_INVALID) != 0);
+}
+
+TEST_F(TestLibRBD, BlockingAIO)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 20;
+ int order = 18;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ std::string non_blocking_aio;
+ ASSERT_EQ(0, _rados.conf_get("rbd_non_blocking_aio", non_blocking_aio));
+ ASSERT_EQ(0, _rados.conf_set("rbd_non_blocking_aio", "0"));
+ BOOST_SCOPE_EXIT( (non_blocking_aio) ) {
+ ASSERT_EQ(0, _rados.conf_set("rbd_non_blocking_aio",
+ non_blocking_aio.c_str()));
+ } BOOST_SCOPE_EXIT_END;
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bool skip_discard = this->is_skip_partial_discard_enabled(image);
+
+ bufferlist bl;
+ ASSERT_EQ(0, image.write(0, bl.length(), bl));
+
+ bl.append(std::string(256, '1'));
+ librbd::RBD::AioCompletion *write_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_write(0, bl.length(), bl, write_comp));
+
+ librbd::RBD::AioCompletion *flush_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_flush(flush_comp));
+ ASSERT_EQ(0, flush_comp->wait_for_complete());
+ ASSERT_EQ(0, flush_comp->get_return_value());
+ flush_comp->release();
+
+ ASSERT_EQ(1, write_comp->is_complete());
+ ASSERT_EQ(0, write_comp->get_return_value());
+ write_comp->release();
+
+ librbd::RBD::AioCompletion *discard_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_discard(128, 128, discard_comp));
+ ASSERT_EQ(0, discard_comp->wait_for_complete());
+ discard_comp->release();
+
+ librbd::RBD::AioCompletion *read_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ bufferlist read_bl;
+ image.aio_read(0, bl.length(), read_bl, read_comp);
+ ASSERT_EQ(0, read_comp->wait_for_complete());
+ ASSERT_EQ((ssize_t)bl.length(), read_comp->get_return_value());
+ read_comp->release();
+
+ bufferlist expected_bl;
+ expected_bl.append(std::string(128, '1'));
+ expected_bl.append(std::string(128, skip_discard ? '1' : '\0'));
+ ASSERT_TRUE(expected_bl.contents_equal(read_bl));
+}
+
+TEST_F(TestLibRBD, ExclusiveLockTransition)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ std::list<librbd::RBD::AioCompletion *> comps;
+ ceph::bufferlist bl;
+ bl.append(std::string(1 << order, '1'));
+ for (size_t object_no = 0; object_no < (size >> 12); ++object_no) {
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL,
+ NULL);
+ comps.push_back(comp);
+ if (object_no % 2 == 0) {
+ ASSERT_EQ(0, image1.aio_write(object_no << order, bl.length(), bl, comp));
+ } else {
+ ASSERT_EQ(0, image2.aio_write(object_no << order, bl.length(), bl, comp));
+ }
+ }
+
+ while (!comps.empty()) {
+ librbd::RBD::AioCompletion *comp = comps.front();
+ comps.pop_front();
+ ASSERT_EQ(0, comp->wait_for_complete());
+ ASSERT_EQ(1, comp->is_complete());
+ comp->release();
+ }
+
+ librbd::Image image3;
+ ASSERT_EQ(0, rbd.open(ioctx, image3, name.c_str(), NULL));
+ for (size_t object_no = 0; object_no < (size >> 12); ++object_no) {
+ bufferlist read_bl;
+ ASSERT_EQ((ssize_t)bl.length(), image3.read(object_no << order, bl.length(),
+ read_bl));
+ ASSERT_TRUE(bl.contents_equal(read_bl));
+ }
+
+ ASSERT_PASSED(validate_object_map, image1);
+ ASSERT_PASSED(validate_object_map, image2);
+ ASSERT_PASSED(validate_object_map, image3);
+}
+
+TEST_F(TestLibRBD, ExclusiveLockReadTransition)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_JOURNALING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+
+ bool lock_owner;
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ // journaling should force read ops to acquire the lock
+ bufferlist read_bl;
+ ASSERT_EQ(0, image1.read(0, 0, read_bl));
+
+ ASSERT_EQ(0, image1.is_exclusive_lock_owner(&lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ std::list<librbd::RBD::AioCompletion *> comps;
+ std::list<bufferlist> read_bls;
+ for (size_t object_no = 0; object_no < (size >> 12); ++object_no) {
+ librbd::RBD::AioCompletion *comp = new librbd::RBD::AioCompletion(NULL,
+ NULL);
+ comps.push_back(comp);
+ read_bls.emplace_back();
+ if (object_no % 2 == 0) {
+ ASSERT_EQ(0, image1.aio_read(object_no << order, 1 << order, read_bls.back(), comp));
+ } else {
+ ASSERT_EQ(0, image2.aio_read(object_no << order, 1 << order, read_bls.back(), comp));
+ }
+ }
+
+ while (!comps.empty()) {
+ librbd::RBD::AioCompletion *comp = comps.front();
+ comps.pop_front();
+ ASSERT_EQ(0, comp->wait_for_complete());
+ ASSERT_EQ(1, comp->is_complete());
+ comp->release();
+ }
+}
+
+TEST_F(TestLibRBD, CacheMayCopyOnWrite) {
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+ ASSERT_EQ(0, image.snap_create("one"));
+ ASSERT_EQ(0, image.snap_protect("one"));
+
+ std::string clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "one", ioctx, clone_name.c_str(),
+ RBD_FEATURE_LAYERING, &order));
+
+ librbd::Image clone;
+ ASSERT_EQ(0, rbd.open(ioctx, clone, clone_name.c_str(), NULL));
+ ASSERT_EQ(0, clone.flush());
+
+ bufferlist expect_bl;
+ expect_bl.append(std::string(1024, '\0'));
+
+ // test double read path
+ bufferlist read_bl;
+ uint64_t offset = 0;
+ ASSERT_EQ(1024, clone.read(offset + 2048, 1024, read_bl));
+ ASSERT_TRUE(expect_bl.contents_equal(read_bl));
+
+ bufferlist write_bl;
+ write_bl.append(std::string(1024, '1'));
+ ASSERT_EQ(1024, clone.write(offset, write_bl.length(), write_bl));
+
+ read_bl.clear();
+ ASSERT_EQ(1024, clone.read(offset + 2048, 1024, read_bl));
+ ASSERT_TRUE(expect_bl.contents_equal(read_bl));
+
+ // test read retry path
+ offset = 1 << order;
+ ASSERT_EQ(1024, clone.write(offset, write_bl.length(), write_bl));
+
+ read_bl.clear();
+ ASSERT_EQ(1024, clone.read(offset + 2048, 1024, read_bl));
+ ASSERT_TRUE(expect_bl.contents_equal(read_bl));
+}
+
+TEST_F(TestLibRBD, FlushEmptyOpsOnExternalSnapshot) {
+ std::string cache_enabled;
+ ASSERT_EQ(0, _rados.conf_get("rbd_cache", cache_enabled));
+ ASSERT_EQ(0, _rados.conf_set("rbd_cache", "false"));
+ BOOST_SCOPE_EXIT( (cache_enabled) ) {
+ ASSERT_EQ(0, _rados.conf_set("rbd_cache", cache_enabled.c_str()));
+ } BOOST_SCOPE_EXIT_END;
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 18;
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image1;
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+
+ librbd::RBD::AioCompletion *read_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ bufferlist read_bl;
+ image2.aio_read(0, 1024, read_bl, read_comp);
+ ASSERT_EQ(0, read_comp->wait_for_complete());
+ read_comp->release();
+}
+
+TEST_F(TestLibRBD, TestImageOptions)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ //make create image options
+ uint64_t features = RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2 ;
+ uint64_t order = 0;
+ uint64_t stripe_unit = IMAGE_STRIPE_UNIT;
+ uint64_t stripe_count = IMAGE_STRIPE_COUNT;
+ rbd_image_options_t opts;
+ rbd_image_options_create(&opts);
+
+ bool is_set;
+ ASSERT_EQ(-EINVAL, rbd_image_options_is_set(opts, 12345, &is_set));
+ ASSERT_EQ(0, rbd_image_options_is_set(opts, RBD_IMAGE_OPTION_FORMAT,
+ &is_set));
+ ASSERT_FALSE(is_set);
+
+ ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_FORMAT,
+ 2));
+ ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_FEATURES,
+ features));
+ ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_ORDER,
+ order));
+ ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_STRIPE_UNIT,
+ stripe_unit));
+ ASSERT_EQ(0, rbd_image_options_set_uint64(opts, RBD_IMAGE_OPTION_STRIPE_COUNT,
+ stripe_count));
+
+ ASSERT_EQ(0, rbd_image_options_is_set(opts, RBD_IMAGE_OPTION_FORMAT,
+ &is_set));
+ ASSERT_TRUE(is_set);
+
+ std::string parent_name = get_temp_image_name();
+
+ // make parent
+ ASSERT_EQ(0, rbd_create4(ioctx, parent_name.c_str(), 4<<20, opts));
+
+ // check order is returned in opts
+ ASSERT_EQ(0, rbd_image_options_get_uint64(opts, RBD_IMAGE_OPTION_ORDER,
+ &order));
+ ASSERT_NE((uint64_t)0, order);
+
+ // write some data to parent
+ rbd_image_t parent;
+ ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, NULL));
+ char *data = (char *)"testdata";
+ ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 0, strlen(data), data));
+ ASSERT_EQ((ssize_t)strlen(data), rbd_write(parent, 12, strlen(data), data));
+
+ // create a snapshot, reopen as the parent we're interested in
+ ASSERT_EQ(0, rbd_snap_create(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_close(parent));
+ ASSERT_EQ(0, rbd_open(ioctx, parent_name.c_str(), &parent, "parent_snap"));
+
+ // clone
+ std::string child_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd_snap_protect(parent, "parent_snap"));
+ ASSERT_EQ(0, rbd_clone3(ioctx, parent_name.c_str(), "parent_snap", ioctx,
+ child_name.c_str(), opts));
+
+ // copy
+ std::string copy1_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd_copy3(parent, ioctx, copy1_name.c_str(), opts));
+ std::string copy2_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd_copy_with_progress3(parent, ioctx, copy2_name.c_str(), opts,
+ print_progress_percent, NULL));
+
+ ASSERT_EQ(0, rbd_close(parent));
+
+ rbd_image_options_destroy(opts);
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestImageOptionsPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ //make create image options
+ uint64_t features = RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2 ;
+ uint64_t order = 0;
+ uint64_t stripe_unit = IMAGE_STRIPE_UNIT;
+ uint64_t stripe_count = IMAGE_STRIPE_COUNT;
+ librbd::ImageOptions opts;
+ ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_FORMAT, static_cast<uint64_t>(2)));
+ ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_FEATURES, features));
+ ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_ORDER, order));
+ ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_STRIPE_UNIT, stripe_unit));
+ ASSERT_EQ(0, opts.set(RBD_IMAGE_OPTION_STRIPE_COUNT, stripe_count));
+
+ librbd::RBD rbd;
+ std::string parent_name = get_temp_image_name();
+
+ // make parent
+ ASSERT_EQ(0, rbd.create4(ioctx, parent_name.c_str(), 4<<20, opts));
+
+ // check order is returned in opts
+ ASSERT_EQ(0, opts.get(RBD_IMAGE_OPTION_ORDER, &order));
+ ASSERT_NE((uint64_t)0, order);
+
+ // write some data to parent
+ librbd::Image parent;
+ ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), NULL));
+
+ ssize_t len = 1024;
+ bufferlist bl;
+ bl.append(buffer::create(len));
+ bl.zero();
+ ASSERT_EQ(len, parent.write(0, len, bl));
+ ASSERT_EQ(len, parent.write(len, len, bl));
+
+ // create a snapshot, reopen as the parent we're interested in
+ ASSERT_EQ(0, parent.snap_create("parent_snap"));
+ ASSERT_EQ(0, parent.close());
+ ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), "parent_snap"));
+
+ // clone
+ std::string child_name = get_temp_image_name();
+ ASSERT_EQ(0, parent.snap_protect("parent_snap"));
+ ASSERT_EQ(0, rbd.clone3(ioctx, parent_name.c_str(), "parent_snap", ioctx,
