summaryrefslogtreecommitdiffstats
path: root/doc/rados/configuration/mon-config-ref.rst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--doc/rados/configuration/mon-config-ref.rst642
1 files changed, 642 insertions, 0 deletions
diff --git a/doc/rados/configuration/mon-config-ref.rst b/doc/rados/configuration/mon-config-ref.rst
new file mode 100644
index 000000000..e0a12d093
--- /dev/null
+++ b/doc/rados/configuration/mon-config-ref.rst
@@ -0,0 +1,642 @@
+.. _monitor-config-reference:
+
+==========================
+ Monitor Config Reference
+==========================
+
+Understanding how to configure a :term:`Ceph Monitor` is an important part of
+building a reliable :term:`Ceph Storage Cluster`. **All Ceph Storage Clusters
+have at least one monitor**. The monitor complement usually remains fairly
+consistent, but you can add, remove or replace a monitor in a cluster. See
+`Adding/Removing a Monitor`_ for details.
+
+
+.. index:: Ceph Monitor; Paxos
+
+Background
+==========
+
+Ceph Monitors maintain a "master copy" of the :term:`Cluster Map`.
+
+The :term:`Cluster Map` makes it possible for :term:`Ceph client`\s to
+determine the location of all Ceph Monitors, Ceph OSD Daemons, and Ceph
+Metadata Servers. Clients do this by connecting to one Ceph Monitor and
+retrieving a current cluster map. Ceph clients must connect to a Ceph Monitor
+before they can read from or write to Ceph OSD Daemons or Ceph Metadata
+Servers. A Ceph client that has a current copy of the cluster map and the CRUSH
+algorithm can compute the location of any RADOS object within the cluster. This
+makes it possible for Ceph clients to talk directly to Ceph OSD Daemons. Direct
+communication between clients and Ceph OSD Daemons improves upon traditional
+storage architectures that required clients to communicate with a central
+component. See `Scalability and High Availability`_ for more on this subject.
+
+The Ceph Monitor's primary function is to maintain a master copy of the cluster
+map. Monitors also provide authentication and logging services. All changes in
+the monitor services are written by the Ceph Monitor to a single Paxos
+instance, and Paxos writes the changes to a key/value store. This provides
+strong consistency. Ceph Monitors are able to query the most recent version of
+the cluster map during sync operations, and they use the key/value store's
+snapshots and iterators (using RocksDB) to perform store-wide synchronization.
+
+.. ditaa::
+ /-------------\ /-------------\
+ | Monitor | Write Changes | Paxos |
+ | cCCC +-------------->+ cCCC |
+ | | | |
+ +-------------+ \------+------/
+ | Auth | |
+ +-------------+ | Write Changes
+ | Log | |
+ +-------------+ v
+ | Monitor Map | /------+------\
+ +-------------+ | Key / Value |
+ | OSD Map | | Store |
+ +-------------+ | cCCC |
+ | PG Map | \------+------/
+ +-------------+ ^
+ | MDS Map | | Read Changes
+ +-------------+ |
+ | cCCC |*---------------------+
+ \-------------/
+
+.. index:: Ceph Monitor; cluster map
+
+Cluster Maps
+------------
+
+The cluster map is a composite of maps, including the monitor map, the OSD map,
+the placement group map and the metadata server map. The cluster map tracks a
+number of important things: which processes are ``in`` the Ceph Storage Cluster;
+which processes that are ``in`` the Ceph Storage Cluster are ``up`` and running
+or ``down``; whether, the placement groups are ``active`` or ``inactive``, and
+``clean`` or in some other state; and, other details that reflect the current
+state of the cluster such as the total amount of storage space, and the amount
+of storage used.
+
+When there is a significant change in the state of the cluster--e.g., a Ceph OSD
+Daemon goes down, a placement group falls into a degraded state, etc.--the
+cluster map gets updated to reflect the current state of the cluster.
+Additionally, the Ceph Monitor also maintains a history of the prior states of
+the cluster. The monitor map, OSD map, placement group map and metadata server
+map each maintain a history of their map versions. We call each version an
+"epoch."
