summaryrefslogtreecommitdiffstats
path: root/src/fmt/test/gtest/gmock/gmock.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/fmt/test/gtest/gmock/gmock.h')
-rw-r--r--src/fmt/test/gtest/gmock/gmock.h11645
1 files changed, 11645 insertions, 0 deletions
diff --git a/src/fmt/test/gtest/gmock/gmock.h b/src/fmt/test/gtest/gmock/gmock.h
new file mode 100644
index 000000000..d121f7df2
--- /dev/null
+++ b/src/fmt/test/gtest/gmock/gmock.h
@@ -0,0 +1,11645 @@
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This is the main header file a user should include.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
+
+// This file implements the following syntax:
+//
+// ON_CALL(mock_object, Method(...))
+// .With(...) ?
+// .WillByDefault(...);
+//
+// where With() is optional and WillByDefault() must appear exactly
+// once.
+//
+// EXPECT_CALL(mock_object, Method(...))
+// .With(...) ?
+// .Times(...) ?
+// .InSequence(...) *
+// .WillOnce(...) *
+// .WillRepeatedly(...) ?
+// .RetiresOnSaturation() ? ;
+//
+// where all clauses are optional and WillOnce() can be repeated.
+
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// The ACTION* family of macros can be used in a namespace scope to
+// define custom actions easily. The syntax:
+//
+// ACTION(name) { statements; }
+//
+// will define an action with the given name that executes the
+// statements. The value returned by the statements will be used as
+// the return value of the action. Inside the statements, you can
+// refer to the K-th (0-based) argument of the mock function by
+// 'argK', and refer to its type by 'argK_type'. For example:
+//
+// ACTION(IncrementArg1) {
+// arg1_type temp = arg1;
+// return ++(*temp);
+// }
+//
+// allows you to write
+//
+// ...WillOnce(IncrementArg1());
+//
+// You can also refer to the entire argument tuple and its type by
+// 'args' and 'args_type', and refer to the mock function type and its
+// return type by 'function_type' and 'return_type'.
+//
+// Note that you don't need to specify the types of the mock function
+// arguments. However rest assured that your code is still type-safe:
+// you'll get a compiler error if *arg1 doesn't support the ++
+// operator, or if the type of ++(*arg1) isn't compatible with the
+// mock function's return type, for example.
+//
+// Sometimes you'll want to parameterize the action. For that you can use
+// another macro:
+//
+// ACTION_P(name, param_name) { statements; }
+//
+// For example:
+//
+// ACTION_P(Add, n) { return arg0 + n; }
+//
+// will allow you to write:
+//
+// ...WillOnce(Add(5));
+//
+// Note that you don't need to provide the type of the parameter
+// either. If you need to reference the type of a parameter named
+// 'foo', you can write 'foo_type'. For example, in the body of
+// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
+// of 'n'.
+//
+// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
+// multi-parameter actions.
+//
+// For the purpose of typing, you can view
+//
+// ACTION_Pk(Foo, p1, ..., pk) { ... }
+//
+// as shorthand for
+//
+// template <typename p1_type, ..., typename pk_type>
+// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
+//
+// In particular, you can provide the template type arguments
+// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
+// although usually you can rely on the compiler to infer the types
+// for you automatically. You can assign the result of expression
+// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
+// pk_type>. This can be useful when composing actions.
+//
+// You can also overload actions with different numbers of parameters:
+//
+// ACTION_P(Plus, a) { ... }
+// ACTION_P2(Plus, a, b) { ... }
+//
+// While it's tempting to always use the ACTION* macros when defining
+// a new action, you should also consider implementing ActionInterface
+// or using MakePolymorphicAction() instead, especially if you need to
+// use the action a lot. While these approaches require more work,
+// they give you more control on the types of the mock function
+// arguments and the action parameters, which in general leads to
+// better compiler error messages that pay off in the long run. They
+// also allow overloading actions based on parameter types (as opposed
+// to just based on the number of parameters).
+//
+// CAVEAT:
+//
+// ACTION*() can only be used in a namespace scope as templates cannot be
+// declared inside of a local class.
+// Users can, however, define any local functors (e.g. a lambda) that
+// can be used as actions.
+//
+// MORE INFORMATION:
+//
+// To learn more about using these macros, please search for 'ACTION' on
+// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
+
+#ifndef _WIN32_WCE
+# include <errno.h>
+#endif
+
+#include <algorithm>
+#include <functional>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file defines some utilities useful for implementing Google
+// Mock. They are subject to change without notice, so please DO NOT
+// USE THEM IN USER CODE.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
+
+#include <stdio.h>
+#include <ostream> // NOLINT
+#include <string>
+#include <type_traits>
+// Copyright 2008, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+//
+// Low-level types and utilities for porting Google Mock to various
+// platforms. All macros ending with _ and symbols defined in an
+// internal namespace are subject to change without notice. Code
+// outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't
+// end with _ are part of Google Mock's public API and can be used by
+// code outside Google Mock.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
+
+#include <assert.h>
+#include <stdlib.h>
+#include <cstdint>
+#include <iostream>
+
+// Most of the utilities needed for porting Google Mock are also
+// required for Google Test and are defined in gtest-port.h.
+//
+// Note to maintainers: to reduce code duplication, prefer adding
+// portability utilities to Google Test's gtest-port.h instead of
+// here, as Google Mock depends on Google Test. Only add a utility
+// here if it's truly specific to Google Mock.
+
+#include "gtest/gtest.h"
+// Copyright 2015, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Injection point for custom user configurations. See README for details
+//
+// ** Custom implementation starts here **
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
+
+// For MS Visual C++, check the compiler version. At least VS 2015 is
+// required to compile Google Mock.
+#if defined(_MSC_VER) && _MSC_VER < 1900
+# error "At least Visual C++ 2015 (14.0) is required to compile Google Mock."
+#endif
+
+// Macro for referencing flags. This is public as we want the user to
+// use this syntax to reference Google Mock flags.
+#define GMOCK_FLAG(name) FLAGS_gmock_##name
+
+#if !defined(GMOCK_DECLARE_bool_)
+
+// Macros for declaring flags.
+# define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name)
+# define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name)
+# define GMOCK_DECLARE_string_(name) \
+ extern GTEST_API_ ::std::string GMOCK_FLAG(name)
+
+// Macros for defining flags.
+# define GMOCK_DEFINE_bool_(name, default_val, doc) \
+ GTEST_API_ bool GMOCK_FLAG(name) = (default_val)
+# define GMOCK_DEFINE_int32_(name, default_val, doc) \
+ GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val)
+# define GMOCK_DEFINE_string_(name, default_val, doc) \
+ GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val)
+
+#endif // !defined(GMOCK_DECLARE_bool_)
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
+
+namespace testing {
+
+template <typename>
+class Matcher;
+
+namespace internal {
+
+// Silence MSVC C4100 (unreferenced formal parameter) and
+// C4805('==': unsafe mix of type 'const int' and type 'const bool')
+#ifdef _MSC_VER
+# pragma warning(push)
+# pragma warning(disable:4100)
+# pragma warning(disable:4805)
+#endif
+
+// Joins a vector of strings as if they are fields of a tuple; returns
+// the joined string.
+GTEST_API_ std::string JoinAsTuple(const Strings& fields);
+
+// Converts an identifier name to a space-separated list of lower-case
+// words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
+// treated as one word. For example, both "FooBar123" and
+// "foo_bar_123" are converted to "foo bar 123".
+GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name);
+
+// GetRawPointer(p) returns the raw pointer underlying p when p is a
+// smart pointer, or returns p itself when p is already a raw pointer.
+// The following default implementation is for the smart pointer case.
+template <typename Pointer>
+inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
+ return p.get();
+}
+// This overloaded version is for the raw pointer case.
+template <typename Element>
+inline Element* GetRawPointer(Element* p) { return p; }
+
+// MSVC treats wchar_t as a native type usually, but treats it as the
+// same as unsigned short when the compiler option /Zc:wchar_t- is
+// specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
+// is a native type.
+#if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
+// wchar_t is a typedef.
+#else
+# define GMOCK_WCHAR_T_IS_NATIVE_ 1
+#endif
+
+// In what follows, we use the term "kind" to indicate whether a type
+// is bool, an integer type (excluding bool), a floating-point type,
+// or none of them. This categorization is useful for determining
+// when a matcher argument type can be safely converted to another
+// type in the implementation of SafeMatcherCast.
+enum TypeKind {
+ kBool, kInteger, kFloatingPoint, kOther
+};
+
+// KindOf<T>::value is the kind of type T.
+template <typename T> struct KindOf {
+ enum { value = kOther }; // The default kind.
+};
+
+// This macro declares that the kind of 'type' is 'kind'.
+#define GMOCK_DECLARE_KIND_(type, kind) \
+ template <> struct KindOf<type> { enum { value = kind }; }
+
+GMOCK_DECLARE_KIND_(bool, kBool);
+
+// All standard integer types.
+GMOCK_DECLARE_KIND_(char, kInteger);
+GMOCK_DECLARE_KIND_(signed char, kInteger);
+GMOCK_DECLARE_KIND_(unsigned char, kInteger);
+GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
+GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
+GMOCK_DECLARE_KIND_(int, kInteger);
+GMOCK_DECLARE_KIND_(unsigned int, kInteger);
+GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
+GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
+GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT
+GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT
+
+#if GMOCK_WCHAR_T_IS_NATIVE_
+GMOCK_DECLARE_KIND_(wchar_t, kInteger);
+#endif
+
+// All standard floating-point types.
+GMOCK_DECLARE_KIND_(float, kFloatingPoint);
+GMOCK_DECLARE_KIND_(double, kFloatingPoint);
+GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
+
+#undef GMOCK_DECLARE_KIND_
+
+// Evaluates to the kind of 'type'.
+#define GMOCK_KIND_OF_(type) \
+ static_cast< ::testing::internal::TypeKind>( \
+ ::testing::internal::KindOf<type>::value)
+
+// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
+// is true if and only if arithmetic type From can be losslessly converted to
+// arithmetic type To.
+//
+// It's the user's responsibility to ensure that both From and To are
+// raw (i.e. has no CV modifier, is not a pointer, and is not a
+// reference) built-in arithmetic types, kFromKind is the kind of
+// From, and kToKind is the kind of To; the value is
+// implementation-defined when the above pre-condition is violated.
+template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
+using LosslessArithmeticConvertibleImpl = std::integral_constant<
+ bool,
+ // clang-format off
+ // Converting from bool is always lossless
+ (kFromKind == kBool) ? true
+ // Converting between any other type kinds will be lossy if the type
+ // kinds are not the same.
+ : (kFromKind != kToKind) ? false
+ : (kFromKind == kInteger &&
+ // Converting between integers of different widths is allowed so long
+ // as the conversion does not go from signed to unsigned.
+ (((sizeof(From) < sizeof(To)) &&
+ !(std::is_signed<From>::value && !std::is_signed<To>::value)) ||
+ // Converting between integers of the same width only requires the
+ // two types to have the same signedness.
+ ((sizeof(From) == sizeof(To)) &&
+ (std::is_signed<From>::value == std::is_signed<To>::value)))
+ ) ? true
+ // Floating point conversions are lossless if and only if `To` is at least
+ // as wide as `From`.
+ : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true
+ : false
+ // clang-format on
+ >;
+
+// LosslessArithmeticConvertible<From, To>::value is true if and only if
+// arithmetic type From can be losslessly converted to arithmetic type To.
+//
+// It's the user's responsibility to ensure that both From and To are
+// raw (i.e. has no CV modifier, is not a pointer, and is not a
+// reference) built-in arithmetic types; the value is
+// implementation-defined when the above pre-condition is violated.
+template <typename From, typename To>
+using LosslessArithmeticConvertible =
+ LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From,
+ GMOCK_KIND_OF_(To), To>;
+
+// This interface knows how to report a Google Mock failure (either
+// non-fatal or fatal).
+class FailureReporterInterface {
+ public:
+ // The type of a failure (either non-fatal or fatal).
+ enum FailureType {
+ kNonfatal, kFatal
+ };
+
+ virtual ~FailureReporterInterface() {}
+
+ // Reports a failure that occurred at the given source file location.
+ virtual void ReportFailure(FailureType type, const char* file, int line,
+ const std::string& message) = 0;
+};
+
+// Returns the failure reporter used by Google Mock.
+GTEST_API_ FailureReporterInterface* GetFailureReporter();
+
+// Asserts that condition is true; aborts the process with the given
+// message if condition is false. We cannot use LOG(FATAL) or CHECK()
+// as Google Mock might be used to mock the log sink itself. We
+// inline this function to prevent it from showing up in the stack
+// trace.
+inline void Assert(bool condition, const char* file, int line,
+ const std::string& msg) {
+ if (!condition) {
+ GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
+ file, line, msg);
+ }
+}
+inline void Assert(bool condition, const char* file, int line) {
+ Assert(condition, file, line, "Assertion failed.");
+}
+
+// Verifies that condition is true; generates a non-fatal failure if
+// condition is false.
+inline void Expect(bool condition, const char* file, int line,
+ const std::string& msg) {
+ if (!condition) {
+ GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
+ file, line, msg);
+ }
+}
+inline void Expect(bool condition, const char* file, int line) {
+ Expect(condition, file, line, "Expectation failed.");
+}
+
+// Severity level of a log.
+enum LogSeverity {
+ kInfo = 0,
+ kWarning = 1
+};
+
+// Valid values for the --gmock_verbose flag.
+
+// All logs (informational and warnings) are printed.
+const char kInfoVerbosity[] = "info";
+// Only warnings are printed.
+const char kWarningVerbosity[] = "warning";
+// No logs are printed.
+const char kErrorVerbosity[] = "error";
+
+// Returns true if and only if a log with the given severity is visible
+// according to the --gmock_verbose flag.
+GTEST_API_ bool LogIsVisible(LogSeverity severity);
+
+// Prints the given message to stdout if and only if 'severity' >= the level
+// specified by the --gmock_verbose flag. If stack_frames_to_skip >=
+// 0, also prints the stack trace excluding the top
+// stack_frames_to_skip frames. In opt mode, any positive
+// stack_frames_to_skip is treated as 0, since we don't know which
+// function calls will be inlined by the compiler and need to be
+// conservative.
+GTEST_API_ void Log(LogSeverity severity, const std::string& message,
+ int stack_frames_to_skip);
+
+// A marker class that is used to resolve parameterless expectations to the
+// correct overload. This must not be instantiable, to prevent client code from
+// accidentally resolving to the overload; for example:
+//
+// ON_CALL(mock, Method({}, nullptr))...
+//
+class WithoutMatchers {
+ private:
+ WithoutMatchers() {}
+ friend GTEST_API_ WithoutMatchers GetWithoutMatchers();
+};
+
+// Internal use only: access the singleton instance of WithoutMatchers.
+GTEST_API_ WithoutMatchers GetWithoutMatchers();
+
+// Disable MSVC warnings for infinite recursion, since in this case the
+// the recursion is unreachable.
+#ifdef _MSC_VER
+# pragma warning(push)
+# pragma warning(disable:4717)
+#endif
+
+// Invalid<T>() is usable as an expression of type T, but will terminate
+// the program with an assertion failure if actually run. This is useful
+// when a value of type T is needed for compilation, but the statement
+// will not really be executed (or we don't care if the statement
+// crashes).
+template <typename T>
+inline T Invalid() {
+ Assert(false, "", -1, "Internal error: attempt to return invalid value");
+ // This statement is unreachable, and would never terminate even if it
+ // could be reached. It is provided only to placate compiler warnings
+ // about missing return statements.
+ return Invalid<T>();
+}
+
+#ifdef _MSC_VER
+# pragma warning(pop)
+#endif
+
+// Given a raw type (i.e. having no top-level reference or const
+// modifier) RawContainer that's either an STL-style container or a
+// native array, class StlContainerView<RawContainer> has the
+// following members:
+//
+// - type is a type that provides an STL-style container view to
+// (i.e. implements the STL container concept for) RawContainer;
+// - const_reference is a type that provides a reference to a const
+// RawContainer;
+// - ConstReference(raw_container) returns a const reference to an STL-style
+// container view to raw_container, which is a RawContainer.
+// - Copy(raw_container) returns an STL-style container view of a
+// copy of raw_container, which is a RawContainer.
+//
+// This generic version is used when RawContainer itself is already an
+// STL-style container.
+template <class RawContainer>
+class StlContainerView {
+ public:
+ typedef RawContainer type;
+ typedef const type& const_reference;
+
+ static const_reference ConstReference(const RawContainer& container) {
+ static_assert(!std::is_const<RawContainer>::value,
+ "RawContainer type must not be const");
+ return container;
+ }
+ static type Copy(const RawContainer& container) { return container; }
+};
+
+// This specialization is used when RawContainer is a native array type.
+template <typename Element, size_t N>
+class StlContainerView<Element[N]> {
+ public:
+ typedef typename std::remove_const<Element>::type RawElement;
+ typedef internal::NativeArray<RawElement> type;
+ // NativeArray<T> can represent a native array either by value or by
+ // reference (selected by a constructor argument), so 'const type'
+ // can be used to reference a const native array. We cannot
+ // 'typedef const type& const_reference' here, as that would mean
+ // ConstReference() has to return a reference to a local variable.
+ typedef const type const_reference;
+
+ static const_reference ConstReference(const Element (&array)[N]) {
+ static_assert(std::is_same<Element, RawElement>::value,
+ "Element type must not be const");
+ return type(array, N, RelationToSourceReference());
+ }
+ static type Copy(const Element (&array)[N]) {
+ return type(array, N, RelationToSourceCopy());
+ }
+};
+
+// This specialization is used when RawContainer is a native array
+// represented as a (pointer, size) tuple.
+template <typename ElementPointer, typename Size>
+class StlContainerView< ::std::tuple<ElementPointer, Size> > {
+ public:
+ typedef typename std::remove_const<
+ typename std::pointer_traits<ElementPointer>::element_type>::type
+ RawElement;
+ typedef internal::NativeArray<RawElement> type;
+ typedef const type const_reference;
+
+ static const_reference ConstReference(
+ const ::std::tuple<ElementPointer, Size>& array) {
+ return type(std::get<0>(array), std::get<1>(array),
+ RelationToSourceReference());
+ }
+ static type Copy(const ::std::tuple<ElementPointer, Size>& array) {
+ return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy());
+ }
+};
+
+// The following specialization prevents the user from instantiating
+// StlContainer with a reference type.
+template <typename T> class StlContainerView<T&>;
+
+// A type transform to remove constness from the first part of a pair.
+// Pairs like that are used as the value_type of associative containers,
+// and this transform produces a similar but assignable pair.
+template <typename T>
+struct RemoveConstFromKey {
+ typedef T type;
+};
+
+// Partially specialized to remove constness from std::pair<const K, V>.
+template <typename K, typename V>
+struct RemoveConstFromKey<std::pair<const K, V> > {
+ typedef std::pair<K, V> type;
+};
+
+// Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to
+// reduce code size.
+GTEST_API_ void IllegalDoDefault(const char* file, int line);
+
+template <typename F, typename Tuple, size_t... Idx>
+auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype(
+ std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) {
+ return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...);
+}
+
+// Apply the function to a tuple of arguments.
+template <typename F, typename Tuple>
+auto Apply(F&& f, Tuple&& args) -> decltype(
+ ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
+ MakeIndexSequence<std::tuple_size<
+ typename std::remove_reference<Tuple>::type>::value>())) {
+ return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
+ MakeIndexSequence<std::tuple_size<
+ typename std::remove_reference<Tuple>::type>::value>());
+}
+
+// Template struct Function<F>, where F must be a function type, contains
+// the following typedefs:
+//
+// Result: the function's return type.
+// Arg<N>: the type of the N-th argument, where N starts with 0.
+// ArgumentTuple: the tuple type consisting of all parameters of F.
+// ArgumentMatcherTuple: the tuple type consisting of Matchers for all
+// parameters of F.
+// MakeResultVoid: the function type obtained by substituting void
+// for the return type of F.
+// MakeResultIgnoredValue:
+// the function type obtained by substituting Something
+// for the return type of F.
+template <typename T>
+struct Function;
+
+template <typename R, typename... Args>
+struct Function<R(Args...)> {
+ using Result = R;
+ static constexpr size_t ArgumentCount = sizeof...(Args);
+ template <size_t I>
+ using Arg = ElemFromList<I, Args...>;
+ using ArgumentTuple = std::tuple<Args...>;
+ using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
+ using MakeResultVoid = void(Args...);
+ using MakeResultIgnoredValue = IgnoredValue(Args...);
+};
+
+template <typename R, typename... Args>
+constexpr size_t Function<R(Args...)>::ArgumentCount;
+
+#ifdef _MSC_VER
+# pragma warning(pop)
+#endif
+
+} // namespace internal
+} // namespace testing
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
+
+// Expands and concatenates the arguments. Constructed macros reevaluate.
+#define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2)
+
+// Expands and stringifies the only argument.
+#define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__)
+
+// Returns empty. Given a variadic number of arguments.
+#define GMOCK_PP_EMPTY(...)
+
+// Returns a comma. Given a variadic number of arguments.
+#define GMOCK_PP_COMMA(...) ,
+
+// Returns the only argument.
+#define GMOCK_PP_IDENTITY(_1) _1
+
+// Evaluates to the number of arguments after expansion.
+//
+// #define PAIR x, y
+//
+// GMOCK_PP_NARG() => 1
+// GMOCK_PP_NARG(x) => 1
+// GMOCK_PP_NARG(x, y) => 2
+// GMOCK_PP_NARG(PAIR) => 2
+//
+// Requires: the number of arguments after expansion is at most 15.
+#define GMOCK_PP_NARG(...) \
+ GMOCK_PP_INTERNAL_16TH( \
+ (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
+
+// Returns 1 if the expansion of arguments has an unprotected comma. Otherwise
+// returns 0. Requires no more than 15 unprotected commas.
+#define GMOCK_PP_HAS_COMMA(...) \
+ GMOCK_PP_INTERNAL_16TH( \
+ (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))
+
+// Returns the first argument.
+#define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg))
+
+// Returns the tail. A variadic list of all arguments minus the first. Requires
+// at least one argument.
+#define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__))
+
+// Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__)
+#define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \
+ GMOCK_PP_IDENTITY( \
+ GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__))
+
+// If the arguments after expansion have no tokens, evaluates to `1`. Otherwise
+// evaluates to `0`.
+//
+// Requires: * the number of arguments after expansion is at most 15.
+// * If the argument is a macro, it must be able to be called with one
+// argument.
+//
+// Implementation details:
+//
+// There is one case when it generates a compile error: if the argument is macro
+// that cannot be called with one argument.
+//
+// #define M(a, b) // it doesn't matter what it expands to
+//
+// // Expected: expands to `0`.
+// // Actual: compile error.
+// GMOCK_PP_IS_EMPTY(M)
+//
+// There are 4 cases tested:
+//
+// * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0.
+// * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0.
+// * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma.
+// Expected 0
+// * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in
+// parenthesis, or is a macro that ()-evaluates to comma. Expected 1.
+//
+// We trigger detection on '0001', i.e. on empty.
+#define GMOCK_PP_IS_EMPTY(...) \
+ GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \
+ GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \
+ GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \
+ GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__()))
+
+// Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0.
+#define GMOCK_PP_IF(_Cond, _Then, _Else) \
+ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else)
+
+// Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses.
+//
+// GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c
+// GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f
+//
+#define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \
+ GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else))
+
+// Evaluates to the number of arguments after expansion. Identifies 'empty' as
+// 0.
+//
+// #define PAIR x, y
+//
+// GMOCK_PP_NARG0() => 0
+// GMOCK_PP_NARG0(x) => 1
+// GMOCK_PP_NARG0(x, y) => 2
+// GMOCK_PP_NARG0(PAIR) => 2
+//
+// Requires: * the number of arguments after expansion is at most 15.
+// * If the argument is a macro, it must be able to be called with one
+// argument.
+#define GMOCK_PP_NARG0(...) \
+ GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__))
+
+// Expands to 1 if the first argument starts with something in parentheses,
+// otherwise to 0.
+#define GMOCK_PP_IS_BEGIN_PARENS(...) \
+ GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \
+ GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__))
+
+// Expands to 1 is there is only one argument and it is enclosed in parentheses.
+#define GMOCK_PP_IS_ENCLOSED_PARENS(...) \
+ GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \
+ GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0)
+
+// Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1.
+#define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__
+
+// Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data,
+// eK) as many of GMOCK_INTERNAL_NARG0 _Tuple.
+// Requires: * |_Macro| can be called with 3 arguments.
+// * |_Tuple| expansion has no more than 15 elements.
+#define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \
+ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \
+ (0, _Macro, _Data, _Tuple)
+
+// Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, )
+// Empty if _K = 0.
+// Requires: * |_Macro| can be called with 3 arguments.
+// * |_K| literal between 0 and 15
+#define GMOCK_PP_REPEAT(_Macro, _Data, _N) \
+ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \
+ (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE)
+
+// Increments the argument, requires the argument to be between 0 and 15.
+#define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i)
+
+// Returns comma if _i != 0. Requires _i to be between 0 and 15.
+#define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i)
+
+// Internal details follow. Do not use any of these symbols outside of this
+// file or we will break your code.
+#define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , )
+#define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2
+#define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__
+#define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5
+#define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \
+ GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \
+ _1, _2, _3, _4))
+#define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 ,
+#define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then
+#define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else
+
+// Because of MSVC treating a token with a comma in it as a single token when
+// passed to another macro, we need to force it to evaluate it as multiple
+// tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We
+// define one per possible macro that relies on this behavior. Note "_Args" must
+// be parenthesized.
+#define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \
+ _10, _11, _12, _13, _14, _15, _16, \
+ ...) \
+ _16
+#define GMOCK_PP_INTERNAL_16TH(_Args) \
+ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args)
+#define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1
+#define GMOCK_PP_INTERNAL_HEAD(_Args) \
+ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args)
+#define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__
+#define GMOCK_PP_INTERNAL_TAIL(_Args) \
+ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args)
+
+#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _
+#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1,
+#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \
+ 0,
+#define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__
+#define GMOCK_PP_INTERNAL_INC_0 1
+#define GMOCK_PP_INTERNAL_INC_1 2
+#define GMOCK_PP_INTERNAL_INC_2 3
+#define GMOCK_PP_INTERNAL_INC_3 4
+#define GMOCK_PP_INTERNAL_INC_4 5
+#define GMOCK_PP_INTERNAL_INC_5 6
+#define GMOCK_PP_INTERNAL_INC_6 7
+#define GMOCK_PP_INTERNAL_INC_7 8
+#define GMOCK_PP_INTERNAL_INC_8 9
+#define GMOCK_PP_INTERNAL_INC_9 10
+#define GMOCK_PP_INTERNAL_INC_10 11
+#define GMOCK_PP_INTERNAL_INC_11 12
+#define GMOCK_PP_INTERNAL_INC_12 13
+#define GMOCK_PP_INTERNAL_INC_13 14
+#define GMOCK_PP_INTERNAL_INC_14 15
+#define GMOCK_PP_INTERNAL_INC_15 16
+#define GMOCK_PP_INTERNAL_COMMA_IF_0
+#define GMOCK_PP_INTERNAL_COMMA_IF_1 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_2 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_3 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_4 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_5 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_6 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_7 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_8 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_9 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_10 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_11 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_12 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_13 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_14 ,
+#define GMOCK_PP_INTERNAL_COMMA_IF_15 ,
+#define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \
+ _Macro(_i, _Data, _element)
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple)
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple)
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \
+ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
+ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \
+ (GMOCK_PP_TAIL _Tuple))
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
+
+#ifdef _MSC_VER
+# pragma warning(push)
+# pragma warning(disable:4100)
+#endif
+
+namespace testing {
+
+// To implement an action Foo, define:
+// 1. a class FooAction that implements the ActionInterface interface, and
+// 2. a factory function that creates an Action object from a
+// const FooAction*.
+//
+// The two-level delegation design follows that of Matcher, providing
+// consistency for extension developers. It also eases ownership
+// management as Action objects can now be copied like plain values.
+
+namespace internal {
+
+// BuiltInDefaultValueGetter<T, true>::Get() returns a
+// default-constructed T value. BuiltInDefaultValueGetter<T,
+// false>::Get() crashes with an error.
+//
+// This primary template is used when kDefaultConstructible is true.
+template <typename T, bool kDefaultConstructible>
+struct BuiltInDefaultValueGetter {
+ static T Get() { return T(); }
+};
+template <typename T>
+struct BuiltInDefaultValueGetter<T, false> {
+ static T Get() {
+ Assert(false, __FILE__, __LINE__,
+ "Default action undefined for the function return type.");
+ return internal::Invalid<T>();
+ // The above statement will never be reached, but is required in
+ // order for this function to compile.
+ }
+};
+
+// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
+// for type T, which is NULL when T is a raw pointer type, 0 when T is
+// a numeric type, false when T is bool, or "" when T is string or
+// std::string. In addition, in C++11 and above, it turns a
+// default-constructed T value if T is default constructible. For any
+// other type T, the built-in default T value is undefined, and the
+// function will abort the process.
+template <typename T>
+class BuiltInDefaultValue {
+ public:
+ // This function returns true if and only if type T has a built-in default
+ // value.
+ static bool Exists() {
+ return ::std::is_default_constructible<T>::value;
+ }
+
+ static T Get() {
+ return BuiltInDefaultValueGetter<
+ T, ::std::is_default_constructible<T>::value>::Get();
+ }
+};
+
+// This partial specialization says that we use the same built-in
+// default value for T and const T.
+template <typename T>
+class BuiltInDefaultValue<const T> {
+ public:
+ static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
+ static T Get() { return BuiltInDefaultValue<T>::Get(); }
+};
+
+// This partial specialization defines the default values for pointer
+// types.
+template <typename T>
+class BuiltInDefaultValue<T*> {
+ public:
+ static bool Exists() { return true; }
+ static T* Get() { return nullptr; }
+};
+
+// The following specializations define the default values for
+// specific types we care about.
+#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
+ template <> \
+ class BuiltInDefaultValue<type> { \
+ public: \
+ static bool Exists() { return true; } \
+ static type Get() { return value; } \
+ }
+
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
+
+// There's no need for a default action for signed wchar_t, as that
+// type is the same as wchar_t for gcc, and invalid for MSVC.
+//
+// There's also no need for a default action for unsigned wchar_t, as
+// that type is the same as unsigned int for gcc, and invalid for
+// MSVC.
+#if GMOCK_WCHAR_T_IS_NATIVE_
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
+#endif
+
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
+
+#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
+
+// Simple two-arg form of std::disjunction.
+template <typename P, typename Q>
+using disjunction = typename ::std::conditional<P::value, P, Q>::type;
+
+} // namespace internal
+
+// When an unexpected function call is encountered, Google Mock will
+// let it return a default value if the user has specified one for its
+// return type, or if the return type has a built-in default value;
+// otherwise Google Mock won't know what value to return and will have
+// to abort the process.
+//
+// The DefaultValue<T> class allows a user to specify the
+// default value for a type T that is both copyable and publicly
+// destructible (i.e. anything that can be used as a function return
+// type). The usage is:
+//
+// // Sets the default value for type T to be foo.
+// DefaultValue<T>::Set(foo);
+template <typename T>
+class DefaultValue {
+ public:
+ // Sets the default value for type T; requires T to be
+ // copy-constructable and have a public destructor.
+ static void Set(T x) {
+ delete producer_;
+ producer_ = new FixedValueProducer(x);
+ }
+
+ // Provides a factory function to be called to generate the default value.
+ // This method can be used even if T is only move-constructible, but it is not
+ // limited to that case.
+ typedef T (*FactoryFunction)();
+ static void SetFactory(FactoryFunction factory) {
+ delete producer_;
+ producer_ = new FactoryValueProducer(factory);
+ }
+
+ // Unsets the default value for type T.
+ static void Clear() {
+ delete producer_;
+ producer_ = nullptr;
+ }
+
+ // Returns true if and only if the user has set the default value for type T.
+ static bool IsSet() { return producer_ != nullptr; }
+
+ // Returns true if T has a default return value set by the user or there
+ // exists a built-in default value.
+ static bool Exists() {
+ return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
+ }
+
+ // Returns the default value for type T if the user has set one;
+ // otherwise returns the built-in default value. Requires that Exists()
+ // is true, which ensures that the return value is well-defined.
+ static T Get() {
+ return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
+ : producer_->Produce();
+ }
+
+ private:
+ class ValueProducer {
+ public:
+ virtual ~ValueProducer() {}
+ virtual T Produce() = 0;
+ };
+
+ class FixedValueProducer : public ValueProducer {
+ public:
+ explicit FixedValueProducer(T value) : value_(value) {}
+ T Produce() override { return value_; }
+
+ private:
+ const T value_;
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
+ };
+
+ class FactoryValueProducer : public ValueProducer {
+ public:
+ explicit FactoryValueProducer(FactoryFunction factory)
+ : factory_(factory) {}
+ T Produce() override { return factory_(); }
+
+ private:
+ const FactoryFunction factory_;
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
+ };
+
+ static ValueProducer* producer_;
+};
+
+// This partial specialization allows a user to set default values for
+// reference types.
+template <typename T>
+class DefaultValue<T&> {
+ public:
+ // Sets the default value for type T&.
+ static void Set(T& x) { // NOLINT
+ address_ = &x;
+ }
+
+ // Unsets the default value for type T&.
+ static void Clear() { address_ = nullptr; }
+
+ // Returns true if and only if the user has set the default value for type T&.
+ static bool IsSet() { return address_ != nullptr; }
+
+ // Returns true if T has a default return value set by the user or there
+ // exists a built-in default value.
+ static bool Exists() {
+ return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
+ }
+
+ // Returns the default value for type T& if the user has set one;
+ // otherwise returns the built-in default value if there is one;
+ // otherwise aborts the process.
+ static T& Get() {
+ return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
+ : *address_;
+ }
+
+ private:
+ static T* address_;
+};
+
+// This specialization allows DefaultValue<void>::Get() to
+// compile.
+template <>
+class DefaultValue<void> {
+ public:
+ static bool Exists() { return true; }
+ static void Get() {}
+};
+
+// Points to the user-set default value for type T.
+template <typename T>
+typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
+
+// Points to the user-set default value for type T&.
+template <typename T>
+T* DefaultValue<T&>::address_ = nullptr;
+
+// Implement this interface to define an action for function type F.