+ child_name.c_str(), opts));
+
+ // copy
+ std::string copy1_name = get_temp_image_name();
+ ASSERT_EQ(0, parent.copy3(ioctx, copy1_name.c_str(), opts));
+ std::string copy2_name = get_temp_image_name();
+ PrintProgress pp;
+ ASSERT_EQ(0, parent.copy_with_progress3(ioctx, copy2_name.c_str(), opts, pp));
+
+ ASSERT_EQ(0, parent.close());
+}
+
+TEST_F(TestLibRBD, EventSocketPipe)
+{
+ EventSocket event_sock;
+ int pipe_fd[2]; // read and write fd
+ char buf[32];
+
+ ASSERT_EQ(0, pipe(pipe_fd));
+
+ ASSERT_FALSE(event_sock.is_valid());
+
+ ASSERT_EQ(-EINVAL, event_sock.init(pipe_fd[1], EVENT_SOCKET_TYPE_NONE));
+ ASSERT_FALSE(event_sock.is_valid());
+
+ ASSERT_EQ(-EINVAL, event_sock.init(pipe_fd[1], 44));
+ ASSERT_FALSE(event_sock.is_valid());
+
+#ifndef HAVE_EVENTFD
+ ASSERT_EQ(-EINVAL, event_sock.init(pipe_fd[1], EVENT_SOCKET_TYPE_EVENTFD));
+ ASSERT_FALSE(event_sock.is_valid());
+#endif
+
+ ASSERT_EQ(0, event_sock.init(pipe_fd[1], EVENT_SOCKET_TYPE_PIPE));
+ ASSERT_TRUE(event_sock.is_valid());
+ ASSERT_EQ(0, event_sock.notify());
+ ASSERT_EQ(1, read(pipe_fd[0], buf, 32));
+ ASSERT_EQ('i', buf[0]);
+
+ close(pipe_fd[0]);
+ close(pipe_fd[1]);
+}
+
+TEST_F(TestLibRBD, EventSocketEventfd)
+{
+#ifdef HAVE_EVENTFD
+ EventSocket event_sock;
+ int event_fd;
+ struct pollfd poll_fd;
+ char buf[32];
+
+ event_fd = eventfd(0, EFD_NONBLOCK);
+ ASSERT_NE(-1, event_fd);
+
+ ASSERT_FALSE(event_sock.is_valid());
+
+ ASSERT_EQ(-EINVAL, event_sock.init(event_fd, EVENT_SOCKET_TYPE_NONE));
+ ASSERT_FALSE(event_sock.is_valid());
+
+ ASSERT_EQ(-EINVAL, event_sock.init(event_fd, 44));
+ ASSERT_FALSE(event_sock.is_valid());
+
+ ASSERT_EQ(0, event_sock.init(event_fd, EVENT_SOCKET_TYPE_EVENTFD));
+ ASSERT_TRUE(event_sock.is_valid());
+ ASSERT_EQ(0, event_sock.notify());
+
+ poll_fd.fd = event_fd;
+ poll_fd.events = POLLIN;
+ ASSERT_EQ(1, poll(&poll_fd, 1, -1));
+ ASSERT_TRUE(poll_fd.revents & POLLIN);
+
+ ASSERT_EQ(static_cast<ssize_t>(sizeof(uint64_t)), read(event_fd, buf, 32));
+ ASSERT_EQ(1U, *reinterpret_cast<uint64_t *>(buf));
+
+ close(event_fd);
+#endif
+}
+
+TEST_F(TestLibRBD, ImagePollIO)
+{
+#ifdef HAVE_EVENTFD
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int fd = eventfd(0, EFD_NONBLOCK);
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_set_image_notification(image, fd, EVENT_SOCKET_TYPE_EVENTFD));
+
+ char test_data[TEST_IO_SIZE + 1];
+ char zero_data[TEST_IO_SIZE + 1];
+ int i;
+
+ for (i = 0; i < TEST_IO_SIZE; ++i)
+ test_data[i] = (char) (rand() % (126 - 33) + 33);
+ test_data[TEST_IO_SIZE] = '\0';
+ memset(zero_data, 0, sizeof(zero_data));
+
+ for (i = 0; i < 5; ++i)
+ ASSERT_PASSED(write_test_data, image, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_write_test_data_and_poll, image, fd, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ for (i = 5; i < 10; ++i)
+ ASSERT_PASSED(aio_read_test_data_and_poll, image, fd, test_data, TEST_IO_SIZE * i, TEST_IO_SIZE, 0);
+
+ ASSERT_EQ(0, rbd_close(image));
+ rados_ioctx_destroy(ioctx);
+#endif
+}
+
+namespace librbd {
+
+static bool operator==(const image_spec_t &lhs, const image_spec_t &rhs) {
+ return (lhs.id == rhs.id && lhs.name == rhs.name);
+}
+
+static bool operator==(const linked_image_spec_t &lhs,
+ const linked_image_spec_t &rhs) {
+ return (lhs.pool_id == rhs.pool_id &&
+ lhs.pool_name == rhs.pool_name &&
+ lhs.pool_namespace == rhs.pool_namespace &&
+ lhs.image_id == rhs.image_id &&
+ lhs.image_name == rhs.image_name &&
+ lhs.trash == rhs.trash);
+}
+
+static bool operator==(const mirror_peer_t &lhs, const mirror_peer_t &rhs) {
+ return (lhs.uuid == rhs.uuid &&
+ lhs.cluster_name == rhs.cluster_name &&
+ lhs.client_name == rhs.client_name);
+}
+
+static std::ostream& operator<<(std::ostream &os, const mirror_peer_t &peer) {
+ os << "uuid=" << peer.uuid << ", "
+ << "cluster=" << peer.cluster_name << ", "
+ << "client=" << peer.client_name;
+ return os;
+}
+
+} // namespace librbd
+
+TEST_F(TestLibRBD, Mirror) {
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+
+ std::vector<librbd::mirror_peer_t> expected_peers;
+ std::vector<librbd::mirror_peer_t> peers;
+ ASSERT_EQ(0, rbd.mirror_peer_list(ioctx, &peers));
+ ASSERT_EQ(expected_peers, peers);
+
+ std::string uuid1;
+ ASSERT_EQ(-EINVAL, rbd.mirror_peer_add(ioctx, &uuid1, "cluster1", "client"));
+
+ rbd_mirror_mode_t mirror_mode;
+ ASSERT_EQ(0, rbd.mirror_mode_get(ioctx, &mirror_mode));
+ ASSERT_EQ(RBD_MIRROR_MODE_DISABLED, mirror_mode);
+
+ ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_IMAGE));
+ ASSERT_EQ(0, rbd.mirror_mode_get(ioctx, &mirror_mode));
+
+ // Add some images to the pool
+ int order = 0;
+ std::string parent_name = get_temp_image_name();
+ std::string child_name = get_temp_image_name();
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, parent_name.c_str(), 2 << 20,
+ &order));
+ bool old_format;
+ uint64_t features;
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ if ((features & RBD_FEATURE_LAYERING) != 0) {
+ librbd::Image parent;
+ ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), NULL));
+ ASSERT_EQ(0, parent.snap_create("parent_snap"));
+ ASSERT_EQ(0, parent.close());
+ ASSERT_EQ(0, rbd.open(ioctx, parent, parent_name.c_str(), "parent_snap"));
+ ASSERT_EQ(0, parent.snap_protect("parent_snap"));
+ ASSERT_EQ(0, parent.close());
+ ASSERT_EQ(0, rbd.clone(ioctx, parent_name.c_str(), "parent_snap", ioctx,
+ child_name.c_str(), features, &order));
+ }
+
+ ASSERT_EQ(RBD_MIRROR_MODE_IMAGE, mirror_mode);
+
+ ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_POOL));
+ ASSERT_EQ(0, rbd.mirror_mode_get(ioctx, &mirror_mode));
+ ASSERT_EQ(RBD_MIRROR_MODE_POOL, mirror_mode);
+
+ std::string uuid2;
+ std::string uuid3;
+ ASSERT_EQ(0, rbd.mirror_peer_add(ioctx, &uuid1, "cluster1", "client"));
+ ASSERT_EQ(0, rbd.mirror_peer_add(ioctx, &uuid2, "cluster2", "admin"));
+ ASSERT_EQ(-EEXIST, rbd.mirror_peer_add(ioctx, &uuid3, "cluster1", "foo"));
+ ASSERT_EQ(0, rbd.mirror_peer_add(ioctx, &uuid3, "cluster3", "admin"));
+
+ ASSERT_EQ(0, rbd.mirror_peer_list(ioctx, &peers));
+ auto sort_peers = [](const librbd::mirror_peer_t &lhs,
+ const librbd::mirror_peer_t &rhs) {
+ return lhs.uuid < rhs.uuid;
+ };
+ expected_peers = {
+ {uuid1, "cluster1", "client"},
+ {uuid2, "cluster2", "admin"},
+ {uuid3, "cluster3", "admin"}};
+ std::sort(expected_peers.begin(), expected_peers.end(), sort_peers);
+ ASSERT_EQ(expected_peers, peers);
+
+ ASSERT_EQ(0, rbd.mirror_peer_remove(ioctx, "uuid4"));
+ ASSERT_EQ(0, rbd.mirror_peer_remove(ioctx, uuid2));
+
+ ASSERT_EQ(-ENOENT, rbd.mirror_peer_set_client(ioctx, "uuid4", "new client"));
+ ASSERT_EQ(0, rbd.mirror_peer_set_client(ioctx, uuid1, "new client"));
+
+ ASSERT_EQ(-ENOENT, rbd.mirror_peer_set_cluster(ioctx, "uuid4",
+ "new cluster"));
+ ASSERT_EQ(0, rbd.mirror_peer_set_cluster(ioctx, uuid3, "new cluster"));
+
+ ASSERT_EQ(0, rbd.mirror_peer_list(ioctx, &peers));
+ expected_peers = {
+ {uuid1, "cluster1", "new client"},
+ {uuid3, "new cluster", "admin"}};
+ std::sort(expected_peers.begin(), expected_peers.end(), sort_peers);
+ ASSERT_EQ(expected_peers, peers);
+
+ ASSERT_EQ(-EBUSY, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_DISABLED));
+ ASSERT_EQ(0, rbd.mirror_peer_remove(ioctx, uuid1));
+ ASSERT_EQ(0, rbd.mirror_peer_remove(ioctx, uuid3));
+ ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_DISABLED));
+}
+
+TEST_F(TestLibRBD, MirrorPeerAttributes) {
+ REQUIRE(!is_librados_test_stub(_rados));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_IMAGE));
+
+ std::string uuid;
+ ASSERT_EQ(0, rbd.mirror_peer_add(ioctx, &uuid, "remote_cluster", "client"));
+
+ std::map<std::string, std::string> attributes;
+ ASSERT_EQ(-ENOENT, rbd.mirror_peer_get_attributes(ioctx, uuid, &attributes));
+ ASSERT_EQ(-ENOENT, rbd.mirror_peer_set_attributes(ioctx, "missing uuid",
+ attributes));
+
+ std::map<std::string, std::string> expected_attributes{
+ {"mon_host", "1.2.3.4"},
+ {"key", "ABC"}};
+ ASSERT_EQ(0, rbd.mirror_peer_set_attributes(ioctx, uuid,
+ expected_attributes));
+
+ ASSERT_EQ(0, rbd.mirror_peer_get_attributes(ioctx, uuid,
+ &attributes));
+ ASSERT_EQ(expected_attributes, attributes);
+
+ ASSERT_EQ(0, rbd.mirror_peer_remove(ioctx, uuid));
+ ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_DISABLED));
+}
+
+TEST_F(TestLibRBD, CreateWithMirrorEnabled) {
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_IMAGE));
+
+ librbd::ImageOptions image_options;
+ ASSERT_EQ(0, image_options.set(
+ RBD_IMAGE_OPTION_MIRROR_IMAGE_MODE,
+ static_cast<uint64_t>(RBD_MIRROR_IMAGE_MODE_SNAPSHOT)));
+
+ std::string parent_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd.create4(ioctx, parent_name.c_str(), 2<<20, image_options));
+
+ librbd::Image parent_image;
+ ASSERT_EQ(0, rbd.open(ioctx, parent_image, parent_name.c_str(), NULL));
+
+ librbd::mirror_image_mode_t mirror_image_mode;
+ ASSERT_EQ(0, parent_image.mirror_image_get_mode(&mirror_image_mode));
+ ASSERT_EQ(RBD_MIRROR_IMAGE_MODE_SNAPSHOT, mirror_image_mode);
+
+ ASSERT_EQ(0, parent_image.snap_create("parent_snap"));
+ ASSERT_EQ(0, parent_image.snap_protect("parent_snap"));
+
+ std::string child_name = get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone3(ioctx, parent_name.c_str(), "parent_snap", ioctx,
+ child_name.c_str(), image_options));
+
+ librbd::Image child_image;
+ ASSERT_EQ(0, rbd.open(ioctx, child_image, child_name.c_str(), NULL));
+
+ ASSERT_EQ(0, child_image.mirror_image_get_mode(&mirror_image_mode));
+ ASSERT_EQ(RBD_MIRROR_IMAGE_MODE_SNAPSHOT, mirror_image_mode);
+
+ ASSERT_EQ(0, child_image.mirror_image_disable(true));
+ ASSERT_EQ(0, parent_image.mirror_image_disable(true));
+ ASSERT_EQ(0, rbd.mirror_mode_set(ioctx, RBD_MIRROR_MODE_DISABLED));
+}
+
+TEST_F(TestLibRBD, FlushCacheWithCopyupOnExternalSnapshot) {
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image image;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 0;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ bufferlist bl;
+ bl.append(std::string(size, '1'));
+ ASSERT_EQ((int)size, image.write(0, size, bl));
+ ASSERT_EQ(0, image.snap_create("one"));
+ ASSERT_EQ(0, image.snap_protect("one"));
+
+ std::string clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "one", ioctx, clone_name.c_str(),
+ RBD_FEATURE_LAYERING, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, clone_name.c_str(), NULL));
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, clone_name.c_str(), NULL));
+
+ // prepare CoW writeback that will be flushed on next op
+ bl.clear();
+ bl.append(std::string(1, '1'));
+ ASSERT_EQ(0, image.flush());
+ ASSERT_EQ(1, image.write(0, 1, bl));
+ ASSERT_EQ(0, image2.snap_create("snap1"));
+