+
+When operating your Ceph Storage Cluster, keeping track of these states is an
+important part of your system administration duties. See `Monitoring a Cluster`_
+and `Monitoring OSDs and PGs`_ for additional details.
+
+.. index:: high availability; quorum
+
+Monitor Quorum
+--------------
+
+Our Configuring ceph section provides a trivial `Ceph configuration file`_ that
+provides for one monitor in the test cluster. A cluster will run fine with a
+single monitor; however, **a single monitor is a single-point-of-failure**. To
+ensure high availability in a production Ceph Storage Cluster, you should run
+Ceph with multiple monitors so that the failure of a single monitor **WILL NOT**
+bring down your entire cluster.
+
+When a Ceph Storage Cluster runs multiple Ceph Monitors for high availability,
+Ceph Monitors use `Paxos`_ to establish consensus about the master cluster map.
+A consensus requires a majority of monitors running to establish a quorum for
+consensus about the cluster map (e.g., 1; 2 out of 3; 3 out of 5; 4 out of 6;
+etc.).
+
+.. confval:: mon_force_quorum_join
+
+.. index:: Ceph Monitor; consistency
+
+Consistency
+-----------
+
+When you add monitor settings to your Ceph configuration file, you need to be
+aware of some of the architectural aspects of Ceph Monitors. **Ceph imposes
+strict consistency requirements** for a Ceph monitor when discovering another
+Ceph Monitor within the cluster. Whereas, Ceph Clients and other Ceph daemons
+use the Ceph configuration file to discover monitors, monitors discover each
+other using the monitor map (monmap), not the Ceph configuration file.
+
+A Ceph Monitor always refers to the local copy of the monmap when discovering
+other Ceph Monitors in the Ceph Storage Cluster. Using the monmap instead of the
+Ceph configuration file avoids errors that could break the cluster (e.g., typos
+in ``ceph.conf`` when specifying a monitor address or port). Since monitors use
+monmaps for discovery and they share monmaps with clients and other Ceph
+daemons, **the monmap provides monitors with a strict guarantee that their
+consensus is valid.**
+
+Strict consistency also applies to updates to the monmap. As with any other
+updates on the Ceph Monitor, changes to the monmap always run through a
+distributed consensus algorithm called `Paxos`_. The Ceph Monitors must agree on
+each update to the monmap, such as adding or removing a Ceph Monitor, to ensure
+that each monitor in the quorum has the same version of the monmap. Updates to
+the monmap are incremental so that Ceph Monitors have the latest agreed upon
+version, and a set of previous versions. Maintaining a history enables a Ceph
+Monitor that has an older version of the monmap to catch up with the current
+state of the Ceph Storage Cluster.
+
+If Ceph Monitors were to discover each other through the Ceph configuration file
+instead of through the monmap, additional risks would be introduced because
+Ceph configuration files are not updated and distributed automatically. Ceph
+Monitors might inadvertently use an older Ceph configuration file, fail to
+recognize a Ceph Monitor, fall out of a quorum, or develop a situation where
+`Paxos`_ is not able to determine the current state of the system accurately.
+
+
+.. index:: Ceph Monitor; bootstrapping monitors
+
+Bootstrapping Monitors
+----------------------
+
+In most configuration and deployment cases, tools that deploy Ceph help
+bootstrap the Ceph Monitors by generating a monitor map for you (e.g.,
+``cephadm``, etc). A Ceph Monitor requires a few explicit
+settings:
+
+- **Filesystem ID**: The ``fsid`` is the unique identifier for your
+ object store. Since you can run multiple clusters on the same
+ hardware, you must specify the unique ID of the object store when
+ bootstrapping a monitor. Deployment tools usually do this for you
+ (e.g., ``cephadm`` can call a tool like ``uuidgen``), but you
+ may specify the ``fsid`` manually too.