+template <typename F>
+class ActionInterface {
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ ActionInterface() {}
+ virtual ~ActionInterface() {}
+
+ // Performs the action. This method is not const, as in general an
+ // action can have side effects and be stateful. For example, a
+ // get-the-next-element-from-the-collection action will need to
+ // remember the current element.
+ virtual Result Perform(const ArgumentTuple& args) = 0;
+
+ private:
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
+};
+
+// An Action<F> is a copyable and IMMUTABLE (except by assignment)
+// object that represents an action to be taken when a mock function
+// of type F is called. The implementation of Action<T> is just a
+// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
+// You can view an object implementing ActionInterface<F> as a
+// concrete action (including its current state), and an Action<F>
+// object as a handle to it.
+template <typename F>
+class Action {
+ // Adapter class to allow constructing Action from a legacy ActionInterface.
+ // New code should create Actions from functors instead.
+ struct ActionAdapter {
+ // Adapter must be copyable to satisfy std::function requirements.
+ ::std::shared_ptr<ActionInterface<F>> impl_;
+
+ template <typename... Args>
+ typename internal::Function<F>::Result operator()(Args&&... args) {
+ return impl_->Perform(
+ ::std::forward_as_tuple(::std::forward<Args>(args)...));
+ }
+ };
+
+ template <typename G>
+ using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
+
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ // Constructs a null Action. Needed for storing Action objects in
+ // STL containers.
+ Action() {}
+
+ // Construct an Action from a specified callable.
+ // This cannot take std::function directly, because then Action would not be
+ // directly constructible from lambda (it would require two conversions).
+ template <
+ typename G,
+ typename = typename std::enable_if<internal::disjunction<
+ IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
+ G>>::value>::type>
+ Action(G&& fun) { // NOLINT
+ Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
+ }
+
+ // Constructs an Action from its implementation.
+ explicit Action(ActionInterface<F>* impl)
+ : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
+
+ // This constructor allows us to turn an Action<Func> object into an
+ // Action<F>, as long as F's arguments can be implicitly converted
+ // to Func's and Func's return type can be implicitly converted to F's.
+ template <typename Func>
+ explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
+
+ // Returns true if and only if this is the DoDefault() action.
+ bool IsDoDefault() const { return fun_ == nullptr; }
+
+ // Performs the action. Note that this method is const even though
+ // the corresponding method in ActionInterface is not. The reason
+ // is that a const Action<F> means that it cannot be re-bound to
+ // another concrete action, not that the concrete action it binds to
+ // cannot change state. (Think of the difference between a const
+ // pointer and a pointer to const.)
+ Result Perform(ArgumentTuple args) const {
+ if (IsDoDefault()) {
+ internal::IllegalDoDefault(__FILE__, __LINE__);
+ }
+ return internal::Apply(fun_, ::std::move(args));
+ }
+
+ private:
+ template <typename G>
+ friend class Action;
+
+ template <typename G>
+ void Init(G&& g, ::std::true_type) {
+ fun_ = ::std::forward<G>(g);
+ }
+
+ template <typename G>
+ void Init(G&& g, ::std::false_type) {
+ fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
+ }
+
+ template <typename FunctionImpl>
+ struct IgnoreArgs {
+ template <typename... Args>
+ Result operator()(const Args&...) const {
+ return function_impl();
+ }
+
+ FunctionImpl function_impl;
+ };
+
+ // fun_ is an empty function if and only if this is the DoDefault() action.
+ ::std::function<F> fun_;
+};
+
+// The PolymorphicAction class template makes it easy to implement a
+// polymorphic action (i.e. an action that can be used in mock
+// functions of than one type, e.g. Return()).
+//
+// To define a polymorphic action, a user first provides a COPYABLE
+// implementation class that has a Perform() method template:
+//
+// class FooAction {
+// public:
+// template <typename Result, typename ArgumentTuple>
+// Result Perform(const ArgumentTuple& args) const {
+// // Processes the arguments and returns a result, using
+// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
+// }
+// ...
+// };
+//
+// Then the user creates the polymorphic action using
+// MakePolymorphicAction(object) where object has type FooAction. See
+// the definition of Return(void) and SetArgumentPointee<N>(value) for
+// complete examples.
+template <typename Impl>
+class PolymorphicAction {
+ public:
+ explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
+
+ template <typename F>
+ operator Action<F>() const {
+ return Action<F>(new MonomorphicImpl<F>(impl_));
+ }
+
+ private:
+ template <typename F>
+ class MonomorphicImpl : public ActionInterface<F> {
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
+
+ Result Perform(const ArgumentTuple& args) override {
+ return impl_.template Perform<Result>(args);
+ }
+
+ private:
+ Impl impl_;
+ };
+
+ Impl impl_;
+};
+
+// Creates an Action from its implementation and returns it. The
+// created Action object owns the implementation.
+template <typename F>
+Action<F> MakeAction(ActionInterface<F>* impl) {
+ return Action<F>(impl);
+}
+
+// Creates a polymorphic action from its implementation. This is
+// easier to use than the PolymorphicAction<Impl> constructor as it
+// doesn't require you to explicitly write the template argument, e.g.
+//
+// MakePolymorphicAction(foo);
+// vs
+// PolymorphicAction<TypeOfFoo>(foo);
+template <typename Impl>
+inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
+ return PolymorphicAction<Impl>(impl);
+}
+
+namespace internal {
+
+// Helper struct to specialize ReturnAction to execute a move instead of a copy
+// on return. Useful for move-only types, but could be used on any type.
+template <typename T>
+struct ByMoveWrapper {
+ explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
+ T payload;
+};
+
+// Implements the polymorphic Return(x) action, which can be used in
+// any function that returns the type of x, regardless of the argument
+// types.
+//
+// Note: The value passed into Return must be converted into
+// Function<F>::Result when this action is cast to Action<F> rather than
+// when that action is performed. This is important in scenarios like
+//
+// MOCK_METHOD1(Method, T(U));
+// ...
+// {
+// Foo foo;
+// X x(&foo);
+// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
+// }
+//
+// In the example above the variable x holds reference to foo which leaves
+// scope and gets destroyed. If copying X just copies a reference to foo,
+// that copy will be left with a hanging reference. If conversion to T
+// makes a copy of foo, the above code is safe. To support that scenario, we
+// need to make sure that the type conversion happens inside the EXPECT_CALL
+// statement, and conversion of the result of Return to Action<T(U)> is a
+// good place for that.
+//
+// The real life example of the above scenario happens when an invocation
+// of gtl::Container() is passed into Return.
+//
+template <typename R>
+class ReturnAction {
+ public:
+ // Constructs a ReturnAction object from the value to be returned.
+ // 'value' is passed by value instead of by const reference in order
+ // to allow Return("string literal") to compile.
+ explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
+
+ // This template type conversion operator allows Return(x) to be
+ // used in ANY function that returns x's type.
+ template <typename F>
+ operator Action<F>() const { // NOLINT
+ // Assert statement belongs here because this is the best place to verify
+ // conditions on F. It produces the clearest error messages
+ // in most compilers.
+ // Impl really belongs in this scope as a local class but can't
+ // because MSVC produces duplicate symbols in different translation units
+ // in this case. Until MS fixes that bug we put Impl into the class scope
+ // and put the typedef both here (for use in assert statement) and
+ // in the Impl class. But both definitions must be the same.
+ typedef typename Function<F>::Result Result;
+ GTEST_COMPILE_ASSERT_(
+ !std::is_reference<Result>::value,
+ use_ReturnRef_instead_of_Return_to_return_a_reference);
+ static_assert(!std::is_void<Result>::value,
+ "Can't use Return() on an action expected to return `void`.");
+ return Action<F>(new Impl<R, F>(value_));
+ }
+
+ private:
+ // Implements the Return(x) action for a particular function type F.
+ template <typename R_, typename F>
+ class Impl : public ActionInterface<F> {
+ public:
+ typedef typename Function<F>::Result Result;
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+ // The implicit cast is necessary when Result has more than one
+ // single-argument constructor (e.g. Result is std::vector<int>) and R
+ // has a type conversion operator template. In that case, value_(value)
+ // won't compile as the compiler doesn't known which constructor of
+ // Result to call. ImplicitCast_ forces the compiler to convert R to
+ // Result without considering explicit constructors, thus resolving the
+ // ambiguity. value_ is then initialized using its copy constructor.
+ explicit Impl(const std::shared_ptr<R>& value)
+ : value_before_cast_(*value),
+ value_(ImplicitCast_<Result>(value_before_cast_)) {}
+
+ Result Perform(const ArgumentTuple&) override { return value_; }
+
+ private:
+ GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
+ Result_cannot_be_a_reference_type);
+ // We save the value before casting just in case it is being cast to a
+ // wrapper type.
+ R value_before_cast_;
+ Result value_;
+
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
+ };
+
+ // Partially specialize for ByMoveWrapper. This version of ReturnAction will
+ // move its contents instead.
+ template <typename R_, typename F>
+ class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
+ public:
+ typedef typename Function<F>::Result Result;
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit Impl(const std::shared_ptr<R>& wrapper)
+ : performed_(false), wrapper_(wrapper) {}
+
+ Result Perform(const ArgumentTuple&) override {
+ GTEST_CHECK_(!performed_)
+ << "A ByMove() action should only be performed once.";
+ performed_ = true;
+ return std::move(wrapper_->payload);
+ }
+
+ private:
+ bool performed_;
+ const std::shared_ptr<R> wrapper_;
+ };
+
+ const std::shared_ptr<R> value_;
+};
+
+// Implements the ReturnNull() action.
+class ReturnNullAction {
+ public:
+ // Allows ReturnNull() to be used in any pointer-returning function. In C++11
+ // this is enforced by returning nullptr, and in non-C++11 by asserting a
+ // pointer type on compile time.
+ template <typename Result, typename ArgumentTuple>
+ static Result Perform(const ArgumentTuple&) {
+ return nullptr;
+ }
+};
+
+// Implements the Return() action.
+class ReturnVoidAction {
+ public:
+ // Allows Return() to be used in any void-returning function.
+ template <typename Result, typename ArgumentTuple>
+ static void Perform(const ArgumentTuple&) {
+ static_assert(std::is_void<Result>::value, "Result should be void.");
+ }
+};
+
+// Implements the polymorphic ReturnRef(x) action, which can be used
+// in any function that returns a reference to the type of x,
+// regardless of the argument types.
+template <typename T>
+class ReturnRefAction {
+ public:
+ // Constructs a ReturnRefAction object from the reference to be returned.
+ explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
+
+ // This template type conversion operator allows ReturnRef(x) to be
+ // used in ANY function that returns a reference to x's type.
+ template <typename F>
+ operator Action<F>() const {
+ typedef typename Function<F>::Result Result;
+ // Asserts that the function return type is a reference. This
+ // catches the user error of using ReturnRef(x) when Return(x)
+ // should be used, and generates some helpful error message.
+ GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
+ use_Return_instead_of_ReturnRef_to_return_a_value);
+ return Action<F>(new Impl<F>(ref_));
+ }
+
+ private:
+ // Implements the ReturnRef(x) action for a particular function type F.
+ template <typename F>
+ class Impl : public ActionInterface<F> {
+ public:
+ typedef typename Function<F>::Result Result;
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit Impl(T& ref) : ref_(ref) {} // NOLINT
+
+ Result Perform(const ArgumentTuple&) override { return ref_; }
+
+ private:
+ T& ref_;
+ };
+
+ T& ref_;
+};
+
+// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
+// used in any function that returns a reference to the type of x,
+// regardless of the argument types.
+template <typename T>
+class ReturnRefOfCopyAction {
+ public:
+ // Constructs a ReturnRefOfCopyAction object from the reference to
+ // be returned.
+ explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
+
+ // This template type conversion operator allows ReturnRefOfCopy(x) to be
+ // used in ANY function that returns a reference to x's type.
+ template <typename F>
+ operator Action<F>() const {
+ typedef typename Function<F>::Result Result;
+ // Asserts that the function return type is a reference. This
+ // catches the user error of using ReturnRefOfCopy(x) when Return(x)
+ // should be used, and generates some helpful error message.
+ GTEST_COMPILE_ASSERT_(
+ std::is_reference<Result>::value,
+ use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
+ return Action<F>(new Impl<F>(value_));
+ }
+
+ private:
+ // Implements the ReturnRefOfCopy(x) action for a particular function type F.
+ template <typename F>
+ class Impl : public ActionInterface<F> {
+ public:
+ typedef typename Function<F>::Result Result;
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit Impl(const T& value) : value_(value) {} // NOLINT
+
+ Result Perform(const ArgumentTuple&) override { return value_; }
+
+ private:
+ T value_;
+ };
+
+ const T value_;
+};
+
+// Implements the polymorphic ReturnRoundRobin(v) action, which can be
+// used in any function that returns the element_type of v.
+template <typename T>
+class ReturnRoundRobinAction {
+ public:
+ explicit ReturnRoundRobinAction(std::vector<T> values) {
+ GTEST_CHECK_(!values.empty())
+ << "ReturnRoundRobin requires at least one element.";
+ state_->values = std::move(values);
+ }
+
+ template <typename... Args>
+ T operator()(Args&&...) const {
+ return state_->Next();
+ }
+
+ private:
+ struct State {
+ T Next() {
+ T ret_val = values[i++];
+ if (i == values.size()) i = 0;
+ return ret_val;
+ }
+
+ std::vector<T> values;
+ size_t i = 0;
+ };
+ std::shared_ptr<State> state_ = std::make_shared<State>();
+};
+
+// Implements the polymorphic DoDefault() action.
+class DoDefaultAction {
+ public:
+ // This template type conversion operator allows DoDefault() to be
+ // used in any function.
+ template <typename F>
+ operator Action<F>() const { return Action<F>(); } // NOLINT
+};
+
+// Implements the Assign action to set a given pointer referent to a
+// particular value.
+template <typename T1, typename T2>
+class AssignAction {
+ public:
+ AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
+
+ template <typename Result, typename ArgumentTuple>
+ void Perform(const ArgumentTuple& /* args */) const {
+ *ptr_ = value_;
+ }
+
+ private:
+ T1* const ptr_;
+ const T2 value_;
+};
+
+#if !GTEST_OS_WINDOWS_MOBILE
+
+// Implements the SetErrnoAndReturn action to simulate return from
+// various system calls and libc functions.
+template <typename T>
+class SetErrnoAndReturnAction {
+ public:
+ SetErrnoAndReturnAction(int errno_value, T result)
+ : errno_(errno_value),
+ result_(result) {}
+ template <typename Result, typename ArgumentTuple>
+ Result Perform(const ArgumentTuple& /* args */) const {
+ errno = errno_;
+ return result_;
+ }
+
+ private:
+ const int errno_;
+ const T result_;
+};
+
+#endif // !GTEST_OS_WINDOWS_MOBILE
+
+// Implements the SetArgumentPointee<N>(x) action for any function
+// whose N-th argument (0-based) is a pointer to x's type.
+template <size_t N, typename A, typename = void>
+struct SetArgumentPointeeAction {
+ A value;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ *::std::get<N>(std::tie(args...)) = value;
+ }
+};
+
+// Implements the Invoke(object_ptr, &Class::Method) action.
+template <class Class, typename MethodPtr>
+struct InvokeMethodAction {
+ Class* const obj_ptr;
+ const MethodPtr method_ptr;
+
+ template <typename... Args>
+ auto operator()(Args&&... args) const
+ -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
+ return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
+ }
+};
+
+// Implements the InvokeWithoutArgs(f) action. The template argument
+// FunctionImpl is the implementation type of f, which can be either a
+// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
+// Action<F> as long as f's type is compatible with F.
+template <typename FunctionImpl>
+struct InvokeWithoutArgsAction {
+ FunctionImpl function_impl;
+
+ // Allows InvokeWithoutArgs(f) to be used as any action whose type is
+ // compatible with f.
+ template <typename... Args>
+ auto operator()(const Args&...) -> decltype(function_impl()) {
+ return function_impl();
+ }
+};
+
+// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
+template <class Class, typename MethodPtr>
+struct InvokeMethodWithoutArgsAction {
+ Class* const obj_ptr;
+ const MethodPtr method_ptr;
+
+ using ReturnType =
+ decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
+
+ template <typename... Args>
+ ReturnType operator()(const Args&...) const {
+ return (obj_ptr->*method_ptr)();
+ }
+};
+
+// Implements the IgnoreResult(action) action.
+template <typename A>
+class IgnoreResultAction {
+ public:
+ explicit IgnoreResultAction(const A& action) : action_(action) {}
+
+ template <typename F>
+ operator Action<F>() const {
+ // Assert statement belongs here because this is the best place to verify
+ // conditions on F. It produces the clearest error messages
+ // in most compilers.
+ // Impl really belongs in this scope as a local class but can't
+ // because MSVC produces duplicate symbols in different translation units
+ // in this case. Until MS fixes that bug we put Impl into the class scope
+ // and put the typedef both here (for use in assert statement) and
+ // in the Impl class. But both definitions must be the same.
+ typedef typename internal::Function<F>::Result Result;
+
+ // Asserts at compile time that F returns void.
+ static_assert(std::is_void<Result>::value, "Result type should be void.");
+
+ return Action<F>(new Impl<F>(action_));
+ }
+
+ private:
+ template <typename F>
+ class Impl : public ActionInterface<F> {
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit Impl(const A& action) : action_(action) {}
+
+ void Perform(const ArgumentTuple& args) override {
+ // Performs the action and ignores its result.
+ action_.Perform(args);
+ }
+
+ private:
+ // Type OriginalFunction is the same as F except that its return
+ // type is IgnoredValue.
+ typedef typename internal::Function<F>::MakeResultIgnoredValue
+ OriginalFunction;
+
+ const Action<OriginalFunction> action_;
+ };
+
+ const A action_;
+};
+
+template <typename InnerAction, size_t... I>
+struct WithArgsAction {
+ InnerAction action;
+
+ // The inner action could be anything convertible to Action<X>.
+ // We use the conversion operator to detect the signature of the inner Action.
+ template <typename R, typename... Args>
+ operator Action<R(Args...)>() const { // NOLINT
+ using TupleType = std::tuple<Args...>;
+ Action<R(typename std::tuple_element<I, TupleType>::type...)>
+ converted(action);
+
+ return [converted](Args... args) -> R {
+ return converted.Perform(std::forward_as_tuple(
+ std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
+ };
+ }
+};
+
+template <typename... Actions>
+struct DoAllAction {
+ private:
+ template <typename T>
+ using NonFinalType =
+ typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
+
+ template <typename ActionT, size_t... I>
+ std::vector<ActionT> Convert(IndexSequence<I...>) const {
+ return {ActionT(std::get<I>(actions))...};
+ }
+
+ public:
+ std::tuple<Actions...> actions;
+
+ template <typename R, typename... Args>
+ operator Action<R(Args...)>() const { // NOLINT
+ struct Op {
+ std::vector<Action<void(NonFinalType<Args>...)>> converted;
+ Action<R(Args...)> last;
+ R operator()(Args... args) const {
+ auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
+ for (auto& a : converted) {
+ a.Perform(tuple_args);
+ }
+ return last.Perform(std::move(tuple_args));
+ }
+ };
+ return Op{Convert<Action<void(NonFinalType<Args>...)>>(
+ MakeIndexSequence<sizeof...(Actions) - 1>()),
+ std::get<sizeof...(Actions) - 1>(actions)};
+ }
+};
+
+template <typename T, typename... Params>
+struct ReturnNewAction {
+ T* operator()() const {
+ return internal::Apply(
+ [](const Params&... unpacked_params) {
+ return new T(unpacked_params...);
+ },
+ params);
+ }
+ std::tuple<Params...> params;
+};
+
+template <size_t k>
+struct ReturnArgAction {
+ template <typename... Args>
+ auto operator()(const Args&... args) const ->
+ typename std::tuple_element<k, std::tuple<Args...>>::type {
+ return std::get<k>(std::tie(args...));
+ }
+};
+
+template <size_t k, typename Ptr>
+struct SaveArgAction {
+ Ptr pointer;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ *pointer = std::get<k>(std::tie(args...));
+ }
+};
+
+template <size_t k, typename Ptr>
+struct SaveArgPointeeAction {
+ Ptr pointer;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ *pointer = *std::get<k>(std::tie(args...));
+ }
+};
+
+template <size_t k, typename T>
+struct SetArgRefereeAction {
+ T value;
+
+ template <typename... Args>
+ void operator()(Args&&... args) const {
+ using argk_type =
+ typename ::std::tuple_element<k, std::tuple<Args...>>::type;
+ static_assert(std::is_lvalue_reference<argk_type>::value,
+ "Argument must be a reference type.");
+ std::get<k>(std::tie(args...)) = value;
+ }
+};
+
+template <size_t k, typename I1, typename I2>
+struct SetArrayArgumentAction {
+ I1 first;
+ I2 last;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ auto value = std::get<k>(std::tie(args...));
+ for (auto it = first; it != last; ++it, (void)++value) {
+ *value = *it;
+ }
+ }
+};
+
+template <size_t k>
+struct DeleteArgAction {
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ delete std::get<k>(std::tie(args...));
+ }
+};
+
+template <typename Ptr>
+struct ReturnPointeeAction {
+ Ptr pointer;
+ template <typename... Args>
+ auto operator()(const Args&...) const -> decltype(*pointer) {
+ return *pointer;
+ }
+};
+
+#if GTEST_HAS_EXCEPTIONS
+template <typename T>
+struct ThrowAction {
+ T exception;
+ // We use a conversion operator to adapt to any return type.
+ template <typename R, typename... Args>
+ operator Action<R(Args...)>() const { // NOLINT
+ T copy = exception;
+ return [copy](Args...) -> R { throw copy; };
+ }
+};
+#endif // GTEST_HAS_EXCEPTIONS
+
+} // namespace internal
+
+// An Unused object can be implicitly constructed from ANY value.
+// This is handy when defining actions that ignore some or all of the
+// mock function arguments. For example, given
+//
+// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
+// MOCK_METHOD3(Bar, double(int index, double x, double y));
+//
+// instead of
+//
+// double DistanceToOriginWithLabel(const string& label, double x, double y) {
+// return sqrt(x*x + y*y);
+// }
+// double DistanceToOriginWithIndex(int index, double x, double y) {
+// return sqrt(x*x + y*y);
+// }
+// ...
+// EXPECT_CALL(mock, Foo("abc", _, _))
+// .WillOnce(Invoke(DistanceToOriginWithLabel));
+// EXPECT_CALL(mock, Bar(5, _, _))
+// .WillOnce(Invoke(DistanceToOriginWithIndex));
+//
+// you could write
+//
+// // We can declare any uninteresting argument as Unused.
+// double DistanceToOrigin(Unused, double x, double y) {
+// return sqrt(x*x + y*y);
+// }
+// ...
+// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
+// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
+typedef internal::IgnoredValue Unused;
+
+// Creates an action that does actions a1, a2, ..., sequentially in
+// each invocation. All but the last action will have a readonly view of the
+// arguments.
+template <typename... Action>
+internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
+ Action&&... action) {
+ return {std::forward_as_tuple(std::forward<Action>(action)...)};
+}
+
+// WithArg<k>(an_action) creates an action that passes the k-th
+// (0-based) argument of the mock function to an_action and performs
+// it. It adapts an action accepting one argument to one that accepts
+// multiple arguments. For convenience, we also provide
+// WithArgs<k>(an_action) (defined below) as a synonym.
+template <size_t k, typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
+WithArg(InnerAction&& action) {
+ return {std::forward<InnerAction>(action)};
+}
+
+// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
+// the selected arguments of the mock function to an_action and
+// performs it. It serves as an adaptor between actions with
+// different argument lists.
+template <size_t k, size_t... ks, typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
+WithArgs(InnerAction&& action) {
+ return {std::forward<InnerAction>(action)};
+}
+
+// WithoutArgs(inner_action) can be used in a mock function with a
+// non-empty argument list to perform inner_action, which takes no
+// argument. In other words, it adapts an action accepting no
+// argument to one that accepts (and ignores) arguments.
+template <typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type>
+WithoutArgs(InnerAction&& action) {
+ return {std::forward<InnerAction>(action)};
+}
+
+// Creates an action that returns 'value'. 'value' is passed by value
+// instead of const reference - otherwise Return("string literal")
+// will trigger a compiler error about using array as initializer.
+template <typename R>
+internal::ReturnAction<R> Return(R value) {
+ return internal::ReturnAction<R>(std::move(value));
+}
+
+// Creates an action that returns NULL.
+inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
+ return MakePolymorphicAction(internal::ReturnNullAction());
+}
+
+// Creates an action that returns from a void function.
+inline PolymorphicAction<internal::ReturnVoidAction> Return() {
+ return MakePolymorphicAction(internal::ReturnVoidAction());
+}
+
+// Creates an action that returns the reference to a variable.
+template <typename R>
+inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
+ return internal::ReturnRefAction<R>(x);
+}
+
+// Prevent using ReturnRef on reference to temporary.
+template <typename R, R* = nullptr>
+internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
+
+// Creates an action that returns the reference to a copy of the
+// argument. The copy is created when the action is constructed and
+// lives as long as the action.
+template <typename R>
+inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
+ return internal::ReturnRefOfCopyAction<R>(x);
+}
+
+// Modifies the parent action (a Return() action) to perform a move of the
+// argument instead of a copy.
+// Return(ByMove()) actions can only be executed once and will assert this
+// invariant.
+template <typename R>
+internal::ByMoveWrapper<R> ByMove(R x) {
+ return internal::ByMoveWrapper<R>(std::move(x));
+}
+
+// Creates an action that returns an element of `vals`. Calling this action will
+// repeatedly return the next value from `vals` until it reaches the end and
+// will restart from the beginning.
+template <typename T>
+internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
+ return internal::ReturnRoundRobinAction<T>(std::move(vals));
+}
+
+// Creates an action that returns an element of `vals`. Calling this action will
+// repeatedly return the next value from `vals` until it reaches the end and
+// will restart from the beginning.
+template <typename T>
+internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
+ std::initializer_list<T> vals) {
+ return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
+}
+
+// Creates an action that does the default action for the give mock function.
+inline internal::DoDefaultAction DoDefault() {
+ return internal::DoDefaultAction();
+}
+
+// Creates an action that sets the variable pointed by the N-th
+// (0-based) function argument to 'value'.
+template <size_t N, typename T>
+internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
+ return {std::move(value)};
+}
+
+// The following version is DEPRECATED.
+template <size_t N, typename T>
+internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
+ return {std::move(value)};
+}
+
+// Creates an action that sets a pointer referent to a given value.
+template <typename T1, typename T2>
+PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
+ return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
+}
+
+#if !GTEST_OS_WINDOWS_MOBILE
+
+// Creates an action that sets errno and returns the appropriate error.
+template <typename T>
+PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
+SetErrnoAndReturn(int errval, T result) {
+ return MakePolymorphicAction(
+ internal::SetErrnoAndReturnAction<T>(errval, result));
+}
+
+#endif // !GTEST_OS_WINDOWS_MOBILE
+
+// Various overloads for Invoke().
+
+// Legacy function.
+// Actions can now be implicitly constructed from callables. No need to create
+// wrapper objects.
+// This function exists for backwards compatibility.
+template <typename FunctionImpl>
+typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
+ return std::forward<FunctionImpl>(function_impl);
+}
+
+// Creates an action that invokes the given method on the given object
+// with the mock function's arguments.
+template <class Class, typename MethodPtr>
+internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
+ MethodPtr method_ptr) {
+ return {obj_ptr, method_ptr};
+}
+
+// Creates an action that invokes 'function_impl' with no argument.
+template <typename FunctionImpl>
+internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
+InvokeWithoutArgs(FunctionImpl function_impl) {
+ return {std::move(function_impl)};
+}
+
+// Creates an action that invokes the given method on the given object
+// with no argument.
+template <class Class, typename MethodPtr>
+internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
+ Class* obj_ptr, MethodPtr method_ptr) {
+ return {obj_ptr, method_ptr};
+}
+
+// Creates an action that performs an_action and throws away its
+// result. In other words, it changes the return type of an_action to
+// void. an_action MUST NOT return void, or the code won't compile.
+template <typename A>
+inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
+ return internal::IgnoreResultAction<A>(an_action);
+}
+
+// Creates a reference wrapper for the given L-value. If necessary,
+// you can explicitly specify the type of the reference. For example,
+// suppose 'derived' is an object of type Derived, ByRef(derived)
+// would wrap a Derived&. If you want to wrap a const Base& instead,
+// where Base is a base class of Derived, just write:
+//
+// ByRef<const Base>(derived)
+//
+// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
+// However, it may still be used for consistency with ByMove().
+template <typename T>
+inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
+ return ::std::reference_wrapper<T>(l_value);
+}
+
+// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
+// instance of type T, constructed on the heap with constructor arguments
+// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
+template <typename T, typename... Params>
+internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
+ Params&&... params) {
+ return {std::forward_as_tuple(std::forward<Params>(params)...)};
+}
+
+// Action ReturnArg<k>() returns the k-th argument of the mock function.
+template <size_t k>
+internal::ReturnArgAction<k> ReturnArg() {
+ return {};
+}
+
+// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
+// mock function to *pointer.
+template <size_t k, typename Ptr>
+internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
+ return {pointer};
+}
+
+// Action SaveArgPointee<k>(pointer) saves the value pointed to
+// by the k-th (0-based) argument of the mock function to *pointer.
+template <size_t k, typename Ptr>
+internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
+ return {pointer};
+}
+
+// Action SetArgReferee<k>(value) assigns 'value' to the variable
+// referenced by the k-th (0-based) argument of the mock function.
+template <size_t k, typename T>
+internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
+ T&& value) {
+ return {std::forward<T>(value)};
+}
+
+// Action SetArrayArgument<k>(first, last) copies the elements in
+// source range [first, last) to the array pointed to by the k-th
+// (0-based) argument, which can be either a pointer or an
+// iterator. The action does not take ownership of the elements in the
+// source range.
+template <size_t k, typename I1, typename I2>
+internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
+ I2 last) {
+ return {first, last};
+}
+
+// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
+// function.
+template <size_t k>
+internal::DeleteArgAction<k> DeleteArg() {
+ return {};
+}
+
+// This action returns the value pointed to by 'pointer'.
+template <typename Ptr>
+internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
+ return {pointer};
+}
+
+// Action Throw(exception) can be used in a mock function of any type
+// to throw the given exception. Any copyable value can be thrown.
+#if GTEST_HAS_EXCEPTIONS
+template <typename T>
+internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
+ return {std::forward<T>(exception)};
+}
+#endif // GTEST_HAS_EXCEPTIONS
+
+namespace internal {
+
+// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
+// defines an action that can be used in a mock function. Typically,
+// these actions only care about a subset of the arguments of the mock
+// function. For example, if such an action only uses the second
+// argument, it can be used in any mock function that takes >= 2
+// arguments where the type of the second argument is compatible.
+//
+// Therefore, the action implementation must be prepared to take more
+// arguments than it needs. The ExcessiveArg type is used to
+// represent those excessive arguments. In order to keep the compiler
+// error messages tractable, we define it in the testing namespace
+// instead of testing::internal. However, this is an INTERNAL TYPE
+// and subject to change without notice, so a user MUST NOT USE THIS
+// TYPE DIRECTLY.
+struct ExcessiveArg {};
+
+// Builds an implementation of an Action<> for some particular signature, using
+// a class defined by an ACTION* macro.
+template <typename F, typename Impl> struct ActionImpl;
+
+template <typename Impl>
+struct ImplBase {
+ struct Holder {
+ // Allows each copy of the Action<> to get to the Impl.
+ explicit operator const Impl&() const { return *ptr; }
+ std::shared_ptr<Impl> ptr;
+ };
+ using type = typename std::conditional<std::is_constructible<Impl>::value,
+ Impl, Holder>::type;
+};
+
+template <typename R, typename... Args, typename Impl>
+struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
+ using Base = typename ImplBase<Impl>::type;
+ using function_type = R(Args...);
+ using args_type = std::tuple<Args...>;
+
+ ActionImpl() = default; // Only defined if appropriate for Base.
+ explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
+
+ R operator()(Args&&... arg) const {
+ static constexpr size_t kMaxArgs =
+ sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
+ return Apply(MakeIndexSequence<kMaxArgs>{},
+ MakeIndexSequence<10 - kMaxArgs>{},
+ args_type{std::forward<Args>(arg)...});
+ }
+
+ template <std::size_t... arg_id, std::size_t... excess_id>
+ R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
+ const args_type& args) const {
+ // Impl need not be specific to the signature of action being implemented;
+ // only the implementing function body needs to have all of the specific
+ // types instantiated. Up to 10 of the args that are provided by the
+ // args_type get passed, followed by a dummy of unspecified type for the
+ // remainder up to 10 explicit args.
+ static constexpr ExcessiveArg kExcessArg{};
+ return static_cast<const Impl&>(*this).template gmock_PerformImpl<
+ /*function_type=*/function_type, /*return_type=*/R,
+ /*args_type=*/args_type,
+ /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
+ /*args=*/args, std::get<arg_id>(args)...,
+ ((void)excess_id, kExcessArg)...);
+ }
+};
+
+// Stores a default-constructed Impl as part of the Action<>'s
+// std::function<>. The Impl should be trivial to copy.
+template <typename F, typename Impl>
+::testing::Action<F> MakeAction() {
+ return ::testing::Action<F>(ActionImpl<F, Impl>());
+}
+
+// Stores just the one given instance of Impl.