+ librbd::RBD::AioCompletion *read_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ bufferlist read_bl;
+ image.aio_read(0, 1024, read_bl, read_comp);
+ ASSERT_EQ(0, read_comp->wait_for_complete());
+ read_comp->release();
+}
+
+TEST_F(TestLibRBD, ExclusiveLock)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ static char buf[10];
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+
+ rbd_image_t image1;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image1, NULL));
+
+ int lock_owner;
+ ASSERT_EQ(0, rbd_lock_acquire(image1, RBD_LOCK_MODE_EXCLUSIVE));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ rbd_lock_mode_t lock_mode;
+ char *lock_owners[1];
+ size_t max_lock_owners = 0;
+ ASSERT_EQ(-ERANGE, rbd_lock_get_owners(image1, &lock_mode, lock_owners,
+ &max_lock_owners));
+ ASSERT_EQ(1U, max_lock_owners);
+
+ ASSERT_EQ(0, rbd_lock_get_owners(image1, &lock_mode, lock_owners,
+ &max_lock_owners));
+ ASSERT_EQ(RBD_LOCK_MODE_EXCLUSIVE, lock_mode);
+ ASSERT_STRNE("", lock_owners[0]);
+ ASSERT_EQ(1U, max_lock_owners);
+
+ rbd_image_t image2;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image2, NULL));
+
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(-EOPNOTSUPP, rbd_lock_break(image1, RBD_LOCK_MODE_SHARED, ""));
+ ASSERT_EQ(-EBUSY, rbd_lock_break(image1, RBD_LOCK_MODE_EXCLUSIVE,
+ "not the owner"));
+
+ ASSERT_EQ(0, rbd_lock_release(image1));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(-ENOENT, rbd_lock_break(image1, RBD_LOCK_MODE_EXCLUSIVE,
+ lock_owners[0]));
+ rbd_lock_get_owners_cleanup(lock_owners, max_lock_owners);
+
+ ASSERT_EQ(-EROFS, rbd_write(image1, 0, sizeof(buf), buf));
+ ASSERT_EQ((ssize_t)sizeof(buf), rbd_write(image2, 0, sizeof(buf), buf));
+
+ ASSERT_EQ(0, rbd_lock_acquire(image2, RBD_LOCK_MODE_EXCLUSIVE));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ ASSERT_EQ(0, rbd_lock_release(image2));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ ASSERT_EQ(0, rbd_lock_acquire(image1, RBD_LOCK_MODE_EXCLUSIVE));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ ASSERT_EQ((ssize_t)sizeof(buf), rbd_write(image1, 0, sizeof(buf), buf));
+ ASSERT_EQ(-EROFS, rbd_write(image2, 0, sizeof(buf), buf));
+
+ ASSERT_EQ(0, rbd_lock_release(image1));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner));
+ ASSERT_FALSE(lock_owner);
+
+ int owner_id = -1;
+ std::mutex lock;
+ const auto pingpong = [&](int m_id, rbd_image_t &m_image) {
+ for (int i = 0; i < 10; i++) {
+ {
+ std::lock_guard<std::mutex> locker(lock);
+ if (owner_id == m_id) {
+ std::cout << m_id << ": releasing exclusive lock" << std::endl;
+ EXPECT_EQ(0, rbd_lock_release(m_image));
+ int lock_owner;
+ EXPECT_EQ(0, rbd_is_exclusive_lock_owner(m_image, &lock_owner));
+ EXPECT_FALSE(lock_owner);
+ owner_id = -1;
+ std::cout << m_id << ": exclusive lock released" << std::endl;
+ continue;
+ }
+ }
+
+ std::cout << m_id << ": acquiring exclusive lock" << std::endl;
+ int r;
+ do {
+ r = rbd_lock_acquire(m_image, RBD_LOCK_MODE_EXCLUSIVE);
+ if (r == -EROFS) {
+ usleep(1000);
+ }
+ } while (r == -EROFS);
+ EXPECT_EQ(0, r);
+
+ int lock_owner;
+ EXPECT_EQ(0, rbd_is_exclusive_lock_owner(m_image, &lock_owner));
+ EXPECT_TRUE(lock_owner);
+ std::cout << m_id << ": exclusive lock acquired" << std::endl;
+ {
+ std::lock_guard<std::mutex> locker(lock);
+ owner_id = m_id;
+ }
+ usleep(rand() % 50000);
+ }
+
+ std::lock_guard<std::mutex> locker(lock);
+ if (owner_id == m_id) {
+ EXPECT_EQ(0, rbd_lock_release(m_image));
+ int lock_owner;
+ EXPECT_EQ(0, rbd_is_exclusive_lock_owner(m_image, &lock_owner));
+ EXPECT_FALSE(lock_owner);
+ owner_id = -1;
+ }
+ };
+ thread ping(bind(pingpong, 1, ref(image1)));
+ thread pong(bind(pingpong, 2, ref(image2)));
+
+ ping.join();
+ pong.join();
+
+ ASSERT_EQ(0, rbd_lock_acquire(image2, RBD_LOCK_MODE_EXCLUSIVE));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image2, &lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ ASSERT_EQ(0, rbd_close(image2));
+
+ ASSERT_EQ(0, rbd_lock_acquire(image1, RBD_LOCK_MODE_EXCLUSIVE));
+ ASSERT_EQ(0, rbd_is_exclusive_lock_owner(image1, &lock_owner));
+ ASSERT_TRUE(lock_owner);
+
+ ASSERT_EQ(0, rbd_close(image1));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, BreakLock)
+{
+ SKIP_IF_CRIMSON();
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+ REQUIRE(!is_rbd_pwl_enabled((CephContext *)_rados.cct()));
+
+ static char buf[10];
+
+ rados_t blocklist_cluster;
+ ASSERT_EQ("", connect_cluster(&blocklist_cluster));
+
+ rados_ioctx_t ioctx, blocklist_ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+ ASSERT_EQ(0, rados_ioctx_create(blocklist_cluster, m_pool_name.c_str(),
+ &blocklist_ioctx));
+
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ int order = 0;
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+
+ rbd_image_t image, blocklist_image;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(0, rbd_open(blocklist_ioctx, name.c_str(), &blocklist_image, NULL));
+
+ ASSERT_EQ(0, rbd_metadata_set(image, "conf_rbd_blocklist_on_break_lock", "true"));
+ ASSERT_EQ(0, rbd_lock_acquire(blocklist_image, RBD_LOCK_MODE_EXCLUSIVE));
+
+ rbd_lock_mode_t lock_mode;
+ char *lock_owners[1];
+ size_t max_lock_owners = 1;
+ ASSERT_EQ(0, rbd_lock_get_owners(image, &lock_mode, lock_owners,
+ &max_lock_owners));
+ ASSERT_EQ(RBD_LOCK_MODE_EXCLUSIVE, lock_mode);
+ ASSERT_STRNE("", lock_owners[0]);
+ ASSERT_EQ(1U, max_lock_owners);
+
+ ASSERT_EQ(0, rbd_lock_break(image, RBD_LOCK_MODE_EXCLUSIVE, lock_owners[0]));
+ ASSERT_EQ(0, rbd_lock_acquire(image, RBD_LOCK_MODE_EXCLUSIVE));
+ EXPECT_EQ(0, rados_wait_for_latest_osdmap(blocklist_cluster));
+
+ ASSERT_EQ((ssize_t)sizeof(buf), rbd_write(image, 0, sizeof(buf), buf));
+ ASSERT_EQ(-EBLOCKLISTED, rbd_write(blocklist_image, 0, sizeof(buf), buf));
+
+ ASSERT_EQ(0, rbd_close(image));
+ ASSERT_EQ(0, rbd_close(blocklist_image));
+
+ rbd_lock_get_owners_cleanup(lock_owners, max_lock_owners);
+
+ rados_ioctx_destroy(ioctx);
+ rados_ioctx_destroy(blocklist_ioctx);
+ rados_shutdown(blocklist_cluster);
+}
+
+TEST_F(TestLibRBD, DiscardAfterWrite)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+ uint64_t size = 1 << 20;
+ int order = 18;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ if (this->is_skip_partial_discard_enabled(image)) {
+ return;
+ }
+
+ // enable writeback cache
+ ASSERT_EQ(0, image.flush());
+
+ bufferlist bl;
+ bl.append(std::string(256, '1'));
+
+ librbd::RBD::AioCompletion *write_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_write(0, bl.length(), bl, write_comp));
+ ASSERT_EQ(0, write_comp->wait_for_complete());
+ write_comp->release();
+
+ librbd::RBD::AioCompletion *discard_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_discard(0, 256, discard_comp));
+ ASSERT_EQ(0, discard_comp->wait_for_complete());
+ discard_comp->release();
+
+ librbd::RBD::AioCompletion *read_comp =
+ new librbd::RBD::AioCompletion(NULL, NULL);
+ bufferlist read_bl;
+ image.aio_read(0, bl.length(), read_bl, read_comp);
+ ASSERT_EQ(0, read_comp->wait_for_complete());
+ ASSERT_EQ(bl.length(), read_comp->get_return_value());
+ ASSERT_TRUE(read_bl.is_zero());
+ read_comp->release();
+}
+
+TEST_F(TestLibRBD, DefaultFeatures) {
+ std::string orig_default_features;
+ ASSERT_EQ(0, _rados.conf_get("rbd_default_features", orig_default_features));
+ BOOST_SCOPE_EXIT_ALL(orig_default_features) {
+ ASSERT_EQ(0, _rados.conf_set("rbd_default_features",
+ orig_default_features.c_str()));
+ };
+
+ std::list<std::pair<std::string, std::string> > feature_names_to_bitmask = {
+ {"", orig_default_features},
+ {"layering", "1"},
+ {"layering, exclusive-lock", "5"},
+ {"exclusive-lock,journaling", "68"},
+ {"125", "125"}
+ };
+
+ for (auto &pair : feature_names_to_bitmask) {
+ ASSERT_EQ(0, _rados.conf_set("rbd_default_features", pair.first.c_str()));
+ std::string features;
+ ASSERT_EQ(0, _rados.conf_get("rbd_default_features", features));
+ ASSERT_EQ(pair.second, features);
+ }
+}
+
+TEST_F(TestLibRBD, TestTrashMoveAndPurge) {
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ std::string image_id;
+ ASSERT_EQ(0, image.get_id(&image_id));
+ image.close();
+
+ ASSERT_EQ(0, rbd.trash_move(ioctx, name.c_str(), 0));
+
+ std::vector<std::string> images;
+ ASSERT_EQ(0, rbd.list(ioctx, images));
+ for (const auto& image : images) {
+ ASSERT_TRUE(image != name);
+ }
+
+ librbd::trash_image_info_t info;
+ ASSERT_EQ(-ENOENT, rbd.trash_get(ioctx, "dummy image id", &info));
+ ASSERT_EQ(0, rbd.trash_get(ioctx, image_id.c_str(), &info));
+ ASSERT_EQ(image_id, info.id);
+
+ std::vector<librbd::trash_image_info_t> entries;
+ ASSERT_EQ(0, rbd.trash_list(ioctx, entries));
+ ASSERT_FALSE(entries.empty());
+ ASSERT_EQ(entries.begin()->id, image_id);
+
+ entries.clear();
+ PrintProgress pp;
+ ASSERT_EQ(0, rbd.trash_remove_with_progress(ioctx, image_id.c_str(),
+ false, pp));
+ ASSERT_EQ(0, rbd.trash_list(ioctx, entries));
+ ASSERT_TRUE(entries.empty());
+}
+
+TEST_F(TestLibRBD, TestTrashMoveAndPurgeNonExpiredDelay) {
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ std::string image_id;
+ ASSERT_EQ(0, image.get_id(&image_id));
+ image.close();
+
+ ASSERT_EQ(0, rbd.trash_move(ioctx, name.c_str(), 100));
+
+ PrintProgress pp;
+ ASSERT_EQ(-EPERM, rbd.trash_remove_with_progress(ioctx, image_id.c_str(),
+ false, pp));
+
+ PrintProgress pp2;
+ ASSERT_EQ(0, rbd.trash_remove_with_progress(ioctx, image_id.c_str(),
+ true, pp2));
+}
+
+TEST_F(TestLibRBD, TestTrashPurge) {
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name1 = get_temp_image_name();
+ std::string name2 = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name1.c_str(), size, &order));
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name2.c_str(), size, &order));
+
+ librbd::Image image1;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name1.c_str(), nullptr));
+
+ std::string image_id1;
+ ASSERT_EQ(0, image1.get_id(&image_id1));
+ image1.close();
+
+ ASSERT_EQ(0, rbd.trash_move(ioctx, name1.c_str(), 0));
+
+ librbd::Image image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name2.c_str(), nullptr));
+ ceph::bufferlist bl;
+ bl.append(std::string(1024, '0'));
+ ASSERT_EQ(1024, image2.write(0, 1024, bl));
+
+ std::string image_id2;
+ ASSERT_EQ(0, image2.get_id(&image_id2));
+ image2.close();
+
+ ASSERT_EQ(0, rbd.trash_move(ioctx, name2.c_str(), 100));
+ ASSERT_EQ(0, rbd.trash_purge(ioctx, 0, -1));
+
+ std::vector<librbd::trash_image_info_t> entries;
+ ASSERT_EQ(0, rbd.trash_list(ioctx, entries));
+ ASSERT_EQ(1U, entries.size());
+ ASSERT_EQ(image_id2, entries[0].id);
+ ASSERT_EQ(name2, entries[0].name);
+ entries.clear();
+
+ struct timespec now;
+ clock_gettime(CLOCK_REALTIME, &now);
+ float threshold = 0.0;