+
+- **Monitor ID**: A monitor ID is a unique ID assigned to each monitor within
+ the cluster. It is an alphanumeric value, and by convention the identifier
+ usually follows an alphabetical increment (e.g., ``a``, ``b``, etc.). This
+ can be set in a Ceph configuration file (e.g., ``[mon.a]``, ``[mon.b]``, etc.),
+ by a deployment tool, or using the ``ceph`` commandline.
+
+- **Keys**: The monitor must have secret keys. A deployment tool such as
+ ``cephadm`` usually does this for you, but you may
+ perform this step manually too. See `Monitor Keyrings`_ for details.
+
+For additional details on bootstrapping, see `Bootstrapping a Monitor`_.
+
+.. index:: Ceph Monitor; configuring monitors
+
+Configuring Monitors
+====================
+
+To apply configuration settings to the entire cluster, enter the configuration
+settings under ``[global]``. To apply configuration settings to all monitors in
+your cluster, enter the configuration settings under ``[mon]``. To apply
+configuration settings to specific monitors, specify the monitor instance
+(e.g., ``[mon.a]``). By convention, monitor instance names use alpha notation.
+
+.. code-block:: ini
+
+ [global]
+
+ [mon]
+
+ [mon.a]
+
+ [mon.b]
+
+ [mon.c]
+
+
+Minimum Configuration
+---------------------
+
+The bare minimum monitor settings for a Ceph monitor via the Ceph configuration
+file include a hostname and a network address for each monitor. You can configure
+these under ``[mon]`` or under the entry for a specific monitor.
+
+.. code-block:: ini
+
+ [global]
+ mon_host = 10.0.0.2,10.0.0.3,10.0.0.4
+
+.. code-block:: ini
+
+ [mon.a]
+ host = hostname1
+ mon_addr = 10.0.0.10:6789
+
+See the `Network Configuration Reference`_ for details.
+
+.. note:: This minimum configuration for monitors assumes that a deployment
+ tool generates the ``fsid`` and the ``mon.`` key for you.
+
+Once you deploy a Ceph cluster, you **SHOULD NOT** change the IP addresses of
+monitors. However, if you decide to change the monitor's IP address, you
+must follow a specific procedure. See :ref:`Changing a Monitor's IP address` for
+details.
+
+Monitors can also be found by clients by using DNS SRV records. See `Monitor lookup through DNS`_ for details.
+
+Cluster ID
+----------
+
+Each Ceph Storage Cluster has a unique identifier (``fsid``). If specified, it
+usually appears under the ``[global]`` section of the configuration file.
+Deployment tools usually generate the ``fsid`` and store it in the monitor map,
+so the value may not appear in a configuration file. The ``fsid`` makes it
+possible to run daemons for multiple clusters on the same hardware.
+
+.. confval:: fsid
+
+.. index:: Ceph Monitor; initial members
+
+Initial Members
+---------------
+
+We recommend running a production Ceph Storage Cluster with at least three Ceph
+Monitors to ensure high availability. When you run multiple monitors, you may
+specify the initial monitors that must be members of the cluster in order to
+establish a quorum. This may reduce the time it takes for your cluster to come
+online.
+
+.. code-block:: ini
+
+ [mon]
+ mon_initial_members = a,b,c
+
+
+.. confval:: mon_initial_members
+
+.. index:: Ceph Monitor; data path
+
+Data
+----
+
+Ceph provides a default path where Ceph Monitors store data. For optimal
+performance in a production Ceph Storage Cluster, we recommend running Ceph
+Monitors on separate hosts and drives from Ceph OSD Daemons. As leveldb uses
+``mmap()`` for writing the data, Ceph Monitors flush their data from memory to disk
+very often, which can interfere with Ceph OSD Daemon workloads if the data
+store is co-located with the OSD Daemons.
+
+In Ceph versions 0.58 and earlier, Ceph Monitors store their data in plain files. This
+approach allows users to inspect monitor data with common tools like ``ls``
+and ``cat``. However, this approach didn't provide strong consistency.