+template <typename F, typename Impl>
+::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
+ return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
+}
+
+#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
+ , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
+ const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
+ GMOCK_INTERNAL_ARG_UNUSED, , 10)
+
+#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
+ const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
+
+#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
+#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
+ GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
+
+#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
+#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
+
+#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
+#define GMOCK_ACTION_TYPE_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
+
+#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
+ , param##_type gmock_p##i
+#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
+
+#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
+ , std::forward<param##_type>(gmock_p##i)
+#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
+
+#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
+ , param(::std::forward<param##_type>(gmock_p##i))
+#define GMOCK_ACTION_INIT_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
+
+#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
+#define GMOCK_ACTION_FIELD_PARAMS_(params) \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
+
+#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ class full_name { \
+ public: \
+ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
+ : impl_(std::make_shared<gmock_Impl>( \
+ GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \
+ full_name(const full_name&) = default; \
+ full_name(full_name&&) noexcept = default; \
+ template <typename F> \
+ operator ::testing::Action<F>() const { \
+ return ::testing::internal::MakeAction<F>(impl_); \
+ } \
+ private: \
+ class gmock_Impl { \
+ public: \
+ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
+ : GMOCK_ACTION_INIT_PARAMS_(params) {} \
+ template <typename function_type, typename return_type, \
+ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+ GMOCK_ACTION_FIELD_PARAMS_(params) \
+ }; \
+ std::shared_ptr<const gmock_Impl> impl_; \
+ }; \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
+ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
+ return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
+ GMOCK_ACTION_GVALUE_PARAMS_(params)); \
+ } \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ template <typename function_type, typename return_type, typename args_type, \
+ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \
+ gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
+
+} // namespace internal
+
+// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
+#define ACTION(name) \
+ class name##Action { \
+ public: \
+ explicit name##Action() noexcept {} \
+ name##Action(const name##Action&) noexcept {} \
+ template <typename F> \
+ operator ::testing::Action<F>() const { \
+ return ::testing::internal::MakeAction<F, gmock_Impl>(); \
+ } \
+ private: \
+ class gmock_Impl { \
+ public: \
+ template <typename function_type, typename return_type, \
+ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+ }; \
+ }; \
+ inline name##Action name() GTEST_MUST_USE_RESULT_; \
+ inline name##Action name() { return name##Action(); } \
+ template <typename function_type, typename return_type, typename args_type, \
+ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type name##Action::gmock_Impl::gmock_PerformImpl( \
+ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
+
+#define ACTION_P(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
+
+#define ACTION_P2(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
+
+#define ACTION_P3(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
+
+#define ACTION_P4(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
+
+#define ACTION_P5(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
+
+#define ACTION_P6(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
+
+#define ACTION_P7(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
+
+#define ACTION_P8(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
+
+#define ACTION_P9(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
+
+#define ACTION_P10(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
+
+} // namespace testing
+
+#ifdef _MSC_VER
+# pragma warning(pop)
+#endif
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file implements some commonly used cardinalities. More
+// cardinalities can be defined by the user implementing the
+// CardinalityInterface interface if necessary.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
+
+#include <limits.h>
+#include <memory>
+#include <ostream> // NOLINT
+
+GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
+/* class A needs to have dll-interface to be used by clients of class B */)
+
+namespace testing {
+
+// To implement a cardinality Foo, define:
+// 1. a class FooCardinality that implements the
+// CardinalityInterface interface, and
+// 2. a factory function that creates a Cardinality object from a
+// const FooCardinality*.
+//
+// The two-level delegation design follows that of Matcher, providing
+// consistency for extension developers. It also eases ownership
+// management as Cardinality objects can now be copied like plain values.
+
+// The implementation of a cardinality.
+class CardinalityInterface {
+ public:
+ virtual ~CardinalityInterface() {}
+
+ // Conservative estimate on the lower/upper bound of the number of
+ // calls allowed.
+ virtual int ConservativeLowerBound() const { return 0; }
+ virtual int ConservativeUpperBound() const { return INT_MAX; }
+
+ // Returns true if and only if call_count calls will satisfy this
+ // cardinality.
+ virtual bool IsSatisfiedByCallCount(int call_count) const = 0;
+
+ // Returns true if and only if call_count calls will saturate this
+ // cardinality.
+ virtual bool IsSaturatedByCallCount(int call_count) const = 0;
+
+ // Describes self to an ostream.
+ virtual void DescribeTo(::std::ostream* os) const = 0;
+};
+
+// A Cardinality is a copyable and IMMUTABLE (except by assignment)
+// object that specifies how many times a mock function is expected to
+// be called. The implementation of Cardinality is just a std::shared_ptr
+// to const CardinalityInterface. Don't inherit from Cardinality!
+class GTEST_API_ Cardinality {
+ public:
+ // Constructs a null cardinality. Needed for storing Cardinality
+ // objects in STL containers.
+ Cardinality() {}
+
+ // Constructs a Cardinality from its implementation.
+ explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {}
+
+ // Conservative estimate on the lower/upper bound of the number of
+ // calls allowed.
+ int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); }
+ int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); }
+
+ // Returns true if and only if call_count calls will satisfy this
+ // cardinality.
+ bool IsSatisfiedByCallCount(int call_count) const {
+ return impl_->IsSatisfiedByCallCount(call_count);
+ }
+
+ // Returns true if and only if call_count calls will saturate this
+ // cardinality.
+ bool IsSaturatedByCallCount(int call_count) const {
+ return impl_->IsSaturatedByCallCount(call_count);
+ }
+
+ // Returns true if and only if call_count calls will over-saturate this
+ // cardinality, i.e. exceed the maximum number of allowed calls.
+ bool IsOverSaturatedByCallCount(int call_count) const {
+ return impl_->IsSaturatedByCallCount(call_count) &&
+ !impl_->IsSatisfiedByCallCount(call_count);
+ }
+
+ // Describes self to an ostream
+ void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
+
+ // Describes the given actual call count to an ostream.
+ static void DescribeActualCallCountTo(int actual_call_count,
+ ::std::ostream* os);
+
+ private:
+ std::shared_ptr<const CardinalityInterface> impl_;
+};
+
+// Creates a cardinality that allows at least n calls.
+GTEST_API_ Cardinality AtLeast(int n);
+
+// Creates a cardinality that allows at most n calls.
+GTEST_API_ Cardinality AtMost(int n);
+
+// Creates a cardinality that allows any number of calls.
+GTEST_API_ Cardinality AnyNumber();
+
+// Creates a cardinality that allows between min and max calls.
+GTEST_API_ Cardinality Between(int min, int max);
+
+// Creates a cardinality that allows exactly n calls.
+GTEST_API_ Cardinality Exactly(int n);
+
+// Creates a cardinality from its implementation.
+inline Cardinality MakeCardinality(const CardinalityInterface* c) {
+ return Cardinality(c);
+}
+
+} // namespace testing
+
+GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file implements MOCK_METHOD.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
+#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
+
+#include <type_traits> // IWYU pragma: keep
+#include <utility> // IWYU pragma: keep
+
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file implements the ON_CALL() and EXPECT_CALL() macros.
+//
+// A user can use the ON_CALL() macro to specify the default action of
+// a mock method. The syntax is:
+//
+// ON_CALL(mock_object, Method(argument-matchers))
+// .With(multi-argument-matcher)
+// .WillByDefault(action);
+//
+// where the .With() clause is optional.
+//
+// A user can use the EXPECT_CALL() macro to specify an expectation on
+// a mock method. The syntax is:
+//
+// EXPECT_CALL(mock_object, Method(argument-matchers))
+// .With(multi-argument-matchers)
+// .Times(cardinality)
+// .InSequence(sequences)
+// .After(expectations)
+// .WillOnce(action)
+// .WillRepeatedly(action)
+// .RetiresOnSaturation();
+//
+// where all clauses are optional, and .InSequence()/.After()/
+// .WillOnce() can appear any number of times.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
+
+#include <functional>
+#include <map>
+#include <memory>
+#include <set>
+#include <sstream>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// The MATCHER* family of macros can be used in a namespace scope to
+// define custom matchers easily.
+//
+// Basic Usage
+// ===========
+//
+// The syntax
+//
+// MATCHER(name, description_string) { statements; }
+//
+// defines a matcher with the given name that executes the statements,
+// which must return a bool to indicate if the match succeeds. Inside
+// the statements, you can refer to the value being matched by 'arg',
+// and refer to its type by 'arg_type'.
+//
+// The description string documents what the matcher does, and is used
+// to generate the failure message when the match fails. Since a
+// MATCHER() is usually defined in a header file shared by multiple
+// C++ source files, we require the description to be a C-string
+// literal to avoid possible side effects. It can be empty, in which
+// case we'll use the sequence of words in the matcher name as the
+// description.
+//
+// For example:
+//
+// MATCHER(IsEven, "") { return (arg % 2) == 0; }
+//
+// allows you to write
+//
+// // Expects mock_foo.Bar(n) to be called where n is even.
+// EXPECT_CALL(mock_foo, Bar(IsEven()));
+//
+// or,
+//
+// // Verifies that the value of some_expression is even.
+// EXPECT_THAT(some_expression, IsEven());
+//
+// If the above assertion fails, it will print something like:
+//
+// Value of: some_expression
+// Expected: is even
+// Actual: 7
+//
+// where the description "is even" is automatically calculated from the
+// matcher name IsEven.
+//
+// Argument Type
+// =============
+//
+// Note that the type of the value being matched (arg_type) is
+// determined by the context in which you use the matcher and is
+// supplied to you by the compiler, so you don't need to worry about
+// declaring it (nor can you). This allows the matcher to be
+// polymorphic. For example, IsEven() can be used to match any type
+// where the value of "(arg % 2) == 0" can be implicitly converted to
+// a bool. In the "Bar(IsEven())" example above, if method Bar()
+// takes an int, 'arg_type' will be int; if it takes an unsigned long,
+// 'arg_type' will be unsigned long; and so on.
+//
+// Parameterizing Matchers
+// =======================
+//
+// Sometimes you'll want to parameterize the matcher. For that you
+// can use another macro:
+//
+// MATCHER_P(name, param_name, description_string) { statements; }
+//
+// For example:
+//
+// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
+//
+// will allow you to write:
+//
+// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
+//
+// which may lead to this message (assuming n is 10):
+//
+// Value of: Blah("a")
+// Expected: has absolute value 10
+// Actual: -9
+//
+// Note that both the matcher description and its parameter are
+// printed, making the message human-friendly.
+//
+// In the matcher definition body, you can write 'foo_type' to
+// reference the type of a parameter named 'foo'. For example, in the
+// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
+// 'value_type' to refer to the type of 'value'.
+//
+// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
+// support multi-parameter matchers.
+//
+// Describing Parameterized Matchers
+// =================================
+//
+// The last argument to MATCHER*() is a string-typed expression. The
+// expression can reference all of the matcher's parameters and a
+// special bool-typed variable named 'negation'. When 'negation' is
+// false, the expression should evaluate to the matcher's description;
+// otherwise it should evaluate to the description of the negation of
+// the matcher. For example,
+//
+// using testing::PrintToString;
+//
+// MATCHER_P2(InClosedRange, low, hi,
+// std::string(negation ? "is not" : "is") + " in range [" +
+// PrintToString(low) + ", " + PrintToString(hi) + "]") {
+// return low <= arg && arg <= hi;
+// }
+// ...
+// EXPECT_THAT(3, InClosedRange(4, 6));
+// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
+//
+// would generate two failures that contain the text:
+//
+// Expected: is in range [4, 6]
+// ...
+// Expected: is not in range [2, 4]
+//
+// If you specify "" as the description, the failure message will
+// contain the sequence of words in the matcher name followed by the
+// parameter values printed as a tuple. For example,
+//
+// MATCHER_P2(InClosedRange, low, hi, "") { ... }
+// ...
+// EXPECT_THAT(3, InClosedRange(4, 6));
+// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
+//
+// would generate two failures that contain the text:
+//
+// Expected: in closed range (4, 6)
+// ...
+// Expected: not (in closed range (2, 4))
+//
+// Types of Matcher Parameters
+// ===========================
+//
+// For the purpose of typing, you can view
+//
+// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
+//
+// as shorthand for
+//
+// template <typename p1_type, ..., typename pk_type>
+// FooMatcherPk<p1_type, ..., pk_type>
+// Foo(p1_type p1, ..., pk_type pk) { ... }
+//
+// When you write Foo(v1, ..., vk), the compiler infers the types of
+// the parameters v1, ..., and vk for you. If you are not happy with
+// the result of the type inference, you can specify the types by
+// explicitly instantiating the template, as in Foo<long, bool>(5,
+// false). As said earlier, you don't get to (or need to) specify
+// 'arg_type' as that's determined by the context in which the matcher
+// is used. You can assign the result of expression Foo(p1, ..., pk)
+// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
+// can be useful when composing matchers.
+//
+// While you can instantiate a matcher template with reference types,
+// passing the parameters by pointer usually makes your code more
+// readable. If, however, you still want to pass a parameter by
+// reference, be aware that in the failure message generated by the
+// matcher you will see the value of the referenced object but not its
+// address.
+//
+// Explaining Match Results
+// ========================
+//
+// Sometimes the matcher description alone isn't enough to explain why
+// the match has failed or succeeded. For example, when expecting a
+// long string, it can be very helpful to also print the diff between
+// the expected string and the actual one. To achieve that, you can
+// optionally stream additional information to a special variable
+// named result_listener, whose type is a pointer to class
+// MatchResultListener:
+//
+// MATCHER_P(EqualsLongString, str, "") {
+// if (arg == str) return true;
+//
+// *result_listener << "the difference: "
+/// << DiffStrings(str, arg);
+// return false;
+// }
+//
+// Overloading Matchers
+// ====================
+//
+// You can overload matchers with different numbers of parameters:
+//
+// MATCHER_P(Blah, a, description_string1) { ... }
+// MATCHER_P2(Blah, a, b, description_string2) { ... }
+//
+// Caveats
+// =======
+//
+// When defining a new matcher, you should also consider implementing
+// MatcherInterface or using MakePolymorphicMatcher(). These
+// approaches require more work than the MATCHER* macros, but also
+// give you more control on the types of the value being matched and
+// the matcher parameters, which may leads to better compiler error
+// messages when the matcher is used wrong. They also allow
+// overloading matchers based on parameter types (as opposed to just
+// based on the number of parameters).
+//
+// MATCHER*() can only be used in a namespace scope as templates cannot be
+// declared inside of a local class.
+//
+// More Information
+// ================
+//
+// To learn more about using these macros, please search for 'MATCHER'
+// on
+// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
+//
+// This file also implements some commonly used argument matchers. More
+// matchers can be defined by the user implementing the
+// MatcherInterface<T> interface if necessary.
+//
+// See googletest/include/gtest/gtest-matchers.h for the definition of class
+// Matcher, class MatcherInterface, and others.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
+
+#include <algorithm>
+#include <cmath>
+#include <initializer_list>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <ostream> // NOLINT
+#include <sstream>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+
+// MSVC warning C5046 is new as of VS2017 version 15.8.
+#if defined(_MSC_VER) && _MSC_VER >= 1915
+#define GMOCK_MAYBE_5046_ 5046
+#else
+#define GMOCK_MAYBE_5046_
+#endif
+
+GTEST_DISABLE_MSC_WARNINGS_PUSH_(
+ 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
+ clients of class B */
+ /* Symbol involving type with internal linkage not defined */)
+
+namespace testing {
+
+// To implement a matcher Foo for type T, define:
+// 1. a class FooMatcherImpl that implements the
+// MatcherInterface<T> interface, and
+// 2. a factory function that creates a Matcher<T> object from a
+// FooMatcherImpl*.
+//
+// The two-level delegation design makes it possible to allow a user
+// to write "v" instead of "Eq(v)" where a Matcher is expected, which
+// is impossible if we pass matchers by pointers. It also eases
+// ownership management as Matcher objects can now be copied like
+// plain values.
+
+// A match result listener that stores the explanation in a string.
+class StringMatchResultListener : public MatchResultListener {
+ public:
+ StringMatchResultListener() : MatchResultListener(&ss_) {}
+
+ // Returns the explanation accumulated so far.
+ std::string str() const { return ss_.str(); }
+
+ // Clears the explanation accumulated so far.
+ void Clear() { ss_.str(""); }
+
+ private:
+ ::std::stringstream ss_;
+
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
+};
+
+// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
+// and MUST NOT BE USED IN USER CODE!!!
+namespace internal {
+
+// The MatcherCastImpl class template is a helper for implementing
+// MatcherCast(). We need this helper in order to partially
+// specialize the implementation of MatcherCast() (C++ allows
+// class/struct templates to be partially specialized, but not
+// function templates.).
+
+// This general version is used when MatcherCast()'s argument is a
+// polymorphic matcher (i.e. something that can be converted to a
+// Matcher but is not one yet; for example, Eq(value)) or a value (for
+// example, "hello").
+template <typename T, typename M>
+class MatcherCastImpl {
+ public:
+ static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
+ // M can be a polymorphic matcher, in which case we want to use
+ // its conversion operator to create Matcher<T>. Or it can be a value
+ // that should be passed to the Matcher<T>'s constructor.
+ //
+ // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
+ // polymorphic matcher because it'll be ambiguous if T has an implicit
+ // constructor from M (this usually happens when T has an implicit
+ // constructor from any type).
+ //
+ // It won't work to unconditionally implicit_cast
+ // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
+ // a user-defined conversion from M to T if one exists (assuming M is
+ // a value).
+ return CastImpl(polymorphic_matcher_or_value,
+ std::is_convertible<M, Matcher<T>>{},
+ std::is_convertible<M, T>{});
+ }
+
+ private:
+ template <bool Ignore>
+ static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
+ std::true_type /* convertible_to_matcher */,
+ std::integral_constant<bool, Ignore>) {
+ // M is implicitly convertible to Matcher<T>, which means that either
+ // M is a polymorphic matcher or Matcher<T> has an implicit constructor
+ // from M. In both cases using the implicit conversion will produce a
+ // matcher.
+ //
+ // Even if T has an implicit constructor from M, it won't be called because
+ // creating Matcher<T> would require a chain of two user-defined conversions
+ // (first to create T from M and then to create Matcher<T> from T).
+ return polymorphic_matcher_or_value;
+ }
+
+ // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
+ // matcher. It's a value of a type implicitly convertible to T. Use direct
+ // initialization to create a matcher.
+ static Matcher<T> CastImpl(const M& value,
+ std::false_type /* convertible_to_matcher */,
+ std::true_type /* convertible_to_T */) {
+ return Matcher<T>(ImplicitCast_<T>(value));
+ }
+
+ // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
+ // polymorphic matcher Eq(value) in this case.
+ //
+ // Note that we first attempt to perform an implicit cast on the value and
+ // only fall back to the polymorphic Eq() matcher afterwards because the
+ // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
+ // which might be undefined even when Rhs is implicitly convertible to Lhs
+ // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
+ //
+ // We don't define this method inline as we need the declaration of Eq().
+ static Matcher<T> CastImpl(const M& value,
+ std::false_type /* convertible_to_matcher */,
+ std::false_type /* convertible_to_T */);
+};
+
+// This more specialized version is used when MatcherCast()'s argument
+// is already a Matcher. This only compiles when type T can be
+// statically converted to type U.
+template <typename T, typename U>
+class MatcherCastImpl<T, Matcher<U> > {
+ public:
+ static Matcher<T> Cast(const Matcher<U>& source_matcher) {
+ return Matcher<T>(new Impl(source_matcher));
+ }
+
+ private:
+ class Impl : public MatcherInterface<T> {
+ public:
+ explicit Impl(const Matcher<U>& source_matcher)
+ : source_matcher_(source_matcher) {}
+
+ // We delegate the matching logic to the source matcher.
+ bool MatchAndExplain(T x, MatchResultListener* listener) const override {
+ using FromType = typename std::remove_cv<typename std::remove_pointer<
+ typename std::remove_reference<T>::type>::type>::type;
+ using ToType = typename std::remove_cv<typename std::remove_pointer<
+ typename std::remove_reference<U>::type>::type>::type;
+ // Do not allow implicitly converting base*/& to derived*/&.
+ static_assert(
+ // Do not trigger if only one of them is a pointer. That implies a
+ // regular conversion and not a down_cast.
+ (std::is_pointer<typename std::remove_reference<T>::type>::value !=
+ std::is_pointer<typename std::remove_reference<U>::type>::value) ||
+ std::is_same<FromType, ToType>::value ||
+ !std::is_base_of<FromType, ToType>::value,
+ "Can't implicitly convert from <base> to <derived>");
+
+ // Do the cast to `U` explicitly if necessary.
+ // Otherwise, let implicit conversions do the trick.
+ using CastType =
+ typename std::conditional<std::is_convertible<T&, const U&>::value,
+ T&, U>::type;
+
+ return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
+ listener);
+ }
+
+ void DescribeTo(::std::ostream* os) const override {
+ source_matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ source_matcher_.DescribeNegationTo(os);
+ }
+
+ private:
+ const Matcher<U> source_matcher_;
+ };
+};
+
+// This even more specialized version is used for efficiently casting
+// a matcher to its own type.
+template <typename T>
+class MatcherCastImpl<T, Matcher<T> > {
+ public:
+ static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
+};
+
+// Template specialization for parameterless Matcher.
+template <typename Derived>
+class MatcherBaseImpl {
+ public:
+ MatcherBaseImpl() = default;
+
+ template <typename T>
+ operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
+ return ::testing::Matcher<T>(new
+ typename Derived::template gmock_Impl<T>());
+ }
+};
+
+// Template specialization for Matcher with parameters.
+template <template <typename...> class Derived, typename... Ts>
+class MatcherBaseImpl<Derived<Ts...>> {
+ public:
+ // Mark the constructor explicit for single argument T to avoid implicit
+ // conversions.
+ template <typename E = std::enable_if<sizeof...(Ts) == 1>,
+ typename E::type* = nullptr>
+ explicit MatcherBaseImpl(Ts... params)
+ : params_(std::forward<Ts>(params)...) {}
+ template <typename E = std::enable_if<sizeof...(Ts) != 1>,
+ typename = typename E::type>
+ MatcherBaseImpl(Ts... params) // NOLINT
+ : params_(std::forward<Ts>(params)...) {}
+
+ template <typename F>
+ operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
+ return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
+ }
+
+ private:
+ template <typename F, std::size_t... tuple_ids>
+ ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
+ return ::testing::Matcher<F>(
+ new typename Derived<Ts...>::template gmock_Impl<F>(
+ std::get<tuple_ids>(params_)...));
+ }
+
+ const std::tuple<Ts...> params_;
+};
+
+} // namespace internal
+
+// In order to be safe and clear, casting between different matcher
+// types is done explicitly via MatcherCast<T>(m), which takes a
+// matcher m and returns a Matcher<T>. It compiles only when T can be
+// statically converted to the argument type of m.
+template <typename T, typename M>
+inline Matcher<T> MatcherCast(const M& matcher) {
+ return internal::MatcherCastImpl<T, M>::Cast(matcher);
+}
+
+// This overload handles polymorphic matchers and values only since
+// monomorphic matchers are handled by the next one.
+template <typename T, typename M>
+inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
+ return MatcherCast<T>(polymorphic_matcher_or_value);
+}
+
+// This overload handles monomorphic matchers.
+//
+// In general, if type T can be implicitly converted to type U, we can
+// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
+// contravariant): just keep a copy of the original Matcher<U>, convert the
+// argument from type T to U, and then pass it to the underlying Matcher<U>.
+// The only exception is when U is a reference and T is not, as the
+// underlying Matcher<U> may be interested in the argument's address, which
+// is not preserved in the conversion from T to U.
+template <typename T, typename U>
+inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
+ // Enforce that T can be implicitly converted to U.
+ static_assert(std::is_convertible<const T&, const U&>::value,
+ "T must be implicitly convertible to U");
+ // Enforce that we are not converting a non-reference type T to a reference
+ // type U.
+ GTEST_COMPILE_ASSERT_(
+ std::is_reference<T>::value || !std::is_reference<U>::value,
+ cannot_convert_non_reference_arg_to_reference);
+ // In case both T and U are arithmetic types, enforce that the
+ // conversion is not lossy.
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
+ constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
+ constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
+ GTEST_COMPILE_ASSERT_(
+ kTIsOther || kUIsOther ||
+ (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
+ conversion_of_arithmetic_types_must_be_lossless);
+ return MatcherCast<T>(matcher);
+}
+
+// A<T>() returns a matcher that matches any value of type T.
+template <typename T>
+Matcher<T> A();
+
+// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
+// and MUST NOT BE USED IN USER CODE!!!
+namespace internal {
+
+// If the explanation is not empty, prints it to the ostream.
+inline void PrintIfNotEmpty(const std::string& explanation,
+ ::std::ostream* os) {
+ if (explanation != "" && os != nullptr) {
+ *os << ", " << explanation;
+ }
+}
+
+// Returns true if the given type name is easy to read by a human.
+// This is used to decide whether printing the type of a value might
+// be helpful.
+inline bool IsReadableTypeName(const std::string& type_name) {
+ // We consider a type name readable if it's short or doesn't contain
+ // a template or function type.
+ return (type_name.length() <= 20 ||
+ type_name.find_first_of("<(") == std::string::npos);
+}
+
+// Matches the value against the given matcher, prints the value and explains
+// the match result to the listener. Returns the match result.
+// 'listener' must not be NULL.
+// Value cannot be passed by const reference, because some matchers take a
+// non-const argument.
+template <typename Value, typename T>
+bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
+ MatchResultListener* listener) {
+ if (!listener->IsInterested()) {
+ // If the listener is not interested, we do not need to construct the
+ // inner explanation.
+ return matcher.Matches(value);
+ }
+
+ StringMatchResultListener inner_listener;
+ const bool match = matcher.MatchAndExplain(value, &inner_listener);
+
+ UniversalPrint(value, listener->stream());
+#if GTEST_HAS_RTTI
+ const std::string& type_name = GetTypeName<Value>();
+ if (IsReadableTypeName(type_name))
+ *listener->stream() << " (of type " << type_name << ")";
+#endif
+ PrintIfNotEmpty(inner_listener.str(), listener->stream());
+
+ return match;
+}
+
+// An internal helper class for doing compile-time loop on a tuple's
+// fields.
+template <size_t N>
+class TuplePrefix {
+ public:
+ // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
+ // if and only if the first N fields of matcher_tuple matches
+ // the first N fields of value_tuple, respectively.
+ template <typename MatcherTuple, typename ValueTuple>
+ static bool Matches(const MatcherTuple& matcher_tuple,
+ const ValueTuple& value_tuple) {
+ return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
+ std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
+ }
+
+ // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
+ // describes failures in matching the first N fields of matchers
+ // against the first N fields of values. If there is no failure,
+ // nothing will be streamed to os.
+ template <typename MatcherTuple, typename ValueTuple>
+ static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
+ const ValueTuple& values,
+ ::std::ostream* os) {
+ // First, describes failures in the first N - 1 fields.
+ TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
+
+ // Then describes the failure (if any) in the (N - 1)-th (0-based)
+ // field.
+ typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
+ std::get<N - 1>(matchers);
+ typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
+ const Value& value = std::get<N - 1>(values);
+ StringMatchResultListener listener;
+ if (!matcher.MatchAndExplain(value, &listener)) {
+ *os << " Expected arg #" << N - 1 << ": ";
+ std::get<N - 1>(matchers).DescribeTo(os);
+ *os << "\n Actual: ";
+ // We remove the reference in type Value to prevent the
+ // universal printer from printing the address of value, which
+ // isn't interesting to the user most of the time. The
+ // matcher's MatchAndExplain() method handles the case when
+ // the address is interesting.
+ internal::UniversalPrint(value, os);
+ PrintIfNotEmpty(listener.str(), os);
+ *os << "\n";
+ }
+ }
+};
+
+// The base case.
+template <>
+class TuplePrefix<0> {
+ public:
+ template <typename MatcherTuple, typename ValueTuple>
+ static bool Matches(const MatcherTuple& /* matcher_tuple */,
+ const ValueTuple& /* value_tuple */) {
+ return true;
+ }
+
+ template <typename MatcherTuple, typename ValueTuple>
+ static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
+ const ValueTuple& /* values */,
+ ::std::ostream* /* os */) {}
+};
+
+// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
+// all matchers in matcher_tuple match the corresponding fields in
+// value_tuple. It is a compiler error if matcher_tuple and
+// value_tuple have different number of fields or incompatible field
+// types.
+template <typename MatcherTuple, typename ValueTuple>
+bool TupleMatches(const MatcherTuple& matcher_tuple,
+ const ValueTuple& value_tuple) {
+ // Makes sure that matcher_tuple and value_tuple have the same
+ // number of fields.
+ GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
+ std::tuple_size<ValueTuple>::value,
+ matcher_and_value_have_different_numbers_of_fields);
+ return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
+ value_tuple);
+}
+
+// Describes failures in matching matchers against values. If there
+// is no failure, nothing will be streamed to os.
+template <typename MatcherTuple, typename ValueTuple>
+void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
+ const ValueTuple& values,
+ ::std::ostream* os) {
+ TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
+ matchers, values, os);
+}
+
+// TransformTupleValues and its helper.
+//
+// TransformTupleValuesHelper hides the internal machinery that
+// TransformTupleValues uses to implement a tuple traversal.
+template <typename Tuple, typename Func, typename OutIter>
+class TransformTupleValuesHelper {
+ private:
+ typedef ::std::tuple_size<Tuple> TupleSize;
+
+ public:
+ // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
+ // Returns the final value of 'out' in case the caller needs it.
+ static OutIter Run(Func f, const Tuple& t, OutIter out) {
+ return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
+ }
+
+ private:
+ template <typename Tup, size_t kRemainingSize>
+ struct IterateOverTuple {
+ OutIter operator() (Func f, const Tup& t, OutIter out) const {
+ *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
+ return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
+ }
+ };
+ template <typename Tup>
+ struct IterateOverTuple<Tup, 0> {
+ OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
+ return out;
+ }
+ };
+};
+
+// Successively invokes 'f(element)' on each element of the tuple 't',
+// appending each result to the 'out' iterator. Returns the final value
+// of 'out'.
+template <typename Tuple, typename Func, typename OutIter>
+OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
+ return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
+}
+
+// Implements _, a matcher that matches any value of any
+// type. This is a polymorphic matcher, so we need a template type
+// conversion operator to make it appearing as a Matcher<T> for any
+// type T.
+class AnythingMatcher {
+ public:
+ using is_gtest_matcher = void;
+
+ template <typename T>
+ bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
+ return true;
+ }
+ void DescribeTo(std::ostream* os) const { *os << "is anything"; }
+ void DescribeNegationTo(::std::ostream* os) const {
+ // This is mostly for completeness' sake, as it's not very useful
+ // to write Not(A<bool>()). However we cannot completely rule out
+ // such a possibility, and it doesn't hurt to be prepared.
+ *os << "never matches";
+ }
+};
+
+// Implements the polymorphic IsNull() matcher, which matches any raw or smart
+// pointer that is NULL.
+class IsNullMatcher {
+ public:
+ template <typename Pointer>
+ bool MatchAndExplain(const Pointer& p,
+ MatchResultListener* /* listener */) const {
+ return p == nullptr;
+ }
+
+ void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "isn't NULL";
+ }
+};
+
+// Implements the polymorphic NotNull() matcher, which matches any raw or smart
+// pointer that is not NULL.
+class NotNullMatcher {
+ public:
+ template <typename Pointer>
+ bool MatchAndExplain(const Pointer& p,
+ MatchResultListener* /* listener */) const {
+ return p != nullptr;
+ }
+
+ void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "is NULL";
+ }
+};
+
+// Ref(variable) matches any argument that is a reference to
+// 'variable'. This matcher is polymorphic as it can match any
+// super type of the type of 'variable'.
+//
+// The RefMatcher template class implements Ref(variable). It can
+// only be instantiated with a reference type. This prevents a user
+// from mistakenly using Ref(x) to match a non-reference function
+// argument. For example, the following will righteously cause a
+// compiler error:
+//
+// int n;
+// Matcher<int> m1 = Ref(n); // This won't compile.
+// Matcher<int&> m2 = Ref(n); // This will compile.
+template <typename T>
+class RefMatcher;
+
+template <typename T>
+class RefMatcher<T&> {
+ // Google Mock is a generic framework and thus needs to support
+ // mocking any function types, including those that take non-const
+ // reference arguments. Therefore the template parameter T (and
+ // Super below) can be instantiated to either a const type or a
+ // non-const type.
+ public:
+ // RefMatcher() takes a T& instead of const T&, as we want the
+ // compiler to catch using Ref(const_value) as a matcher for a
+ // non-const reference.
+ explicit RefMatcher(T& x) : object_(x) {} // NOLINT
+
+ template <typename Super>
+ operator Matcher<Super&>() const {
+ // By passing object_ (type T&) to Impl(), which expects a Super&,
+ // we make sure that Super is a super type of T. In particular,
+ // this catches using Ref(const_value) as a matcher for a
+ // non-const reference, as you cannot implicitly convert a const
+ // reference to a non-const reference.
+ return MakeMatcher(new Impl<Super>(object_));
+ }
+
+ private:
+ template <typename Super>
+ class Impl : public MatcherInterface<Super&> {
+ public:
+ explicit Impl(Super& x) : object_(x) {} // NOLINT
+
+ // MatchAndExplain() takes a Super& (as opposed to const Super&)
+ // in order to match the interface MatcherInterface<Super&>.
+ bool MatchAndExplain(Super& x,
+ MatchResultListener* listener) const override {
+ *listener << "which is located @" << static_cast<const void*>(&x);
+ return &x == &object_;
+ }
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "references the variable ";
+ UniversalPrinter<Super&>::Print(object_, os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "does not reference the variable ";
+ UniversalPrinter<Super&>::Print(object_, os);
+ }
+
+ private:
+ const Super& object_;
+ };
+
+ T& object_;
+};
+
+// Polymorphic helper functions for narrow and wide string matchers.
+inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
+ return String::CaseInsensitiveCStringEquals(lhs, rhs);
+}
+
+inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
+ const wchar_t* rhs) {
+ return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
+}
+
+// String comparison for narrow or wide strings that can have embedded NUL
+// characters.
+template <typename StringType>
+bool CaseInsensitiveStringEquals(const StringType& s1,
+ const StringType& s2) {
+ // Are the heads equal?
+ if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
+ return false;
+ }
+
+ // Skip the equal heads.
+ const typename StringType::value_type nul = 0;
+ const size_t i1 = s1.find(nul), i2 = s2.find(nul);
+
+ // Are we at the end of either s1 or s2?
+ if (i1 == StringType::npos || i2 == StringType::npos) {
+ return i1 == i2;
+ }
+
+ // Are the tails equal?
+ return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
+}
+
+// String matchers.
+
+// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
+template <typename StringType>
+class StrEqualityMatcher {
+ public:
+ StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
+ : string_(std::move(str)),
+ expect_eq_(expect_eq),
+ case_sensitive_(case_sensitive) {}
+
+#if GTEST_INTERNAL_HAS_STRING_VIEW
+ bool MatchAndExplain(const internal::StringView& s,
+ MatchResultListener* listener) const {
+ // This should fail to compile if StringView is used with wide
+ // strings.
