summaryrefslogtreecommitdiffstats
path: root/src/arrow/js/perf/index.ts
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/arrow/js/perf/index.ts234
1 files changed, 234 insertions, 0 deletions
diff --git a/src/arrow/js/perf/index.ts b/src/arrow/js/perf/index.ts
new file mode 100644
index 000000000..9f6cb8f79
--- /dev/null
+++ b/src/arrow/js/perf/index.ts
@@ -0,0 +1,234 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Alternatively, use bundles for performance tests
+// import * as Arrow from '../targets/es5/umd';
+// import * as Arrow from '../targets/es5/cjs';
+// import * as Arrow from '../targets/es2015/umd';
+// import * as Arrow from '../targets/es2015/cjs';
+
+import * as Arrow from '../src/Arrow';
+
+import config from './config';
+import b from 'benny';
+import { CaseResult, Summary } from 'benny/lib/internal/common-types';
+import kleur from 'kleur';
+
+const { predicate, Table, RecordBatchReader } = Arrow;
+const { col } = predicate;
+
+
+const args = process.argv.slice(2);
+const json = args[0] === '--json';
+
+const formatter = new Intl.NumberFormat();
+function formatNumber(number: number, precision = 0) {
+ const rounded = number > precision * 10 ? Math.round(number) : parseFloat((number).toPrecision(precision));
+ return formatter.format(rounded);
+}
+
+const results: CaseResult[] = [];
+
+function cycle(result: CaseResult, _summary: Summary) {
+ const duration = result.details.median * 1000;
+ if (json) {
+ result.suite = _summary.name;
+ results.push(result);
+ }
+ console.log(
+ `${kleur.cyan(result.name)} ${formatNumber(result.ops, 3)} ops/s ±${result.margin.toPrecision(2)}%, ${formatNumber(duration, 2)} ms, ${kleur.gray(result.samples + ' samples')}`,
+ );
+}
+
+for (const { name, ipc, df } of config) {
+ b.suite(
+ `Parse`,
+
+ b.add(`dataset: ${name}, function: Table.from`, () => {
+ Table.from(ipc);
+ }),
+
+ b.add(`dataset: ${name}, function: readBatches`, () => {
+ for (const _recordBatch of RecordBatchReader.from(ipc)) {}
+ }),
+
+ b.add(`dataset: ${name}, function: serialize`, () => {
+ df.serialize();
+ }),
+
+ b.cycle(cycle)
+ );
+
+ const schema = df.schema;
+
+ const suites = [{
+ suite_name: `Get values by index`,
+ fn(vector: Arrow.Column<any>) {
+ for (let i = -1, n = vector.length; ++i < n;) {
+ vector.get(i);
+ }
+ }
+ }, {
+ suite_name: `Iterate vectors`,
+ fn(vector: Arrow.Column<any>) { for (const _value of vector) {} }
+ }, {
+ suite_name: `Slice toArray vectors`,
+ fn(vector: Arrow.Column<any>) { vector.slice().toArray(); }
+ }, {
+ suite_name: `Slice vectors`,
+ fn(vector: Arrow.Column<any>) { vector.slice(); }
+ }];
+
+ for (const {suite_name, fn} of suites) {
+ b.suite(
+ suite_name,
+
+ ...schema.fields.map((f, i) => {
+ const vector = df.getColumnAt(i)!;
+ return b.add(`dataset: ${name}, column: ${f.name}, length: ${formatNumber(vector.length)}, type: ${vector.type}`, () => {
+ fn(vector);
+ });
+ }),
+
+ b.cycle(cycle)
+ );
+ }
+}
+
+
+for (const { name, df, countBys, counts } of config) {
+ b.suite(
+ `DataFrame Iterate`,
+
+ b.add(`dataset: ${name}, length: ${formatNumber(df.length)}`, () => {
+ for (const _value of df) {}
+ }),
+
+ b.cycle(cycle)
+ );
+