+
+In Ceph versions 0.59 and later, Ceph Monitors store their data as key/value
+pairs. Ceph Monitors require `ACID`_ transactions. Using a data store prevents
+recovering Ceph Monitors from running corrupted versions through Paxos, and it
+enables multiple modification operations in one single atomic batch, among other
+advantages.
+
+Generally, we do not recommend changing the default data location. If you modify
+the default location, we recommend that you make it uniform across Ceph Monitors
+by setting it in the ``[mon]`` section of the configuration file.
+
+
+.. confval:: mon_data
+.. confval:: mon_data_size_warn
+.. confval:: mon_data_avail_warn
+.. confval:: mon_data_avail_crit
+.. confval:: mon_warn_on_crush_straw_calc_version_zero
+.. confval:: mon_warn_on_legacy_crush_tunables
+.. confval:: mon_crush_min_required_version
+.. confval:: mon_warn_on_osd_down_out_interval_zero
+.. confval:: mon_warn_on_slow_ping_ratio
+.. confval:: mon_warn_on_slow_ping_time
+.. confval:: mon_warn_on_pool_no_redundancy
+.. confval:: mon_cache_target_full_warn_ratio
+.. confval:: mon_health_to_clog
+.. confval:: mon_health_to_clog_tick_interval
+.. confval:: mon_health_to_clog_interval
+
+.. index:: Ceph Storage Cluster; capacity planning, Ceph Monitor; capacity planning
+
+.. _storage-capacity:
+
+Storage Capacity
+----------------
+
+When a Ceph Storage Cluster gets close to its maximum capacity
+(see``mon_osd_full ratio``), Ceph prevents you from writing to or reading from OSDs
+as a safety measure to prevent data loss. Therefore, letting a
+production Ceph Storage Cluster approach its full ratio is not a good practice,
+because it sacrifices high availability. The default full ratio is ``.95``, or
+95% of capacity. This a very aggressive setting for a test cluster with a small
+number of OSDs.
+
+.. tip:: When monitoring your cluster, be alert to warnings related to the
+ ``nearfull`` ratio. This means that a failure of some OSDs could result
+ in a temporary service disruption if one or more OSDs fails. Consider adding
+ more OSDs to increase storage capacity.
+
+A common scenario for test clusters involves a system administrator removing an
+OSD from the Ceph Storage Cluster, watching the cluster rebalance, then removing
+another OSD, and another, until at least one OSD eventually reaches the full
+ratio and the cluster locks up. We recommend a bit of capacity
+planning even with a test cluster. Planning enables you to gauge how much spare
+capacity you will need in order to maintain high availability. Ideally, you want
+to plan for a series of Ceph OSD Daemon failures where the cluster can recover
+to an ``active+clean`` state without replacing those OSDs
+immediately. Cluster operation continues in the ``active+degraded`` state, but this
+is not ideal for normal operation and should be addressed promptly.
+
+The following diagram depicts a simplistic Ceph Storage Cluster containing 33
+Ceph Nodes with one OSD per host, each OSD reading from
+and writing to a 3TB drive. So this exemplary Ceph Storage Cluster has a maximum
+actual capacity of 99TB. With a ``mon osd full ratio`` of ``0.95``, if the Ceph
+Storage Cluster falls to 5TB of remaining capacity, the cluster will not allow
+Ceph Clients to read and write data. So the Ceph Storage Cluster's operating
+capacity is 95TB, not 99TB.