+ const StringType& str = std::string(s);
+ return MatchAndExplain(str, listener);
+ }
+#endif // GTEST_INTERNAL_HAS_STRING_VIEW
+
+ // Accepts pointer types, particularly:
+ // const char*
+ // char*
+ // const wchar_t*
+ // wchar_t*
+ template <typename CharType>
+ bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
+ if (s == nullptr) {
+ return !expect_eq_;
+ }
+ return MatchAndExplain(StringType(s), listener);
+ }
+
+ // Matches anything that can convert to StringType.
+ //
+ // This is a template, not just a plain function with const StringType&,
+ // because StringView has some interfering non-explicit constructors.
+ template <typename MatcheeStringType>
+ bool MatchAndExplain(const MatcheeStringType& s,
+ MatchResultListener* /* listener */) const {
+ const StringType s2(s);
+ const bool eq = case_sensitive_ ? s2 == string_ :
+ CaseInsensitiveStringEquals(s2, string_);
+ return expect_eq_ == eq;
+ }
+
+ void DescribeTo(::std::ostream* os) const {
+ DescribeToHelper(expect_eq_, os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ DescribeToHelper(!expect_eq_, os);
+ }
+
+ private:
+ void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
+ *os << (expect_eq ? "is " : "isn't ");
+ *os << "equal to ";
+ if (!case_sensitive_) {
+ *os << "(ignoring case) ";
+ }
+ UniversalPrint(string_, os);
+ }
+
+ const StringType string_;
+ const bool expect_eq_;
+ const bool case_sensitive_;
+};
+
+// Implements the polymorphic HasSubstr(substring) matcher, which
+// can be used as a Matcher<T> as long as T can be converted to a
+// string.
+template <typename StringType>
+class HasSubstrMatcher {
+ public:
+ explicit HasSubstrMatcher(const StringType& substring)
+ : substring_(substring) {}
+
+#if GTEST_INTERNAL_HAS_STRING_VIEW
+ bool MatchAndExplain(const internal::StringView& s,
+ MatchResultListener* listener) const {
+ // This should fail to compile if StringView is used with wide
+ // strings.
+ const StringType& str = std::string(s);
+ return MatchAndExplain(str, listener);
+ }
+#endif // GTEST_INTERNAL_HAS_STRING_VIEW
+
+ // Accepts pointer types, particularly:
+ // const char*
+ // char*
+ // const wchar_t*
+ // wchar_t*
+ template <typename CharType>
+ bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
+ return s != nullptr && MatchAndExplain(StringType(s), listener);
+ }
+
+ // Matches anything that can convert to StringType.
+ //
+ // This is a template, not just a plain function with const StringType&,
+ // because StringView has some interfering non-explicit constructors.
+ template <typename MatcheeStringType>
+ bool MatchAndExplain(const MatcheeStringType& s,
+ MatchResultListener* /* listener */) const {
+ return StringType(s).find(substring_) != StringType::npos;
+ }
+
+ // Describes what this matcher matches.
+ void DescribeTo(::std::ostream* os) const {
+ *os << "has substring ";
+ UniversalPrint(substring_, os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "has no substring ";
+ UniversalPrint(substring_, os);
+ }
+
+ private:
+ const StringType substring_;
+};
+
+// Implements the polymorphic StartsWith(substring) matcher, which
+// can be used as a Matcher<T> as long as T can be converted to a
+// string.
+template <typename StringType>
+class StartsWithMatcher {
+ public:
+ explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
+ }
+
+#if GTEST_INTERNAL_HAS_STRING_VIEW
+ bool MatchAndExplain(const internal::StringView& s,
+ MatchResultListener* listener) const {
+ // This should fail to compile if StringView is used with wide
+ // strings.
+ const StringType& str = std::string(s);
+ return MatchAndExplain(str, listener);
+ }
+#endif // GTEST_INTERNAL_HAS_STRING_VIEW
+
+ // Accepts pointer types, particularly:
+ // const char*
+ // char*
+ // const wchar_t*
+ // wchar_t*
+ template <typename CharType>
+ bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
+ return s != nullptr && MatchAndExplain(StringType(s), listener);
+ }
+
+ // Matches anything that can convert to StringType.
+ //
+ // This is a template, not just a plain function with const StringType&,
+ // because StringView has some interfering non-explicit constructors.
+ template <typename MatcheeStringType>
+ bool MatchAndExplain(const MatcheeStringType& s,
+ MatchResultListener* /* listener */) const {
+ const StringType& s2(s);
+ return s2.length() >= prefix_.length() &&
+ s2.substr(0, prefix_.length()) == prefix_;
+ }
+
+ void DescribeTo(::std::ostream* os) const {
+ *os << "starts with ";
+ UniversalPrint(prefix_, os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "doesn't start with ";
+ UniversalPrint(prefix_, os);
+ }
+
+ private:
+ const StringType prefix_;
+};
+
+// Implements the polymorphic EndsWith(substring) matcher, which
+// can be used as a Matcher<T> as long as T can be converted to a
+// string.
+template <typename StringType>
+class EndsWithMatcher {
+ public:
+ explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
+
+#if GTEST_INTERNAL_HAS_STRING_VIEW
+ bool MatchAndExplain(const internal::StringView& s,
+ MatchResultListener* listener) const {
+ // This should fail to compile if StringView is used with wide
+ // strings.
+ const StringType& str = std::string(s);
+ return MatchAndExplain(str, listener);
+ }
+#endif // GTEST_INTERNAL_HAS_STRING_VIEW
+
+ // Accepts pointer types, particularly:
+ // const char*
+ // char*
+ // const wchar_t*
+ // wchar_t*
+ template <typename CharType>
+ bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
+ return s != nullptr && MatchAndExplain(StringType(s), listener);
+ }
+
+ // Matches anything that can convert to StringType.
+ //
+ // This is a template, not just a plain function with const StringType&,
+ // because StringView has some interfering non-explicit constructors.
+ template <typename MatcheeStringType>
+ bool MatchAndExplain(const MatcheeStringType& s,
+ MatchResultListener* /* listener */) const {
+ const StringType& s2(s);
+ return s2.length() >= suffix_.length() &&
+ s2.substr(s2.length() - suffix_.length()) == suffix_;
+ }
+
+ void DescribeTo(::std::ostream* os) const {
+ *os << "ends with ";
+ UniversalPrint(suffix_, os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "doesn't end with ";
+ UniversalPrint(suffix_, os);
+ }
+
+ private:
+ const StringType suffix_;
+};
+
+// Implements a matcher that compares the two fields of a 2-tuple
+// using one of the ==, <=, <, etc, operators. The two fields being
+// compared don't have to have the same type.
+//
+// The matcher defined here is polymorphic (for example, Eq() can be
+// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
+// etc). Therefore we use a template type conversion operator in the
+// implementation.
+template <typename D, typename Op>
+class PairMatchBase {
+ public:
+ template <typename T1, typename T2>
+ operator Matcher<::std::tuple<T1, T2>>() const {
+ return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
+ }
+ template <typename T1, typename T2>
+ operator Matcher<const ::std::tuple<T1, T2>&>() const {
+ return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
+ }
+
+ private:
+ static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
+ return os << D::Desc();
+ }
+
+ template <typename Tuple>
+ class Impl : public MatcherInterface<Tuple> {
+ public:
+ bool MatchAndExplain(Tuple args,
+ MatchResultListener* /* listener */) const override {
+ return Op()(::std::get<0>(args), ::std::get<1>(args));
+ }
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "are " << GetDesc;
+ }
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "aren't " << GetDesc;
+ }
+ };
+};
+
+class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
+ public:
+ static const char* Desc() { return "an equal pair"; }
+};
+class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
+ public:
+ static const char* Desc() { return "an unequal pair"; }
+};
+class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
+ public:
+ static const char* Desc() { return "a pair where the first < the second"; }
+};
+class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
+ public:
+ static const char* Desc() { return "a pair where the first > the second"; }
+};
+class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
+ public:
+ static const char* Desc() { return "a pair where the first <= the second"; }
+};
+class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
+ public:
+ static const char* Desc() { return "a pair where the first >= the second"; }
+};
+
+// Implements the Not(...) matcher for a particular argument type T.
+// We do not nest it inside the NotMatcher class template, as that
+// will prevent different instantiations of NotMatcher from sharing
+// the same NotMatcherImpl<T> class.
+template <typename T>
+class NotMatcherImpl : public MatcherInterface<const T&> {
+ public:
+ explicit NotMatcherImpl(const Matcher<T>& matcher)
+ : matcher_(matcher) {}
+
+ bool MatchAndExplain(const T& x,
+ MatchResultListener* listener) const override {
+ return !matcher_.MatchAndExplain(x, listener);
+ }
+
+ void DescribeTo(::std::ostream* os) const override {
+ matcher_.DescribeNegationTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ matcher_.DescribeTo(os);
+ }
+
+ private:
+ const Matcher<T> matcher_;
+};
+
+// Implements the Not(m) matcher, which matches a value that doesn't
+// match matcher m.
+template <typename InnerMatcher>
+class NotMatcher {
+ public:
+ explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
+
+ // This template type conversion operator allows Not(m) to be used
+ // to match any type m can match.
+ template <typename T>
+ operator Matcher<T>() const {
+ return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
+ }
+
+ private:
+ InnerMatcher matcher_;
+};
+
+// Implements the AllOf(m1, m2) matcher for a particular argument type
+// T. We do not nest it inside the BothOfMatcher class template, as
+// that will prevent different instantiations of BothOfMatcher from
+// sharing the same BothOfMatcherImpl<T> class.
+template <typename T>
+class AllOfMatcherImpl : public MatcherInterface<const T&> {
+ public:
+ explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
+ : matchers_(std::move(matchers)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "(";
+ for (size_t i = 0; i < matchers_.size(); ++i) {
+ if (i != 0) *os << ") and (";
+ matchers_[i].DescribeTo(os);
+ }
+ *os << ")";
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "(";
+ for (size_t i = 0; i < matchers_.size(); ++i) {
+ if (i != 0) *os << ") or (";
+ matchers_[i].DescribeNegationTo(os);
+ }
+ *os << ")";
+ }
+
+ bool MatchAndExplain(const T& x,
+ MatchResultListener* listener) const override {
+ // If either matcher1_ or matcher2_ doesn't match x, we only need
+ // to explain why one of them fails.
+ std::string all_match_result;
+
+ for (size_t i = 0; i < matchers_.size(); ++i) {
+ StringMatchResultListener slistener;
+ if (matchers_[i].MatchAndExplain(x, &slistener)) {
+ if (all_match_result.empty()) {
+ all_match_result = slistener.str();
+ } else {
+ std::string result = slistener.str();
+ if (!result.empty()) {
+ all_match_result += ", and ";
+ all_match_result += result;
+ }
+ }
+ } else {
+ *listener << slistener.str();
+ return false;
+ }
+ }
+
+ // Otherwise we need to explain why *both* of them match.
+ *listener << all_match_result;
+ return true;
+ }
+
+ private:
+ const std::vector<Matcher<T> > matchers_;
+};
+
+// VariadicMatcher is used for the variadic implementation of
+// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
+// CombiningMatcher<T> is used to recursively combine the provided matchers
+// (of type Args...).
+template <template <typename T> class CombiningMatcher, typename... Args>
+class VariadicMatcher {
+ public:
+ VariadicMatcher(const Args&... matchers) // NOLINT
+ : matchers_(matchers...) {
+ static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
+ }
+
+ VariadicMatcher(const VariadicMatcher&) = default;
+ VariadicMatcher& operator=(const VariadicMatcher&) = delete;
+
+ // This template type conversion operator allows an
+ // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
+ // all of the provided matchers (Matcher1, Matcher2, ...) can match.
+ template <typename T>
+ operator Matcher<T>() const {
+ std::vector<Matcher<T> > values;
+ CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
+ return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
+ }
+
+ private:
+ template <typename T, size_t I>
+ void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
+ std::integral_constant<size_t, I>) const {
+ values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
+ CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
+ }
+
+ template <typename T>
+ void CreateVariadicMatcher(
+ std::vector<Matcher<T> >*,
+ std::integral_constant<size_t, sizeof...(Args)>) const {}
+
+ std::tuple<Args...> matchers_;
+};
+
+template <typename... Args>
+using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
+
+// Implements the AnyOf(m1, m2) matcher for a particular argument type
+// T. We do not nest it inside the AnyOfMatcher class template, as
+// that will prevent different instantiations of AnyOfMatcher from
+// sharing the same EitherOfMatcherImpl<T> class.
+template <typename T>
+class AnyOfMatcherImpl : public MatcherInterface<const T&> {
+ public:
+ explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
+ : matchers_(std::move(matchers)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "(";
+ for (size_t i = 0; i < matchers_.size(); ++i) {
+ if (i != 0) *os << ") or (";
+ matchers_[i].DescribeTo(os);
+ }
+ *os << ")";
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "(";
+ for (size_t i = 0; i < matchers_.size(); ++i) {
+ if (i != 0) *os << ") and (";
+ matchers_[i].DescribeNegationTo(os);
+ }
+ *os << ")";
+ }
+
+ bool MatchAndExplain(const T& x,
+ MatchResultListener* listener) const override {
+ std::string no_match_result;
+
+ // If either matcher1_ or matcher2_ matches x, we just need to
+ // explain why *one* of them matches.
+ for (size_t i = 0; i < matchers_.size(); ++i) {
+ StringMatchResultListener slistener;
+ if (matchers_[i].MatchAndExplain(x, &slistener)) {
+ *listener << slistener.str();
+ return true;
+ } else {
+ if (no_match_result.empty()) {
+ no_match_result = slistener.str();
+ } else {
+ std::string result = slistener.str();
+ if (!result.empty()) {
+ no_match_result += ", and ";
+ no_match_result += result;
+ }
+ }
+ }
+ }
+
+ // Otherwise we need to explain why *both* of them fail.
+ *listener << no_match_result;
+ return false;
+ }
+
+ private:
+ const std::vector<Matcher<T> > matchers_;
+};
+
+// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
+template <typename... Args>
+using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
+
+// Wrapper for implementation of Any/AllOfArray().
+template <template <class> class MatcherImpl, typename T>
+class SomeOfArrayMatcher {
+ public:
+ // Constructs the matcher from a sequence of element values or
+ // element matchers.
+ template <typename Iter>
+ SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
+
+ template <typename U>
+ operator Matcher<U>() const { // NOLINT
+ using RawU = typename std::decay<U>::type;
+ std::vector<Matcher<RawU>> matchers;
+ for (const auto& matcher : matchers_) {
+ matchers.push_back(MatcherCast<RawU>(matcher));
+ }
+ return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
+ }
+
+ private:
+ const ::std::vector<T> matchers_;
+};
+
+template <typename T>
+using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
+
+template <typename T>
+using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
+
+// Used for implementing Truly(pred), which turns a predicate into a
+// matcher.
+template <typename Predicate>
+class TrulyMatcher {
+ public:
+ explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
+
+ // This method template allows Truly(pred) to be used as a matcher
+ // for type T where T is the argument type of predicate 'pred'. The
+ // argument is passed by reference as the predicate may be
+ // interested in the address of the argument.
+ template <typename T>
+ bool MatchAndExplain(T& x, // NOLINT
+ MatchResultListener* listener) const {
+ // Without the if-statement, MSVC sometimes warns about converting
+ // a value to bool (warning 4800).
+ //
+ // We cannot write 'return !!predicate_(x);' as that doesn't work
+ // when predicate_(x) returns a class convertible to bool but
+ // having no operator!().
+ if (predicate_(x))
+ return true;
+ *listener << "didn't satisfy the given predicate";
+ return false;
+ }
+
+ void DescribeTo(::std::ostream* os) const {
+ *os << "satisfies the given predicate";
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "doesn't satisfy the given predicate";
+ }
+
+ private:
+ Predicate predicate_;
+};
+
+// Used for implementing Matches(matcher), which turns a matcher into
+// a predicate.
+template <typename M>
+class MatcherAsPredicate {
+ public:
+ explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
+
+ // This template operator() allows Matches(m) to be used as a
+ // predicate on type T where m is a matcher on type T.
+ //
+ // The argument x is passed by reference instead of by value, as
+ // some matcher may be interested in its address (e.g. as in
+ // Matches(Ref(n))(x)).
+ template <typename T>
+ bool operator()(const T& x) const {
+ // We let matcher_ commit to a particular type here instead of
+ // when the MatcherAsPredicate object was constructed. This
+ // allows us to write Matches(m) where m is a polymorphic matcher
+ // (e.g. Eq(5)).
+ //
+ // If we write Matcher<T>(matcher_).Matches(x) here, it won't
+ // compile when matcher_ has type Matcher<const T&>; if we write
+ // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
+ // when matcher_ has type Matcher<T>; if we just write
+ // matcher_.Matches(x), it won't compile when matcher_ is
+ // polymorphic, e.g. Eq(5).
+ //
+ // MatcherCast<const T&>() is necessary for making the code work
+ // in all of the above situations.
+ return MatcherCast<const T&>(matcher_).Matches(x);
+ }
+
+ private:
+ M matcher_;
+};
+
+// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
+// argument M must be a type that can be converted to a matcher.
+template <typename M>
+class PredicateFormatterFromMatcher {
+ public:
+ explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
+
+ // This template () operator allows a PredicateFormatterFromMatcher
+ // object to act as a predicate-formatter suitable for using with
+ // Google Test's EXPECT_PRED_FORMAT1() macro.
+ template <typename T>
+ AssertionResult operator()(const char* value_text, const T& x) const {
+ // We convert matcher_ to a Matcher<const T&> *now* instead of
+ // when the PredicateFormatterFromMatcher object was constructed,
+ // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
+ // know which type to instantiate it to until we actually see the
+ // type of x here.
+ //
+ // We write SafeMatcherCast<const T&>(matcher_) instead of
+ // Matcher<const T&>(matcher_), as the latter won't compile when
+ // matcher_ has type Matcher<T> (e.g. An<int>()).
+ // We don't write MatcherCast<const T&> either, as that allows
+ // potentially unsafe downcasting of the matcher argument.
+ const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
+
+ // The expected path here is that the matcher should match (i.e. that most
+ // tests pass) so optimize for this case.
+ if (matcher.Matches(x)) {
+ return AssertionSuccess();
+ }
+
+ ::std::stringstream ss;
+ ss << "Value of: " << value_text << "\n"
+ << "Expected: ";
+ matcher.DescribeTo(&ss);
+
+ // Rerun the matcher to "PrintAndExplain" the failure.
+ StringMatchResultListener listener;
+ if (MatchPrintAndExplain(x, matcher, &listener)) {
+ ss << "\n The matcher failed on the initial attempt; but passed when "
+ "rerun to generate the explanation.";
+ }
+ ss << "\n Actual: " << listener.str();
+ return AssertionFailure() << ss.str();
+ }
+
+ private:
+ const M matcher_;
+};
+
+// A helper function for converting a matcher to a predicate-formatter
+// without the user needing to explicitly write the type. This is
+// used for implementing ASSERT_THAT() and EXPECT_THAT().
+// Implementation detail: 'matcher' is received by-value to force decaying.
+template <typename M>
+inline PredicateFormatterFromMatcher<M>
+MakePredicateFormatterFromMatcher(M matcher) {
+ return PredicateFormatterFromMatcher<M>(std::move(matcher));
+}
+
+// Implements the polymorphic IsNan() matcher, which matches any floating type
+// value that is Nan.
+class IsNanMatcher {
+ public:
+ template <typename FloatType>
+ bool MatchAndExplain(const FloatType& f,
+ MatchResultListener* /* listener */) const {
+ return (::std::isnan)(f);
+ }
+
+ void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "isn't NaN";
+ }
+};
+
+// Implements the polymorphic floating point equality matcher, which matches
+// two float values using ULP-based approximation or, optionally, a
+// user-specified epsilon. The template is meant to be instantiated with
+// FloatType being either float or double.
+template <typename FloatType>
+class FloatingEqMatcher {
+ public:
+ // Constructor for FloatingEqMatcher.
+ // The matcher's input will be compared with expected. The matcher treats two
+ // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
+ // equality comparisons between NANs will always return false. We specify a
+ // negative max_abs_error_ term to indicate that ULP-based approximation will
+ // be used for comparison.
+ FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
+ expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
+ }
+
+ // Constructor that supports a user-specified max_abs_error that will be used
+ // for comparison instead of ULP-based approximation. The max absolute
+ // should be non-negative.
+ FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
+ FloatType max_abs_error)
+ : expected_(expected),
+ nan_eq_nan_(nan_eq_nan),
+ max_abs_error_(max_abs_error) {
+ GTEST_CHECK_(max_abs_error >= 0)
+ << ", where max_abs_error is" << max_abs_error;
+ }
+
+ // Implements floating point equality matcher as a Matcher<T>.
+ template <typename T>
+ class Impl : public MatcherInterface<T> {
+ public:
+ Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
+ : expected_(expected),
+ nan_eq_nan_(nan_eq_nan),
+ max_abs_error_(max_abs_error) {}
+
+ bool MatchAndExplain(T value,
+ MatchResultListener* listener) const override {
+ const FloatingPoint<FloatType> actual(value), expected(expected_);
+
+ // Compares NaNs first, if nan_eq_nan_ is true.
+ if (actual.is_nan() || expected.is_nan()) {
+ if (actual.is_nan() && expected.is_nan()) {
+ return nan_eq_nan_;
+ }
+ // One is nan; the other is not nan.
+ return false;
+ }
+ if (HasMaxAbsError()) {
+ // We perform an equality check so that inf will match inf, regardless
+ // of error bounds. If the result of value - expected_ would result in
+ // overflow or if either value is inf, the default result is infinity,
+ // which should only match if max_abs_error_ is also infinity.
+ if (value == expected_) {
+ return true;
+ }
+
+ const FloatType diff = value - expected_;
+ if (::std::fabs(diff) <= max_abs_error_) {
+ return true;
+ }
+
+ if (listener->IsInterested()) {
+ *listener << "which is " << diff << " from " << expected_;
+ }
+ return false;
+ } else {
+ return actual.AlmostEquals(expected);
+ }
+ }
+
+ void DescribeTo(::std::ostream* os) const override {
+ // os->precision() returns the previously set precision, which we
+ // store to restore the ostream to its original configuration
+ // after outputting.
+ const ::std::streamsize old_precision = os->precision(
+ ::std::numeric_limits<FloatType>::digits10 + 2);
+ if (FloatingPoint<FloatType>(expected_).is_nan()) {
+ if (nan_eq_nan_) {
+ *os << "is NaN";
+ } else {
+ *os << "never matches";
+ }
+ } else {
+ *os << "is approximately " << expected_;
+ if (HasMaxAbsError()) {
+ *os << " (absolute error <= " << max_abs_error_ << ")";
+ }
+ }
+ os->precision(old_precision);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ // As before, get original precision.
+ const ::std::streamsize old_precision = os->precision(
+ ::std::numeric_limits<FloatType>::digits10 + 2);
+ if (FloatingPoint<FloatType>(expected_).is_nan()) {
+ if (nan_eq_nan_) {
+ *os << "isn't NaN";
+ } else {
+ *os << "is anything";
+ }
+ } else {
+ *os << "isn't approximately " << expected_;
+ if (HasMaxAbsError()) {
+ *os << " (absolute error > " << max_abs_error_ << ")";
+ }
+ }
+ // Restore original precision.
+ os->precision(old_precision);
+ }
+
+ private:
+ bool HasMaxAbsError() const {
+ return max_abs_error_ >= 0;
+ }
+
+ const FloatType expected_;
+ const bool nan_eq_nan_;
+ // max_abs_error will be used for value comparison when >= 0.
+ const FloatType max_abs_error_;
+ };
+
+ // The following 3 type conversion operators allow FloatEq(expected) and
+ // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
+ // Matcher<const float&>, or a Matcher<float&>, but nothing else.
+ operator Matcher<FloatType>() const {
+ return MakeMatcher(
+ new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
+ }
+
+ operator Matcher<const FloatType&>() const {
+ return MakeMatcher(
+ new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
+ }
+
+ operator Matcher<FloatType&>() const {
+ return MakeMatcher(
+ new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
+ }
+
+ private:
+ const FloatType expected_;
+ const bool nan_eq_nan_;
+ // max_abs_error will be used for value comparison when >= 0.
+ const FloatType max_abs_error_;
+};
+
+// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
+// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
+// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
+// against y. The former implements "Eq", the latter "Near". At present, there
+// is no version that compares NaNs as equal.
+template <typename FloatType>
+class FloatingEq2Matcher {
+ public:
+ FloatingEq2Matcher() { Init(-1, false); }
+
+ explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
+
+ explicit FloatingEq2Matcher(FloatType max_abs_error) {
+ Init(max_abs_error, false);
+ }
+
+ FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
+ Init(max_abs_error, nan_eq_nan);
+ }
+
+ template <typename T1, typename T2>
+ operator Matcher<::std::tuple<T1, T2>>() const {
+ return MakeMatcher(
+ new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
+ }
+ template <typename T1, typename T2>
+ operator Matcher<const ::std::tuple<T1, T2>&>() const {
+ return MakeMatcher(
+ new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
+ }
+
+ private:
+ static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
+ return os << "an almost-equal pair";
+ }
+
+ template <typename Tuple>
+ class Impl : public MatcherInterface<Tuple> {
+ public:
+ Impl(FloatType max_abs_error, bool nan_eq_nan) :
+ max_abs_error_(max_abs_error),
+ nan_eq_nan_(nan_eq_nan) {}
+
+ bool MatchAndExplain(Tuple args,
+ MatchResultListener* listener) const override {
+ if (max_abs_error_ == -1) {
+ FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
+ return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
+ ::std::get<1>(args), listener);
+ } else {
+ FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
+ max_abs_error_);
+ return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
+ ::std::get<1>(args), listener);
+ }
+ }
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "are " << GetDesc;
+ }
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "aren't " << GetDesc;
+ }
+
+ private:
+ FloatType max_abs_error_;
+ const bool nan_eq_nan_;
+ };
+
+ void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
+ max_abs_error_ = max_abs_error_val;
+ nan_eq_nan_ = nan_eq_nan_val;
+ }
+ FloatType max_abs_error_;
+ bool nan_eq_nan_;
+};
+
+// Implements the Pointee(m) matcher for matching a pointer whose
+// pointee matches matcher m. The pointer can be either raw or smart.
+template <typename InnerMatcher>
+class PointeeMatcher {
+ public:
+ explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
+
+ // This type conversion operator template allows Pointee(m) to be
+ // used as a matcher for any pointer type whose pointee type is
+ // compatible with the inner matcher, where type Pointer can be
+ // either a raw pointer or a smart pointer.
+ //
+ // The reason we do this instead of relying on
+ // MakePolymorphicMatcher() is that the latter is not flexible
+ // enough for implementing the DescribeTo() method of Pointee().
+ template <typename Pointer>
+ operator Matcher<Pointer>() const {
+ return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
+ }
+
+ private:
+ // The monomorphic implementation that works for a particular pointer type.
+ template <typename Pointer>
+ class Impl : public MatcherInterface<Pointer> {
+ public:
+ using Pointee =
+ typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
+ Pointer)>::element_type;
+
+ explicit Impl(const InnerMatcher& matcher)
+ : matcher_(MatcherCast<const Pointee&>(matcher)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "points to a value that ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "does not point to a value that ";
+ matcher_.DescribeTo(os);
+ }
+
+ bool MatchAndExplain(Pointer pointer,
+ MatchResultListener* listener) const override {
+ if (GetRawPointer(pointer) == nullptr) return false;
+
+ *listener << "which points to ";
+ return MatchPrintAndExplain(*pointer, matcher_, listener);
+ }
+
+ private:
+ const Matcher<const Pointee&> matcher_;
+ };
+
+ const InnerMatcher matcher_;
+};
+
+// Implements the Pointer(m) matcher
+// Implements the Pointer(m) matcher for matching a pointer that matches matcher
+// m. The pointer can be either raw or smart, and will match `m` against the
+// raw pointer.
+template <typename InnerMatcher>
+class PointerMatcher {
+ public:
+ explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
+
+ // This type conversion operator template allows Pointer(m) to be
+ // used as a matcher for any pointer type whose pointer type is
+ // compatible with the inner matcher, where type PointerType can be
+ // either a raw pointer or a smart pointer.
+ //
+ // The reason we do this instead of relying on
+ // MakePolymorphicMatcher() is that the latter is not flexible
+ // enough for implementing the DescribeTo() method of Pointer().
+ template <typename PointerType>
+ operator Matcher<PointerType>() const { // NOLINT
+ return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
+ }
+
+ private:
+ // The monomorphic implementation that works for a particular pointer type.
+ template <typename PointerType>
+ class Impl : public MatcherInterface<PointerType> {
+ public:
+ using Pointer =
+ const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
+ PointerType)>::element_type*;
+
+ explicit Impl(const InnerMatcher& matcher)
+ : matcher_(MatcherCast<Pointer>(matcher)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "is a pointer that ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "is not a pointer that ";
+ matcher_.DescribeTo(os);
+ }
+
+ bool MatchAndExplain(PointerType pointer,
+ MatchResultListener* listener) const override {
+ *listener << "which is a pointer that ";
+ Pointer p = GetRawPointer(pointer);
+ return MatchPrintAndExplain(p, matcher_, listener);
+ }
+
+ private:
+ Matcher<Pointer> matcher_;
+ };
+
+ const InnerMatcher matcher_;
+};
+
+#if GTEST_HAS_RTTI
+// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
+// reference that matches inner_matcher when dynamic_cast<T> is applied.
+// The result of dynamic_cast<To> is forwarded to the inner matcher.
+// If To is a pointer and the cast fails, the inner matcher will receive NULL.
+// If To is a reference and the cast fails, this matcher returns false
+// immediately.
+template <typename To>
+class WhenDynamicCastToMatcherBase {
+ public:
+ explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
+ : matcher_(matcher) {}
+
+ void DescribeTo(::std::ostream* os) const {
+ GetCastTypeDescription(os);
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ GetCastTypeDescription(os);
+ matcher_.DescribeNegationTo(os);
+ }
+
+ protected:
+ const Matcher<To> matcher_;
+
+ static std::string GetToName() {
+ return GetTypeName<To>();
+ }
+
+ private:
+ static void GetCastTypeDescription(::std::ostream* os) {
+ *os << "when dynamic_cast to " << GetToName() << ", ";
+ }
+};
+
+// Primary template.
+// To is a pointer. Cast and forward the result.
+template <typename To>
+class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
+ public:
+ explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
+ : WhenDynamicCastToMatcherBase<To>(matcher) {}
+
+ template <typename From>
+ bool MatchAndExplain(From from, MatchResultListener* listener) const {
+ To to = dynamic_cast<To>(from);
+ return MatchPrintAndExplain(to, this->matcher_, listener);
+ }
+};
+
+// Specialize for references.
+// In this case we return false if the dynamic_cast fails.
+template <typename To>
+class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
+ public:
+ explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
+ : WhenDynamicCastToMatcherBase<To&>(matcher) {}
+
+ template <typename From>
+ bool MatchAndExplain(From& from, MatchResultListener* listener) const {
+ // We don't want an std::bad_cast here, so do the cast with pointers.
+ To* to = dynamic_cast<To*>(&from);
+ if (to == nullptr) {
+ *listener << "which cannot be dynamic_cast to " << this->GetToName();
+ return false;
+ }
+ return MatchPrintAndExplain(*to, this->matcher_, listener);
+ }
+};
+#endif // GTEST_HAS_RTTI
+
+// Implements the Field() matcher for matching a field (i.e. member
+// variable) of an object.
+template <typename Class, typename FieldType>
+class FieldMatcher {
+ public:
+ FieldMatcher(FieldType Class::*field,
+ const Matcher<const FieldType&>& matcher)
+ : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
+
+ FieldMatcher(const std::string& field_name, FieldType Class::*field,
+ const Matcher<const FieldType&>& matcher)
+ : field_(field),
+ matcher_(matcher),
+ whose_field_("whose field `" + field_name + "` ") {}
+
+ void DescribeTo(::std::ostream* os) const {
+ *os << "is an object " << whose_field_;
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "is an object " << whose_field_;
+ matcher_.DescribeNegationTo(os);
+ }
+
+ template <typename T>
+ bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
+ // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
+ // a compiler bug, and can now be removed.
+ return MatchAndExplainImpl(
+ typename std::is_pointer<typename std::remove_const<T>::type>::type(),
+ value, listener);
+ }
+
+ private:
+ bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
+ const Class& obj,
+ MatchResultListener* listener) const {
+ *listener << whose_field_ << "is ";
+ return MatchPrintAndExplain(obj.*field_, matcher_, listener);
+ }
+
+ bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
+ MatchResultListener* listener) const {
+ if (p == nullptr) return false;
+
+ *listener << "which points to an object ";
+ // Since *p has a field, it must be a class/struct/union type and
+ // thus cannot be a pointer. Therefore we pass false_type() as
+ // the first argument.
+ return MatchAndExplainImpl(std::false_type(), *p, listener);
+ }
+
+ const FieldType Class::*field_;
+ const Matcher<const FieldType&> matcher_;
+
+ // Contains either "whose given field " if the name of the field is unknown
+ // or "whose field `name_of_field` " if the name is known.
+ const std::string whose_field_;
+};
+
+// Implements the Property() matcher for matching a property
+// (i.e. return value of a getter method) of an object.
+//
+// Property is a const-qualified member function of Class returning
+// PropertyType.
+template <typename Class, typename PropertyType, typename Property>
+class PropertyMatcher {
+ public:
+ typedef const PropertyType& RefToConstProperty;
+
+ PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
+ : property_(property),
+ matcher_(matcher),
+ whose_property_("whose given property ") {}
+
+ PropertyMatcher(const std::string& property_name, Property property,
+ const Matcher<RefToConstProperty>& matcher)
+ : property_(property),
+ matcher_(matcher),
+ whose_property_("whose property `" + property_name + "` ") {}
+
+ void DescribeTo(::std::ostream* os) const {
+ *os << "is an object " << whose_property_;
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "is an object " << whose_property_;
+ matcher_.DescribeNegationTo(os);
+ }
+
+ template <typename T>
+ bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
+ return MatchAndExplainImpl(
+ typename std::is_pointer<typename std::remove_const<T>::type>::type(),
+ value, listener);
+ }
+
+ private:
+ bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
+ const Class& obj,
+ MatchResultListener* listener) const {
+ *listener << whose_property_ << "is ";
+ // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
+ // which takes a non-const reference as argument.