+ if (!is_librados_test_stub(_rados)) {
+ // real cluster usage reports have a long latency to update
+ threshold = -1.0;
+ }
+
+ ASSERT_EQ(0, rbd.trash_purge(ioctx, now.tv_sec+1000, threshold));
+ ASSERT_EQ(0, rbd.trash_list(ioctx, entries));
+ ASSERT_EQ(0U, entries.size());
+}
+
+TEST_F(TestLibRBD, TestTrashMoveAndRestore) {
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ std::string image_id;
+ ASSERT_EQ(0, image.get_id(&image_id));
+ image.close();
+
+ ASSERT_EQ(0, rbd.trash_move(ioctx, name.c_str(), 10));
+
+ std::vector<std::string> images;
+ ASSERT_EQ(0, rbd.list(ioctx, images));
+ for (const auto& image : images) {
+ ASSERT_TRUE(image != name);
+ }
+
+ std::vector<librbd::trash_image_info_t> entries;
+ ASSERT_EQ(0, rbd.trash_list(ioctx, entries));
+ ASSERT_FALSE(entries.empty());
+ ASSERT_EQ(entries.begin()->id, image_id);
+
+ images.clear();
+ ASSERT_EQ(0, rbd.trash_restore(ioctx, image_id.c_str(), ""));
+ ASSERT_EQ(0, rbd.list(ioctx, images));
+ ASSERT_FALSE(images.empty());
+ bool found = false;
+ for (const auto& image : images) {
+ if (image == name) {
+ found = true;
+ break;
+ }
+ }
+ ASSERT_TRUE(found);
+}
+
+TEST_F(TestLibRBD, TestListWatchers) {
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ std::list<librbd::image_watcher_t> watchers;
+
+ // No watchers
+ ASSERT_EQ(0, rbd.open_read_only(ioctx, image, name.c_str(), nullptr));
+ ASSERT_EQ(0, image.list_watchers(watchers));
+ ASSERT_EQ(0U, watchers.size());
+ ASSERT_EQ(0, image.close());
+
+ // One watcher
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+ ASSERT_EQ(0, image.list_watchers(watchers));
+ ASSERT_EQ(1U, watchers.size());
+ auto watcher1 = watchers.front();
+ ASSERT_EQ(0, image.close());
+
+ // (Still) one watcher
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+ ASSERT_EQ(0, image.list_watchers(watchers));
+ ASSERT_EQ(1U, watchers.size());
+ auto watcher2 = watchers.front();
+ ASSERT_EQ(0, image.close());
+
+ EXPECT_EQ(watcher1.addr, watcher2.addr);
+ EXPECT_EQ(watcher1.id, watcher2.id);
+}
+
+TEST_F(TestLibRBD, TestSetSnapById) {
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1 << 18;
+ int order = 12;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+ ASSERT_EQ(0, image.snap_create("snap"));
+
+ vector<librbd::snap_info_t> snaps;
+ ASSERT_EQ(0, image.snap_list(snaps));
+ ASSERT_EQ(1U, snaps.size());
+
+ ASSERT_EQ(0, image.snap_set_by_id(snaps[0].id));
+ ASSERT_EQ(0, image.snap_set_by_id(CEPH_NOSNAP));
+}
+
+TEST_F(TestLibRBD, Namespaces) {
+ rados_ioctx_t ioctx;
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx));
+ rados_remove(ioctx, RBD_NAMESPACE);
+
+ ASSERT_EQ(0, rbd_namespace_create(ioctx, "name1"));
+ ASSERT_EQ(0, rbd_namespace_create(ioctx, "name2"));
+ ASSERT_EQ(0, rbd_namespace_create(ioctx, "name3"));
+ ASSERT_EQ(0, rbd_namespace_remove(ioctx, "name2"));
+
+ char names[1024];
+ size_t max_size = sizeof(names);
+ int len = rbd_namespace_list(ioctx, names, &max_size);
+
+ std::vector<std::string> cpp_names;
+ for (char* cur_name = names; cur_name < names + len; ) {
+ cpp_names.push_back(cur_name);
+ cur_name += strlen(cur_name) + 1;
+ }
+ ASSERT_EQ(2U, cpp_names.size());
+ ASSERT_EQ("name1", cpp_names[0]);
+ ASSERT_EQ("name3", cpp_names[1]);
+ bool exists;
+ ASSERT_EQ(0, rbd_namespace_exists(ioctx, "name2", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, rbd_namespace_exists(ioctx, "name3", &exists));
+ ASSERT_TRUE(exists);
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, NamespacesPP) {
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+ ioctx.remove(RBD_NAMESPACE);
+
+ librbd::RBD rbd;
+ ASSERT_EQ(-EINVAL, rbd.namespace_create(ioctx, ""));
+ ASSERT_EQ(-EINVAL, rbd.namespace_remove(ioctx, ""));
+
+ ASSERT_EQ(0, rbd.namespace_create(ioctx, "name1"));
+ ASSERT_EQ(-EEXIST, rbd.namespace_create(ioctx, "name1"));
+ ASSERT_EQ(0, rbd.namespace_create(ioctx, "name2"));
+ ASSERT_EQ(0, rbd.namespace_create(ioctx, "name3"));
+ ASSERT_EQ(0, rbd.namespace_remove(ioctx, "name2"));
+ ASSERT_EQ(-ENOENT, rbd.namespace_remove(ioctx, "name2"));
+
+ std::vector<std::string> names;
+ ASSERT_EQ(0, rbd.namespace_list(ioctx, &names));
+ ASSERT_EQ(2U, names.size());
+ ASSERT_EQ("name1", names[0]);
+ ASSERT_EQ("name3", names[1]);
+ bool exists;
+ ASSERT_EQ(0, rbd.namespace_exists(ioctx, "name2", &exists));
+ ASSERT_FALSE(exists);
+ ASSERT_EQ(0, rbd.namespace_exists(ioctx, "name3", &exists));
+ ASSERT_TRUE(exists);
+
+ librados::IoCtx ns_io_ctx;
+ ns_io_ctx.dup(ioctx);
+
+ std::string name = get_temp_image_name();
+ int order = 0;
+ uint64_t features = 0;
+ if (!get_features(&features)) {
+ // old format doesn't support namespaces
+ ns_io_ctx.set_namespace("name1");
+ ASSERT_EQ(-EINVAL, create_image_pp(rbd, ns_io_ctx, name.c_str(), 0,
+ &order));
+ return;
+ }
+
+ ns_io_ctx.set_namespace("missing");
+ ASSERT_EQ(-ENOENT, create_image_pp(rbd, ns_io_ctx, name.c_str(), 0, &order));
+
+ ns_io_ctx.set_namespace("name1");
+ ASSERT_EQ(0, create_image_pp(rbd, ns_io_ctx, name.c_str(), 0, &order));
+ ASSERT_EQ(-EBUSY, rbd.namespace_remove(ns_io_ctx, "name1"));
+
+ std::string image_id;
+ {
+ librbd::Image image;
+ ASSERT_EQ(-ENOENT, rbd.open(ioctx, image, name.c_str(), NULL));
+ ASSERT_EQ(0, rbd.open(ns_io_ctx, image, name.c_str(), NULL));
+ ASSERT_EQ(0, get_image_id(image, &image_id));
+ }
+
+ ASSERT_EQ(-ENOENT, rbd.trash_move(ioctx, name.c_str(), 0));
+ ASSERT_EQ(0, rbd.trash_move(ns_io_ctx, name.c_str(), 0));
+ ASSERT_EQ(-EBUSY, rbd.namespace_remove(ns_io_ctx, "name1"));
+
+ PrintProgress pp;
+ ASSERT_EQ(-ENOENT, rbd.trash_remove_with_progress(ioctx, image_id.c_str(),
+ false, pp));
+ ASSERT_EQ(0, rbd.trash_remove_with_progress(ns_io_ctx, image_id.c_str(),
+ false, pp));
+ ASSERT_EQ(0, rbd.namespace_remove(ns_io_ctx, "name1"));
+
+ names.clear();
+ ASSERT_EQ(0, rbd.namespace_list(ioctx, &names));
+ ASSERT_EQ(1U, names.size());
+ ASSERT_EQ("name3", names[0]);
+}
+
+TEST_F(TestLibRBD, Migration) {
+ bool old_format;
+ uint64_t features;
+ ASSERT_EQ(0, get_features(&old_format, &features));
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+ BOOST_SCOPE_EXIT(&ioctx) {
+ rados_ioctx_destroy(ioctx);
+ } BOOST_SCOPE_EXIT_END;
+
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+
+ rbd_image_options_t image_options;
+ rbd_image_options_create(&image_options);
+ BOOST_SCOPE_EXIT(&image_options) {
+ rbd_image_options_destroy(image_options);
+ } BOOST_SCOPE_EXIT_END;
+
+ ASSERT_EQ(0, rbd_migration_prepare(ioctx, name.c_str(), ioctx, name.c_str(),
+ image_options));
+
+ rbd_image_migration_status_t status;
+ ASSERT_EQ(0, rbd_migration_status(ioctx, name.c_str(), &status,
+ sizeof(status)));
+ ASSERT_EQ(status.source_pool_id, rados_ioctx_get_id(ioctx));
+ ASSERT_EQ(status.source_image_name, name);
+ if (old_format) {
+ ASSERT_EQ(status.source_image_id, string());
+ } else {
+ ASSERT_NE(status.source_image_id, string());
+ ASSERT_EQ(-EROFS, rbd_trash_remove(ioctx, status.source_image_id, false));
+ ASSERT_EQ(-EINVAL, rbd_trash_restore(ioctx, status.source_image_id, name.c_str()));
+ }
+ ASSERT_EQ(status.dest_pool_id, rados_ioctx_get_id(ioctx));
+ ASSERT_EQ(status.dest_image_name, name);
+ ASSERT_NE(status.dest_image_id, string());
+ ASSERT_EQ(status.state, RBD_IMAGE_MIGRATION_STATE_PREPARED);
+ rbd_migration_status_cleanup(&status);
+
+ rbd_image_t image;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ char source_spec[2048];
+ size_t source_spec_length = sizeof(source_spec);
+ ASSERT_EQ(0, rbd_get_migration_source_spec(image, source_spec,
+ &source_spec_length));
+ json_spirit::mValue json_source_spec;
+ json_spirit::read(source_spec, json_source_spec);
+ EXPECT_EQ(0, rbd_close(image));
+
+ ASSERT_EQ(-EBUSY, rbd_remove(ioctx, name.c_str()));
+ ASSERT_EQ(-EBUSY, rbd_trash_move(ioctx, name.c_str(), 0));
+
+ ASSERT_EQ(0, rbd_migration_execute(ioctx, name.c_str()));
+
+ ASSERT_EQ(0, rbd_migration_status(ioctx, name.c_str(), &status,
+ sizeof(status)));
+ ASSERT_EQ(status.state, RBD_IMAGE_MIGRATION_STATE_EXECUTED);
+ rbd_migration_status_cleanup(&status);
+
+ ASSERT_EQ(0, rbd_migration_commit(ioctx, name.c_str()));
+
+ std::string new_name = get_temp_image_name();
+
+ ASSERT_EQ(0, rbd_migration_prepare(ioctx, name.c_str(), ioctx,
+ new_name.c_str(), image_options));
+
+ ASSERT_EQ(-EBUSY, rbd_remove(ioctx, new_name.c_str()));
+ ASSERT_EQ(-EBUSY, rbd_trash_move(ioctx, new_name.c_str(), 0));
+
+ ASSERT_EQ(0, rbd_migration_abort(ioctx, name.c_str()));
+
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ EXPECT_EQ(0, rbd_close(image));
+}
+
+TEST_F(TestLibRBD, MigrationPP) {
+ bool old_format;
+ uint64_t features;
+ ASSERT_EQ(0, get_features(&old_format, &features));
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ librbd::RBD rbd;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::ImageOptions image_options;
+
+ ASSERT_EQ(0, rbd.migration_prepare(ioctx, name.c_str(), ioctx, name.c_str(),
+ image_options));
+
+ librbd::image_migration_status_t status;
+ ASSERT_EQ(0, rbd.migration_status(ioctx, name.c_str(), &status,
+ sizeof(status)));
+ ASSERT_EQ(status.source_pool_id, ioctx.get_id());
+ ASSERT_EQ(status.source_image_name, name);
+ if (old_format) {
+ ASSERT_EQ(status.source_image_id, "");
+ } else {
+ ASSERT_NE(status.source_image_id, "");
+ ASSERT_EQ(-EROFS, rbd.trash_remove(ioctx, status.source_image_id.c_str(), false));
+ ASSERT_EQ(-EINVAL, rbd.trash_restore(ioctx, status.source_image_id.c_str(), name.c_str()));
+ }
+ ASSERT_EQ(status.dest_pool_id, ioctx.get_id());
+ ASSERT_EQ(status.dest_image_name, name);
+ ASSERT_NE(status.dest_image_id, "");
+ ASSERT_EQ(status.state, RBD_IMAGE_MIGRATION_STATE_PREPARED);
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+ std::string source_spec;
+ ASSERT_EQ(0, image.get_migration_source_spec(&source_spec));
+ json_spirit::mValue json_source_spec;
+ json_spirit::read(source_spec, json_source_spec);
+ json_spirit::mObject json_source_spec_obj = json_source_spec.get_obj();
+ ASSERT_EQ("native", json_source_spec_obj["type"].get_str());
+ ASSERT_EQ(ioctx.get_id(), json_source_spec_obj["pool_id"].get_int64());
+ ASSERT_EQ("", json_source_spec_obj["pool_namespace"].get_str());
+ ASSERT_EQ(1, json_source_spec_obj.count("image_name"));
+ if (!old_format) {
+ ASSERT_EQ(1, json_source_spec_obj.count("image_id"));
+ }
+ ASSERT_EQ(0, image.close());
+
+ ASSERT_EQ(-EBUSY, rbd.remove(ioctx, name.c_str()));
+ ASSERT_EQ(-EBUSY, rbd.trash_move(ioctx, name.c_str(), 0));
+
+ ASSERT_EQ(0, rbd.migration_execute(ioctx, name.c_str()));
+
+ ASSERT_EQ(0, rbd.migration_status(ioctx, name.c_str(), &status,
+ sizeof(status)));
+ ASSERT_EQ(status.state, RBD_IMAGE_MIGRATION_STATE_EXECUTED);
+
+ ASSERT_EQ(0, rbd.migration_commit(ioctx, name.c_str()));