+
+.. ditaa::
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+ | Rack 1 | | Rack 2 | | Rack 3 | | Rack 4 | | Rack 5 | | Rack 6 |
+ | cCCC | | cF00 | | cCCC | | cCCC | | cCCC | | cCCC |
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+ | OSD 1 | | OSD 7 | | OSD 13 | | OSD 19 | | OSD 25 | | OSD 31 |
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+ | OSD 2 | | OSD 8 | | OSD 14 | | OSD 20 | | OSD 26 | | OSD 32 |
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+ | OSD 3 | | OSD 9 | | OSD 15 | | OSD 21 | | OSD 27 | | OSD 33 |
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+ | OSD 4 | | OSD 10 | | OSD 16 | | OSD 22 | | OSD 28 | | Spare |
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+ | OSD 5 | | OSD 11 | | OSD 17 | | OSD 23 | | OSD 29 | | Spare |
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+ | OSD 6 | | OSD 12 | | OSD 18 | | OSD 24 | | OSD 30 | | Spare |
+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+
+
+It is normal in such a cluster for one or two OSDs to fail. A less frequent but
+reasonable scenario involves a rack's router or power supply failing, which
+brings down multiple OSDs simultaneously (e.g., OSDs 7-12). In such a scenario,
+you should still strive for a cluster that can remain operational and achieve an
+``active + clean`` state--even if that means adding a few hosts with additional
+OSDs in short order. If your capacity utilization is too high, you may not lose
+data, but you could still sacrifice data availability while resolving an outage
+within a failure domain if capacity utilization of the cluster exceeds the full
+ratio. For this reason, we recommend at least some rough capacity planning.
+
+Identify two numbers for your cluster:
+
+#. The number of OSDs.
+#. The total capacity of the cluster
+
+If you divide the total capacity of your cluster by the number of OSDs in your
+cluster, you will find the mean average capacity of an OSD within your cluster.
+Consider multiplying that number by the number of OSDs you expect will fail
+simultaneously during normal operations (a relatively small number). Finally
+multiply the capacity of the cluster by the full ratio to arrive at a maximum
+operating capacity; then, subtract the number of amount of data from the OSDs
+you expect to fail to arrive at a reasonable full ratio. Repeat the foregoing
+process with a higher number of OSD failures (e.g., a rack of OSDs) to arrive at
+a reasonable number for a near full ratio.
+
+The following settings only apply on cluster creation and are then stored in
+the OSDMap. To clarify, in normal operation the values that are used by OSDs
+are those found in the OSDMap, not those in the configuration file or central
+config store.
+
+.. code-block:: ini
+
+ [global]
+ mon_osd_full_ratio = .80
+ mon_osd_backfillfull_ratio = .75
+ mon_osd_nearfull_ratio = .70
+
+
+``mon_osd_full_ratio``
+
+:Description: The threshold percentage of device space utilized before an OSD is
+ considered ``full``.
+
+:Type: Float
+:Default: ``0.95``
+
+
+``mon_osd_backfillfull_ratio``
+
+:Description: The threshold percentage of device space utilized before an OSD is
+ considered too ``full`` to backfill.
+
+:Type: Float
+:Default: ``0.90``
+
+
+``mon_osd_nearfull_ratio``
+
+:Description: The threshold percentage of device space used before an OSD is
+ considered ``nearfull``.
+
+:Type: Float
+:Default: ``0.85``
+
+
+.. tip:: If some OSDs are nearfull, but others have plenty of capacity, you
+ may have an inaccurate CRUSH weight set for the nearfull OSDs.
+
+.. tip:: These settings only apply during cluster creation. Afterwards they need
+ to be changed in the OSDMap using ``ceph osd set-nearfull-ratio`` and
+ ``ceph osd set-full-ratio``
+
+.. index:: heartbeat
+
+Heartbeat
+---------
+
+Ceph monitors know about the cluster by requiring reports from each OSD, and by
+receiving reports from OSDs about the status of their neighboring OSDs. Ceph
+provides reasonable default settings for monitor/OSD interaction; however, you
+may modify them as needed. See `Monitor/OSD Interaction`_ for details.
+
+
+.. index:: Ceph Monitor; leader, Ceph Monitor; provider, Ceph Monitor; requester, Ceph Monitor; synchronization
+
+Monitor Store Synchronization
+-----------------------------
+
+When you run a production cluster with multiple monitors (recommended), each
+monitor checks to see if a neighboring monitor has a more recent version of the
+cluster map (e.g., a map in a neighboring monitor with one or more epoch numbers
+higher than the most current epoch in the map of the instant monitor).