+ RefToConstProperty result = (obj.*property_)();
+ return MatchPrintAndExplain(result, matcher_, listener);
+ }
+
+ bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
+ MatchResultListener* listener) const {
+ if (p == nullptr) return false;
+
+ *listener << "which points to an object ";
+ // Since *p has a property method, it must be a class/struct/union
+ // type and thus cannot be a pointer. Therefore we pass
+ // false_type() as the first argument.
+ return MatchAndExplainImpl(std::false_type(), *p, listener);
+ }
+
+ Property property_;
+ const Matcher<RefToConstProperty> matcher_;
+
+ // Contains either "whose given property " if the name of the property is
+ // unknown or "whose property `name_of_property` " if the name is known.
+ const std::string whose_property_;
+};
+
+// Type traits specifying various features of different functors for ResultOf.
+// The default template specifies features for functor objects.
+template <typename Functor>
+struct CallableTraits {
+ typedef Functor StorageType;
+
+ static void CheckIsValid(Functor /* functor */) {}
+
+ template <typename T>
+ static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
+ return f(arg);
+ }
+};
+
+// Specialization for function pointers.
+template <typename ArgType, typename ResType>
+struct CallableTraits<ResType(*)(ArgType)> {
+ typedef ResType ResultType;
+ typedef ResType(*StorageType)(ArgType);
+
+ static void CheckIsValid(ResType(*f)(ArgType)) {
+ GTEST_CHECK_(f != nullptr)
+ << "NULL function pointer is passed into ResultOf().";
+ }
+ template <typename T>
+ static ResType Invoke(ResType(*f)(ArgType), T arg) {
+ return (*f)(arg);
+ }
+};
+
+// Implements the ResultOf() matcher for matching a return value of a
+// unary function of an object.
+template <typename Callable, typename InnerMatcher>
+class ResultOfMatcher {
+ public:
+ ResultOfMatcher(Callable callable, InnerMatcher matcher)
+ : callable_(std::move(callable)), matcher_(std::move(matcher)) {
+ CallableTraits<Callable>::CheckIsValid(callable_);
+ }
+
+ template <typename T>
+ operator Matcher<T>() const {
+ return Matcher<T>(new Impl<const T&>(callable_, matcher_));
+ }
+
+ private:
+ typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
+
+ template <typename T>
+ class Impl : public MatcherInterface<T> {
+ using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
+ std::declval<CallableStorageType>(), std::declval<T>()));
+
+ public:
+ template <typename M>
+ Impl(const CallableStorageType& callable, const M& matcher)
+ : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "is mapped by the given callable to a value that ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "is mapped by the given callable to a value that ";
+ matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
+ *listener << "which is mapped by the given callable to ";
+ // Cannot pass the return value directly to MatchPrintAndExplain, which
+ // takes a non-const reference as argument.
+ // Also, specifying template argument explicitly is needed because T could
+ // be a non-const reference (e.g. Matcher<Uncopyable&>).
+ ResultType result =
+ CallableTraits<Callable>::template Invoke<T>(callable_, obj);
+ return MatchPrintAndExplain(result, matcher_, listener);
+ }
+
+ private:
+ // Functors often define operator() as non-const method even though
+ // they are actually stateless. But we need to use them even when
+ // 'this' is a const pointer. It's the user's responsibility not to
+ // use stateful callables with ResultOf(), which doesn't guarantee
+ // how many times the callable will be invoked.
+ mutable CallableStorageType callable_;
+ const Matcher<ResultType> matcher_;
+ }; // class Impl
+
+ const CallableStorageType callable_;
+ const InnerMatcher matcher_;
+};
+
+// Implements a matcher that checks the size of an STL-style container.
+template <typename SizeMatcher>
+class SizeIsMatcher {
+ public:
+ explicit SizeIsMatcher(const SizeMatcher& size_matcher)
+ : size_matcher_(size_matcher) {
+ }
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ return Matcher<Container>(new Impl<const Container&>(size_matcher_));
+ }
+
+ template <typename Container>
+ class Impl : public MatcherInterface<Container> {
+ public:
+ using SizeType = decltype(std::declval<Container>().size());
+ explicit Impl(const SizeMatcher& size_matcher)
+ : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "size ";
+ size_matcher_.DescribeTo(os);
+ }
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "size ";
+ size_matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(Container container,
+ MatchResultListener* listener) const override {
+ SizeType size = container.size();
+ StringMatchResultListener size_listener;
+ const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
+ *listener
+ << "whose size " << size << (result ? " matches" : " doesn't match");
+ PrintIfNotEmpty(size_listener.str(), listener->stream());
+ return result;
+ }
+
+ private:
+ const Matcher<SizeType> size_matcher_;
+ };
+
+ private:
+ const SizeMatcher size_matcher_;
+};
+
+// Implements a matcher that checks the begin()..end() distance of an STL-style
+// container.
+template <typename DistanceMatcher>
+class BeginEndDistanceIsMatcher {
+ public:
+ explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
+ : distance_matcher_(distance_matcher) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
+ }
+
+ template <typename Container>
+ class Impl : public MatcherInterface<Container> {
+ public:
+ typedef internal::StlContainerView<
+ GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
+ typedef typename std::iterator_traits<
+ typename ContainerView::type::const_iterator>::difference_type
+ DistanceType;
+ explicit Impl(const DistanceMatcher& distance_matcher)
+ : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "distance between begin() and end() ";
+ distance_matcher_.DescribeTo(os);
+ }
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "distance between begin() and end() ";
+ distance_matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(Container container,
+ MatchResultListener* listener) const override {
+ using std::begin;
+ using std::end;
+ DistanceType distance = std::distance(begin(container), end(container));
+ StringMatchResultListener distance_listener;
+ const bool result =
+ distance_matcher_.MatchAndExplain(distance, &distance_listener);
+ *listener << "whose distance between begin() and end() " << distance
+ << (result ? " matches" : " doesn't match");
+ PrintIfNotEmpty(distance_listener.str(), listener->stream());
+ return result;
+ }
+
+ private:
+ const Matcher<DistanceType> distance_matcher_;
+ };
+
+ private:
+ const DistanceMatcher distance_matcher_;
+};
+
+// Implements an equality matcher for any STL-style container whose elements
+// support ==. This matcher is like Eq(), but its failure explanations provide
+// more detailed information that is useful when the container is used as a set.
+// The failure message reports elements that are in one of the operands but not
+// the other. The failure messages do not report duplicate or out-of-order
+// elements in the containers (which don't properly matter to sets, but can
+// occur if the containers are vectors or lists, for example).
+//
+// Uses the container's const_iterator, value_type, operator ==,
+// begin(), and end().
+template <typename Container>
+class ContainerEqMatcher {
+ public:
+ typedef internal::StlContainerView<Container> View;
+ typedef typename View::type StlContainer;
+ typedef typename View::const_reference StlContainerReference;
+
+ static_assert(!std::is_const<Container>::value,
+ "Container type must not be const");
+ static_assert(!std::is_reference<Container>::value,
+ "Container type must not be a reference");
+
+ // We make a copy of expected in case the elements in it are modified
+ // after this matcher is created.
+ explicit ContainerEqMatcher(const Container& expected)
+ : expected_(View::Copy(expected)) {}
+
+ void DescribeTo(::std::ostream* os) const {
+ *os << "equals ";
+ UniversalPrint(expected_, os);
+ }
+ void DescribeNegationTo(::std::ostream* os) const {
+ *os << "does not equal ";
+ UniversalPrint(expected_, os);
+ }
+
+ template <typename LhsContainer>
+ bool MatchAndExplain(const LhsContainer& lhs,
+ MatchResultListener* listener) const {
+ typedef internal::StlContainerView<
+ typename std::remove_const<LhsContainer>::type>
+ LhsView;
+ typedef typename LhsView::type LhsStlContainer;
+ StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
+ if (lhs_stl_container == expected_)
+ return true;
+
+ ::std::ostream* const os = listener->stream();
+ if (os != nullptr) {
+ // Something is different. Check for extra values first.
+ bool printed_header = false;
+ for (typename LhsStlContainer::const_iterator it =
+ lhs_stl_container.begin();
+ it != lhs_stl_container.end(); ++it) {
+ if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
+ expected_.end()) {
+ if (printed_header) {
+ *os << ", ";
+ } else {
+ *os << "which has these unexpected elements: ";
+ printed_header = true;
+ }
+ UniversalPrint(*it, os);
+ }
+ }
+
+ // Now check for missing values.
+ bool printed_header2 = false;
+ for (typename StlContainer::const_iterator it = expected_.begin();
+ it != expected_.end(); ++it) {
+ if (internal::ArrayAwareFind(
+ lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
+ lhs_stl_container.end()) {
+ if (printed_header2) {
+ *os << ", ";
+ } else {
+ *os << (printed_header ? ",\nand" : "which")
+ << " doesn't have these expected elements: ";
+ printed_header2 = true;
+ }
+ UniversalPrint(*it, os);
+ }
+ }
+ }
+
+ return false;
+ }
+
+ private:
+ const StlContainer expected_;
+};
+
+// A comparator functor that uses the < operator to compare two values.
+struct LessComparator {
+ template <typename T, typename U>
+ bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
+};
+
+// Implements WhenSortedBy(comparator, container_matcher).
+template <typename Comparator, typename ContainerMatcher>
+class WhenSortedByMatcher {
+ public:
+ WhenSortedByMatcher(const Comparator& comparator,
+ const ContainerMatcher& matcher)
+ : comparator_(comparator), matcher_(matcher) {}
+
+ template <typename LhsContainer>
+ operator Matcher<LhsContainer>() const {
+ return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
+ }
+
+ template <typename LhsContainer>
+ class Impl : public MatcherInterface<LhsContainer> {
+ public:
+ typedef internal::StlContainerView<
+ GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
+ typedef typename LhsView::type LhsStlContainer;
+ typedef typename LhsView::const_reference LhsStlContainerReference;
+ // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
+ // so that we can match associative containers.
+ typedef typename RemoveConstFromKey<
+ typename LhsStlContainer::value_type>::type LhsValue;
+
+ Impl(const Comparator& comparator, const ContainerMatcher& matcher)
+ : comparator_(comparator), matcher_(matcher) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "(when sorted) ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "(when sorted) ";
+ matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(LhsContainer lhs,
+ MatchResultListener* listener) const override {
+ LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
+ ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
+ lhs_stl_container.end());
+ ::std::sort(
+ sorted_container.begin(), sorted_container.end(), comparator_);
+
+ if (!listener->IsInterested()) {
+ // If the listener is not interested, we do not need to
+ // construct the inner explanation.
+ return matcher_.Matches(sorted_container);
+ }
+
+ *listener << "which is ";
+ UniversalPrint(sorted_container, listener->stream());
+ *listener << " when sorted";
+
+ StringMatchResultListener inner_listener;
+ const bool match = matcher_.MatchAndExplain(sorted_container,
+ &inner_listener);
+ PrintIfNotEmpty(inner_listener.str(), listener->stream());
+ return match;
+ }
+
+ private:
+ const Comparator comparator_;
+ const Matcher<const ::std::vector<LhsValue>&> matcher_;
+
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
+ };
+
+ private:
+ const Comparator comparator_;
+ const ContainerMatcher matcher_;
+};
+
+// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
+// must be able to be safely cast to Matcher<std::tuple<const T1&, const
+// T2&> >, where T1 and T2 are the types of elements in the LHS
+// container and the RHS container respectively.
+template <typename TupleMatcher, typename RhsContainer>
+class PointwiseMatcher {
+ GTEST_COMPILE_ASSERT_(
+ !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
+ use_UnorderedPointwise_with_hash_tables);
+
+ public:
+ typedef internal::StlContainerView<RhsContainer> RhsView;
+ typedef typename RhsView::type RhsStlContainer;
+ typedef typename RhsStlContainer::value_type RhsValue;
+
+ static_assert(!std::is_const<RhsContainer>::value,
+ "RhsContainer type must not be const");
+ static_assert(!std::is_reference<RhsContainer>::value,
+ "RhsContainer type must not be a reference");
+
+ // Like ContainerEq, we make a copy of rhs in case the elements in
+ // it are modified after this matcher is created.
+ PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
+ : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
+
+ template <typename LhsContainer>
+ operator Matcher<LhsContainer>() const {
+ GTEST_COMPILE_ASSERT_(
+ !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
+ use_UnorderedPointwise_with_hash_tables);
+
+ return Matcher<LhsContainer>(
+ new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
+ }
+
+ template <typename LhsContainer>
+ class Impl : public MatcherInterface<LhsContainer> {
+ public:
+ typedef internal::StlContainerView<
+ GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
+ typedef typename LhsView::type LhsStlContainer;
+ typedef typename LhsView::const_reference LhsStlContainerReference;
+ typedef typename LhsStlContainer::value_type LhsValue;
+ // We pass the LHS value and the RHS value to the inner matcher by
+ // reference, as they may be expensive to copy. We must use tuple
+ // instead of pair here, as a pair cannot hold references (C++ 98,
+ // 20.2.2 [lib.pairs]).
+ typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
+
+ Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
+ // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
+ : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
+ rhs_(rhs) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "contains " << rhs_.size()
+ << " values, where each value and its corresponding value in ";
+ UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
+ *os << " ";
+ mono_tuple_matcher_.DescribeTo(os);
+ }
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "doesn't contain exactly " << rhs_.size()
+ << " values, or contains a value x at some index i"
+ << " where x and the i-th value of ";
+ UniversalPrint(rhs_, os);
+ *os << " ";
+ mono_tuple_matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(LhsContainer lhs,
+ MatchResultListener* listener) const override {
+ LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
+ const size_t actual_size = lhs_stl_container.size();
+ if (actual_size != rhs_.size()) {
+ *listener << "which contains " << actual_size << " values";
+ return false;
+ }
+
+ typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
+ typename RhsStlContainer::const_iterator right = rhs_.begin();
+ for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
+ if (listener->IsInterested()) {
+ StringMatchResultListener inner_listener;
+ // Create InnerMatcherArg as a temporarily object to avoid it outlives
+ // *left and *right. Dereference or the conversion to `const T&` may
+ // return temp objects, e.g for vector<bool>.
+ if (!mono_tuple_matcher_.MatchAndExplain(
+ InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
+ ImplicitCast_<const RhsValue&>(*right)),
+ &inner_listener)) {
+ *listener << "where the value pair (";
+ UniversalPrint(*left, listener->stream());
+ *listener << ", ";
+ UniversalPrint(*right, listener->stream());
+ *listener << ") at index #" << i << " don't match";
+ PrintIfNotEmpty(inner_listener.str(), listener->stream());
+ return false;
+ }
+ } else {
+ if (!mono_tuple_matcher_.Matches(
+ InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
+ ImplicitCast_<const RhsValue&>(*right))))
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ private:
+ const Matcher<InnerMatcherArg> mono_tuple_matcher_;
+ const RhsStlContainer rhs_;
+ };
+
+ private:
+ const TupleMatcher tuple_matcher_;
+ const RhsStlContainer rhs_;
+};
+
+// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
+template <typename Container>
+class QuantifierMatcherImpl : public MatcherInterface<Container> {
+ public:
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
+ typedef StlContainerView<RawContainer> View;
+ typedef typename View::type StlContainer;
+ typedef typename View::const_reference StlContainerReference;
+ typedef typename StlContainer::value_type Element;
+
+ template <typename InnerMatcher>
+ explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
+ : inner_matcher_(
+ testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
+
+ // Checks whether:
+ // * All elements in the container match, if all_elements_should_match.
+ // * Any element in the container matches, if !all_elements_should_match.
+ bool MatchAndExplainImpl(bool all_elements_should_match,
+ Container container,
+ MatchResultListener* listener) const {
+ StlContainerReference stl_container = View::ConstReference(container);
+ size_t i = 0;
+ for (typename StlContainer::const_iterator it = stl_container.begin();
+ it != stl_container.end(); ++it, ++i) {
+ StringMatchResultListener inner_listener;
+ const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
+
+ if (matches != all_elements_should_match) {
+ *listener << "whose element #" << i
+ << (matches ? " matches" : " doesn't match");
+ PrintIfNotEmpty(inner_listener.str(), listener->stream());
+ return !all_elements_should_match;
+ }
+ }
+ return all_elements_should_match;
+ }
+
+ protected:
+ const Matcher<const Element&> inner_matcher_;
+};
+
+// Implements Contains(element_matcher) for the given argument type Container.
+// Symmetric to EachMatcherImpl.
+template <typename Container>
+class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
+ public:
+ template <typename InnerMatcher>
+ explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
+ : QuantifierMatcherImpl<Container>(inner_matcher) {}
+
+ // Describes what this matcher does.
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "contains at least one element that ";
+ this->inner_matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "doesn't contain any element that ";
+ this->inner_matcher_.DescribeTo(os);
+ }
+
+ bool MatchAndExplain(Container container,
+ MatchResultListener* listener) const override {
+ return this->MatchAndExplainImpl(false, container, listener);
+ }
+};
+
+// Implements Each(element_matcher) for the given argument type Container.
+// Symmetric to ContainsMatcherImpl.
+template <typename Container>
+class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
+ public:
+ template <typename InnerMatcher>
+ explicit EachMatcherImpl(InnerMatcher inner_matcher)
+ : QuantifierMatcherImpl<Container>(inner_matcher) {}
+
+ // Describes what this matcher does.
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "only contains elements that ";
+ this->inner_matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "contains some element that ";
+ this->inner_matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(Container container,
+ MatchResultListener* listener) const override {
+ return this->MatchAndExplainImpl(true, container, listener);
+ }
+};
+
+// Implements polymorphic Contains(element_matcher).
+template <typename M>
+class ContainsMatcher {
+ public:
+ explicit ContainsMatcher(M m) : inner_matcher_(m) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ return Matcher<Container>(
+ new ContainsMatcherImpl<const Container&>(inner_matcher_));
+ }
+
+ private:
+ const M inner_matcher_;
+};
+
+// Implements polymorphic Each(element_matcher).
+template <typename M>
+class EachMatcher {
+ public:
+ explicit EachMatcher(M m) : inner_matcher_(m) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ return Matcher<Container>(
+ new EachMatcherImpl<const Container&>(inner_matcher_));
+ }
+
+ private:
+ const M inner_matcher_;
+};
+
+struct Rank1 {};
+struct Rank0 : Rank1 {};
+
+namespace pair_getters {
+using std::get;
+template <typename T>
+auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
+ return get<0>(x);
+}
+template <typename T>
+auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
+ return x.first;
+}
+
+template <typename T>
+auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
+ return get<1>(x);
+}
+template <typename T>
+auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
+ return x.second;
+}
+} // namespace pair_getters
+
+// Implements Key(inner_matcher) for the given argument pair type.
+// Key(inner_matcher) matches an std::pair whose 'first' field matches
+// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
+// std::map that contains at least one element whose key is >= 5.
+template <typename PairType>
+class KeyMatcherImpl : public MatcherInterface<PairType> {
+ public:
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
+ typedef typename RawPairType::first_type KeyType;
+
+ template <typename InnerMatcher>
+ explicit KeyMatcherImpl(InnerMatcher inner_matcher)
+ : inner_matcher_(
+ testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
+ }
+
+ // Returns true if and only if 'key_value.first' (the key) matches the inner
+ // matcher.
+ bool MatchAndExplain(PairType key_value,
+ MatchResultListener* listener) const override {
+ StringMatchResultListener inner_listener;
+ const bool match = inner_matcher_.MatchAndExplain(
+ pair_getters::First(key_value, Rank0()), &inner_listener);
+ const std::string explanation = inner_listener.str();
+ if (explanation != "") {
+ *listener << "whose first field is a value " << explanation;
+ }
+ return match;
+ }
+
+ // Describes what this matcher does.
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "has a key that ";
+ inner_matcher_.DescribeTo(os);
+ }
+
+ // Describes what the negation of this matcher does.
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "doesn't have a key that ";
+ inner_matcher_.DescribeTo(os);
+ }
+
+ private:
+ const Matcher<const KeyType&> inner_matcher_;
+};
+
+// Implements polymorphic Key(matcher_for_key).
+template <typename M>
+class KeyMatcher {
+ public:
+ explicit KeyMatcher(M m) : matcher_for_key_(m) {}
+
+ template <typename PairType>
+ operator Matcher<PairType>() const {
+ return Matcher<PairType>(
+ new KeyMatcherImpl<const PairType&>(matcher_for_key_));
+ }
+
+ private:
+ const M matcher_for_key_;
+};
+
+// Implements polymorphic Address(matcher_for_address).
+template <typename InnerMatcher>
+class AddressMatcher {
+ public:
+ explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
+
+ template <typename Type>
+ operator Matcher<Type>() const { // NOLINT
+ return Matcher<Type>(new Impl<const Type&>(matcher_));
+ }
+
+ private:
+ // The monomorphic implementation that works for a particular object type.
+ template <typename Type>
+ class Impl : public MatcherInterface<Type> {
+ public:
+ using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
+ explicit Impl(const InnerMatcher& matcher)
+ : matcher_(MatcherCast<Address>(matcher)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "has address that ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "does not have address that ";
+ matcher_.DescribeTo(os);
+ }
+
+ bool MatchAndExplain(Type object,
+ MatchResultListener* listener) const override {
+ *listener << "which has address ";
+ Address address = std::addressof(object);
+ return MatchPrintAndExplain(address, matcher_, listener);
+ }
+
+ private:
+ const Matcher<Address> matcher_;
+ };
+ const InnerMatcher matcher_;
+};
+
+// Implements Pair(first_matcher, second_matcher) for the given argument pair
+// type with its two matchers. See Pair() function below.
+template <typename PairType>
+class PairMatcherImpl : public MatcherInterface<PairType> {
+ public:
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
+ typedef typename RawPairType::first_type FirstType;
+ typedef typename RawPairType::second_type SecondType;
+
+ template <typename FirstMatcher, typename SecondMatcher>
+ PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
+ : first_matcher_(
+ testing::SafeMatcherCast<const FirstType&>(first_matcher)),
+ second_matcher_(
+ testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
+ }
+
+ // Describes what this matcher does.
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "has a first field that ";
+ first_matcher_.DescribeTo(os);
+ *os << ", and has a second field that ";
+ second_matcher_.DescribeTo(os);
+ }
+
+ // Describes what the negation of this matcher does.
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "has a first field that ";
+ first_matcher_.DescribeNegationTo(os);
+ *os << ", or has a second field that ";
+ second_matcher_.DescribeNegationTo(os);
+ }
+
+ // Returns true if and only if 'a_pair.first' matches first_matcher and
+ // 'a_pair.second' matches second_matcher.
+ bool MatchAndExplain(PairType a_pair,
+ MatchResultListener* listener) const override {
+ if (!listener->IsInterested()) {
+ // If the listener is not interested, we don't need to construct the
+ // explanation.
+ return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
+ second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
+ }
+ StringMatchResultListener first_inner_listener;
+ if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
+ &first_inner_listener)) {
+ *listener << "whose first field does not match";
+ PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
+ return false;
+ }
+ StringMatchResultListener second_inner_listener;
+ if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
+ &second_inner_listener)) {
+ *listener << "whose second field does not match";
+ PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
+ return false;
+ }
+ ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
+ listener);
+ return true;
+ }
+
+ private:
+ void ExplainSuccess(const std::string& first_explanation,
+ const std::string& second_explanation,
+ MatchResultListener* listener) const {
+ *listener << "whose both fields match";
+ if (first_explanation != "") {
+ *listener << ", where the first field is a value " << first_explanation;
+ }
+ if (second_explanation != "") {
+ *listener << ", ";
+ if (first_explanation != "") {
+ *listener << "and ";
+ } else {
+ *listener << "where ";
+ }
+ *listener << "the second field is a value " << second_explanation;
+ }
+ }
+
+ const Matcher<const FirstType&> first_matcher_;
+ const Matcher<const SecondType&> second_matcher_;
+};
+
+// Implements polymorphic Pair(first_matcher, second_matcher).
+template <typename FirstMatcher, typename SecondMatcher>
+class PairMatcher {
+ public:
+ PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
+ : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
+
+ template <typename PairType>
+ operator Matcher<PairType> () const {
+ return Matcher<PairType>(
+ new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
+ }
+
+ private:
+ const FirstMatcher first_matcher_;
+ const SecondMatcher second_matcher_;
+};
+
+template <typename T, size_t... I>
+auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
+ -> decltype(std::tie(get<I>(t)...)) {
+ static_assert(std::tuple_size<T>::value == sizeof...(I),
+ "Number of arguments doesn't match the number of fields.");
+ return std::tie(get<I>(t)...);
+}
+
+#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
+ const auto& [a] = t;
+ return std::tie(a);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
+ const auto& [a, b] = t;
+ return std::tie(a, b);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
+ const auto& [a, b, c] = t;
+ return std::tie(a, b, c);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
+ const auto& [a, b, c, d] = t;
+ return std::tie(a, b, c, d);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
+ const auto& [a, b, c, d, e] = t;
+ return std::tie(a, b, c, d, e);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
+ const auto& [a, b, c, d, e, f] = t;
+ return std::tie(a, b, c, d, e, f);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
+ const auto& [a, b, c, d, e, f, g] = t;
+ return std::tie(a, b, c, d, e, f, g);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
+ const auto& [a, b, c, d, e, f, g, h] = t;
+ return std::tie(a, b, c, d, e, f, g, h);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i, j] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i, j);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i, j, k);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
+}
+template <typename T>
+auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
+ const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
+ return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
+}
+#endif // defined(__cpp_structured_bindings)
+
+template <size_t I, typename T>
+auto UnpackStruct(const T& t)
+ -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
+ return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
+}
+
+// Helper function to do comma folding in C++11.
+// The array ensures left-to-right order of evaluation.
+// Usage: VariadicExpand({expr...});
+template <typename T, size_t N>
+void VariadicExpand(const T (&)[N]) {}
+
+template <typename Struct, typename StructSize>
+class FieldsAreMatcherImpl;
+
+template <typename Struct, size_t... I>
+class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
+ : public MatcherInterface<Struct> {
+ using UnpackedType =
+ decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
+ using MatchersType = std::tuple<
+ Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
+
+ public:
+ template <typename Inner>
+ explicit FieldsAreMatcherImpl(const Inner& matchers)
+ : matchers_(testing::SafeMatcherCast<
+ const typename std::tuple_element<I, UnpackedType>::type&>(
+ std::get<I>(matchers))...) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ const char* separator = "";
+ VariadicExpand(
+ {(*os << separator << "has field #" << I << " that ",
+ std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ const char* separator = "";
+ VariadicExpand({(*os << separator << "has field #" << I << " that ",
+ std::get<I>(matchers_).DescribeNegationTo(os),
+ separator = ", or ")...});
+ }
+
+ bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
+ return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
+ }
+
+ private:
+ bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
+ if (!listener->IsInterested()) {
+ // If the listener is not interested, we don't need to construct the
+ // explanation.
+ bool good = true;
+ VariadicExpand({good = good && std::get<I>(matchers_).Matches(
+ std::get<I>(tuple))...});
+ return good;
+ }
+
+ size_t failed_pos = ~size_t{};
+
+ std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
+
+ VariadicExpand(
+ {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
+ std::get<I>(tuple), &inner_listener[I])
+ ? failed_pos = I
+ : 0 ...});
+ if (failed_pos != ~size_t{}) {
+ *listener << "whose field #" << failed_pos << " does not match";
+ PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
+ return false;
+ }
+
+ *listener << "whose all elements match";
+ const char* separator = ", where";
+ for (size_t index = 0; index < sizeof...(I); ++index) {
+ const std::string str = inner_listener[index].str();
+ if (!str.empty()) {
+ *listener << separator << " field #" << index << " is a value " << str;
+ separator = ", and";
+ }
+ }
+
+ return true;
+ }
+
+ MatchersType matchers_;
+};
+
+template <typename... Inner>
+class FieldsAreMatcher {
+ public:
+ explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
+
+ template <typename Struct>
+ operator Matcher<Struct>() const { // NOLINT
+ return Matcher<Struct>(
+ new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
+ matchers_));
+ }
+
+ private:
+ std::tuple<Inner...> matchers_;
+};
+
+// Implements ElementsAre() and ElementsAreArray().
+template <typename Container>
+class ElementsAreMatcherImpl : public MatcherInterface<Container> {
+ public:
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
+ typedef internal::StlContainerView<RawContainer> View;
+ typedef typename View::type StlContainer;
+ typedef typename View::const_reference StlContainerReference;
+ typedef typename StlContainer::value_type Element;
+
+ // Constructs the matcher from a sequence of element values or
+ // element matchers.
+ template <typename InputIter>
+ ElementsAreMatcherImpl(InputIter first, InputIter last) {
+ while (first != last) {
+ matchers_.push_back(MatcherCast<const Element&>(*first++));
+ }
+ }
+
+ // Describes what this matcher does.
+ void DescribeTo(::std::ostream* os) const override {
+ if (count() == 0) {
+ *os << "is empty";
+ } else if (count() == 1) {
+ *os << "has 1 element that ";
+ matchers_[0].DescribeTo(os);
+ } else {
+ *os << "has " << Elements(count()) << " where\n";
+ for (size_t i = 0; i != count(); ++i) {
+ *os << "element #" << i << " ";
+ matchers_[i].DescribeTo(os);
+ if (i + 1 < count()) {
+ *os << ",\n";
+ }
+ }
+ }
+ }
+
+ // Describes what the negation of this matcher does.
+ void DescribeNegationTo(::std::ostream* os) const override {
+ if (count() == 0) {
+ *os << "isn't empty";
+ return;
+ }
+
+ *os << "doesn't have " << Elements(count()) << ", or\n";
+ for (size_t i = 0; i != count(); ++i) {
+ *os << "element #" << i << " ";
+ matchers_[i].DescribeNegationTo(os);
+ if (i + 1 < count()) {
+ *os << ", or\n";
+ }
+ }
+ }
+
+ bool MatchAndExplain(Container container,
+ MatchResultListener* listener) const override {
+ // To work with stream-like "containers", we must only walk
+ // through the elements in one pass.
+
+ const bool listener_interested = listener->IsInterested();
+
+ // explanations[i] is the explanation of the element at index i.
+ ::std::vector<std::string> explanations(count());
+ StlContainerReference stl_container = View::ConstReference(container);
+ typename StlContainer::const_iterator it = stl_container.begin();
+ size_t exam_pos = 0;
+ bool mismatch_found = false; // Have we found a mismatched element yet?
+
+ // Go through the elements and matchers in pairs, until we reach
+ // the end of either the elements or the matchers, or until we find a
+ // mismatch.
+ for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
+ bool match; // Does the current element match the current matcher?
+ if (listener_interested) {
+ StringMatchResultListener s;
+ match = matchers_[exam_pos].MatchAndExplain(*it, &s);
+ explanations[exam_pos] = s.str();
+ } else {
+ match = matchers_[exam_pos].Matches(*it);
+ }
+
+ if (!match) {
+ mismatch_found = true;
+ break;
+ }
+ }
+ // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
+
+ // Find how many elements the actual container has. We avoid
+ // calling size() s.t. this code works for stream-like "containers"
+ // that don't define size().
+ size_t actual_count = exam_pos;
+ for (; it != stl_container.end(); ++it) {
+ ++actual_count;
+ }
+
+ if (actual_count != count()) {
+ // The element count doesn't match. If the container is empty,
+ // there's no need to explain anything as Google Mock already
+ // prints the empty container. Otherwise we just need to show
+ // how many elements there actually are.
+ if (listener_interested && (actual_count != 0)) {
+ *listener << "which has " << Elements(actual_count);
+ }
+ return false;
+ }
+
+ if (mismatch_found) {
+ // The element count matches, but the exam_pos-th element doesn't match.
+ if (listener_interested) {
+ *listener << "whose element #" << exam_pos << " doesn't match";
+ PrintIfNotEmpty(explanations[exam_pos], listener->stream());
+ }
+ return false;
+ }
+
+ // Every element matches its expectation. We need to explain why
+ // (the obvious ones can be skipped).
+ if (listener_interested) {
+ bool reason_printed = false;
+ for (size_t i = 0; i != count(); ++i) {
+ const std::string& s = explanations[i];
+ if (!s.empty()) {
+ if (reason_printed) {
+ *listener << ",\nand ";
+ }
+ *listener << "whose element #" << i << " matches, " << s;
+ reason_printed = true;
+ }
+ }
+ }
+ return true;
+ }
+
+ private:
+ static Message Elements(size_t count) {
+ return Message() << count << (count == 1 ? " element" : " elements");
+ }
+
+ size_t count() const { return matchers_.size(); }
+
+ ::std::vector<Matcher<const Element&> > matchers_;
+};
+
+// Connectivity matrix of (elements X matchers), in element-major order.
+// Initially, there are no edges.
+// Use NextGraph() to iterate over all possible edge configurations.
+// Use Randomize() to generate a random edge configuration.
+class GTEST_API_ MatchMatrix {
+ public:
+ MatchMatrix(size_t num_elements, size_t num_matchers)
+ : num_elements_(num_elements),
+ num_matchers_(num_matchers),
+ matched_(num_elements_* num_matchers_, 0) {
+ }
+
+ size_t LhsSize() const { return num_elements_; }
+ size_t RhsSize() const { return num_matchers_; }
+ bool HasEdge(size_t ilhs, size_t irhs) const {
+ return matched_[SpaceIndex(ilhs, irhs)] == 1;
+ }
+ void SetEdge(size_t ilhs, size_t irhs, bool b) {
+ matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
+ }
+
+ // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
+ // adds 1 to that number; returns false if incrementing the graph left it
+ // empty.
+ bool NextGraph();
+
+ void Randomize();
+
+ std::string DebugString() const;
+
+ private:
+ size_t SpaceIndex(size_t ilhs, size_t irhs) const {
+ return ilhs * num_matchers_ + irhs;
+ }
+
+ size_t num_elements_;
+ size_t num_matchers_;
+
+ // Each element is a char interpreted as bool. They are stored as a
+ // flattened array in lhs-major order, use 'SpaceIndex()' to translate
+ // a (ilhs, irhs) matrix coordinate into an offset.