+
+ std::string new_name = get_temp_image_name();
+
+ ASSERT_EQ(0, rbd.migration_prepare(ioctx, name.c_str(), ioctx,
+ new_name.c_str(), image_options));
+
+ ASSERT_EQ(-EBUSY, rbd.remove(ioctx, new_name.c_str()));
+ ASSERT_EQ(-EBUSY, rbd.trash_move(ioctx, new_name.c_str(), 0));
+
+ ASSERT_EQ(0, rbd.migration_abort(ioctx, name.c_str()));
+
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+}
+
+TEST_F(TestLibRBD, TestGetAccessTimestamp)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ struct timespec timestamp;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_get_access_timestamp(image, &timestamp));
+ ASSERT_LT(0, timestamp.tv_sec);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, TestGetModifyTimestamp)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ struct timespec timestamp;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+ ASSERT_EQ(0, rbd_get_modify_timestamp(image, &timestamp));
+ ASSERT_LT(0, timestamp.tv_sec);
+
+ ASSERT_PASSED(validate_object_map, image);
+ ASSERT_EQ(0, rbd_close(image));
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, ZeroOverlapFlatten) {
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image parent_image;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1;
+ int order = 0;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, parent_image, name.c_str(), NULL));
+
+ uint64_t features;
+ ASSERT_EQ(0, parent_image.features(&features));
+
+ ASSERT_EQ(0, parent_image.snap_create("snap"));
+ ASSERT_EQ(0, parent_image.snap_protect("snap"));
+
+ std::string clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "snap", ioctx, clone_name.c_str(),
+ features, &order));
+
+ librbd::Image clone_image;
+ ASSERT_EQ(0, rbd.open(ioctx, clone_image, clone_name.c_str(), NULL));
+ ASSERT_EQ(0, clone_image.resize(0));
+ ASSERT_EQ(0, clone_image.flatten());
+}
+
+TEST_F(TestLibRBD, PoolMetadata)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ char keys[1024];
+ char vals[1024];
+ size_t keys_len = sizeof(keys);
+ size_t vals_len = sizeof(vals);
+
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+
+ ASSERT_EQ(0, rbd_pool_metadata_list(ioctx, "", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(0U, keys_len);
+ ASSERT_EQ(0U, vals_len);
+
+ char value[1024];
+ size_t value_len = sizeof(value);
+ memset_rand(value, value_len);
+
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "key1", "value1"));
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "key2", "value2"));
+ ASSERT_EQ(0, rbd_pool_metadata_get(ioctx, "key1", value, &value_len));
+ ASSERT_STREQ(value, "value1");
+ value_len = 1;
+ ASSERT_EQ(-ERANGE, rbd_pool_metadata_get(ioctx, "key1", value, &value_len));
+ ASSERT_EQ(value_len, strlen("value1") + 1);
+
+ ASSERT_EQ(-ERANGE, rbd_pool_metadata_list(ioctx, "", 0, keys, &keys_len, vals,
+ &vals_len));
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_pool_metadata_list(ioctx, "", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1);
+ ASSERT_STREQ(keys, "key1");
+ ASSERT_STREQ(keys + strlen(keys) + 1, "key2");
+ ASSERT_STREQ(vals, "value1");
+ ASSERT_STREQ(vals + strlen(vals) + 1, "value2");
+
+ ASSERT_EQ(0, rbd_pool_metadata_remove(ioctx, "key1"));
+ ASSERT_EQ(-ENOENT, rbd_pool_metadata_remove(ioctx, "key3"));
+ value_len = sizeof(value);
+ ASSERT_EQ(-ENOENT, rbd_pool_metadata_get(ioctx, "key3", value, &value_len));
+ ASSERT_EQ(0, rbd_pool_metadata_list(ioctx, "", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key2") + 1);
+ ASSERT_EQ(vals_len, strlen("value2") + 1);
+ ASSERT_STREQ(keys, "key2");
+ ASSERT_STREQ(vals, "value2");
+
+ // test config setting
+ ASSERT_EQ(-EINVAL, rbd_pool_metadata_set(ioctx, "conf_UNKNOWN", "false"));
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "conf_rbd_cache", "false"));
+ ASSERT_EQ(-EINVAL, rbd_pool_metadata_set(ioctx, "conf_rbd_cache", "INVALID"));
+ ASSERT_EQ(0, rbd_pool_metadata_remove(ioctx, "conf_rbd_cache"));
+
+ // test short buffer cases
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "key1", "value1"));
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "key3", "value3"));
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "key4", "value4"));
+
+ keys_len = strlen("key1") + 1;
+ vals_len = strlen("value1") + 1;
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_pool_metadata_list(ioctx, "", 1, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1);
+ ASSERT_STREQ(keys, "key1");
+ ASSERT_STREQ(vals, "value1");
+
+ ASSERT_EQ(-ERANGE, rbd_pool_metadata_list(ioctx, "", 2, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1);
+
+ ASSERT_EQ(-ERANGE, rbd_pool_metadata_list(ioctx, "", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key1") + 1 + strlen("key2") + 1 + strlen("key3") +
+ 1 + strlen("key4") + 1);
+ ASSERT_EQ(vals_len, strlen("value1") + 1 + strlen("value2") + 1 +
+ strlen("value3") + 1 + strlen("value4") + 1);
+
+ // test `start` param
+ keys_len = sizeof(keys);
+ vals_len = sizeof(vals);
+ memset_rand(keys, keys_len);
+ memset_rand(vals, vals_len);
+ ASSERT_EQ(0, rbd_pool_metadata_list(ioctx, "key2", 0, keys, &keys_len, vals,
+ &vals_len));
+ ASSERT_EQ(keys_len, strlen("key3") + 1 + strlen("key4") + 1);
+ ASSERT_EQ(vals_len, strlen("value3") + 1 + strlen("value4") + 1);
+ ASSERT_STREQ(keys, "key3");
+ ASSERT_STREQ(vals, "value3");
+
+ //cleanup
+ ASSERT_EQ(0, rbd_pool_metadata_remove(ioctx, "key1"));
+ ASSERT_EQ(0, rbd_pool_metadata_remove(ioctx, "key2"));
+ ASSERT_EQ(0, rbd_pool_metadata_remove(ioctx, "key3"));
+ ASSERT_EQ(0, rbd_pool_metadata_remove(ioctx, "key4"));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, PoolMetadataPP)
+{
+ REQUIRE_FORMAT_V2();
+
+ librbd::RBD rbd;
+ string value;
+ map<string, bufferlist> pairs;
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ ASSERT_EQ(0, rbd.pool_metadata_list(ioctx, "", 0, &pairs));
+ ASSERT_TRUE(pairs.empty());
+
+ ASSERT_EQ(0, rbd.pool_metadata_set(ioctx, "key1", "value1"));
+ ASSERT_EQ(0, rbd.pool_metadata_set(ioctx, "key2", "value2"));
+ ASSERT_EQ(0, rbd.pool_metadata_get(ioctx, "key1", &value));
+ ASSERT_EQ(value, "value1");
+ ASSERT_EQ(0, rbd.pool_metadata_list(ioctx, "", 0, &pairs));
+ ASSERT_EQ(2U, pairs.size());
+ ASSERT_EQ(0, strncmp("value1", pairs["key1"].c_str(), 6));
+ ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6));
+
+ ASSERT_EQ(0, rbd.pool_metadata_remove(ioctx, "key1"));
+ ASSERT_EQ(-ENOENT, rbd.pool_metadata_remove(ioctx, "key3"));
+ ASSERT_EQ(-ENOENT, rbd.pool_metadata_get(ioctx, "key3", &value));
+ pairs.clear();
+ ASSERT_EQ(0, rbd.pool_metadata_list(ioctx, "", 0, &pairs));
+ ASSERT_EQ(1U, pairs.size());
+ ASSERT_EQ(0, strncmp("value2", pairs["key2"].c_str(), 6));
+
+ // test `start` param
+ ASSERT_EQ(0, rbd.pool_metadata_set(ioctx, "key1", "value1"));
+ ASSERT_EQ(0, rbd.pool_metadata_set(ioctx, "key3", "value3"));
+
+ pairs.clear();
+ ASSERT_EQ(0, rbd.pool_metadata_list(ioctx, "key2", 0, &pairs));
+ ASSERT_EQ(1U, pairs.size());
+ ASSERT_EQ(0, strncmp("value3", pairs["key3"].c_str(), 6));
+
+ // test config setting
+ ASSERT_EQ(-EINVAL, rbd.pool_metadata_set(ioctx, "conf_UNKNOWN", "false"));
+ ASSERT_EQ(0, rbd.pool_metadata_set(ioctx, "conf_rbd_cache", "false"));
+ ASSERT_EQ(-EINVAL, rbd.pool_metadata_set(ioctx, "conf_rbd_cache", "INVALID"));
+ ASSERT_EQ(0, rbd.pool_metadata_remove(ioctx, "conf_rbd_cache"));
+
+ // cleanup
+ ASSERT_EQ(0, rbd.pool_metadata_remove(ioctx, "key1"));
+ ASSERT_EQ(0, rbd.pool_metadata_remove(ioctx, "key2"));
+ ASSERT_EQ(0, rbd.pool_metadata_remove(ioctx, "key3"));
+}
+
+TEST_F(TestLibRBD, Config)
+{
+ REQUIRE_FORMAT_V2();
+
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ ASSERT_EQ(0, rbd_pool_metadata_set(ioctx, "conf_rbd_cache", "false"));
+
+ rbd_config_option_t options[1024];
+ int max_options = 0;
+ ASSERT_EQ(-ERANGE, rbd_config_pool_list(ioctx, options, &max_options));
+ ASSERT_EQ(0, rbd_config_pool_list(ioctx, options, &max_options));
+ ASSERT_GT(max_options, 0);
+ ASSERT_LT(max_options, 1024);
+ for (int i = 0; i < max_options; i++) {
+ if (options[i].name == std::string("rbd_cache")) {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_POOL);
+ ASSERT_STREQ("false", options[i].value);
+ } else {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+ rbd_config_pool_list_cleanup(options, max_options);
+
+ rbd_image_t image;
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image, NULL));
+
+ ASSERT_EQ(0, rbd_config_image_list(image, options, &max_options));
+ for (int i = 0; i < max_options; i++) {
+ if (options[i].name == std::string("rbd_cache")) {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_POOL);
+ ASSERT_STREQ("false", options[i].value);
+ } else {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+ rbd_config_image_list_cleanup(options, max_options);
+
+ ASSERT_EQ(0, rbd_metadata_set(image, "conf_rbd_cache", "true"));
+
+ ASSERT_EQ(0, rbd_config_image_list(image, options, &max_options));
+ for (int i = 0; i < max_options; i++) {
+ if (options[i].name == std::string("rbd_cache")) {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_IMAGE);
+ ASSERT_STREQ("true", options[i].value);
+ } else {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+ rbd_config_image_list_cleanup(options, max_options);
+
+ ASSERT_EQ(0, rbd_metadata_remove(image, "conf_rbd_cache"));
+
+ ASSERT_EQ(0, rbd_config_image_list(image, options, &max_options));
+ for (int i = 0; i < max_options; i++) {
+ if (options[i].name == std::string("rbd_cache")) {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_POOL);
+ ASSERT_STREQ("false", options[i].value);
+ } else {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+ rbd_config_image_list_cleanup(options, max_options);
+
+ ASSERT_EQ(0, rbd_close(image));
+
+ ASSERT_EQ(0, rbd_pool_metadata_remove(ioctx, "conf_rbd_cache"));
+
+ ASSERT_EQ(-ERANGE, rbd_config_pool_list(ioctx, options, &max_options));
+ ASSERT_EQ(0, rbd_config_pool_list(ioctx, options, &max_options));
+ for (int i = 0; i < max_options; i++) {
+ ASSERT_EQ(options[i].source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ rbd_config_pool_list_cleanup(options, max_options);
+
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, ConfigPP)
+{
+ REQUIRE_FORMAT_V2();
+
+ librbd::RBD rbd;
+ string value;
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ ASSERT_EQ(0, rbd.pool_metadata_set(ioctx, "conf_rbd_cache", "false"));
+
+ std::vector<librbd::config_option_t> options;
+ ASSERT_EQ(0, rbd.config_list(ioctx, &options));
+ for (auto &option : options) {
+ if (option.name == std::string("rbd_cache")) {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_POOL);
+ ASSERT_EQ("false", option.value);
+ } else {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), nullptr));