+Periodically, one monitor in the cluster may fall behind the other monitors to
+the point where it must leave the quorum, synchronize to retrieve the most
+current information about the cluster, and then rejoin the quorum. For the
+purposes of synchronization, monitors may assume one of three roles:
+
+#. **Leader**: The `Leader` is the first monitor to achieve the most recent
+ Paxos version of the cluster map.
+
+#. **Provider**: The `Provider` is a monitor that has the most recent version
+ of the cluster map, but wasn't the first to achieve the most recent version.
+
+#. **Requester:** A `Requester` is a monitor that has fallen behind the leader
+ and must synchronize in order to retrieve the most recent information about
+ the cluster before it can rejoin the quorum.
+
+These roles enable a leader to delegate synchronization duties to a provider,
+which prevents synchronization requests from overloading the leader--improving
+performance. In the following diagram, the requester has learned that it has
+fallen behind the other monitors. The requester asks the leader to synchronize,
+and the leader tells the requester to synchronize with a provider.
+
+
+.. ditaa::
+ +-----------+ +---------+ +----------+
+ | Requester | | Leader | | Provider |
+ +-----------+ +---------+ +----------+
+ | | |
+ | | |
+ | Ask to Synchronize | |
+ |------------------->| |
+ | | |
+ |<-------------------| |
+ | Tell Requester to | |
+ | Sync with Provider | |
+ | | |
+ | Synchronize |
+ |--------------------+-------------------->|
+ | | |
+ |<-------------------+---------------------|
+ | Send Chunk to Requester |
+ | (repeat as necessary) |
+ | Requester Acks Chuck to Provider |
+ |--------------------+-------------------->|
+ | |
+ | Sync Complete |
+ | Notification |
+ |------------------->|
+ | |
+ |<-------------------|
+ | Ack |
+ | |
+
+
+Synchronization always occurs when a new monitor joins the cluster. During
+runtime operations, monitors may receive updates to the cluster map at different
+times. This means the leader and provider roles may migrate from one monitor to
+another. If this happens while synchronizing (e.g., a provider falls behind the
+leader), the provider can terminate synchronization with a requester.
+
+Once synchronization is complete, Ceph performs trimming across the cluster.
+Trimming requires that the placement groups are ``active+clean``.
+
+
+.. confval:: mon_sync_timeout
+.. confval:: mon_sync_max_payload_size
+.. confval:: paxos_max_join_drift
+.. confval:: paxos_stash_full_interval
+.. confval:: paxos_propose_interval
+.. confval:: paxos_min
+.. confval:: paxos_min_wait
+.. confval:: paxos_trim_min
+.. confval:: paxos_trim_max
+.. confval:: paxos_service_trim_min
+.. confval:: paxos_service_trim_max
+.. confval:: paxos_service_trim_max_multiplier
+.. confval:: mon_mds_force_trim_to
+.. confval:: mon_osd_force_trim_to
+.. confval:: mon_osd_cache_size
+.. confval:: mon_election_timeout
+.. confval:: mon_lease
+.. confval:: mon_lease_renew_interval_factor
+.. confval:: mon_lease_ack_timeout_factor
+.. confval:: mon_accept_timeout_factor
+.. confval:: mon_min_osdmap_epochs
+.. confval:: mon_max_log_epochs
+
+
+.. index:: Ceph Monitor; clock
+
+.. _mon-config-ref-clock:
+
+Clock
+-----
+
+Ceph daemons pass critical messages to each other, which must be processed
+before daemons reach a timeout threshold. If the clocks in Ceph monitors
+are not synchronized, it can lead to a number of anomalies. For example:
+
+- Daemons ignoring received messages (e.g., timestamps outdated)
+- Timeouts triggered too soon/late when a message wasn't received in time.
+
+See `Monitor Store Synchronization`_ for details.
+
+
+.. tip:: You must configure NTP or PTP daemons on your Ceph monitor hosts to
+ ensure that the monitor cluster operates with synchronized clocks.