+ b.suite(
+ `DataFrame Count By`,
+
+ ...countBys.map((column: string) => b.add(
+ `dataset: ${name}, column: ${column}, length: ${formatNumber(df.length)}, type: ${df.schema.fields.find((c)=> c.name === column)!.type}`,
+ () => df.countBy(column)
+ )),
+
+ b.cycle(cycle)
+ );
+
+ b.suite(
+ `DataFrame Filter-Scan Count`,
+
+ ...counts.map(({ column, test, value }: {column: string; test: 'gt' | 'eq'; value: number | string}) => b.add(
+ `dataset: ${name}, column: ${column}, length: ${formatNumber(df.length)}, type: ${df.schema.fields.find((c)=> c.name === column)!.type}, test: ${test}, value: ${value}`,
+ () => {
+ let filteredDf: Arrow.FilteredDataFrame;
+ if (test == 'gt') {
+ filteredDf = df.filter(col(column).gt(value));
+ } else if (test == 'eq') {
+ filteredDf = df.filter(col(column).eq(value));
+ } else {
+ throw new Error(`Unrecognized test "${test}"`);
+ }
+
+ return () => filteredDf.count();
+ }
+ )),
+
+ b.cycle(cycle)
+ );
+
+ b.suite(
+ `DataFrame Filter-Iterate`,
+
+ ...counts.map(({ column, test, value }: {column: string; test: 'gt' | 'eq'; value: number | string}) => b.add(
+ `dataset: ${name}, column: ${column}, length: ${formatNumber(df.length)}, type: ${df.schema.fields.find((c)=> c.name === column)!.type}, test: ${test}, value: ${value}`,
+ () => {
+ let filteredDf: Arrow.FilteredDataFrame;
+ if (test == 'gt') {
+ filteredDf = df.filter(col(column).gt(value));
+ } else if (test == 'eq') {
+ filteredDf = df.filter(col(column).eq(value));
+ } else {
+ throw new Error(`Unrecognized test "${test}"`);
+ }
+
+ return () => {
+ for (const _value of filteredDf) {}
+ };
+ }
+ )),
+
+ b.cycle(cycle)
+ );
+
+ b.suite(
+ `DataFrame Direct Count`,
+
+ ...counts.map(({ column, test, value }: {column: string; test: 'gt' | 'eq'; value: number | string}) => b.add(
+ `dataset: ${name}, column: ${column}, length: ${formatNumber(df.length)}, type: ${df.schema.fields.find((c)=> c.name === column)!.type}, test: ${test}, value: ${value}`,
+ () => {
+ const colidx = df.schema.fields.findIndex((c)=> c.name === column);
+
+ if (test == 'gt') {
+ return () => {
+ let sum = 0;
+ const batches = df.chunks;
+ const numBatches = batches.length;
+ for (let batchIndex = -1; ++batchIndex < numBatches;) {
+ // load batches
+ const batch = batches[batchIndex];
+ const vector = batch.getChildAt(colidx)!;
+ // yield all indices
+ for (let index = -1, length = batch.length; ++index < length;) {
+ sum += (vector.get(index) >= value) ? 1 : 0;
+ }
+ }
+ return sum;
+ };
+ } else if (test == 'eq') {
+ return () => {
+ let sum = 0;
+ const batches = df.chunks;
+ const numBatches = batches.length;
+ for (let batchIndex = -1; ++batchIndex < numBatches;) {
+ // load batches
+ const batch = batches[batchIndex];
+ const vector = batch.getChildAt(colidx)!;
+ // yield all indices
+ for (let index = -1, length = batch.length; ++index < length;) {
+ sum += (vector.get(index) === value) ? 1 : 0;
+ }
+ }
+ return sum;
+ };
+ } else {
+ throw new Error(`Unrecognized test "${test}"`);
+ }
+ }
+ )),
+
+ b.cycle(cycle),
+
+ b.complete(() => {
+ // last benchmark finished
+ json && process.stderr.write(JSON.stringify(results, null, 2));
+ })
+ );
+}