+
+ options.clear();
+ ASSERT_EQ(0, image.config_list(&options));
+ for (auto &option : options) {
+ if (option.name == std::string("rbd_cache")) {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_POOL);
+ ASSERT_EQ("false", option.value);
+ } else {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+
+ ASSERT_EQ(0, image.metadata_set("conf_rbd_cache", "true"));
+
+ options.clear();
+ ASSERT_EQ(0, image.config_list(&options));
+ for (auto &option : options) {
+ if (option.name == std::string("rbd_cache")) {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_IMAGE);
+ ASSERT_EQ("true", option.value);
+ } else {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+
+ ASSERT_EQ(0, image.metadata_remove("conf_rbd_cache"));
+
+ options.clear();
+ ASSERT_EQ(0, image.config_list(&options));
+ for (auto &option : options) {
+ if (option.name == std::string("rbd_cache")) {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_POOL);
+ ASSERT_EQ("false", option.value);
+ } else {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+ }
+
+ ASSERT_EQ(0, rbd.pool_metadata_remove(ioctx, "conf_rbd_cache"));
+
+ options.clear();
+ ASSERT_EQ(0, rbd.config_list(ioctx, &options));
+ for (auto &option : options) {
+ ASSERT_EQ(option.source, RBD_CONFIG_SOURCE_CONFIG);
+ }
+}
+
+TEST_F(TestLibRBD, PoolStatsPP)
+{
+ REQUIRE_FORMAT_V2();
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(create_pool(true).c_str(), ioctx));
+
+ librbd::RBD rbd;
+ std::string image_name;
+ uint64_t size = 2 << 20;
+ uint64_t expected_size = 0;
+ for (size_t idx = 0; idx < 4; ++idx) {
+ image_name = get_temp_image_name();
+
+ int order = 0;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, image_name.c_str(), size, &order));
+ expected_size += size;
+ }
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, image_name.c_str(), NULL));
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ ASSERT_EQ(0, image.resize(0));
+ ASSERT_EQ(0, image.close());
+ uint64_t expect_head_size = (expected_size - size);
+
+ uint64_t image_count;
+ uint64_t provisioned_bytes;
+ uint64_t max_provisioned_bytes;
+ uint64_t snap_count;
+ uint64_t trash_image_count;
+ uint64_t trash_provisioned_bytes;
+ uint64_t trash_max_provisioned_bytes;
+ uint64_t trash_snap_count;
+
+ librbd::PoolStats pool_stats1;
+ pool_stats1.add(RBD_POOL_STAT_OPTION_IMAGES, &image_count);
+ pool_stats1.add(RBD_POOL_STAT_OPTION_IMAGE_PROVISIONED_BYTES,
+ &provisioned_bytes);
+ ASSERT_EQ(0, rbd.pool_stats_get(ioctx, &pool_stats1));
+
+ ASSERT_EQ(4U, image_count);
+ ASSERT_EQ(expect_head_size, provisioned_bytes);
+
+ pool_stats1.add(RBD_POOL_STAT_OPTION_IMAGE_MAX_PROVISIONED_BYTES,
+ &max_provisioned_bytes);
+ ASSERT_EQ(0, rbd.pool_stats_get(ioctx, &pool_stats1));
+ ASSERT_EQ(4U, image_count);
+ ASSERT_EQ(expect_head_size, provisioned_bytes);
+ ASSERT_EQ(expected_size, max_provisioned_bytes);
+
+ librbd::PoolStats pool_stats2;
+ pool_stats2.add(RBD_POOL_STAT_OPTION_IMAGE_SNAPSHOTS, &snap_count);
+ pool_stats2.add(RBD_POOL_STAT_OPTION_TRASH_IMAGES, &trash_image_count);
+ pool_stats2.add(RBD_POOL_STAT_OPTION_TRASH_SNAPSHOTS, &trash_snap_count);
+ ASSERT_EQ(0, rbd.pool_stats_get(ioctx, &pool_stats2));
+ ASSERT_EQ(1U, snap_count);
+ ASSERT_EQ(0U, trash_image_count);
+ ASSERT_EQ(0U, trash_snap_count);
+
+ ASSERT_EQ(0, rbd.trash_move(ioctx, image_name.c_str(), 0));
+
+ librbd::PoolStats pool_stats3;
+ pool_stats3.add(RBD_POOL_STAT_OPTION_TRASH_IMAGES, &trash_image_count);
+ pool_stats3.add(RBD_POOL_STAT_OPTION_TRASH_PROVISIONED_BYTES,
+ &trash_provisioned_bytes);
+ pool_stats3.add(RBD_POOL_STAT_OPTION_TRASH_MAX_PROVISIONED_BYTES,
+ &trash_max_provisioned_bytes);
+ pool_stats3.add(RBD_POOL_STAT_OPTION_TRASH_SNAPSHOTS, &trash_snap_count);
+ ASSERT_EQ(0, rbd.pool_stats_get(ioctx, &pool_stats3));
+ ASSERT_EQ(1U, trash_image_count);
+ ASSERT_EQ(0U, trash_provisioned_bytes);
+ ASSERT_EQ(size, trash_max_provisioned_bytes);
+ ASSERT_EQ(1U, trash_snap_count);
+}
+
+TEST_F(TestLibRBD, ImageSpec) {
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(create_pool(true).c_str(), ioctx));
+
+ librbd::RBD rbd;
+ librbd::Image parent_image;
+ std::string name = get_temp_image_name();
+
+ uint64_t size = 1;
+ int order = 0;
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, parent_image, name.c_str(), NULL));
+
+ std::string parent_id;
+ ASSERT_EQ(0, parent_image.get_id(&parent_id));
+
+ uint64_t features;
+ ASSERT_EQ(0, parent_image.features(&features));
+
+ ASSERT_EQ(0, parent_image.snap_create("snap"));
+ ASSERT_EQ(0, parent_image.snap_protect("snap"));
+
+ std::string clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, name.c_str(), "snap", ioctx, clone_name.c_str(),
+ features, &order));
+
+ librbd::Image clone_image;
+ ASSERT_EQ(0, rbd.open(ioctx, clone_image, clone_name.c_str(), NULL));
+
+ std::string clone_id;
+ ASSERT_EQ(0, clone_image.get_id(&clone_id));
+
+ std::vector<librbd::image_spec_t> images;
+ ASSERT_EQ(0, rbd.list2(ioctx, &images));
+
+ std::vector<librbd::image_spec_t> expected_images{
+ {.id = parent_id, .name = name},
+ {.id = clone_id, .name = clone_name}
+ };
+ std::sort(expected_images.begin(), expected_images.end(),
+ [](const librbd::image_spec_t& lhs, const librbd::image_spec_t &rhs) {
+ return lhs.name < rhs.name;
+ });
+ ASSERT_EQ(expected_images, images);
+
+ librbd::linked_image_spec_t parent_image_spec;
+ librbd::snap_spec_t parent_snap_spec;
+ ASSERT_EQ(0, clone_image.get_parent(&parent_image_spec, &parent_snap_spec));
+
+ librbd::linked_image_spec_t expected_parent_image_spec{
+ .pool_id = ioctx.get_id(),
+ .pool_name = ioctx.get_pool_name(),
+ .pool_namespace = ioctx.get_namespace(),
+ .image_id = parent_id,
+ .image_name = name,
+ .trash = false
+ };
+ ASSERT_EQ(expected_parent_image_spec, parent_image_spec);
+ ASSERT_EQ(RBD_SNAP_NAMESPACE_TYPE_USER, parent_snap_spec.namespace_type);
+ ASSERT_EQ("snap", parent_snap_spec.name);
+
+ std::vector<librbd::linked_image_spec_t> children;
+ ASSERT_EQ(0, parent_image.list_children3(&children));
+
+ std::vector<librbd::linked_image_spec_t> expected_children{
+ {
+ .pool_id = ioctx.get_id(),
+ .pool_name = ioctx.get_pool_name(),
+ .pool_namespace = ioctx.get_namespace(),
+ .image_id = clone_id,
+ .image_name = clone_name,
+ .trash = false
+ }
+ };
+ ASSERT_EQ(expected_children, children);
+
+ children.clear();
+ ASSERT_EQ(0, parent_image.list_descendants(&children));
+ ASSERT_EQ(expected_children, children);
+
+ ASSERT_EQ(0, clone_image.snap_create("snap"));
+ ASSERT_EQ(0, clone_image.snap_protect("snap"));
+
+ auto grand_clone_name = this->get_temp_image_name();
+ ASSERT_EQ(0, rbd.clone(ioctx, clone_name.c_str(), "snap", ioctx,
+ grand_clone_name.c_str(), features, &order));
+ librbd::Image grand_clone_image;
+ ASSERT_EQ(0, rbd.open(ioctx, grand_clone_image, grand_clone_name.c_str(),
+ nullptr));
+ std::string grand_clone_id;
+ ASSERT_EQ(0, grand_clone_image.get_id(&grand_clone_id));
+
+ children.clear();
+ ASSERT_EQ(0, parent_image.list_children3(&children));
+ ASSERT_EQ(expected_children, children);
+
+ children.clear();
+ ASSERT_EQ(0, parent_image.list_descendants(&children));
+ expected_children.push_back(
+ {
+ .pool_id = ioctx.get_id(),
+ .pool_name = ioctx.get_pool_name(),
+ .pool_namespace = ioctx.get_namespace(),
+ .image_id = grand_clone_id,
+ .image_name = grand_clone_name,
+ .trash = false
+ }
+ );
+ ASSERT_EQ(expected_children, children);
+}
+
+void super_simple_write_cb_pp(librbd::completion_t cb, void *arg)
+{
+}
+
+TEST_F(TestLibRBD, DISABLED_TestSeqWriteAIOPP)
+{
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+
+ {
+ librbd::RBD rbd;
+ librbd::Image image;
+ int order = 21;
+ std::string name = get_temp_image_name();
+ uint64_t size = 5 * (1 << order);
+
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ char test_data[(TEST_IO_SIZE + 1) * 10];
+
+ for (int i = 0; i < 10; i++) {
+ for (uint64_t j = 0; j < TEST_IO_SIZE; j++) {
+ test_data[(TEST_IO_SIZE + 1) * i + j] = (char)(rand() % (126 - 33) + 33);
+ }
+ test_data[(TEST_IO_SIZE + 1) * i + TEST_IO_SIZE] = '\0';
+ }
+
+ struct timespec start_time;
+ clock_gettime(CLOCK_REALTIME, &start_time);
+
+ std::list<librbd::RBD::AioCompletion *> comps;
+ for (uint64_t i = 0; i < size / TEST_IO_SIZE; ++i) {
+ char *p = test_data + (TEST_IO_SIZE + 1) * (i % 10);
+ ceph::bufferlist bl;
+ bl.append(p, strlen(p));
+ auto comp = new librbd::RBD::AioCompletion(
+ NULL, (librbd::callback_t) super_simple_write_cb_pp);
+ image.aio_write(strlen(p) * i, strlen(p), bl, comp);
+ comps.push_back(comp);
+ if (i % 1000 == 0) {
+ cout << i << " reqs sent" << std::endl;
+ image.flush();
+ for (auto comp : comps) {
+ comp->wait_for_complete();
+ ASSERT_EQ(0, comp->get_return_value());
+ comp->release();
+ }
+ comps.clear();
+ }
+ }
+ int i = 0;
+ for (auto comp : comps) {
+ comp->wait_for_complete();
+ ASSERT_EQ(0, comp->get_return_value());
+ comp->release();
+ if (i % 1000 == 0) {
+ std::cout << i << " reqs completed" << std::endl;
+ }
+ i++;
+ }
+ comps.clear();
+
+ struct timespec end_time;
+ clock_gettime(CLOCK_REALTIME, &end_time);
+ int duration = end_time.tv_sec * 1000 + end_time.tv_nsec / 1000000 -
+ start_time.tv_sec * 1000 - start_time.tv_nsec / 1000000;
+ std::cout << "duration: " << duration << " msec" << std::endl;
+
+ for (uint64_t i = 0; i < size / TEST_IO_SIZE; ++i) {
+ char *p = test_data + (TEST_IO_SIZE + 1) * (i % 10);
+ ASSERT_PASSED(read_test_data, image, p, strlen(p) * i, TEST_IO_SIZE, 0);
+ }
+
+ ASSERT_PASSED(validate_object_map, image);
+ }
+
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, SnapRemoveWithChildMissing)
+{
+ REQUIRE_FEATURE(RBD_FEATURE_LAYERING);
+ ASSERT_EQ(0, rados_conf_set(_cluster, "rbd_default_clone_format", "2"));
+ BOOST_SCOPE_EXIT_ALL(&) {
+ ASSERT_EQ(0, rados_conf_set(_cluster, "rbd_default_clone_format", "auto"));
+ };
+
+ librbd::RBD rbd;
+ rados_ioctx_t ioctx1, ioctx2;
+ string pool_name1 = create_pool(true);
+ rados_ioctx_create(_cluster, pool_name1.c_str(), &ioctx1);
+ ASSERT_EQ(0, rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx2));
+
+ bool old_format;
+ uint64_t features;
+ rbd_image_t parent, child1, child2, child3;
+ int order = 0;
+ char child_id1[4096];
+ char child_id2[4096];
+ char child_id3[4096];
+
+ ASSERT_EQ(0, get_features(&old_format, &features));
+ ASSERT_FALSE(old_format);
+ std::string parent_name = get_temp_image_name();
+ std::string child_name1 = get_temp_image_name();
+ std::string child_name2 = get_temp_image_name();
+ std::string child_name3 = get_temp_image_name();
+ ASSERT_EQ(0, create_image_full(ioctx1, parent_name.c_str(), 4<<20, &order,
+ false, features));