+ It can be advantageous to have monitor hosts sync with each other
+ as well as with multiple quality upstream time sources.
+
+Clock drift may still be noticeable with NTP even though the discrepancy is not
+yet harmful. Ceph's clock drift / clock skew warnings may get triggered even
+though NTP maintains a reasonable level of synchronization. Increasing your
+clock drift may be tolerable under such circumstances; however, a number of
+factors such as workload, network latency, configuring overrides to default
+timeouts and the `Monitor Store Synchronization`_ settings may influence
+the level of acceptable clock drift without compromising Paxos guarantees.
+
+Ceph provides the following tunable options to allow you to find
+acceptable values.
+
+.. confval:: mon_tick_interval
+.. confval:: mon_clock_drift_allowed
+.. confval:: mon_clock_drift_warn_backoff
+.. confval:: mon_timecheck_interval
+.. confval:: mon_timecheck_skew_interval
+
+Client
+------
+
+.. confval:: mon_client_hunt_interval
+.. confval:: mon_client_ping_interval
+.. confval:: mon_client_max_log_entries_per_message
+.. confval:: mon_client_bytes
+
+.. _pool-settings:
+
+Pool settings
+=============
+
+Since version v0.94 there is support for pool flags which allow or disallow changes to be made to pools.
+Monitors can also disallow removal of pools if appropriately configured. The inconvenience of this guardrail
+is far outweighed by the number of accidental pool (and thus data) deletions it prevents.
+
+.. confval:: mon_allow_pool_delete
+.. confval:: osd_pool_default_ec_fast_read
+.. confval:: osd_pool_default_flag_hashpspool
+.. confval:: osd_pool_default_flag_nodelete
+.. confval:: osd_pool_default_flag_nopgchange
+.. confval:: osd_pool_default_flag_nosizechange
+
+For more information about the pool flags see :ref:`Pool values <setpoolvalues>`.
+
+Miscellaneous
+=============
+
+.. confval:: mon_max_osd
+.. confval:: mon_globalid_prealloc
+.. confval:: mon_subscribe_interval
+.. confval:: mon_stat_smooth_intervals
+.. confval:: mon_probe_timeout
+.. confval:: mon_daemon_bytes
+.. confval:: mon_max_log_entries_per_event
+.. confval:: mon_osd_prime_pg_temp
+.. confval:: mon_osd_prime_pg_temp_max_time
+.. confval:: mon_osd_prime_pg_temp_max_estimate
+.. confval:: mon_mds_skip_sanity
+.. confval:: mon_max_mdsmap_epochs
+.. confval:: mon_config_key_max_entry_size
+.. confval:: mon_scrub_interval
+.. confval:: mon_scrub_max_keys
+.. confval:: mon_compact_on_start
+.. confval:: mon_compact_on_bootstrap
+.. confval:: mon_compact_on_trim
+.. confval:: mon_cpu_threads
+.. confval:: mon_osd_mapping_pgs_per_chunk
+.. confval:: mon_session_timeout
+.. confval:: mon_osd_cache_size_min
+.. confval:: mon_memory_target
+.. confval:: mon_memory_autotune
+
+.. _Paxos: https://en.wikipedia.org/wiki/Paxos_(computer_science)
+.. _Monitor Keyrings: ../../../dev/mon-bootstrap#secret-keys
+.. _Ceph configuration file: ../ceph-conf/#monitors
+.. _Network Configuration Reference: ../network-config-ref
+.. _Monitor lookup through DNS: ../mon-lookup-dns
+.. _ACID: https://en.wikipedia.org/wiki/ACID
+.. _Adding/Removing a Monitor: ../../operations/add-or-rm-mons
+.. _Monitoring a Cluster: ../../operations/monitoring
+.. _Monitoring OSDs and PGs: ../../operations/monitoring-osd-pg
+.. _Bootstrapping a Monitor: ../../../dev/mon-bootstrap
+.. _Monitor/OSD Interaction: ../mon-osd-interaction
+.. _Scalability and High Availability: ../../../architecture#scalability-and-high-availability