+ ::std::vector<char> matched_;
+};
+
+typedef ::std::pair<size_t, size_t> ElementMatcherPair;
+typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
+
+// Returns a maximum bipartite matching for the specified graph 'g'.
+// The matching is represented as a vector of {element, matcher} pairs.
+GTEST_API_ ElementMatcherPairs
+FindMaxBipartiteMatching(const MatchMatrix& g);
+
+struct UnorderedMatcherRequire {
+ enum Flags {
+ Superset = 1 << 0,
+ Subset = 1 << 1,
+ ExactMatch = Superset | Subset,
+ };
+};
+
+// Untyped base class for implementing UnorderedElementsAre. By
+// putting logic that's not specific to the element type here, we
+// reduce binary bloat and increase compilation speed.
+class GTEST_API_ UnorderedElementsAreMatcherImplBase {
+ protected:
+ explicit UnorderedElementsAreMatcherImplBase(
+ UnorderedMatcherRequire::Flags matcher_flags)
+ : match_flags_(matcher_flags) {}
+
+ // A vector of matcher describers, one for each element matcher.
+ // Does not own the describers (and thus can be used only when the
+ // element matchers are alive).
+ typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
+
+ // Describes this UnorderedElementsAre matcher.
+ void DescribeToImpl(::std::ostream* os) const;
+
+ // Describes the negation of this UnorderedElementsAre matcher.
+ void DescribeNegationToImpl(::std::ostream* os) const;
+
+ bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
+ const MatchMatrix& matrix,
+ MatchResultListener* listener) const;
+
+ bool FindPairing(const MatchMatrix& matrix,
+ MatchResultListener* listener) const;
+
+ MatcherDescriberVec& matcher_describers() {
+ return matcher_describers_;
+ }
+
+ static Message Elements(size_t n) {
+ return Message() << n << " element" << (n == 1 ? "" : "s");
+ }
+
+ UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
+
+ private:
+ UnorderedMatcherRequire::Flags match_flags_;
+ MatcherDescriberVec matcher_describers_;
+};
+
+// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
+// IsSupersetOf.
+template <typename Container>
+class UnorderedElementsAreMatcherImpl
+ : public MatcherInterface<Container>,
+ public UnorderedElementsAreMatcherImplBase {
+ public:
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
+ typedef internal::StlContainerView<RawContainer> View;
+ typedef typename View::type StlContainer;
+ typedef typename View::const_reference StlContainerReference;
+ typedef typename StlContainer::const_iterator StlContainerConstIterator;
+ typedef typename StlContainer::value_type Element;
+
+ template <typename InputIter>
+ UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
+ InputIter first, InputIter last)
+ : UnorderedElementsAreMatcherImplBase(matcher_flags) {
+ for (; first != last; ++first) {
+ matchers_.push_back(MatcherCast<const Element&>(*first));
+ }
+ for (const auto& m : matchers_) {
+ matcher_describers().push_back(m.GetDescriber());
+ }
+ }
+
+ // Describes what this matcher does.
+ void DescribeTo(::std::ostream* os) const override {
+ return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
+ }
+
+ // Describes what the negation of this matcher does.
+ void DescribeNegationTo(::std::ostream* os) const override {
+ return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
+ }
+
+ bool MatchAndExplain(Container container,
+ MatchResultListener* listener) const override {
+ StlContainerReference stl_container = View::ConstReference(container);
+ ::std::vector<std::string> element_printouts;
+ MatchMatrix matrix =
+ AnalyzeElements(stl_container.begin(), stl_container.end(),
+ &element_printouts, listener);
+
+ if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
+ return true;
+ }
+
+ if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
+ if (matrix.LhsSize() != matrix.RhsSize()) {
+ // The element count doesn't match. If the container is empty,
+ // there's no need to explain anything as Google Mock already
+ // prints the empty container. Otherwise we just need to show
+ // how many elements there actually are.
+ if (matrix.LhsSize() != 0 && listener->IsInterested()) {
+ *listener << "which has " << Elements(matrix.LhsSize());
+ }
+ return false;
+ }
+ }
+
+ return VerifyMatchMatrix(element_printouts, matrix, listener) &&
+ FindPairing(matrix, listener);
+ }
+
+ private:
+ template <typename ElementIter>
+ MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
+ ::std::vector<std::string>* element_printouts,
+ MatchResultListener* listener) const {
+ element_printouts->clear();
+ ::std::vector<char> did_match;
+ size_t num_elements = 0;
+ DummyMatchResultListener dummy;
+ for (; elem_first != elem_last; ++num_elements, ++elem_first) {
+ if (listener->IsInterested()) {
+ element_printouts->push_back(PrintToString(*elem_first));
+ }
+ for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
+ did_match.push_back(
+ matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
+ }
+ }
+
+ MatchMatrix matrix(num_elements, matchers_.size());
+ ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
+ for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
+ for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
+ matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
+ }
+ }
+ return matrix;
+ }
+
+ ::std::vector<Matcher<const Element&> > matchers_;
+};
+
+// Functor for use in TransformTuple.
+// Performs MatcherCast<Target> on an input argument of any type.
+template <typename Target>
+struct CastAndAppendTransform {
+ template <typename Arg>
+ Matcher<Target> operator()(const Arg& a) const {
+ return MatcherCast<Target>(a);
+ }
+};
+
+// Implements UnorderedElementsAre.
+template <typename MatcherTuple>
+class UnorderedElementsAreMatcher {
+ public:
+ explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
+ : matchers_(args) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
+ typedef typename internal::StlContainerView<RawContainer>::type View;
+ typedef typename View::value_type Element;
+ typedef ::std::vector<Matcher<const Element&> > MatcherVec;
+ MatcherVec matchers;
+ matchers.reserve(::std::tuple_size<MatcherTuple>::value);
+ TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
+ ::std::back_inserter(matchers));
+ return Matcher<Container>(
+ new UnorderedElementsAreMatcherImpl<const Container&>(
+ UnorderedMatcherRequire::ExactMatch, matchers.begin(),
+ matchers.end()));
+ }
+
+ private:
+ const MatcherTuple matchers_;
+};
+
+// Implements ElementsAre.
+template <typename MatcherTuple>
+class ElementsAreMatcher {
+ public:
+ explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ GTEST_COMPILE_ASSERT_(
+ !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
+ ::std::tuple_size<MatcherTuple>::value < 2,
+ use_UnorderedElementsAre_with_hash_tables);
+
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
+ typedef typename internal::StlContainerView<RawContainer>::type View;
+ typedef typename View::value_type Element;
+ typedef ::std::vector<Matcher<const Element&> > MatcherVec;
+ MatcherVec matchers;
+ matchers.reserve(::std::tuple_size<MatcherTuple>::value);
+ TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
+ ::std::back_inserter(matchers));
+ return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
+ matchers.begin(), matchers.end()));
+ }
+
+ private:
+ const MatcherTuple matchers_;
+};
+
+// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
+template <typename T>
+class UnorderedElementsAreArrayMatcher {
+ public:
+ template <typename Iter>
+ UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
+ Iter first, Iter last)
+ : match_flags_(match_flags), matchers_(first, last) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ return Matcher<Container>(
+ new UnorderedElementsAreMatcherImpl<const Container&>(
+ match_flags_, matchers_.begin(), matchers_.end()));
+ }
+
+ private:
+ UnorderedMatcherRequire::Flags match_flags_;
+ ::std::vector<T> matchers_;
+};
+
+// Implements ElementsAreArray().
+template <typename T>
+class ElementsAreArrayMatcher {
+ public:
+ template <typename Iter>
+ ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ GTEST_COMPILE_ASSERT_(
+ !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
+ use_UnorderedElementsAreArray_with_hash_tables);
+
+ return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
+ matchers_.begin(), matchers_.end()));
+ }
+
+ private:
+ const ::std::vector<T> matchers_;
+};
+
+// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
+// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
+// second) is a polymorphic matcher that matches a value x if and only if
+// tm matches tuple (x, second). Useful for implementing
+// UnorderedPointwise() in terms of UnorderedElementsAreArray().
+//
+// BoundSecondMatcher is copyable and assignable, as we need to put
+// instances of this class in a vector when implementing
+// UnorderedPointwise().
+template <typename Tuple2Matcher, typename Second>
+class BoundSecondMatcher {
+ public:
+ BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
+ : tuple2_matcher_(tm), second_value_(second) {}
+
+ BoundSecondMatcher(const BoundSecondMatcher& other) = default;
+
+ template <typename T>
+ operator Matcher<T>() const {
+ return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
+ }
+
+ // We have to define this for UnorderedPointwise() to compile in
+ // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
+ // which requires the elements to be assignable in C++98. The
+ // compiler cannot generate the operator= for us, as Tuple2Matcher
+ // and Second may not be assignable.
+ //
+ // However, this should never be called, so the implementation just
+ // need to assert.
+ void operator=(const BoundSecondMatcher& /*rhs*/) {
+ GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
+ }
+
+ private:
+ template <typename T>
+ class Impl : public MatcherInterface<T> {
+ public:
+ typedef ::std::tuple<T, Second> ArgTuple;
+
+ Impl(const Tuple2Matcher& tm, const Second& second)
+ : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
+ second_value_(second) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "and ";
+ UniversalPrint(second_value_, os);
+ *os << " ";
+ mono_tuple2_matcher_.DescribeTo(os);
+ }
+
+ bool MatchAndExplain(T x, MatchResultListener* listener) const override {
+ return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
+ listener);
+ }
+
+ private:
+ const Matcher<const ArgTuple&> mono_tuple2_matcher_;
+ const Second second_value_;
+ };
+
+ const Tuple2Matcher tuple2_matcher_;
+ const Second second_value_;
+};
+
+// Given a 2-tuple matcher tm and a value second,
+// MatcherBindSecond(tm, second) returns a matcher that matches a
+// value x if and only if tm matches tuple (x, second). Useful for
+// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
+template <typename Tuple2Matcher, typename Second>
+BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
+ const Tuple2Matcher& tm, const Second& second) {
+ return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
+}
+
+// Returns the description for a matcher defined using the MATCHER*()
+// macro where the user-supplied description string is "", if
+// 'negation' is false; otherwise returns the description of the
+// negation of the matcher. 'param_values' contains a list of strings
+// that are the print-out of the matcher's parameters.
+GTEST_API_ std::string FormatMatcherDescription(bool negation,
+ const char* matcher_name,
+ const Strings& param_values);
+
+// Implements a matcher that checks the value of a optional<> type variable.
+template <typename ValueMatcher>
+class OptionalMatcher {
+ public:
+ explicit OptionalMatcher(const ValueMatcher& value_matcher)
+ : value_matcher_(value_matcher) {}
+
+ template <typename Optional>
+ operator Matcher<Optional>() const {
+ return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
+ }
+
+ template <typename Optional>
+ class Impl : public MatcherInterface<Optional> {
+ public:
+ typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
+ typedef typename OptionalView::value_type ValueType;
+ explicit Impl(const ValueMatcher& value_matcher)
+ : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "value ";
+ value_matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "value ";
+ value_matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(Optional optional,
+ MatchResultListener* listener) const override {
+ if (!optional) {
+ *listener << "which is not engaged";
+ return false;
+ }
+ const ValueType& value = *optional;
+ StringMatchResultListener value_listener;
+ const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
+ *listener << "whose value " << PrintToString(value)
+ << (match ? " matches" : " doesn't match");
+ PrintIfNotEmpty(value_listener.str(), listener->stream());
+ return match;
+ }
+
+ private:
+ const Matcher<ValueType> value_matcher_;
+ };
+
+ private:
+ const ValueMatcher value_matcher_;
+};
+
+namespace variant_matcher {
+// Overloads to allow VariantMatcher to do proper ADL lookup.
+template <typename T>
+void holds_alternative() {}
+template <typename T>
+void get() {}
+
+// Implements a matcher that checks the value of a variant<> type variable.
+template <typename T>
+class VariantMatcher {
+ public:
+ explicit VariantMatcher(::testing::Matcher<const T&> matcher)
+ : matcher_(std::move(matcher)) {}
+
+ template <typename Variant>
+ bool MatchAndExplain(const Variant& value,
+ ::testing::MatchResultListener* listener) const {
+ using std::get;
+ if (!listener->IsInterested()) {
+ return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
+ }
+
+ if (!holds_alternative<T>(value)) {
+ *listener << "whose value is not of type '" << GetTypeName() << "'";
+ return false;
+ }
+
+ const T& elem = get<T>(value);
+ StringMatchResultListener elem_listener;
+ const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
+ *listener << "whose value " << PrintToString(elem)
+ << (match ? " matches" : " doesn't match");
+ PrintIfNotEmpty(elem_listener.str(), listener->stream());
+ return match;
+ }
+
+ void DescribeTo(std::ostream* os) const {
+ *os << "is a variant<> with value of type '" << GetTypeName()
+ << "' and the value ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(std::ostream* os) const {
+ *os << "is a variant<> with value of type other than '" << GetTypeName()
+ << "' or the value ";
+ matcher_.DescribeNegationTo(os);
+ }
+
+ private:
+ static std::string GetTypeName() {
+#if GTEST_HAS_RTTI
+ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
+ return internal::GetTypeName<T>());
+#endif
+ return "the element type";
+ }
+
+ const ::testing::Matcher<const T&> matcher_;
+};
+
+} // namespace variant_matcher
+
+namespace any_cast_matcher {
+
+// Overloads to allow AnyCastMatcher to do proper ADL lookup.
+template <typename T>
+void any_cast() {}
+
+// Implements a matcher that any_casts the value.
+template <typename T>
+class AnyCastMatcher {
+ public:
+ explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
+ : matcher_(matcher) {}
+
+ template <typename AnyType>
+ bool MatchAndExplain(const AnyType& value,
+ ::testing::MatchResultListener* listener) const {
+ if (!listener->IsInterested()) {
+ const T* ptr = any_cast<T>(&value);
+ return ptr != nullptr && matcher_.Matches(*ptr);
+ }
+
+ const T* elem = any_cast<T>(&value);
+ if (elem == nullptr) {
+ *listener << "whose value is not of type '" << GetTypeName() << "'";
+ return false;
+ }
+
+ StringMatchResultListener elem_listener;
+ const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
+ *listener << "whose value " << PrintToString(*elem)
+ << (match ? " matches" : " doesn't match");
+ PrintIfNotEmpty(elem_listener.str(), listener->stream());
+ return match;
+ }
+
+ void DescribeTo(std::ostream* os) const {
+ *os << "is an 'any' type with value of type '" << GetTypeName()
+ << "' and the value ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(std::ostream* os) const {
+ *os << "is an 'any' type with value of type other than '" << GetTypeName()
+ << "' or the value ";
+ matcher_.DescribeNegationTo(os);
+ }
+
+ private:
+ static std::string GetTypeName() {
+#if GTEST_HAS_RTTI
+ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
+ return internal::GetTypeName<T>());
+#endif
+ return "the element type";
+ }
+
+ const ::testing::Matcher<const T&> matcher_;
+};
+
+} // namespace any_cast_matcher
+
+// Implements the Args() matcher.
+template <class ArgsTuple, size_t... k>
+class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
+ public:
+ using RawArgsTuple = typename std::decay<ArgsTuple>::type;
+ using SelectedArgs =
+ std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
+ using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
+
+ template <typename InnerMatcher>
+ explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
+ : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
+
+ bool MatchAndExplain(ArgsTuple args,
+ MatchResultListener* listener) const override {
+ // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
+ (void)args;
+ const SelectedArgs& selected_args =
+ std::forward_as_tuple(std::get<k>(args)...);
+ if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
+
+ PrintIndices(listener->stream());
+ *listener << "are " << PrintToString(selected_args);
+
+ StringMatchResultListener inner_listener;
+ const bool match =
+ inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
+ PrintIfNotEmpty(inner_listener.str(), listener->stream());
+ return match;
+ }
+
+ void DescribeTo(::std::ostream* os) const override {
+ *os << "are a tuple ";
+ PrintIndices(os);
+ inner_matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(::std::ostream* os) const override {
+ *os << "are a tuple ";
+ PrintIndices(os);
+ inner_matcher_.DescribeNegationTo(os);
+ }
+
+ private:
+ // Prints the indices of the selected fields.
+ static void PrintIndices(::std::ostream* os) {
+ *os << "whose fields (";
+ const char* sep = "";
+ // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
+ (void)sep;
+ const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
+ (void)dummy;
+ *os << ") ";
+ }
+
+ MonomorphicInnerMatcher inner_matcher_;
+};
+
+template <class InnerMatcher, size_t... k>
+class ArgsMatcher {
+ public:
+ explicit ArgsMatcher(InnerMatcher inner_matcher)
+ : inner_matcher_(std::move(inner_matcher)) {}
+
+ template <typename ArgsTuple>
+ operator Matcher<ArgsTuple>() const { // NOLINT
+ return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
+ }
+
+ private:
+ InnerMatcher inner_matcher_;
+};
+
+} // namespace internal
+
+// ElementsAreArray(iterator_first, iterator_last)
+// ElementsAreArray(pointer, count)
+// ElementsAreArray(array)
+// ElementsAreArray(container)
+// ElementsAreArray({ e1, e2, ..., en })
+//
+// The ElementsAreArray() functions are like ElementsAre(...), except
+// that they are given a homogeneous sequence rather than taking each
+// element as a function argument. The sequence can be specified as an
+// array, a pointer and count, a vector, an initializer list, or an
+// STL iterator range. In each of these cases, the underlying sequence
+// can be either a sequence of values or a sequence of matchers.
+//
+// All forms of ElementsAreArray() make a copy of the input matcher sequence.
+
+template <typename Iter>
+inline internal::ElementsAreArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>
+ElementsAreArray(Iter first, Iter last) {
+ typedef typename ::std::iterator_traits<Iter>::value_type T;
+ return internal::ElementsAreArrayMatcher<T>(first, last);
+}
+
+template <typename T>
+inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
+ const T* pointer, size_t count) {
+ return ElementsAreArray(pointer, pointer + count);
+}
+
+template <typename T, size_t N>
+inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
+ const T (&array)[N]) {
+ return ElementsAreArray(array, N);
+}
+
+template <typename Container>
+inline internal::ElementsAreArrayMatcher<typename Container::value_type>
+ElementsAreArray(const Container& container) {
+ return ElementsAreArray(container.begin(), container.end());
+}
+
+template <typename T>
+inline internal::ElementsAreArrayMatcher<T>
+ElementsAreArray(::std::initializer_list<T> xs) {
+ return ElementsAreArray(xs.begin(), xs.end());
+}
+
+// UnorderedElementsAreArray(iterator_first, iterator_last)
+// UnorderedElementsAreArray(pointer, count)
+// UnorderedElementsAreArray(array)
+// UnorderedElementsAreArray(container)
+// UnorderedElementsAreArray({ e1, e2, ..., en })
+//
+// UnorderedElementsAreArray() verifies that a bijective mapping onto a
+// collection of matchers exists.
+//
+// The matchers can be specified as an array, a pointer and count, a container,
+// an initializer list, or an STL iterator range. In each of these cases, the
+// underlying matchers can be either values or matchers.
+
+template <typename Iter>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>
+UnorderedElementsAreArray(Iter first, Iter last) {
+ typedef typename ::std::iterator_traits<Iter>::value_type T;
+ return internal::UnorderedElementsAreArrayMatcher<T>(
+ internal::UnorderedMatcherRequire::ExactMatch, first, last);
+}
+
+template <typename T>
+inline internal::UnorderedElementsAreArrayMatcher<T>
+UnorderedElementsAreArray(const T* pointer, size_t count) {
+ return UnorderedElementsAreArray(pointer, pointer + count);
+}
+
+template <typename T, size_t N>
+inline internal::UnorderedElementsAreArrayMatcher<T>
+UnorderedElementsAreArray(const T (&array)[N]) {
+ return UnorderedElementsAreArray(array, N);
+}
+
+template <typename Container>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename Container::value_type>
+UnorderedElementsAreArray(const Container& container) {
+ return UnorderedElementsAreArray(container.begin(), container.end());
+}
+
+template <typename T>
+inline internal::UnorderedElementsAreArrayMatcher<T>
+UnorderedElementsAreArray(::std::initializer_list<T> xs) {
+ return UnorderedElementsAreArray(xs.begin(), xs.end());
+}
+
+// _ is a matcher that matches anything of any type.
+//
+// This definition is fine as:
+//
+// 1. The C++ standard permits using the name _ in a namespace that
+// is not the global namespace or ::std.
+// 2. The AnythingMatcher class has no data member or constructor,
+// so it's OK to create global variables of this type.
+// 3. c-style has approved of using _ in this case.
+const internal::AnythingMatcher _ = {};
+// Creates a matcher that matches any value of the given type T.
+template <typename T>
+inline Matcher<T> A() {
+ return _;
+}
+
+// Creates a matcher that matches any value of the given type T.
+template <typename T>
+inline Matcher<T> An() {
+ return _;
+}
+
+template <typename T, typename M>
+Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
+ const M& value, std::false_type /* convertible_to_matcher */,
+ std::false_type /* convertible_to_T */) {
+ return Eq(value);
+}
+
+// Creates a polymorphic matcher that matches any NULL pointer.
+inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
+ return MakePolymorphicMatcher(internal::IsNullMatcher());
+}
+
+// Creates a polymorphic matcher that matches any non-NULL pointer.
+// This is convenient as Not(NULL) doesn't compile (the compiler
+// thinks that that expression is comparing a pointer with an integer).
+inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
+ return MakePolymorphicMatcher(internal::NotNullMatcher());
+}
+
+// Creates a polymorphic matcher that matches any argument that
+// references variable x.
+template <typename T>
+inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
+ return internal::RefMatcher<T&>(x);
+}
+
+// Creates a polymorphic matcher that matches any NaN floating point.
+inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
+ return MakePolymorphicMatcher(internal::IsNanMatcher());
+}
+
+// Creates a matcher that matches any double argument approximately
+// equal to rhs, where two NANs are considered unequal.
+inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
+ return internal::FloatingEqMatcher<double>(rhs, false);
+}
+
+// Creates a matcher that matches any double argument approximately
+// equal to rhs, including NaN values when rhs is NaN.
+inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
+ return internal::FloatingEqMatcher<double>(rhs, true);
+}
+
+// Creates a matcher that matches any double argument approximately equal to
+// rhs, up to the specified max absolute error bound, where two NANs are
+// considered unequal. The max absolute error bound must be non-negative.
+inline internal::FloatingEqMatcher<double> DoubleNear(
+ double rhs, double max_abs_error) {
+ return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
+}
+
+// Creates a matcher that matches any double argument approximately equal to
+// rhs, up to the specified max absolute error bound, including NaN values when
+// rhs is NaN. The max absolute error bound must be non-negative.
+inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
+ double rhs, double max_abs_error) {
+ return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
+}
+
+// Creates a matcher that matches any float argument approximately
+// equal to rhs, where two NANs are considered unequal.
+inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
+ return internal::FloatingEqMatcher<float>(rhs, false);
+}
+
+// Creates a matcher that matches any float argument approximately
+// equal to rhs, including NaN values when rhs is NaN.
+inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
+ return internal::FloatingEqMatcher<float>(rhs, true);
+}
+
+// Creates a matcher that matches any float argument approximately equal to
+// rhs, up to the specified max absolute error bound, where two NANs are
+// considered unequal. The max absolute error bound must be non-negative.
+inline internal::FloatingEqMatcher<float> FloatNear(
+ float rhs, float max_abs_error) {
+ return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
+}
+
+// Creates a matcher that matches any float argument approximately equal to
+// rhs, up to the specified max absolute error bound, including NaN values when
+// rhs is NaN. The max absolute error bound must be non-negative.
+inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
+ float rhs, float max_abs_error) {
+ return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
+}
+
+// Creates a matcher that matches a pointer (raw or smart) that points
+// to a value that matches inner_matcher.
+template <typename InnerMatcher>
+inline internal::PointeeMatcher<InnerMatcher> Pointee(
+ const InnerMatcher& inner_matcher) {
+ return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
+}
+
+#if GTEST_HAS_RTTI
+// Creates a matcher that matches a pointer or reference that matches
+// inner_matcher when dynamic_cast<To> is applied.
+// The result of dynamic_cast<To> is forwarded to the inner matcher.
+// If To is a pointer and the cast fails, the inner matcher will receive NULL.
+// If To is a reference and the cast fails, this matcher returns false
+// immediately.
+template <typename To>
+inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
+WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
+ return MakePolymorphicMatcher(
+ internal::WhenDynamicCastToMatcher<To>(inner_matcher));
+}
+#endif // GTEST_HAS_RTTI
+
+// Creates a matcher that matches an object whose given field matches
+// 'matcher'. For example,
+// Field(&Foo::number, Ge(5))
+// matches a Foo object x if and only if x.number >= 5.
+template <typename Class, typename FieldType, typename FieldMatcher>
+inline PolymorphicMatcher<
+ internal::FieldMatcher<Class, FieldType> > Field(
+ FieldType Class::*field, const FieldMatcher& matcher) {
+ return MakePolymorphicMatcher(
+ internal::FieldMatcher<Class, FieldType>(
+ field, MatcherCast<const FieldType&>(matcher)));
+ // The call to MatcherCast() is required for supporting inner
+ // matchers of compatible types. For example, it allows
+ // Field(&Foo::bar, m)
+ // to compile where bar is an int32 and m is a matcher for int64.
+}
+
+// Same as Field() but also takes the name of the field to provide better error
+// messages.
+template <typename Class, typename FieldType, typename FieldMatcher>
+inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
+ const std::string& field_name, FieldType Class::*field,
+ const FieldMatcher& matcher) {
+ return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
+ field_name, field, MatcherCast<const FieldType&>(matcher)));
+}
+
+// Creates a matcher that matches an object whose given property
+// matches 'matcher'. For example,
+// Property(&Foo::str, StartsWith("hi"))
+// matches a Foo object x if and only if x.str() starts with "hi".
+template <typename Class, typename PropertyType, typename PropertyMatcher>
+inline PolymorphicMatcher<internal::PropertyMatcher<
+ Class, PropertyType, PropertyType (Class::*)() const> >
+Property(PropertyType (Class::*property)() const,
+ const PropertyMatcher& matcher) {
+ return MakePolymorphicMatcher(
+ internal::PropertyMatcher<Class, PropertyType,
+ PropertyType (Class::*)() const>(
+ property, MatcherCast<const PropertyType&>(matcher)));
+ // The call to MatcherCast() is required for supporting inner
+ // matchers of compatible types. For example, it allows
+ // Property(&Foo::bar, m)
+ // to compile where bar() returns an int32 and m is a matcher for int64.
+}
+
+// Same as Property() above, but also takes the name of the property to provide
+// better error messages.
+template <typename Class, typename PropertyType, typename PropertyMatcher>
+inline PolymorphicMatcher<internal::PropertyMatcher<
+ Class, PropertyType, PropertyType (Class::*)() const> >
+Property(const std::string& property_name,
+ PropertyType (Class::*property)() const,
+ const PropertyMatcher& matcher) {
+ return MakePolymorphicMatcher(
+ internal::PropertyMatcher<Class, PropertyType,
+ PropertyType (Class::*)() const>(
+ property_name, property, MatcherCast<const PropertyType&>(matcher)));
+}
+
+// The same as above but for reference-qualified member functions.
+template <typename Class, typename PropertyType, typename PropertyMatcher>
+inline PolymorphicMatcher<internal::PropertyMatcher<
+ Class, PropertyType, PropertyType (Class::*)() const &> >
+Property(PropertyType (Class::*property)() const &,
+ const PropertyMatcher& matcher) {
+ return MakePolymorphicMatcher(
+ internal::PropertyMatcher<Class, PropertyType,
+ PropertyType (Class::*)() const&>(
+ property, MatcherCast<const PropertyType&>(matcher)));
+}
+
+// Three-argument form for reference-qualified member functions.
+template <typename Class, typename PropertyType, typename PropertyMatcher>
+inline PolymorphicMatcher<internal::PropertyMatcher<
+ Class, PropertyType, PropertyType (Class::*)() const &> >
+Property(const std::string& property_name,
+ PropertyType (Class::*property)() const &,
+ const PropertyMatcher& matcher) {
+ return MakePolymorphicMatcher(
+ internal::PropertyMatcher<Class, PropertyType,
+ PropertyType (Class::*)() const&>(
+ property_name, property, MatcherCast<const PropertyType&>(matcher)));
+}
+
+// Creates a matcher that matches an object if and only if the result of
+// applying a callable to x matches 'matcher'. For example,
+// ResultOf(f, StartsWith("hi"))
+// matches a Foo object x if and only if f(x) starts with "hi".
+// `callable` parameter can be a function, function pointer, or a functor. It is
+// required to keep no state affecting the results of the calls on it and make
+// no assumptions about how many calls will be made. Any state it keeps must be
+// protected from the concurrent access.
+template <typename Callable, typename InnerMatcher>
+internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
+ Callable callable, InnerMatcher matcher) {
+ return internal::ResultOfMatcher<Callable, InnerMatcher>(
+ std::move(callable), std::move(matcher));
+}
+
+// String matchers.
+
+// Matches a string equal to str.
+template <typename T = std::string>
+PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
+ const internal::StringLike<T>& str) {
+ return MakePolymorphicMatcher(
+ internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
+}
+
+// Matches a string not equal to str.
+template <typename T = std::string>
+PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
+ const internal::StringLike<T>& str) {
+ return MakePolymorphicMatcher(
+ internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
+}
+
+// Matches a string equal to str, ignoring case.
+template <typename T = std::string>
+PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
+ const internal::StringLike<T>& str) {
+ return MakePolymorphicMatcher(
+ internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
+}
+
+// Matches a string not equal to str, ignoring case.
+template <typename T = std::string>
+PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
+ const internal::StringLike<T>& str) {
+ return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
+ std::string(str), false, false));
+}
+
+// Creates a matcher that matches any string, std::string, or C string
+// that contains the given substring.
+template <typename T = std::string>
+PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
+ const internal::StringLike<T>& substring) {
+ return MakePolymorphicMatcher(
+ internal::HasSubstrMatcher<std::string>(std::string(substring)));
+}
+
+// Matches a string that starts with 'prefix' (case-sensitive).
+template <typename T = std::string>
+PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
+ const internal::StringLike<T>& prefix) {
+ return MakePolymorphicMatcher(
+ internal::StartsWithMatcher<std::string>(std::string(prefix)));
+}
+
+// Matches a string that ends with 'suffix' (case-sensitive).
+template <typename T = std::string>
+PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
+ const internal::StringLike<T>& suffix) {
+ return MakePolymorphicMatcher(
+ internal::EndsWithMatcher<std::string>(std::string(suffix)));
+}
+
+#if GTEST_HAS_STD_WSTRING
+// Wide string matchers.
+
+// Matches a string equal to str.
+inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
+ const std::wstring& str) {
+ return MakePolymorphicMatcher(
+ internal::StrEqualityMatcher<std::wstring>(str, true, true));
+}
+
+// Matches a string not equal to str.
+inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
+ const std::wstring& str) {
+ return MakePolymorphicMatcher(
+ internal::StrEqualityMatcher<std::wstring>(str, false, true));
+}
+
+// Matches a string equal to str, ignoring case.
+inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
+StrCaseEq(const std::wstring& str) {
+ return MakePolymorphicMatcher(
+ internal::StrEqualityMatcher<std::wstring>(str, true, false));
+}
+
+// Matches a string not equal to str, ignoring case.
+inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
+StrCaseNe(const std::wstring& str) {
+ return MakePolymorphicMatcher(
+ internal::StrEqualityMatcher<std::wstring>(str, false, false));
+}
+
+// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
+// that contains the given substring.
+inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
+ const std::wstring& substring) {
+ return MakePolymorphicMatcher(
+ internal::HasSubstrMatcher<std::wstring>(substring));
+}
+
+// Matches a string that starts with 'prefix' (case-sensitive).
+inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
+StartsWith(const std::wstring& prefix) {
+ return MakePolymorphicMatcher(
+ internal::StartsWithMatcher<std::wstring>(prefix));
+}
+
+// Matches a string that ends with 'suffix' (case-sensitive).
+inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
+ const std::wstring& suffix) {
+ return MakePolymorphicMatcher(
+ internal::EndsWithMatcher<std::wstring>(suffix));
+}
+
+#endif // GTEST_HAS_STD_WSTRING
+
+// Creates a polymorphic matcher that matches a 2-tuple where the
+// first field == the second field.
+inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
+
+// Creates a polymorphic matcher that matches a 2-tuple where the
+// first field >= the second field.
+inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
+
+// Creates a polymorphic matcher that matches a 2-tuple where the
+// first field > the second field.
+inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
+
+// Creates a polymorphic matcher that matches a 2-tuple where the
+// first field <= the second field.
+inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
+
+// Creates a polymorphic matcher that matches a 2-tuple where the
+// first field < the second field.
+inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
+
+// Creates a polymorphic matcher that matches a 2-tuple where the
+// first field != the second field.
+inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// FloatEq(first field) matches the second field.
+inline internal::FloatingEq2Matcher<float> FloatEq() {
+ return internal::FloatingEq2Matcher<float>();
+}
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// DoubleEq(first field) matches the second field.
+inline internal::FloatingEq2Matcher<double> DoubleEq() {
+ return internal::FloatingEq2Matcher<double>();
+}
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// FloatEq(first field) matches the second field with NaN equality.
+inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
+ return internal::FloatingEq2Matcher<float>(true);
+}
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// DoubleEq(first field) matches the second field with NaN equality.
+inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
+ return internal::FloatingEq2Matcher<double>(true);
+}
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// FloatNear(first field, max_abs_error) matches the second field.
+inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
+ return internal::FloatingEq2Matcher<float>(max_abs_error);
+}
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// DoubleNear(first field, max_abs_error) matches the second field.
+inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
+ return internal::FloatingEq2Matcher<double>(max_abs_error);
+}
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// FloatNear(first field, max_abs_error) matches the second field with NaN
+// equality.
+inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
+ float max_abs_error) {
+ return internal::FloatingEq2Matcher<float>(max_abs_error, true);
+}
+
+// Creates a polymorphic matcher that matches a 2-tuple where
+// DoubleNear(first field, max_abs_error) matches the second field with NaN
+// equality.
+inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
+ double max_abs_error) {
+ return internal::FloatingEq2Matcher<double>(max_abs_error, true);
+}
+
+// Creates a matcher that matches any value of type T that m doesn't
+// match.
+template <typename InnerMatcher>
+inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
+ return internal::NotMatcher<InnerMatcher>(m);
+}
+
+// Returns a matcher that matches anything that satisfies the given
+// predicate. The predicate can be any unary function or functor
+// whose return type can be implicitly converted to bool.
+template <typename Predicate>
+inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
+Truly(Predicate pred) {
+ return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
+}
+
+// Returns a matcher that matches the container size. The container must
+// support both size() and size_type which all STL-like containers provide.
+// Note that the parameter 'size' can be a value of type size_type as well as
+// matcher. For instance:
+// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
+// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
+template <typename SizeMatcher>
+inline internal::SizeIsMatcher<SizeMatcher>
+SizeIs(const SizeMatcher& size_matcher) {
+ return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
+}
+
+// Returns a matcher that matches the distance between the container's begin()
+// iterator and its end() iterator, i.e. the size of the container. This matcher
+// can be used instead of SizeIs with containers such as std::forward_list which
+// do not implement size(). The container must provide const_iterator (with
+// valid iterator_traits), begin() and end().
+template <typename DistanceMatcher>
+inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
+BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
+ return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
+}
+
+// Returns a matcher that matches an equal container.
+// This matcher behaves like Eq(), but in the event of mismatch lists the
+// values that are included in one container but not the other. (Duplicate
+// values and order differences are not explained.)
+template <typename Container>
+inline PolymorphicMatcher<internal::ContainerEqMatcher<
+ typename std::remove_const<Container>::type>>
+ContainerEq(const Container& rhs) {
+ return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
+}
+
+// Returns a matcher that matches a container that, when sorted using
+// the given comparator, matches container_matcher.
+template <typename Comparator, typename ContainerMatcher>
+inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
+WhenSortedBy(const Comparator& comparator,
+ const ContainerMatcher& container_matcher) {
+ return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
+ comparator, container_matcher);
+}
+
+// Returns a matcher that matches a container that, when sorted using
+// the < operator, matches container_matcher.
+template <typename ContainerMatcher>
+inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
+WhenSorted(const ContainerMatcher& container_matcher) {
+ return
+ internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
+ internal::LessComparator(), container_matcher);
+}
+
+// Matches an STL-style container or a native array that contains the
+// same number of elements as in rhs, where its i-th element and rhs's
+// i-th element (as a pair) satisfy the given pair matcher, for all i.
+// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
+// T1&, const T2&> >, where T1 and T2 are the types of elements in the
+// LHS container and the RHS container respectively.
+template <typename TupleMatcher, typename Container>
+inline internal::PointwiseMatcher<TupleMatcher,
+ typename std::remove_const<Container>::type>
+Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
+ return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
+ rhs);
+}
+
+
+// Supports the Pointwise(m, {a, b, c}) syntax.
+template <typename TupleMatcher, typename T>
+inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
+ const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
+ return Pointwise(tuple_matcher, std::vector<T>(rhs));
+}
+
+
+// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
+// container or a native array that contains the same number of
+// elements as in rhs, where in some permutation of the container, its
+// i-th element and rhs's i-th element (as a pair) satisfy the given
+// pair matcher, for all i. Tuple2Matcher must be able to be safely
+// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
+// the types of elements in the LHS container and the RHS container
+// respectively.
+//
+// This is like Pointwise(pair_matcher, rhs), except that the element
+// order doesn't matter.
+template <typename Tuple2Matcher, typename RhsContainer>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename internal::BoundSecondMatcher<
+ Tuple2Matcher,
+ typename internal::StlContainerView<
+ typename std::remove_const<RhsContainer>::type>::type::value_type>>
+UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
+ const RhsContainer& rhs_container) {
+ // RhsView allows the same code to handle RhsContainer being a
+ // STL-style container and it being a native C-style array.
+ typedef typename internal::StlContainerView<RhsContainer> RhsView;
+ typedef typename RhsView::type RhsStlContainer;
+ typedef typename RhsStlContainer::value_type Second;
+ const RhsStlContainer& rhs_stl_container =
+ RhsView::ConstReference(rhs_container);
+
+ // Create a matcher for each element in rhs_container.
+ ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
+ for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
+ it != rhs_stl_container.end(); ++it) {
+ matchers.push_back(
+ internal::MatcherBindSecond(tuple2_matcher, *it));
+ }
+
+ // Delegate the work to UnorderedElementsAreArray().
+ return UnorderedElementsAreArray(matchers);
+}
+
+
+// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
+template <typename Tuple2Matcher, typename T>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
+UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
+ std::initializer_list<T> rhs) {
+ return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
+}
+
+
+// Matches an STL-style container or a native array that contains at
+// least one element matching the given value or matcher.
+//
+// Examples:
+// ::std::set<int> page_ids;
+// page_ids.insert(3);
+// page_ids.insert(1);
+// EXPECT_THAT(page_ids, Contains(1));
+// EXPECT_THAT(page_ids, Contains(Gt(2)));
+// EXPECT_THAT(page_ids, Not(Contains(4)));
+//
+// ::std::map<int, size_t> page_lengths;
+// page_lengths[1] = 100;
+// EXPECT_THAT(page_lengths,
+// Contains(::std::pair<const int, size_t>(1, 100)));
+//
+// const char* user_ids[] = { "joe", "mike", "tom" };
+// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
+template <typename M>
+inline internal::ContainsMatcher<M> Contains(M matcher) {
+ return internal::ContainsMatcher<M>(matcher);
+}
+
+// IsSupersetOf(iterator_first, iterator_last)
+// IsSupersetOf(pointer, count)
+// IsSupersetOf(array)
+// IsSupersetOf(container)
+// IsSupersetOf({e1, e2, ..., en})
+//
+// IsSupersetOf() verifies that a surjective partial mapping onto a collection
+// of matchers exists. In other words, a container matches
+// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
+// {y1, ..., yn} of some of the container's elements where y1 matches e1,
+// ..., and yn matches en. Obviously, the size of the container must be >= n
+// in order to have a match. Examples:
+//
+// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
+// 1 matches Ne(0).
+// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
+// both Eq(1) and Lt(2). The reason is that different matchers must be used
+// for elements in different slots of the container.
+// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
+// Eq(1) and (the second) 1 matches Lt(2).
+// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
+// Gt(1) and 3 matches (the second) Gt(1).
+//
+// The matchers can be specified as an array, a pointer and count, a container,
+// an initializer list, or an STL iterator range. In each of these cases, the
+// underlying matchers can be either values or matchers.
+
+template <typename Iter>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>
+IsSupersetOf(Iter first, Iter last) {
+ typedef typename ::std::iterator_traits<Iter>::value_type T;
+ return internal::UnorderedElementsAreArrayMatcher<T>(
+ internal::UnorderedMatcherRequire::Superset, first, last);
+}
+
+template <typename T>
+inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
+ const T* pointer, size_t count) {
+ return IsSupersetOf(pointer, pointer + count);
+}
+
+template <typename T, size_t N>
+inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
+ const T (&array)[N]) {
+ return IsSupersetOf(array, N);
+}
+
+template <typename Container>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename Container::value_type>
+IsSupersetOf(const Container& container) {
+ return IsSupersetOf(container.begin(), container.end());
+}
+
+template <typename T>
+inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
+ ::std::initializer_list<T> xs) {
+ return IsSupersetOf(xs.begin(), xs.end());
+}
+
+// IsSubsetOf(iterator_first, iterator_last)
+// IsSubsetOf(pointer, count)
+// IsSubsetOf(array)
+// IsSubsetOf(container)
+// IsSubsetOf({e1, e2, ..., en})
+//
+// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
+// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
+// only if there is a subset of matchers {m1, ..., mk} which would match the
+// container using UnorderedElementsAre. Obviously, the size of the container
+// must be <= n in order to have a match. Examples:
+//
+// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
+// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
+// matches Lt(0).
+// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
+// match Gt(0). The reason is that different matchers must be used for
+// elements in different slots of the container.
+//
+// The matchers can be specified as an array, a pointer and count, a container,
+// an initializer list, or an STL iterator range. In each of these cases, the
+// underlying matchers can be either values or matchers.
+
+template <typename Iter>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>
+IsSubsetOf(Iter first, Iter last) {
+ typedef typename ::std::iterator_traits<Iter>::value_type T;
+ return internal::UnorderedElementsAreArrayMatcher<T>(
+ internal::UnorderedMatcherRequire::Subset, first, last);
+}
+
+template <typename T>
+inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
+ const T* pointer, size_t count) {
+ return IsSubsetOf(pointer, pointer + count);
+}
+
+template <typename T, size_t N>
+inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
+ const T (&array)[N]) {
+ return IsSubsetOf(array, N);
+}
+
+template <typename Container>
+inline internal::UnorderedElementsAreArrayMatcher<
+ typename Container::value_type>
+IsSubsetOf(const Container& container) {
+ return IsSubsetOf(container.begin(), container.end());
+}
+
+template <typename T>
+inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
+ ::std::initializer_list<T> xs) {
+ return IsSubsetOf(xs.begin(), xs.end());
+}
+
+// Matches an STL-style container or a native array that contains only
+// elements matching the given value or matcher.
+//
+// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
+// the messages are different.
+//
+// Examples:
+// ::std::set<int> page_ids;
+// // Each(m) matches an empty container, regardless of what m is.
+// EXPECT_THAT(page_ids, Each(Eq(1)));
+// EXPECT_THAT(page_ids, Each(Eq(77)));
+//
+// page_ids.insert(3);
+// EXPECT_THAT(page_ids, Each(Gt(0)));
+// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
+// page_ids.insert(1);
+// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
+//
+// ::std::map<int, size_t> page_lengths;
+// page_lengths[1] = 100;
+// page_lengths[2] = 200;
+// page_lengths[3] = 300;
+// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
+// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
+//
+// const char* user_ids[] = { "joe", "mike", "tom" };
+// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
+template <typename M>
+inline internal::EachMatcher<M> Each(M matcher) {
+ return internal::EachMatcher<M>(matcher);
+}
+
+// Key(inner_matcher) matches an std::pair whose 'first' field matches
+// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
+// std::map that contains at least one element whose key is >= 5.
+template <typename M>
+inline internal::KeyMatcher<M> Key(M inner_matcher) {
+ return internal::KeyMatcher<M>(inner_matcher);
+}
+
+// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
+// matches first_matcher and whose 'second' field matches second_matcher. For
+// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
+// to match a std::map<int, string> that contains exactly one element whose key
+// is >= 5 and whose value equals "foo".
+template <typename FirstMatcher, typename SecondMatcher>
+inline internal::PairMatcher<FirstMatcher, SecondMatcher>
+Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
+ return internal::PairMatcher<FirstMatcher, SecondMatcher>(
+ first_matcher, second_matcher);
+}
+
+namespace no_adl {
+// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
+// These include those that support `get<I>(obj)`, and when structured bindings
+// are enabled any class that supports them.
+// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
+template <typename... M>
+internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
+ M&&... matchers) {
+ return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
+ std::forward<M>(matchers)...);
+}
+
+// Creates a matcher that matches a pointer (raw or smart) that matches
+// inner_matcher.
+template <typename InnerMatcher>
+inline internal::PointerMatcher<InnerMatcher> Pointer(
+ const InnerMatcher& inner_matcher) {
+ return internal::PointerMatcher<InnerMatcher>(inner_matcher);
+}
+
+// Creates a matcher that matches an object that has an address that matches
+// inner_matcher.
+template <typename InnerMatcher>
+inline internal::AddressMatcher<InnerMatcher> Address(
+ const InnerMatcher& inner_matcher) {
+ return internal::AddressMatcher<InnerMatcher>(inner_matcher);
+}
+} // namespace no_adl
+
+// Returns a predicate that is satisfied by anything that matches the
+// given matcher.
+template <typename M>
+inline internal::MatcherAsPredicate<M> Matches(M matcher) {
+ return internal::MatcherAsPredicate<M>(matcher);
+}
+
+// Returns true if and only if the value matches the matcher.
+template <typename T, typename M>
+inline bool Value(const T& value, M matcher) {
+ return testing::Matches(matcher)(value);
+}
+
+// Matches the value against the given matcher and explains the match
+// result to listener.
+template <typename T, typename M>
+inline bool ExplainMatchResult(
+ M matcher, const T& value, MatchResultListener* listener) {
+ return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
+}
+
+// Returns a string representation of the given matcher. Useful for description
+// strings of matchers defined using MATCHER_P* macros that accept matchers as
+// their arguments. For example:
+//
+// MATCHER_P(XAndYThat, matcher,
+// "X that " + DescribeMatcher<int>(matcher, negation) +
+// " and Y that " + DescribeMatcher<double>(matcher, negation)) {
+// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
+// ExplainMatchResult(matcher, arg.y(), result_listener);
+// }
+template <typename T, typename M>
+std::string DescribeMatcher(const M& matcher, bool negation = false) {
+ ::std::stringstream ss;
+ Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
+ if (negation) {
+ monomorphic_matcher.DescribeNegationTo(&ss);
+ } else {
+ monomorphic_matcher.DescribeTo(&ss);
+ }
+ return ss.str();
+}
+
+template <typename... Args>
+internal::ElementsAreMatcher<
+ std::tuple<typename std::decay<const Args&>::type...>>
+ElementsAre(const Args&... matchers) {
+ return internal::ElementsAreMatcher<
+ std::tuple<typename std::decay<const Args&>::type...>>(
+ std::make_tuple(matchers...));
+}
+
+template <typename... Args>
+internal::UnorderedElementsAreMatcher<
+ std::tuple<typename std::decay<const Args&>::type...>>
+UnorderedElementsAre(const Args&... matchers) {
+ return internal::UnorderedElementsAreMatcher<
+ std::tuple<typename std::decay<const Args&>::type...>>(
+ std::make_tuple(matchers...));
+}
+
+// Define variadic matcher versions.
+template <typename... Args>
+internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
+ const Args&... matchers) {
+ return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
+ matchers...);
+}
+
+template <typename... Args>
+internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
+ const Args&... matchers) {
+ return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
+ matchers...);
+}
+
+// AnyOfArray(array)
+// AnyOfArray(pointer, count)
+// AnyOfArray(container)
+// AnyOfArray({ e1, e2, ..., en })
+// AnyOfArray(iterator_first, iterator_last)
+//
+// AnyOfArray() verifies whether a given value matches any member of a
+// collection of matchers.
+//
+// AllOfArray(array)
+// AllOfArray(pointer, count)
+// AllOfArray(container)
+// AllOfArray({ e1, e2, ..., en })
+// AllOfArray(iterator_first, iterator_last)
+//
+// AllOfArray() verifies whether a given value matches all members of a
+// collection of matchers.
+//
+// The matchers can be specified as an array, a pointer and count, a container,
+// an initializer list, or an STL iterator range. In each of these cases, the
+// underlying matchers can be either values or matchers.
+
+template <typename Iter>
+inline internal::AnyOfArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>
+AnyOfArray(Iter first, Iter last) {
+ return internal::AnyOfArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>(first, last);
+}
+
+template <typename Iter>
+inline internal::AllOfArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>
+AllOfArray(Iter first, Iter last) {
+ return internal::AllOfArrayMatcher<
+ typename ::std::iterator_traits<Iter>::value_type>(first, last);
+}
+
+template <typename T>
+inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
+ return AnyOfArray(ptr, ptr + count);
+}
+
+template <typename T>
+inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
+ return AllOfArray(ptr, ptr + count);
+}
+
+template <typename T, size_t N>
+inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
+ return AnyOfArray(array, N);
+}
+
+template <typename T, size_t N>
+inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
+ return AllOfArray(array, N);
+}
+
+template <typename Container>
+inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
+ const Container& container) {
+ return AnyOfArray(container.begin(), container.end());
+}
+
+template <typename Container>
+inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
+ const Container& container) {
+ return AllOfArray(container.begin(), container.end());
+}
+
+template <typename T>
+inline internal::AnyOfArrayMatcher<T> AnyOfArray(
+ ::std::initializer_list<T> xs) {
+ return AnyOfArray(xs.begin(), xs.end());
+}
+
+template <typename T>
+inline internal::AllOfArrayMatcher<T> AllOfArray(
+ ::std::initializer_list<T> xs) {
+ return AllOfArray(xs.begin(), xs.end());
+}
+
+// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
+// fields of it matches a_matcher. C++ doesn't support default
+// arguments for function templates, so we have to overload it.
+template <size_t... k, typename InnerMatcher>
+internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
+ InnerMatcher&& matcher) {
+ return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
+ std::forward<InnerMatcher>(matcher));
+}
+
+// AllArgs(m) is a synonym of m. This is useful in
+//
+// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
+//
+// which is easier to read than
+//
+// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
+template <typename InnerMatcher>
+inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
+
+// Returns a matcher that matches the value of an optional<> type variable.
+// The matcher implementation only uses '!arg' and requires that the optional<>
+// type has a 'value_type' member type and that '*arg' is of type 'value_type'
+// and is printable using 'PrintToString'. It is compatible with
+// std::optional/std::experimental::optional.
+// Note that to compare an optional type variable against nullopt you should
+// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
+// optional value contains an optional itself.
+template <typename ValueMatcher>
+inline internal::OptionalMatcher<ValueMatcher> Optional(
+ const ValueMatcher& value_matcher) {
+ return internal::OptionalMatcher<ValueMatcher>(value_matcher);
+}
+
+// Returns a matcher that matches the value of a absl::any type variable.
+template <typename T>
+PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
+ const Matcher<const T&>& matcher) {
+ return MakePolymorphicMatcher(
+ internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
+}
+
+// Returns a matcher that matches the value of a variant<> type variable.
+// The matcher implementation uses ADL to find the holds_alternative and get
+// functions.
+// It is compatible with std::variant.
+template <typename T>
+PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
+ const Matcher<const T&>& matcher) {
+ return MakePolymorphicMatcher(
+ internal::variant_matcher::VariantMatcher<T>(matcher));
+}
+
+#if GTEST_HAS_EXCEPTIONS
+
+// Anything inside the `internal` namespace is internal to the implementation
+// and must not be used in user code!
+namespace internal {
+
+class WithWhatMatcherImpl {
+ public:
+ WithWhatMatcherImpl(Matcher<std::string> matcher)
+ : matcher_(std::move(matcher)) {}
+
+ void DescribeTo(std::ostream* os) const {
+ *os << "contains .what() that ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(std::ostream* os) const {
+ *os << "contains .what() that does not ";
+ matcher_.DescribeTo(os);
+ }
+
+ template <typename Err>
+ bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
+ *listener << "which contains .what() that ";
+ return matcher_.MatchAndExplain(err.what(), listener);
+ }
+
+ private:
+ const Matcher<std::string> matcher_;
+};
+
+inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
+ Matcher<std::string> m) {
+ return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
+}
+
+template <typename Err>
+class ExceptionMatcherImpl {
+ class NeverThrown {
+ public:
+ const char* what() const noexcept {
+ return "this exception should never be thrown";
+ }
+ };
+
+ // If the matchee raises an exception of a wrong type, we'd like to
+ // catch it and print its message and type. To do that, we add an additional
+ // catch clause:
+ //
+ // try { ... }
+ // catch (const Err&) { /* an expected exception */ }
+ // catch (const std::exception&) { /* exception of a wrong type */ }
+ //
+ // However, if the `Err` itself is `std::exception`, we'd end up with two
+ // identical `catch` clauses:
+ //
+ // try { ... }
+ // catch (const std::exception&) { /* an expected exception */ }
+ // catch (const std::exception&) { /* exception of a wrong type */ }
+ //
+ // This can cause a warning or an error in some compilers. To resolve
+ // the issue, we use a fake error type whenever `Err` is `std::exception`:
+ //
+ // try { ... }
+ // catch (const std::exception&) { /* an expected exception */ }
+ // catch (const NeverThrown&) { /* exception of a wrong type */ }
+ using DefaultExceptionType = typename std::conditional<
+ std::is_same<typename std::remove_cv<
+ typename std::remove_reference<Err>::type>::type,
+ std::exception>::value,
+ const NeverThrown&, const std::exception&>::type;
+
+ public:
+ ExceptionMatcherImpl(Matcher<const Err&> matcher)
+ : matcher_(std::move(matcher)) {}
+
+ void DescribeTo(std::ostream* os) const {
+ *os << "throws an exception which is a " << GetTypeName<Err>();
+ *os << " which ";
+ matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(std::ostream* os) const {
+ *os << "throws an exception which is not a " << GetTypeName<Err>();
+ *os << " which ";
+ matcher_.DescribeNegationTo(os);
+ }
+
+ template <typename T>
+ bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
+ try {
+ (void)(std::forward<T>(x)());
+ } catch (const Err& err) {
+ *listener << "throws an exception which is a " << GetTypeName<Err>();
+ *listener << " ";
+ return matcher_.MatchAndExplain(err, listener);
+ } catch (DefaultExceptionType err) {
+#if GTEST_HAS_RTTI
+ *listener << "throws an exception of type " << GetTypeName(typeid(err));
+ *listener << " ";
+#else
+ *listener << "throws an std::exception-derived type ";
+#endif
+ *listener << "with description \"" << err.what() << "\"";
+ return false;
+ } catch (...) {
+ *listener << "throws an exception of an unknown type";
+ return false;
+ }
+
+ *listener << "does not throw any exception";
+ return false;
+ }
+
+ private:
+ const Matcher<const Err&> matcher_;
+};
+
+} // namespace internal
+
+// Throws()
+// Throws(exceptionMatcher)
+// ThrowsMessage(messageMatcher)
+//
+// This matcher accepts a callable and verifies that when invoked, it throws
+// an exception with the given type and properties.
+//
+// Examples:
+//
+// EXPECT_THAT(
+// []() { throw std::runtime_error("message"); },
+// Throws<std::runtime_error>());
+//
+// EXPECT_THAT(
+// []() { throw std::runtime_error("message"); },
+// ThrowsMessage<std::runtime_error>(HasSubstr("message")));
+//
+// EXPECT_THAT(
+// []() { throw std::runtime_error("message"); },
+// Throws<std::runtime_error>(
+// Property(&std::runtime_error::what, HasSubstr("message"))));
+
+template <typename Err>
+PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
+ return MakePolymorphicMatcher(
+ internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
+}
+
+template <typename Err, typename ExceptionMatcher>
+PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
+ const ExceptionMatcher& exception_matcher) {
+ // Using matcher cast allows users to pass a matcher of a more broad type.
+ // For example user may want to pass Matcher<std::exception>
+ // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
+ return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
+ SafeMatcherCast<const Err&>(exception_matcher)));
+}
+
+template <typename Err, typename MessageMatcher>
+PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
+ MessageMatcher&& message_matcher) {
+ static_assert(std::is_base_of<std::exception, Err>::value,
+ "expected an std::exception-derived type");
+ return Throws<Err>(internal::WithWhat(
+ MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
+}
+
+#endif // GTEST_HAS_EXCEPTIONS
+
+// These macros allow using matchers to check values in Google Test
+// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
+// succeed if and only if the value matches the matcher. If the assertion
+// fails, the value and the description of the matcher will be printed.
+#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
+ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
+#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
+ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
+
+// MATCHER* macroses itself are listed below.
+#define MATCHER(name, description) \
+ class name##Matcher \
+ : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
+ public: \
+ template <typename arg_type> \
+ class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
+ public: \
+ gmock_Impl() {} \
+ bool MatchAndExplain( \
+ const arg_type& arg, \
+ ::testing::MatchResultListener* result_listener) const override; \
+ void DescribeTo(::std::ostream* gmock_os) const override { \
+ *gmock_os << FormatDescription(false); \
+ } \
+ void DescribeNegationTo(::std::ostream* gmock_os) const override { \
+ *gmock_os << FormatDescription(true); \
+ } \
+ \
+ private: \
+ ::std::string FormatDescription(bool negation) const { \
+ ::std::string gmock_description = (description); \
+ if (!gmock_description.empty()) { \
+ return gmock_description; \
+ } \
+ return ::testing::internal::FormatMatcherDescription(negation, #name, \
+ {}); \
+ } \
+ }; \
+ }; \
+ GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \
+ template <typename arg_type> \
+ bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
+ const arg_type& arg, \
+ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
+ const
+
+#define MATCHER_P(name, p0, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
+#define MATCHER_P2(name, p0, p1, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
+#define MATCHER_P3(name, p0, p1, p2, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
+#define MATCHER_P4(name, p0, p1, p2, p3, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
+#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
+ (p0, p1, p2, p3, p4))
+#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
+ (p0, p1, p2, p3, p4, p5))
+#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
+ (p0, p1, p2, p3, p4, p5, p6))
+#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
+ (p0, p1, p2, p3, p4, p5, p6, p7))
+#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
+ (p0, p1, p2, p3, p4, p5, p6, p7, p8))
+#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
+ GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
+ (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
+
+#define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \
+ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
+ class full_name : public ::testing::internal::MatcherBaseImpl< \
+ full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
+ public: \
+ using full_name::MatcherBaseImpl::MatcherBaseImpl; \
+ template <typename arg_type> \
+ class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
+ public: \
+ explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
+ : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
+ bool MatchAndExplain( \
+ const arg_type& arg, \
+ ::testing::MatchResultListener* result_listener) const override; \
+ void DescribeTo(::std::ostream* gmock_os) const override { \
+ *gmock_os << FormatDescription(false); \
+ } \
+ void DescribeNegationTo(::std::ostream* gmock_os) const override { \
+ *gmock_os << FormatDescription(true); \
+ } \
+ GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
+ \
+ private: \
+ ::std::string FormatDescription(bool negation) const { \
+ ::std::string gmock_description = (description); \
+ if (!gmock_description.empty()) { \
+ return gmock_description; \
+ } \
+ return ::testing::internal::FormatMatcherDescription( \
+ negation, #name, \
+ ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
+ ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
+ GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
+ } \
+ }; \
+ }; \
+ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
+ inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
+ GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
+ return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
+ GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
+ } \
+ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
+ template <typename arg_type> \
+ bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
+ arg_type>::MatchAndExplain(const arg_type& arg, \
+ ::testing::MatchResultListener* \
+ result_listener GTEST_ATTRIBUTE_UNUSED_) \
+ const
+
+#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
+ GMOCK_PP_TAIL( \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
+#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
+ , typename arg##_type
+
+#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
+#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
+ , arg##_type
+
+#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
+ GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
+ GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
+#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
+ , arg##_type gmock_p##i
+
+#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
+#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
+ , arg(::std::forward<arg##_type>(gmock_p##i))
+
+#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
+#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
+ const arg##_type arg;
+
+#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
+#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
+
+#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
+#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
+ , gmock_p##i
+
+// To prevent ADL on certain functions we put them on a separate namespace.
+using namespace no_adl; // NOLINT
+
+} // namespace testing
+
+GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
+
+// Include any custom callback matchers added by the local installation.
+// We must include this header at the end to make sure it can use the
+// declarations from this file.
+// Copyright 2015, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Injection point for custom user configurations. See README for details
+//
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
+
+#if GTEST_HAS_EXCEPTIONS
+# include <stdexcept> // NOLINT
+#endif
+
+GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
+/* class A needs to have dll-interface to be used by clients of class B */)
+
+namespace testing {
+
+// An abstract handle of an expectation.
+class Expectation;
+
+// A set of expectation handles.
+class ExpectationSet;
+
+// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
+// and MUST NOT BE USED IN USER CODE!!!
+namespace internal {
+
+// Implements a mock function.
+template <typename F> class FunctionMocker;
+
+// Base class for expectations.
+class ExpectationBase;
+
+// Implements an expectation.
+template <typename F> class TypedExpectation;
+
+// Helper class for testing the Expectation class template.
+class ExpectationTester;
+
+// Helper classes for implementing NiceMock, StrictMock, and NaggyMock.
+template <typename MockClass>
+class NiceMockImpl;
+template <typename MockClass>
+class StrictMockImpl;
+template <typename MockClass>
+class NaggyMockImpl;
+
+// Protects the mock object registry (in class Mock), all function
+// mockers, and all expectations.
+//
+// The reason we don't use more fine-grained protection is: when a
+// mock function Foo() is called, it needs to consult its expectations
+// to see which one should be picked. If another thread is allowed to
+// call a mock function (either Foo() or a different one) at the same
+// time, it could affect the "retired" attributes of Foo()'s
+// expectations when InSequence() is used, and thus affect which
+// expectation gets picked. Therefore, we sequence all mock function
+// calls to ensure the integrity of the mock objects' states.
+GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex);
+
+// Untyped base class for ActionResultHolder<R>.
+class UntypedActionResultHolderBase;
+
+// Abstract base class of FunctionMocker. This is the
+// type-agnostic part of the function mocker interface. Its pure
+// virtual methods are implemented by FunctionMocker.
+class GTEST_API_ UntypedFunctionMockerBase {
+ public:
+ UntypedFunctionMockerBase();
+ virtual ~UntypedFunctionMockerBase();
+
+ // Verifies that all expectations on this mock function have been
+ // satisfied. Reports one or more Google Test non-fatal failures
+ // and returns false if not.
+ bool VerifyAndClearExpectationsLocked()
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
+
+ // Clears the ON_CALL()s set on this mock function.
+ virtual void ClearDefaultActionsLocked()
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0;
+
+ // In all of the following Untyped* functions, it's the caller's
+ // responsibility to guarantee the correctness of the arguments'
+ // types.
+
+ // Performs the default action with the given arguments and returns
+ // the action's result. The call description string will be used in
+ // the error message to describe the call in the case the default
+ // action fails.
+ // L = *
+ virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
+ void* untyped_args, const std::string& call_description) const = 0;
+
+ // Performs the given action with the given arguments and returns
+ // the action's result.
+ // L = *
+ virtual UntypedActionResultHolderBase* UntypedPerformAction(
+ const void* untyped_action, void* untyped_args) const = 0;
+
+ // Writes a message that the call is uninteresting (i.e. neither
+ // explicitly expected nor explicitly unexpected) to the given
+ // ostream.
+ virtual void UntypedDescribeUninterestingCall(
+ const void* untyped_args,
+ ::std::ostream* os) const
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
+
+ // Returns the expectation that matches the given function arguments
+ // (or NULL is there's no match); when a match is found,
+ // untyped_action is set to point to the action that should be
+ // performed (or NULL if the action is "do default"), and
+ // is_excessive is modified to indicate whether the call exceeds the
+ // expected number.
+ virtual const ExpectationBase* UntypedFindMatchingExpectation(
+ const void* untyped_args,
+ const void** untyped_action, bool* is_excessive,
+ ::std::ostream* what, ::std::ostream* why)
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
+
+ // Prints the given function arguments to the ostream.
+ virtual void UntypedPrintArgs(const void* untyped_args,
+ ::std::ostream* os) const = 0;
+
+ // Sets the mock object this mock method belongs to, and registers
+ // this information in the global mock registry. Will be called
+ // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
+ // method.
+ void RegisterOwner(const void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
+
+ // Sets the mock object this mock method belongs to, and sets the
+ // name of the mock function. Will be called upon each invocation
+ // of this mock function.
+ void SetOwnerAndName(const void* mock_obj, const char* name)
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
+
+ // Returns the mock object this mock method belongs to. Must be
+ // called after RegisterOwner() or SetOwnerAndName() has been
+ // called.
+ const void* MockObject() const
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
+
+ // Returns the name of this mock method. Must be called after
+ // SetOwnerAndName() has been called.
+ const char* Name() const
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
+
+ // Returns the result of invoking this mock function with the given
+ // arguments. This function can be safely called from multiple
+ // threads concurrently. The caller is responsible for deleting the
+ // result.
+ UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args)
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
+
+ protected:
+ typedef std::vector<const void*> UntypedOnCallSpecs;
+
+ using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>;
+
+ // Returns an Expectation object that references and co-owns exp,
+ // which must be an expectation on this mock function.
+ Expectation GetHandleOf(ExpectationBase* exp);
+
+ // Address of the mock object this mock method belongs to. Only
+ // valid after this mock method has been called or
+ // ON_CALL/EXPECT_CALL has been invoked on it.
+ const void* mock_obj_; // Protected by g_gmock_mutex.
+
+ // Name of the function being mocked. Only valid after this mock
+ // method has been called.
+ const char* name_; // Protected by g_gmock_mutex.
+
+ // All default action specs for this function mocker.
+ UntypedOnCallSpecs untyped_on_call_specs_;
+
+ // All expectations for this function mocker.
+ //
+ // It's undefined behavior to interleave expectations (EXPECT_CALLs
+ // or ON_CALLs) and mock function calls. Also, the order of
+ // expectations is important. Therefore it's a logic race condition
+ // to read/write untyped_expectations_ concurrently. In order for
+ // tools like tsan to catch concurrent read/write accesses to
+ // untyped_expectations, we deliberately leave accesses to it
+ // unprotected.
+ UntypedExpectations untyped_expectations_;
+}; // class UntypedFunctionMockerBase
+
+// Untyped base class for OnCallSpec<F>.
+class UntypedOnCallSpecBase {
+ public:
+ // The arguments are the location of the ON_CALL() statement.
+ UntypedOnCallSpecBase(const char* a_file, int a_line)
+ : file_(a_file), line_(a_line), last_clause_(kNone) {}
+
+ // Where in the source file was the default action spec defined?
+ const char* file() const { return file_; }
+ int line() const { return line_; }
+
+ protected:
+ // Gives each clause in the ON_CALL() statement a name.
+ enum Clause {
+ // Do not change the order of the enum members! The run-time
+ // syntax checking relies on it.
+ kNone,
+ kWith,
+ kWillByDefault
+ };
+
+ // Asserts that the ON_CALL() statement has a certain property.
+ void AssertSpecProperty(bool property,
+ const std::string& failure_message) const {
+ Assert(property, file_, line_, failure_message);
+ }
+
+ // Expects that the ON_CALL() statement has a certain property.
+ void ExpectSpecProperty(bool property,
+ const std::string& failure_message) const {
+ Expect(property, file_, line_, failure_message);
+ }
+
+ const char* file_;
+ int line_;
+
+ // The last clause in the ON_CALL() statement as seen so far.