+ ASSERT_EQ(0, rbd_open(ioctx1, parent_name.c_str(), &parent, NULL));
+ ASSERT_EQ(0, rbd_snap_create(parent, "snap1"));
+ ASSERT_EQ(0, rbd_snap_create(parent, "snap2"));
+
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "snap1",
+ ioctx2, child_name1.c_str(), features, &order));
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "snap2",
+ ioctx1, child_name2.c_str(), features, &order));
+ ASSERT_EQ(0, clone_image(ioctx1, parent, parent_name.c_str(), "snap2",
+ ioctx2, child_name3.c_str(), features, &order));
+
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name1.c_str(), &child1, NULL));
+ ASSERT_EQ(0, rbd_open(ioctx1, child_name2.c_str(), &child2, NULL));
+ ASSERT_EQ(0, rbd_open(ioctx2, child_name3.c_str(), &child3, NULL));
+ ASSERT_EQ(0, rbd_get_id(child1, child_id1, sizeof(child_id1)));
+ ASSERT_EQ(0, rbd_get_id(child2, child_id2, sizeof(child_id2)));
+ ASSERT_EQ(0, rbd_get_id(child3, child_id3, sizeof(child_id3)));
+ test_list_children2(parent, 3,
+ child_id1, m_pool_name.c_str(), child_name1.c_str(), false,
+ child_id2, pool_name1.c_str(), child_name2.c_str(), false,
+ child_id3, m_pool_name.c_str(), child_name3.c_str(), false);
+
+ size_t max_size = 10;
+ rbd_linked_image_spec_t children[max_size];
+ ASSERT_EQ(0, rbd_list_children3(parent, children, &max_size));
+ ASSERT_EQ(3, static_cast<int>(max_size));
+ rbd_linked_image_spec_list_cleanup(children, max_size);
+
+ ASSERT_EQ(0, rbd_close(child1));
+ ASSERT_EQ(0, rbd_close(child2));
+ ASSERT_EQ(0, rbd_close(child3));
+ rados_ioctx_destroy(ioctx2);
+ ASSERT_EQ(0, rados_pool_delete(_cluster, m_pool_name.c_str()));
+ _pool_names.erase(std::remove(_pool_names.begin(),
+ _pool_names.end(), m_pool_name),
+ _pool_names.end());
+ EXPECT_EQ(0, rados_wait_for_latest_osdmap(_cluster));
+
+ ASSERT_EQ(0, rbd_list_children3(parent, children, &max_size));
+ ASSERT_EQ(3, static_cast<int>(max_size));
+ rbd_linked_image_spec_list_cleanup(children, max_size);
+ ASSERT_EQ(0, rbd_snap_remove(parent, "snap1"));
+ ASSERT_EQ(0, rbd_list_children3(parent, children, &max_size));
+ ASSERT_EQ(2, static_cast<int>(max_size));
+ rbd_linked_image_spec_list_cleanup(children, max_size);
+
+ ASSERT_EQ(0, rbd_remove(ioctx1, child_name2.c_str()));
+ ASSERT_EQ(0, rbd_list_children3(parent, children, &max_size));
+ ASSERT_EQ(1, static_cast<int>(max_size));
+ rbd_linked_image_spec_list_cleanup(children, max_size);
+
+ ASSERT_EQ(0, rbd_snap_remove(parent, "snap2"));
+ ASSERT_EQ(0, rbd_list_children3(parent, children, &max_size));
+ ASSERT_EQ(0, static_cast<int>(max_size));
+ rbd_linked_image_spec_list_cleanup(children, max_size);
+ test_list_children2(parent, 0);
+ ASSERT_EQ(0, test_ls_snaps(parent, 0));
+
+ ASSERT_EQ(0, rbd_close(parent));
+ rados_ioctx_destroy(ioctx1);
+}
+
+TEST_F(TestLibRBD, QuiesceWatch)
+{
+ rados_ioctx_t ioctx;
+ rados_ioctx_create(_cluster, m_pool_name.c_str(), &ioctx);
+
+ int order = 0;
+ std::string name = get_temp_image_name();
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image(ioctx, name.c_str(), size, &order));
+
+ rbd_image_t image1, image2;
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image1, NULL));
+ ASSERT_EQ(0, rbd_open(ioctx, name.c_str(), &image2, NULL));
+
+ struct Watcher {
+ static void quiesce_cb(void *arg) {
+ Watcher *watcher = static_cast<Watcher *>(arg);
+ watcher->handle_quiesce();
+ }
+ static void unquiesce_cb(void *arg) {
+ Watcher *watcher = static_cast<Watcher *>(arg);
+ watcher->handle_unquiesce();
+ }
+
+ rbd_image_t &image;
+ uint64_t handle = 0;
+ size_t quiesce_count = 0;
+ size_t unquiesce_count = 0;
+
+ ceph::mutex lock = ceph::make_mutex("lock");
+ ceph::condition_variable cv;
+
+ Watcher(rbd_image_t &image) : image(image) {
+ }
+
+ void handle_quiesce() {
+ ASSERT_EQ(quiesce_count, unquiesce_count);
+ quiesce_count++;
+ rbd_quiesce_complete(image, handle, 0);
+ }
+ void handle_unquiesce() {
+ std::unique_lock locker(lock);
+ unquiesce_count++;
+ ASSERT_EQ(quiesce_count, unquiesce_count);
+ cv.notify_one();
+ }
+ bool wait_for_unquiesce(size_t c) {
+ std::unique_lock locker(lock);
+ return cv.wait_for(locker, seconds(60),
+ [this, c]() { return unquiesce_count >= c; });
+ }
+ } watcher1(image1), watcher2(image2);
+
+ ASSERT_EQ(0, rbd_quiesce_watch(image1, Watcher::quiesce_cb,
+ Watcher::unquiesce_cb, &watcher1,
+ &watcher1.handle));
+ ASSERT_EQ(0, rbd_quiesce_watch(image2, Watcher::quiesce_cb,
+ Watcher::unquiesce_cb, &watcher2,
+ &watcher2.handle));
+
+ ASSERT_EQ(0, rbd_snap_create(image1, "snap1"));
+ ASSERT_EQ(1U, watcher1.quiesce_count);
+ ASSERT_TRUE(watcher1.wait_for_unquiesce(1U));
+ ASSERT_EQ(1U, watcher2.quiesce_count);
+ ASSERT_TRUE(watcher2.wait_for_unquiesce(1U));
+
+ ASSERT_EQ(0, rbd_snap_create(image2, "snap2"));
+ ASSERT_EQ(2U, watcher1.quiesce_count);
+ ASSERT_TRUE(watcher1.wait_for_unquiesce(2U));
+ ASSERT_EQ(2U, watcher2.quiesce_count);
+ ASSERT_TRUE(watcher2.wait_for_unquiesce(2U));
+
+ ASSERT_EQ(0, rbd_quiesce_unwatch(image1, watcher1.handle));
+
+ ASSERT_EQ(0, rbd_snap_create(image1, "snap3"));
+ ASSERT_EQ(2U, watcher1.quiesce_count);
+ ASSERT_EQ(2U, watcher1.unquiesce_count);
+ ASSERT_EQ(3U, watcher2.quiesce_count);
+ ASSERT_TRUE(watcher2.wait_for_unquiesce(3U));
+
+ ASSERT_EQ(0, rbd_quiesce_unwatch(image2, watcher2.handle));
+
+ ASSERT_EQ(0, rbd_snap_remove(image1, "snap1"));
+ ASSERT_EQ(0, rbd_snap_remove(image1, "snap2"));
+ ASSERT_EQ(0, rbd_snap_remove(image1, "snap3"));
+ ASSERT_EQ(0, rbd_close(image1));
+ ASSERT_EQ(0, rbd_close(image2));
+ ASSERT_EQ(0, rbd_remove(ioctx, name.c_str()));
+ rados_ioctx_destroy(ioctx);
+}
+
+TEST_F(TestLibRBD, QuiesceWatchPP)
+{
+ librbd::RBD rbd;
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+ std::string name = get_temp_image_name();
+ int order = 0;
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ {
+ librbd::Image image1, image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ struct Watcher : public librbd::QuiesceWatchCtx {
+ librbd::Image &image;
+ uint64_t handle = 0;
+ size_t quiesce_count = 0;
+ size_t unquiesce_count = 0;
+
+ ceph::mutex lock = ceph::make_mutex("lock");
+ ceph::condition_variable cv;
+
+ Watcher(librbd::Image &image) : image(image) {
+ }
+
+ void handle_quiesce() override {
+ ASSERT_EQ(quiesce_count, unquiesce_count);
+ quiesce_count++;
+ image.quiesce_complete(handle, 0);
+ }
+ void handle_unquiesce() override {
+ std::unique_lock locker(lock);
+ unquiesce_count++;
+ ASSERT_EQ(quiesce_count, unquiesce_count);
+ cv.notify_one();
+ }
+ bool wait_for_unquiesce(size_t c) {
+ std::unique_lock locker(lock);
+ return cv.wait_for(locker, seconds(60),
+ [this, c]() { return unquiesce_count >= c; });
+ }
+ } watcher1(image1), watcher2(image2);
+
+ ASSERT_EQ(0, image1.quiesce_watch(&watcher1, &watcher1.handle));
+ ASSERT_EQ(0, image2.quiesce_watch(&watcher2, &watcher2.handle));
+
+ ASSERT_EQ(0, image1.snap_create("snap1"));
+ ASSERT_EQ(1U, watcher1.quiesce_count);
+ ASSERT_TRUE(watcher1.wait_for_unquiesce(1U));
+ ASSERT_EQ(1U, watcher2.quiesce_count);
+ ASSERT_TRUE(watcher2.wait_for_unquiesce(1U));
+
+ ASSERT_EQ(0, image2.snap_create("snap2"));
+ ASSERT_EQ(2U, watcher1.quiesce_count);
+ ASSERT_TRUE(watcher1.wait_for_unquiesce(2U));
+ ASSERT_EQ(2U, watcher2.quiesce_count);
+ ASSERT_TRUE(watcher2.wait_for_unquiesce(2U));
+
+ ASSERT_EQ(0, image1.quiesce_unwatch(watcher1.handle));
+
+ ASSERT_EQ(0, image1.snap_create("snap3"));
+ ASSERT_EQ(2U, watcher1.quiesce_count);
+ ASSERT_EQ(2U, watcher1.unquiesce_count);
+ ASSERT_EQ(3U, watcher2.quiesce_count);
+ ASSERT_TRUE(watcher2.wait_for_unquiesce(3U));
+
+ ASSERT_EQ(0, image2.quiesce_unwatch(watcher2.handle));
+
+ ASSERT_EQ(0, image1.snap_remove("snap1"));
+ ASSERT_EQ(0, image1.snap_remove("snap2"));
+ ASSERT_EQ(0, image1.snap_remove("snap3"));
+ }
+
+ ASSERT_EQ(0, rbd.remove(ioctx, name.c_str()));
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, QuiesceWatchError)
+{
+ SKIP_IF_CRIMSON();
+ librbd::RBD rbd;
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+ std::string name = get_temp_image_name();
+ int order = 0;
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ {
+ librbd::Image image1, image2;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+
+ struct Watcher : public librbd::QuiesceWatchCtx {
+ librbd::Image &image;
+ int r;
+ uint64_t handle;
+ size_t quiesce_count = 0;
+ size_t unquiesce_count = 0;
+
+ ceph::mutex lock = ceph::make_mutex("lock");
+ ceph::condition_variable cv;
+
+ Watcher(librbd::Image &image, int r) : image(image), r(r) {
+ }
+
+ void reset_counters() {
+ quiesce_count = 0;
+ unquiesce_count = 0;
+ }
+
+ void handle_quiesce() override {
+ quiesce_count++;
+ image.quiesce_complete(handle, r);
+ }
+
+ void handle_unquiesce() override {
+ std::unique_lock locker(lock);
+ unquiesce_count++;
+ cv.notify_one();
+ }
+
+ bool wait_for_unquiesce() {
+ std::unique_lock locker(lock);
+ return cv.wait_for(locker, seconds(60),
+ [this]() {
+ return quiesce_count == unquiesce_count;
+ });
+ }
+ } watcher10(image1, -EINVAL), watcher11(image1, 0), watcher20(image2, 0);
+
+ ASSERT_EQ(0, image1.quiesce_watch(&watcher10, &watcher10.handle));
+ ASSERT_EQ(0, image1.quiesce_watch(&watcher11, &watcher11.handle));
+ ASSERT_EQ(0, image2.quiesce_watch(&watcher20, &watcher20.handle));
+
+ ASSERT_EQ(-EINVAL, image1.snap_create("snap1"));
+ ASSERT_GT(watcher10.quiesce_count, 0U);
+ ASSERT_EQ(watcher10.unquiesce_count, 0U);
+ ASSERT_GT(watcher11.quiesce_count, 0U);
+ ASSERT_TRUE(watcher11.wait_for_unquiesce());
+ ASSERT_GT(watcher20.quiesce_count, 0U);
+ ASSERT_TRUE(watcher20.wait_for_unquiesce());
+
+ PrintProgress prog_ctx;
+ watcher10.reset_counters();
+ watcher11.reset_counters();
+ watcher20.reset_counters();
+ ASSERT_EQ(0, image2.snap_create2("snap2",
+ RBD_SNAP_CREATE_IGNORE_QUIESCE_ERROR,
+ prog_ctx));
+ ASSERT_GT(watcher10.quiesce_count, 0U);
+ ASSERT_EQ(watcher10.unquiesce_count, 0U);
+ ASSERT_GT(watcher11.quiesce_count, 0U);
+ ASSERT_TRUE(watcher11.wait_for_unquiesce());
+ ASSERT_GT(watcher20.quiesce_count, 0U);
+ ASSERT_TRUE(watcher20.wait_for_unquiesce());
+
+ ASSERT_EQ(0, image1.quiesce_unwatch(watcher10.handle));
+
+ watcher11.reset_counters();
+ watcher20.reset_counters();
+ ASSERT_EQ(0, image1.snap_create("snap3"));
+ ASSERT_GT(watcher11.quiesce_count, 0U);
+ ASSERT_TRUE(watcher11.wait_for_unquiesce());
+ ASSERT_GT(watcher20.quiesce_count, 0U);
+ ASSERT_TRUE(watcher20.wait_for_unquiesce());
+
+ ASSERT_EQ(0, image1.quiesce_unwatch(watcher11.handle));
+
+ watcher20.reset_counters();
+ ASSERT_EQ(0, image2.snap_create2("snap4", RBD_SNAP_CREATE_SKIP_QUIESCE,
+ prog_ctx));
+ ASSERT_EQ(watcher20.quiesce_count, 0U);
+ ASSERT_EQ(watcher20.unquiesce_count, 0U);
+
+ ASSERT_EQ(0, image2.quiesce_unwatch(watcher20.handle));
+
