summaryrefslogtreecommitdiffstats
path: root/src/test/test_weighted_shuffle.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
commite6918187568dbd01842d8d1d2c808ce16a894239 (patch)
tree64f88b554b444a49f656b6c656111a145cbbaa28 /src/test/test_weighted_shuffle.cc
parentInitial commit. (diff)
downloadceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz
ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/test/test_weighted_shuffle.cc')
-rw-r--r--src/test/test_weighted_shuffle.cc39
1 files changed, 39 insertions, 0 deletions
diff --git a/src/test/test_weighted_shuffle.cc b/src/test/test_weighted_shuffle.cc
new file mode 100644
index 000000000..9f92cbdc0
--- /dev/null
+++ b/src/test/test_weighted_shuffle.cc
@@ -0,0 +1,39 @@
+// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
+// vim: ts=8 sw=2 smarttab
+
+#include "common/weighted_shuffle.h"
+#include <array>
+#include <map>
+#include "gtest/gtest.h"
+
+TEST(WeightedShuffle, Basic) {
+ std::array<char, 5> choices{'a', 'b', 'c', 'd', 'e'};
+ std::array<int, 5> weights{100, 50, 25, 10, 1};
+ std::map<char, std::array<unsigned, 5>> frequency {
+ {'a', {0, 0, 0, 0, 0}},
+ {'b', {0, 0, 0, 0, 0}},
+ {'c', {0, 0, 0, 0, 0}},
+ {'d', {0, 0, 0, 0, 0}},
+ {'e', {0, 0, 0, 0, 0}}
+ }; // count each element appearing in each position
+ const int samples = 10000;
+ std::random_device rd;
+ for (auto i = 0; i < samples; i++) {
+ weighted_shuffle(begin(choices), end(choices),
+ begin(weights), end(weights),
+ std::mt19937{rd()});
+ for (size_t j = 0; j < choices.size(); ++j)
+ ++frequency[choices[j]][j];
+ }
+ // verify that the probability that the nth choice is selected as the first
+ // one is the nth weight divided by the sum of all weights
+ const auto total_weight = std::accumulate(weights.begin(), weights.end(), 0);
+ constexpr float epsilon = 0.02;
+ for (unsigned i = 0; i < choices.size(); i++) {
+ const auto& f = frequency[choices[i]];
+ const auto& w = weights[i];
+ ASSERT_NEAR(float(w) / total_weight,
+ float(f.front()) / samples,
+ epsilon);
+ }
+}