+ ASSERT_EQ(0, image1.snap_remove("snap2"));
+ ASSERT_EQ(0, image1.snap_remove("snap3"));
+ ASSERT_EQ(0, image1.snap_remove("snap4"));
+ }
+
+ ASSERT_EQ(0, rbd.remove(ioctx, name.c_str()));
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, QuiesceWatchTimeout)
+{
+ REQUIRE(!is_librados_test_stub(_rados));
+
+ ASSERT_EQ(0, _rados.conf_set("rbd_quiesce_notification_attempts", "2"));
+
+ librbd::RBD rbd;
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+ std::string name = get_temp_image_name();
+ int order = 0;
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ {
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ struct Watcher : public librbd::QuiesceWatchCtx {
+ librbd::Image &image;
+ std::mutex m_lock;
+ std::condition_variable m_cond;
+ size_t quiesce_count = 0;
+ size_t unquiesce_count = 0;
+
+ Watcher(librbd::Image &image) : image(image) {
+ }
+
+ void handle_quiesce() override {
+ std::lock_guard<std::mutex> locker(m_lock);
+ quiesce_count++;
+ m_cond.notify_one();
+ }
+
+ void handle_unquiesce() override {
+ std::lock_guard<std::mutex> locker(m_lock);
+ unquiesce_count++;
+ m_cond.notify_one();
+ }
+
+ void wait_for_quiesce() {
+ std::unique_lock<std::mutex> locker(m_lock);
+ ASSERT_TRUE(m_cond.wait_for(locker, seconds(60),
+ [this] {
+ return quiesce_count >= 1;
+ }));
+ }
+
+ void wait_for_unquiesce() {
+ std::unique_lock<std::mutex> locker(m_lock);
+ ASSERT_TRUE(m_cond.wait_for(locker, seconds(60),
+ [this] {
+ return quiesce_count == unquiesce_count;
+ }));
+ quiesce_count = unquiesce_count = 0;
+ }
+ } watcher(image);
+ uint64_t handle;
+
+ ASSERT_EQ(0, image.quiesce_watch(&watcher, &handle));
+
+ std::cerr << "test quiesce is not long enough to time out" << std::endl;
+
+ thread quiesce1([&image, &watcher, handle]() {
+ watcher.wait_for_quiesce();
+ sleep(8);
+ image.quiesce_complete(handle, 0);
+ });
+
+ ASSERT_EQ(0, image.snap_create("snap1"));
+ quiesce1.join();
+ ASSERT_GE(watcher.quiesce_count, 1U);
+ watcher.wait_for_unquiesce();
+
+ std::cerr << "test quiesce is timed out" << std::endl;
+
+ bool timed_out = false;
+ thread quiesce2([&image, &watcher, handle, &timed_out]() {
+ watcher.wait_for_quiesce();
+ for (int i = 0; !timed_out && i < 60; i++) {
+ std::cerr << "waiting for timed out ... " << i << std::endl;
+ sleep(1);
+ }
+ image.quiesce_complete(handle, 0);
+ });
+
+ ASSERT_EQ(-ETIMEDOUT, image.snap_create("snap2"));
+ timed_out = true;
+ quiesce2.join();
+ ASSERT_GE(watcher.quiesce_count, 1U);
+ watcher.wait_for_unquiesce();
+
+ thread quiesce3([&image, handle, &watcher]() {
+ watcher.wait_for_quiesce();
+ image.quiesce_complete(handle, 0);
+ });
+
+ std::cerr << "test retry succeeds" << std::endl;
+
+ ASSERT_EQ(0, image.snap_create("snap2"));
+ quiesce3.join();
+ ASSERT_GE(watcher.quiesce_count, 1U);
+ watcher.wait_for_unquiesce();
+
+ ASSERT_EQ(0, image.snap_remove("snap1"));
+ ASSERT_EQ(0, image.snap_remove("snap2"));
+ }
+
+ ASSERT_EQ(0, rbd.remove(ioctx, name.c_str()));
+ ioctx.close();
+}
+
+TEST_F(TestLibRBD, WriteZeroes) {
+ librbd::RBD rbd;
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+ std::string name = get_temp_image_name();
+ int order = 0;
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ // 1s from [0, 256) / length 256
+ char data[256];
+ memset(data, 1, sizeof(data));
+ bufferlist bl;
+ bl.append(data, 256);
+ ASSERT_EQ(256, image.write(0, 256, bl));
+
+ interval_set<uint64_t> diff;
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ auto expected_diff = interval_set<uint64_t>{{{0, 256}}};
+ ASSERT_EQ(expected_diff, diff);
+
+ // writes zero passed the current end extents.
+ // Now 1s from [0, 192) / length 192
+ ASSERT_EQ(size - 192,
+ image.write_zeroes(192, size - 192, 0U, 0));
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 192}}};
+ ASSERT_EQ(expected_diff, diff);
+
+ // zero an existing extent and truncate some off the end
+ // Now 1s from [64, 192) / length 192
+ ASSERT_EQ(64, image.write_zeroes(0, 64, 0U, 0));
+
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 192}}};
+ ASSERT_EQ(expected_diff, diff);
+
+ bufferlist expected_bl;
+ expected_bl.append_zero(64);
+ bufferlist sub_bl;
+ sub_bl.substr_of(bl, 0, 128);
+ expected_bl.claim_append(sub_bl);
+ expected_bl.append_zero(size - 192);
+
+ bufferlist read_bl;
+ EXPECT_EQ(size, image.read(0, size, read_bl));
+ EXPECT_EQ(expected_bl, read_bl);
+
+ ASSERT_EQ(0, image.close());
+}
+
+TEST_F(TestLibRBD, WriteZeroesThickProvision) {
+ librbd::RBD rbd;
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+ std::string name = get_temp_image_name();
+ int order = 0;
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ librbd::Image image;
+ ASSERT_EQ(0, rbd.open(ioctx, image, name.c_str(), NULL));
+
+ interval_set<uint64_t> diff;
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ auto expected_diff = interval_set<uint64_t>{{}};
+ ASSERT_EQ(expected_diff, diff);
+
+ // writes unaligned zeroes as a prepend
+ ASSERT_EQ(128, image.write_zeroes(
+ 0, 128, RBD_WRITE_ZEROES_FLAG_THICK_PROVISION, 0));
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 128}}};
+ ASSERT_EQ(expected_diff, diff);
+
+ ASSERT_EQ(512, image.write_zeroes(
+ 384, 512, RBD_WRITE_ZEROES_FLAG_THICK_PROVISION, 0));
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 896}}};
+ ASSERT_EQ(expected_diff, diff);
+
+ // prepend with write-same
+ ASSERT_EQ(640, image.write_zeroes(
+ 896, 640, RBD_WRITE_ZEROES_FLAG_THICK_PROVISION, 0));
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 1536}}};
+ ASSERT_EQ(expected_diff, diff);
+
+ // write-same with append
+ ASSERT_EQ(640, image.write_zeroes(
+ 1536, 640, RBD_WRITE_ZEROES_FLAG_THICK_PROVISION, 0));
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 2176}}};
+ ASSERT_EQ(expected_diff, diff);
+
+ // prepend + write-same + append
+ ASSERT_EQ(768, image.write_zeroes(
+ 2176, 768, RBD_WRITE_ZEROES_FLAG_THICK_PROVISION, 0));
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 2944}}};
+
+ // write-same
+ ASSERT_EQ(1024, image.write_zeroes(
+ 3072, 1024, RBD_WRITE_ZEROES_FLAG_THICK_PROVISION, 0));
+ diff.clear();
+ ASSERT_EQ(0, image.diff_iterate2(nullptr, 0, size, false, false,
+ iterate_cb, (void *)&diff));
+ expected_diff = interval_set<uint64_t>{{{0, 4096}}};
+
+ bufferlist expected_bl;
+ expected_bl.append_zero(size);
+
+ bufferlist read_bl;
+ EXPECT_EQ(size, image.read(0, size, read_bl));
+ EXPECT_EQ(expected_bl, read_bl);
+
+ ASSERT_EQ(0, image.close());
+}
+
+TEST_F(TestLibRBD, ConcurentOperations)
+{
+ SKIP_IF_CRIMSON();
+ REQUIRE_FEATURE(RBD_FEATURE_EXCLUSIVE_LOCK);
+
+ librbd::RBD rbd;
+ librados::IoCtx ioctx;
+ ASSERT_EQ(0, _rados.ioctx_create(m_pool_name.c_str(), ioctx));
+ std::string name = get_temp_image_name();
+ int order = 0;
+ uint64_t size = 2 << 20;
+ ASSERT_EQ(0, create_image_pp(rbd, ioctx, name.c_str(), size, &order));
+
+ // Test creating/removing many snapshots simultaneously
+
+ std::vector<librbd::Image> images(10);
+ std::vector<librbd::RBD::AioCompletion *> comps;
+
+ for (auto &image : images) {
+ auto comp = new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, rbd.aio_open(ioctx, image, name.c_str(), NULL, comp));
+ comps.push_back(comp);
+ }
+
+ for (auto &comp : comps) {
+ ASSERT_EQ(0, comp->wait_for_complete());
+ ASSERT_EQ(1, comp->is_complete());
+ ASSERT_EQ(0, comp->get_return_value());
+ comp->release();
+ }
+ comps.clear();
+
+ std::vector<std::thread> threads;
+ int i = 0;
+ for (auto &image : images) {
+ std::string snap_name = "snap" + stringify(i++);
+ threads.emplace_back([&image, snap_name]() {
+ int r = image.snap_create(snap_name.c_str());
+ ceph_assert(r == 0);
+ });
+ }
+
+ for (auto &t : threads) {
+ t.join();
+ }
+ threads.clear();
+
+ i = 0;
+ for (auto &image : images) {
+ std::string snap_name = "snap" + stringify(i++);
+ threads.emplace_back([&image, snap_name](){
+ int r = image.snap_remove(snap_name.c_str());
+ ceph_assert(r == 0);
+ });
+ }
+
+ for (auto &t : threads) {
+ t.join();
+ }
+ threads.clear();
+
+ for (auto &image : images) {
+ auto comp = new librbd::RBD::AioCompletion(NULL, NULL);
+ ASSERT_EQ(0, image.aio_close(comp));
+ comps.push_back(comp);
+ }
+
+ for (auto &comp : comps) {
+ ASSERT_EQ(0, comp->wait_for_complete());
+ ASSERT_EQ(1, comp->is_complete());
+ ASSERT_EQ(0, comp->get_return_value());
+ comp->release();
+ }
+ comps.clear();
+
+ // Test shutdown
+ {
+ librbd::Image image1, image2, image3;
+ ASSERT_EQ(0, rbd.open(ioctx, image1, name.c_str(), NULL));
+ ASSERT_EQ(0, rbd.open(ioctx, image2, name.c_str(), NULL));
+ ASSERT_EQ(0, rbd.open(ioctx, image3, name.c_str(), NULL));
+
+ ASSERT_EQ(0, image1.lock_acquire(RBD_LOCK_MODE_EXCLUSIVE));
+
+ struct Watcher : public librbd::QuiesceWatchCtx {
+ size_t count = 0;
+
+ ceph::mutex lock = ceph::make_mutex("lock");
+ ceph::condition_variable cv;
+
+ void handle_quiesce() override {
+ std::unique_lock locker(lock);
+ count++;
+ cv.notify_one();
+ }
+
+ void handle_unquiesce() override {
+ }
+
+ bool wait_for_quiesce(size_t c) {
+ std::unique_lock locker(lock);
+ return cv.wait_for(locker, seconds(60),
+ [this, c]() { return count >= c; });
+ }
+ } watcher;
+ uint64_t handle;
+ ASSERT_EQ(0, image2.quiesce_watch(&watcher, &handle));
+
+ auto close1_comp = new librbd::RBD::AioCompletion(NULL, NULL);
+
+ std::thread create_snap1([&image1, close1_comp]() {
+ int r = image1.snap_create("snap1");
+ ceph_assert(r == 0);
+ r = image1.aio_close(close1_comp);
+ ceph_assert(r == 0);
+ });
+
+ ASSERT_TRUE(watcher.wait_for_quiesce(1));
+
+ std::thread create_snap2([&image2]() {
+ int r = image2.snap_create("snap2");
+ ceph_assert(r == 0);
+ });
+
+ std::thread create_snap3([&image3]() {
+ int r = image3.snap_create("snap3");
+ ceph_assert(r == 0);
+ });
+
+ image2.quiesce_complete(handle, 0);
+ create_snap1.join();
+
+ ASSERT_TRUE(watcher.wait_for_quiesce(2));
+ image2.quiesce_complete(handle, 0);
+
+ ASSERT_TRUE(watcher.wait_for_quiesce(3));
+ image2.quiesce_complete(handle, 0);
+
+ ASSERT_EQ(0, close1_comp->wait_for_complete());
+ ASSERT_EQ(1, close1_comp->is_complete());
+ ASSERT_EQ(0, close1_comp->get_return_value());
+ close1_comp->release();
+
+ create_snap2.join();
+ create_snap3.join();
+
+ ASSERT_EQ(0, image2.quiesce_unwatch(handle));
+ ASSERT_EQ(0, image2.snap_remove("snap1"));
+ ASSERT_EQ(0, image2.snap_remove("snap2"));
+ ASSERT_EQ(0, image2.snap_remove("snap3"));
+ }
+
+ ASSERT_EQ(0, rbd.remove(ioctx, name.c_str()));
+ ioctx.close();
+}
+
+
+// poorman's ceph_assert()
+namespace ceph {
+ void __ceph_assert_fail(const char *assertion, const char *file, int line,
+ const char *func) {
+ ceph_abort();
+ }
+}
+
+#pragma GCC diagnostic pop
+#pragma GCC diagnostic warning "-Wpragmas"