+ // Initially kNone and changes as the statement is parsed.
+ Clause last_clause_;
+}; // class UntypedOnCallSpecBase
+
+// This template class implements an ON_CALL spec.
+template <typename F>
+class OnCallSpec : public UntypedOnCallSpecBase {
+ public:
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+ typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
+
+ // Constructs an OnCallSpec object from the information inside
+ // the parenthesis of an ON_CALL() statement.
+ OnCallSpec(const char* a_file, int a_line,
+ const ArgumentMatcherTuple& matchers)
+ : UntypedOnCallSpecBase(a_file, a_line),
+ matchers_(matchers),
+ // By default, extra_matcher_ should match anything. However,
+ // we cannot initialize it with _ as that causes ambiguity between
+ // Matcher's copy and move constructor for some argument types.
+ extra_matcher_(A<const ArgumentTuple&>()) {}
+
+ // Implements the .With() clause.
+ OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) {
+ // Makes sure this is called at most once.
+ ExpectSpecProperty(last_clause_ < kWith,
+ ".With() cannot appear "
+ "more than once in an ON_CALL().");
+ last_clause_ = kWith;
+
+ extra_matcher_ = m;
+ return *this;
+ }
+
+ // Implements the .WillByDefault() clause.
+ OnCallSpec& WillByDefault(const Action<F>& action) {
+ ExpectSpecProperty(last_clause_ < kWillByDefault,
+ ".WillByDefault() must appear "
+ "exactly once in an ON_CALL().");
+ last_clause_ = kWillByDefault;
+
+ ExpectSpecProperty(!action.IsDoDefault(),
+ "DoDefault() cannot be used in ON_CALL().");
+ action_ = action;
+ return *this;
+ }
+
+ // Returns true if and only if the given arguments match the matchers.
+ bool Matches(const ArgumentTuple& args) const {
+ return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
+ }
+
+ // Returns the action specified by the user.
+ const Action<F>& GetAction() const {
+ AssertSpecProperty(last_clause_ == kWillByDefault,
+ ".WillByDefault() must appear exactly "
+ "once in an ON_CALL().");
+ return action_;
+ }
+
+ private:
+ // The information in statement
+ //
+ // ON_CALL(mock_object, Method(matchers))
+ // .With(multi-argument-matcher)
+ // .WillByDefault(action);
+ //
+ // is recorded in the data members like this:
+ //
+ // source file that contains the statement => file_
+ // line number of the statement => line_
+ // matchers => matchers_
+ // multi-argument-matcher => extra_matcher_
+ // action => action_
+ ArgumentMatcherTuple matchers_;
+ Matcher<const ArgumentTuple&> extra_matcher_;
+ Action<F> action_;
+}; // class OnCallSpec
+
+// Possible reactions on uninteresting calls.
+enum CallReaction {
+ kAllow,
+ kWarn,
+ kFail,
+};
+
+} // namespace internal
+
+// Utilities for manipulating mock objects.
+class GTEST_API_ Mock {
+ public:
+ // The following public methods can be called concurrently.
+
+ // Tells Google Mock to ignore mock_obj when checking for leaked
+ // mock objects.
+ static void AllowLeak(const void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Verifies and clears all expectations on the given mock object.
+ // If the expectations aren't satisfied, generates one or more
+ // Google Test non-fatal failures and returns false.
+ static bool VerifyAndClearExpectations(void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Verifies all expectations on the given mock object and clears its
+ // default actions and expectations. Returns true if and only if the
+ // verification was successful.
+ static bool VerifyAndClear(void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Returns whether the mock was created as a naggy mock (default)
+ static bool IsNaggy(void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+ // Returns whether the mock was created as a nice mock
+ static bool IsNice(void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+ // Returns whether the mock was created as a strict mock
+ static bool IsStrict(void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ private:
+ friend class internal::UntypedFunctionMockerBase;
+
+ // Needed for a function mocker to register itself (so that we know
+ // how to clear a mock object).
+ template <typename F>
+ friend class internal::FunctionMocker;
+
+ template <typename MockClass>
+ friend class internal::NiceMockImpl;
+ template <typename MockClass>
+ friend class internal::NaggyMockImpl;
+ template <typename MockClass>
+ friend class internal::StrictMockImpl;
+
+ // Tells Google Mock to allow uninteresting calls on the given mock
+ // object.
+ static void AllowUninterestingCalls(const void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Tells Google Mock to warn the user about uninteresting calls on
+ // the given mock object.
+ static void WarnUninterestingCalls(const void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Tells Google Mock to fail uninteresting calls on the given mock
+ // object.
+ static void FailUninterestingCalls(const void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Tells Google Mock the given mock object is being destroyed and
+ // its entry in the call-reaction table should be removed.
+ static void UnregisterCallReaction(const void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Returns the reaction Google Mock will have on uninteresting calls
+ // made on the given mock object.
+ static internal::CallReaction GetReactionOnUninterestingCalls(
+ const void* mock_obj)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Verifies that all expectations on the given mock object have been
+ // satisfied. Reports one or more Google Test non-fatal failures
+ // and returns false if not.
+ static bool VerifyAndClearExpectationsLocked(void* mock_obj)
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
+
+ // Clears all ON_CALL()s set on the given mock object.
+ static void ClearDefaultActionsLocked(void* mock_obj)
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
+
+ // Registers a mock object and a mock method it owns.
+ static void Register(
+ const void* mock_obj,
+ internal::UntypedFunctionMockerBase* mocker)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Tells Google Mock where in the source code mock_obj is used in an
+ // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this
+ // information helps the user identify which object it is.
+ static void RegisterUseByOnCallOrExpectCall(
+ const void* mock_obj, const char* file, int line)
+ GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
+
+ // Unregisters a mock method; removes the owning mock object from
+ // the registry when the last mock method associated with it has
+ // been unregistered. This is called only in the destructor of
+ // FunctionMocker.
+ static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
+}; // class Mock
+
+// An abstract handle of an expectation. Useful in the .After()
+// clause of EXPECT_CALL() for setting the (partial) order of
+// expectations. The syntax:
+//
+// Expectation e1 = EXPECT_CALL(...)...;
+// EXPECT_CALL(...).After(e1)...;
+//
+// sets two expectations where the latter can only be matched after
+// the former has been satisfied.
+//
+// Notes:
+// - This class is copyable and has value semantics.
+// - Constness is shallow: a const Expectation object itself cannot
+// be modified, but the mutable methods of the ExpectationBase
+// object it references can be called via expectation_base().
+
+class GTEST_API_ Expectation {
+ public:
+ // Constructs a null object that doesn't reference any expectation.
+ Expectation();
+ Expectation(Expectation&&) = default;
+ Expectation(const Expectation&) = default;
+ Expectation& operator=(Expectation&&) = default;
+ Expectation& operator=(const Expectation&) = default;
+ ~Expectation();
+
+ // This single-argument ctor must not be explicit, in order to support the
+ // Expectation e = EXPECT_CALL(...);
+ // syntax.
+ //
+ // A TypedExpectation object stores its pre-requisites as
+ // Expectation objects, and needs to call the non-const Retire()
+ // method on the ExpectationBase objects they reference. Therefore
+ // Expectation must receive a *non-const* reference to the
+ // ExpectationBase object.
+ Expectation(internal::ExpectationBase& exp); // NOLINT
+
+ // The compiler-generated copy ctor and operator= work exactly as
+ // intended, so we don't need to define our own.
+
+ // Returns true if and only if rhs references the same expectation as this
+ // object does.
+ bool operator==(const Expectation& rhs) const {
+ return expectation_base_ == rhs.expectation_base_;
+ }
+
+ bool operator!=(const Expectation& rhs) const { return !(*this == rhs); }
+
+ private:
+ friend class ExpectationSet;
+ friend class Sequence;
+ friend class ::testing::internal::ExpectationBase;
+ friend class ::testing::internal::UntypedFunctionMockerBase;
+
+ template <typename F>
+ friend class ::testing::internal::FunctionMocker;
+
+ template <typename F>
+ friend class ::testing::internal::TypedExpectation;
+
+ // This comparator is needed for putting Expectation objects into a set.
+ class Less {
+ public:
+ bool operator()(const Expectation& lhs, const Expectation& rhs) const {
+ return lhs.expectation_base_.get() < rhs.expectation_base_.get();
+ }
+ };
+
+ typedef ::std::set<Expectation, Less> Set;
+
+ Expectation(
+ const std::shared_ptr<internal::ExpectationBase>& expectation_base);
+
+ // Returns the expectation this object references.
+ const std::shared_ptr<internal::ExpectationBase>& expectation_base() const {
+ return expectation_base_;
+ }
+
+ // A shared_ptr that co-owns the expectation this handle references.
+ std::shared_ptr<internal::ExpectationBase> expectation_base_;
+};
+
+// A set of expectation handles. Useful in the .After() clause of
+// EXPECT_CALL() for setting the (partial) order of expectations. The
+// syntax:
+//
+// ExpectationSet es;
+// es += EXPECT_CALL(...)...;
+// es += EXPECT_CALL(...)...;
+// EXPECT_CALL(...).After(es)...;
+//
+// sets three expectations where the last one can only be matched
+// after the first two have both been satisfied.
+//
+// This class is copyable and has value semantics.
+class ExpectationSet {
+ public:
+ // A bidirectional iterator that can read a const element in the set.
+ typedef Expectation::Set::const_iterator const_iterator;
+
+ // An object stored in the set. This is an alias of Expectation.
+ typedef Expectation::Set::value_type value_type;
+
+ // Constructs an empty set.
+ ExpectationSet() {}
+
+ // This single-argument ctor must not be explicit, in order to support the
+ // ExpectationSet es = EXPECT_CALL(...);
+ // syntax.
+ ExpectationSet(internal::ExpectationBase& exp) { // NOLINT
+ *this += Expectation(exp);
+ }
+
+ // This single-argument ctor implements implicit conversion from
+ // Expectation and thus must not be explicit. This allows either an
+ // Expectation or an ExpectationSet to be used in .After().
+ ExpectationSet(const Expectation& e) { // NOLINT
+ *this += e;
+ }
+
+ // The compiler-generator ctor and operator= works exactly as
+ // intended, so we don't need to define our own.
+
+ // Returns true if and only if rhs contains the same set of Expectation
+ // objects as this does.
+ bool operator==(const ExpectationSet& rhs) const {
+ return expectations_ == rhs.expectations_;
+ }
+
+ bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); }
+
+ // Implements the syntax
+ // expectation_set += EXPECT_CALL(...);
+ ExpectationSet& operator+=(const Expectation& e) {
+ expectations_.insert(e);
+ return *this;
+ }
+
+ int size() const { return static_cast<int>(expectations_.size()); }
+
+ const_iterator begin() const { return expectations_.begin(); }
+ const_iterator end() const { return expectations_.end(); }
+
+ private:
+ Expectation::Set expectations_;
+};
+
+
+// Sequence objects are used by a user to specify the relative order
+// in which the expectations should match. They are copyable (we rely
+// on the compiler-defined copy constructor and assignment operator).
+class GTEST_API_ Sequence {
+ public:
+ // Constructs an empty sequence.
+ Sequence() : last_expectation_(new Expectation) {}
+
+ // Adds an expectation to this sequence. The caller must ensure
+ // that no other thread is accessing this Sequence object.
+ void AddExpectation(const Expectation& expectation) const;
+
+ private:
+ // The last expectation in this sequence.
+ std::shared_ptr<Expectation> last_expectation_;
+}; // class Sequence
+
+// An object of this type causes all EXPECT_CALL() statements
+// encountered in its scope to be put in an anonymous sequence. The
+// work is done in the constructor and destructor. You should only
+// create an InSequence object on the stack.
+//
+// The sole purpose for this class is to support easy definition of
+// sequential expectations, e.g.
+//
+// {
+// InSequence dummy; // The name of the object doesn't matter.
+//
+// // The following expectations must match in the order they appear.
+// EXPECT_CALL(a, Bar())...;
+// EXPECT_CALL(a, Baz())...;
+// ...
+// EXPECT_CALL(b, Xyz())...;
+// }
+//
+// You can create InSequence objects in multiple threads, as long as
+// they are used to affect different mock objects. The idea is that
+// each thread can create and set up its own mocks as if it's the only
+// thread. However, for clarity of your tests we recommend you to set
+// up mocks in the main thread unless you have a good reason not to do
+// so.
+class GTEST_API_ InSequence {
+ public:
+ InSequence();
+ ~InSequence();
+ private:
+ bool sequence_created_;
+
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT
+} GTEST_ATTRIBUTE_UNUSED_;
+
+namespace internal {
+
+// Points to the implicit sequence introduced by a living InSequence
+// object (if any) in the current thread or NULL.
+GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence;
+
+// Base class for implementing expectations.
+//
+// There are two reasons for having a type-agnostic base class for
+// Expectation:
+//
+// 1. We need to store collections of expectations of different
+// types (e.g. all pre-requisites of a particular expectation, all
+// expectations in a sequence). Therefore these expectation objects
+// must share a common base class.
+//
+// 2. We can avoid binary code bloat by moving methods not depending
+// on the template argument of Expectation to the base class.
+//
+// This class is internal and mustn't be used by user code directly.
+class GTEST_API_ ExpectationBase {
+ public:
+ // source_text is the EXPECT_CALL(...) source that created this Expectation.
+ ExpectationBase(const char* file, int line, const std::string& source_text);
+
+ virtual ~ExpectationBase();
+
+ // Where in the source file was the expectation spec defined?
+ const char* file() const { return file_; }
+ int line() const { return line_; }
+ const char* source_text() const { return source_text_.c_str(); }
+ // Returns the cardinality specified in the expectation spec.
+ const Cardinality& cardinality() const { return cardinality_; }
+
+ // Describes the source file location of this expectation.
+ void DescribeLocationTo(::std::ostream* os) const {
+ *os << FormatFileLocation(file(), line()) << " ";
+ }
+
+ // Describes how many times a function call matching this
+ // expectation has occurred.
+ void DescribeCallCountTo(::std::ostream* os) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
+
+ // If this mock method has an extra matcher (i.e. .With(matcher)),
+ // describes it to the ostream.
+ virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0;
+
+ protected:
+ friend class ::testing::Expectation;
+ friend class UntypedFunctionMockerBase;
+
+ enum Clause {
+ // Don't change the order of the enum members!
+ kNone,
+ kWith,
+ kTimes,
+ kInSequence,
+ kAfter,
+ kWillOnce,
+ kWillRepeatedly,
+ kRetiresOnSaturation
+ };
+
+ typedef std::vector<const void*> UntypedActions;
+
+ // Returns an Expectation object that references and co-owns this
+ // expectation.
+ virtual Expectation GetHandle() = 0;
+
+ // Asserts that the EXPECT_CALL() statement has the given property.
+ void AssertSpecProperty(bool property,
+ const std::string& failure_message) const {
+ Assert(property, file_, line_, failure_message);
+ }
+
+ // Expects that the EXPECT_CALL() statement has the given property.
+ void ExpectSpecProperty(bool property,
+ const std::string& failure_message) const {
+ Expect(property, file_, line_, failure_message);
+ }
+
+ // Explicitly specifies the cardinality of this expectation. Used
+ // by the subclasses to implement the .Times() clause.
+ void SpecifyCardinality(const Cardinality& cardinality);
+
+ // Returns true if and only if the user specified the cardinality
+ // explicitly using a .Times().
+ bool cardinality_specified() const { return cardinality_specified_; }
+
+ // Sets the cardinality of this expectation spec.
+ void set_cardinality(const Cardinality& a_cardinality) {
+ cardinality_ = a_cardinality;
+ }
+
+ // The following group of methods should only be called after the
+ // EXPECT_CALL() statement, and only when g_gmock_mutex is held by
+ // the current thread.
+
+ // Retires all pre-requisites of this expectation.
+ void RetireAllPreRequisites()
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
+
+ // Returns true if and only if this expectation is retired.
+ bool is_retired() const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ return retired_;
+ }
+
+ // Retires this expectation.
+ void Retire()
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ retired_ = true;
+ }
+
+ // Returns true if and only if this expectation is satisfied.
+ bool IsSatisfied() const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ return cardinality().IsSatisfiedByCallCount(call_count_);
+ }
+
+ // Returns true if and only if this expectation is saturated.
+ bool IsSaturated() const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ return cardinality().IsSaturatedByCallCount(call_count_);
+ }
+
+ // Returns true if and only if this expectation is over-saturated.
+ bool IsOverSaturated() const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ return cardinality().IsOverSaturatedByCallCount(call_count_);
+ }
+
+ // Returns true if and only if all pre-requisites of this expectation are
+ // satisfied.
+ bool AllPrerequisitesAreSatisfied() const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
+
+ // Adds unsatisfied pre-requisites of this expectation to 'result'.
+ void FindUnsatisfiedPrerequisites(ExpectationSet* result) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
+
+ // Returns the number this expectation has been invoked.
+ int call_count() const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ return call_count_;
+ }
+
+ // Increments the number this expectation has been invoked.
+ void IncrementCallCount()
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ call_count_++;
+ }
+
+ // Checks the action count (i.e. the number of WillOnce() and
+ // WillRepeatedly() clauses) against the cardinality if this hasn't
+ // been done before. Prints a warning if there are too many or too
+ // few actions.
+ void CheckActionCountIfNotDone() const
+ GTEST_LOCK_EXCLUDED_(mutex_);
+
+ friend class ::testing::Sequence;
+ friend class ::testing::internal::ExpectationTester;
+
+ template <typename Function>
+ friend class TypedExpectation;
+
+ // Implements the .Times() clause.
+ void UntypedTimes(const Cardinality& a_cardinality);
+
+ // This group of fields are part of the spec and won't change after
+ // an EXPECT_CALL() statement finishes.
+ const char* file_; // The file that contains the expectation.
+ int line_; // The line number of the expectation.
+ const std::string source_text_; // The EXPECT_CALL(...) source text.
+ // True if and only if the cardinality is specified explicitly.
+ bool cardinality_specified_;
+ Cardinality cardinality_; // The cardinality of the expectation.
+ // The immediate pre-requisites (i.e. expectations that must be
+ // satisfied before this expectation can be matched) of this
+ // expectation. We use std::shared_ptr in the set because we want an
+ // Expectation object to be co-owned by its FunctionMocker and its
+ // successors. This allows multiple mock objects to be deleted at
+ // different times.
+ ExpectationSet immediate_prerequisites_;
+
+ // This group of fields are the current state of the expectation,
+ // and can change as the mock function is called.
+ int call_count_; // How many times this expectation has been invoked.
+ bool retired_; // True if and only if this expectation has retired.
+ UntypedActions untyped_actions_;
+ bool extra_matcher_specified_;
+ bool repeated_action_specified_; // True if a WillRepeatedly() was specified.
+ bool retires_on_saturation_;
+ Clause last_clause_;
+ mutable bool action_count_checked_; // Under mutex_.
+ mutable Mutex mutex_; // Protects action_count_checked_.
+}; // class ExpectationBase
+
+// Impements an expectation for the given function type.
+template <typename F>
+class TypedExpectation : public ExpectationBase {
+ public:
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+ typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
+ typedef typename Function<F>::Result Result;
+
+ TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line,
+ const std::string& a_source_text,
+ const ArgumentMatcherTuple& m)
+ : ExpectationBase(a_file, a_line, a_source_text),
+ owner_(owner),
+ matchers_(m),
+ // By default, extra_matcher_ should match anything. However,
+ // we cannot initialize it with _ as that causes ambiguity between
+ // Matcher's copy and move constructor for some argument types.
+ extra_matcher_(A<const ArgumentTuple&>()),
+ repeated_action_(DoDefault()) {}
+
+ ~TypedExpectation() override {
+ // Check the validity of the action count if it hasn't been done
+ // yet (for example, if the expectation was never used).
+ CheckActionCountIfNotDone();
+ for (UntypedActions::const_iterator it = untyped_actions_.begin();
+ it != untyped_actions_.end(); ++it) {
+ delete static_cast<const Action<F>*>(*it);
+ }
+ }
+
+ // Implements the .With() clause.
+ TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) {
+ if (last_clause_ == kWith) {
+ ExpectSpecProperty(false,
+ ".With() cannot appear "
+ "more than once in an EXPECT_CALL().");
+ } else {
+ ExpectSpecProperty(last_clause_ < kWith,
+ ".With() must be the first "
+ "clause in an EXPECT_CALL().");
+ }
+ last_clause_ = kWith;
+
+ extra_matcher_ = m;
+ extra_matcher_specified_ = true;
+ return *this;
+ }
+
+ // Implements the .Times() clause.
+ TypedExpectation& Times(const Cardinality& a_cardinality) {
+ ExpectationBase::UntypedTimes(a_cardinality);
+ return *this;
+ }
+
+ // Implements the .Times() clause.
+ TypedExpectation& Times(int n) {
+ return Times(Exactly(n));
+ }
+
+ // Implements the .InSequence() clause.
+ TypedExpectation& InSequence(const Sequence& s) {
+ ExpectSpecProperty(last_clause_ <= kInSequence,
+ ".InSequence() cannot appear after .After(),"
+ " .WillOnce(), .WillRepeatedly(), or "
+ ".RetiresOnSaturation().");
+ last_clause_ = kInSequence;
+
+ s.AddExpectation(GetHandle());
+ return *this;
+ }
+ TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) {
+ return InSequence(s1).InSequence(s2);
+ }
+ TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
+ const Sequence& s3) {
+ return InSequence(s1, s2).InSequence(s3);
+ }
+ TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
+ const Sequence& s3, const Sequence& s4) {
+ return InSequence(s1, s2, s3).InSequence(s4);
+ }
+ TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
+ const Sequence& s3, const Sequence& s4,
+ const Sequence& s5) {
+ return InSequence(s1, s2, s3, s4).InSequence(s5);
+ }
+
+ // Implements that .After() clause.
+ TypedExpectation& After(const ExpectationSet& s) {
+ ExpectSpecProperty(last_clause_ <= kAfter,
+ ".After() cannot appear after .WillOnce(),"
+ " .WillRepeatedly(), or "
+ ".RetiresOnSaturation().");
+ last_clause_ = kAfter;
+
+ for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) {
+ immediate_prerequisites_ += *it;
+ }
+ return *this;
+ }
+ TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) {
+ return After(s1).After(s2);
+ }
+ TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
+ const ExpectationSet& s3) {
+ return After(s1, s2).After(s3);
+ }
+ TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
+ const ExpectationSet& s3, const ExpectationSet& s4) {
+ return After(s1, s2, s3).After(s4);
+ }
+ TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
+ const ExpectationSet& s3, const ExpectationSet& s4,
+ const ExpectationSet& s5) {
+ return After(s1, s2, s3, s4).After(s5);
+ }
+
+ // Implements the .WillOnce() clause.
+ TypedExpectation& WillOnce(const Action<F>& action) {
+ ExpectSpecProperty(last_clause_ <= kWillOnce,
+ ".WillOnce() cannot appear after "
+ ".WillRepeatedly() or .RetiresOnSaturation().");
+ last_clause_ = kWillOnce;
+
+ untyped_actions_.push_back(new Action<F>(action));
+ if (!cardinality_specified()) {
+ set_cardinality(Exactly(static_cast<int>(untyped_actions_.size())));
+ }
+ return *this;
+ }
+
+ // Implements the .WillRepeatedly() clause.
+ TypedExpectation& WillRepeatedly(const Action<F>& action) {
+ if (last_clause_ == kWillRepeatedly) {
+ ExpectSpecProperty(false,
+ ".WillRepeatedly() cannot appear "
+ "more than once in an EXPECT_CALL().");
+ } else {
+ ExpectSpecProperty(last_clause_ < kWillRepeatedly,
+ ".WillRepeatedly() cannot appear "
+ "after .RetiresOnSaturation().");
+ }
+ last_clause_ = kWillRepeatedly;
+ repeated_action_specified_ = true;
+
+ repeated_action_ = action;
+ if (!cardinality_specified()) {
+ set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size())));
+ }
+
+ // Now that no more action clauses can be specified, we check
+ // whether their count makes sense.
+ CheckActionCountIfNotDone();
+ return *this;
+ }
+
+ // Implements the .RetiresOnSaturation() clause.
+ TypedExpectation& RetiresOnSaturation() {
+ ExpectSpecProperty(last_clause_ < kRetiresOnSaturation,
+ ".RetiresOnSaturation() cannot appear "
+ "more than once.");
+ last_clause_ = kRetiresOnSaturation;
+ retires_on_saturation_ = true;
+
+ // Now that no more action clauses can be specified, we check
+ // whether their count makes sense.
+ CheckActionCountIfNotDone();
+ return *this;
+ }
+
+ // Returns the matchers for the arguments as specified inside the
+ // EXPECT_CALL() macro.
+ const ArgumentMatcherTuple& matchers() const {
+ return matchers_;
+ }
+
+ // Returns the matcher specified by the .With() clause.
+ const Matcher<const ArgumentTuple&>& extra_matcher() const {
+ return extra_matcher_;
+ }
+
+ // Returns the action specified by the .WillRepeatedly() clause.
+ const Action<F>& repeated_action() const { return repeated_action_; }
+
+ // If this mock method has an extra matcher (i.e. .With(matcher)),
+ // describes it to the ostream.
+ void MaybeDescribeExtraMatcherTo(::std::ostream* os) override {
+ if (extra_matcher_specified_) {
+ *os << " Expected args: ";
+ extra_matcher_.DescribeTo(os);
+ *os << "\n";
+ }
+ }
+
+ private:
+ template <typename Function>
+ friend class FunctionMocker;
+
+ // Returns an Expectation object that references and co-owns this
+ // expectation.
+ Expectation GetHandle() override { return owner_->GetHandleOf(this); }
+
+ // The following methods will be called only after the EXPECT_CALL()
+ // statement finishes and when the current thread holds
+ // g_gmock_mutex.
+
+ // Returns true if and only if this expectation matches the given arguments.
+ bool Matches(const ArgumentTuple& args) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
+ }
+
+ // Returns true if and only if this expectation should handle the given
+ // arguments.
+ bool ShouldHandleArguments(const ArgumentTuple& args) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+
+ // In case the action count wasn't checked when the expectation
+ // was defined (e.g. if this expectation has no WillRepeatedly()
+ // or RetiresOnSaturation() clause), we check it when the
+ // expectation is used for the first time.
+ CheckActionCountIfNotDone();
+ return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args);
+ }
+
+ // Describes the result of matching the arguments against this
+ // expectation to the given ostream.
+ void ExplainMatchResultTo(
+ const ArgumentTuple& args,
+ ::std::ostream* os) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+
+ if (is_retired()) {
+ *os << " Expected: the expectation is active\n"
+ << " Actual: it is retired\n";
+ } else if (!Matches(args)) {
+ if (!TupleMatches(matchers_, args)) {
+ ExplainMatchFailureTupleTo(matchers_, args, os);
+ }
+ StringMatchResultListener listener;
+ if (!extra_matcher_.MatchAndExplain(args, &listener)) {
+ *os << " Expected args: ";
+ extra_matcher_.DescribeTo(os);
+ *os << "\n Actual: don't match";
+
+ internal::PrintIfNotEmpty(listener.str(), os);
+ *os << "\n";
+ }
+ } else if (!AllPrerequisitesAreSatisfied()) {
+ *os << " Expected: all pre-requisites are satisfied\n"
+ << " Actual: the following immediate pre-requisites "
+ << "are not satisfied:\n";
+ ExpectationSet unsatisfied_prereqs;
+ FindUnsatisfiedPrerequisites(&unsatisfied_prereqs);
+ int i = 0;
+ for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin();
+ it != unsatisfied_prereqs.end(); ++it) {
+ it->expectation_base()->DescribeLocationTo(os);
+ *os << "pre-requisite #" << i++ << "\n";
+ }
+ *os << " (end of pre-requisites)\n";
+ } else {
+ // This line is here just for completeness' sake. It will never
+ // be executed as currently the ExplainMatchResultTo() function
+ // is called only when the mock function call does NOT match the
+ // expectation.
+ *os << "The call matches the expectation.\n";
+ }
+ }
+
+ // Returns the action that should be taken for the current invocation.
+ const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker,
+ const ArgumentTuple& args) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ const int count = call_count();
+ Assert(count >= 1, __FILE__, __LINE__,
+ "call_count() is <= 0 when GetCurrentAction() is "
+ "called - this should never happen.");
+
+ const int action_count = static_cast<int>(untyped_actions_.size());
+ if (action_count > 0 && !repeated_action_specified_ &&
+ count > action_count) {
+ // If there is at least one WillOnce() and no WillRepeatedly(),
+ // we warn the user when the WillOnce() clauses ran out.
+ ::std::stringstream ss;
+ DescribeLocationTo(&ss);
+ ss << "Actions ran out in " << source_text() << "...\n"
+ << "Called " << count << " times, but only "
+ << action_count << " WillOnce()"
+ << (action_count == 1 ? " is" : "s are") << " specified - ";
+ mocker->DescribeDefaultActionTo(args, &ss);
+ Log(kWarning, ss.str(), 1);
+ }
+
+ return count <= action_count
+ ? *static_cast<const Action<F>*>(
+ untyped_actions_[static_cast<size_t>(count - 1)])
+ : repeated_action();
+ }
+
+ // Given the arguments of a mock function call, if the call will
+ // over-saturate this expectation, returns the default action;
+ // otherwise, returns the next action in this expectation. Also
+ // describes *what* happened to 'what', and explains *why* Google
+ // Mock does it to 'why'. This method is not const as it calls
+ // IncrementCallCount(). A return value of NULL means the default
+ // action.
+ const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker,
+ const ArgumentTuple& args,
+ ::std::ostream* what,
+ ::std::ostream* why)
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ if (IsSaturated()) {
+ // We have an excessive call.
+ IncrementCallCount();
+ *what << "Mock function called more times than expected - ";
+ mocker->DescribeDefaultActionTo(args, what);
+ DescribeCallCountTo(why);
+
+ return nullptr;
+ }
+
+ IncrementCallCount();
+ RetireAllPreRequisites();
+
+ if (retires_on_saturation_ && IsSaturated()) {
+ Retire();
+ }
+
+ // Must be done after IncrementCount()!
+ *what << "Mock function call matches " << source_text() <<"...\n";
+ return &(GetCurrentAction(mocker, args));
+ }
+
+ // All the fields below won't change once the EXPECT_CALL()
+ // statement finishes.
+ FunctionMocker<F>* const owner_;
+ ArgumentMatcherTuple matchers_;
+ Matcher<const ArgumentTuple&> extra_matcher_;
+ Action<F> repeated_action_;
+
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation);
+}; // class TypedExpectation
+
+// A MockSpec object is used by ON_CALL() or EXPECT_CALL() for
+// specifying the default behavior of, or expectation on, a mock
+// function.
+
+// Note: class MockSpec really belongs to the ::testing namespace.
+// However if we define it in ::testing, MSVC will complain when
+// classes in ::testing::internal declare it as a friend class
+// template. To workaround this compiler bug, we define MockSpec in
+// ::testing::internal and import it into ::testing.
+
+// Logs a message including file and line number information.
+GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
+ const char* file, int line,
+ const std::string& message);
+
+template <typename F>
+class MockSpec {
+ public:
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+ typedef typename internal::Function<F>::ArgumentMatcherTuple
+ ArgumentMatcherTuple;
+
+ // Constructs a MockSpec object, given the function mocker object
+ // that the spec is associated with.
+ MockSpec(internal::FunctionMocker<F>* function_mocker,
+ const ArgumentMatcherTuple& matchers)
+ : function_mocker_(function_mocker), matchers_(matchers) {}
+
+ // Adds a new default action spec to the function mocker and returns
+ // the newly created spec.
+ internal::OnCallSpec<F>& InternalDefaultActionSetAt(
+ const char* file, int line, const char* obj, const char* call) {
+ LogWithLocation(internal::kInfo, file, line,
+ std::string("ON_CALL(") + obj + ", " + call + ") invoked");
+ return function_mocker_->AddNewOnCallSpec(file, line, matchers_);
+ }
+
+ // Adds a new expectation spec to the function mocker and returns
+ // the newly created spec.
+ internal::TypedExpectation<F>& InternalExpectedAt(
+ const char* file, int line, const char* obj, const char* call) {
+ const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " +
+ call + ")");
+ LogWithLocation(internal::kInfo, file, line, source_text + " invoked");
+ return function_mocker_->AddNewExpectation(
+ file, line, source_text, matchers_);
+ }
+
+ // This operator overload is used to swallow the superfluous parameter list
+ // introduced by the ON/EXPECT_CALL macros. See the macro comments for more
+ // explanation.
+ MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) {
+ return *this;
+ }
+
+ private:
+ template <typename Function>
+ friend class internal::FunctionMocker;
+
+ // The function mocker that owns this spec.
+ internal::FunctionMocker<F>* const function_mocker_;
+ // The argument matchers specified in the spec.
+ ArgumentMatcherTuple matchers_;
+}; // class MockSpec
+
+// Wrapper type for generically holding an ordinary value or lvalue reference.
+// If T is not a reference type, it must be copyable or movable.
+// ReferenceOrValueWrapper<T> is movable, and will also be copyable unless
+// T is a move-only value type (which means that it will always be copyable
+// if the current platform does not support move semantics).
+//
+// The primary template defines handling for values, but function header
+// comments describe the contract for the whole template (including
+// specializations).
+template <typename T>
+class ReferenceOrValueWrapper {
+ public:
+ // Constructs a wrapper from the given value/reference.
+ explicit ReferenceOrValueWrapper(T value)
+ : value_(std::move(value)) {
+ }
+
+ // Unwraps and returns the underlying value/reference, exactly as
+ // originally passed. The behavior of calling this more than once on
+ // the same object is unspecified.
+ T Unwrap() { return std::move(value_); }
+
+ // Provides nondestructive access to the underlying value/reference.
+ // Always returns a const reference (more precisely,
+ // const std::add_lvalue_reference<T>::type). The behavior of calling this
+ // after calling Unwrap on the same object is unspecified.
+ const T& Peek() const {
+ return value_;
+ }
+
+ private:
+ T value_;
+};
+
+// Specialization for lvalue reference types. See primary template
+// for documentation.
+template <typename T>
+class ReferenceOrValueWrapper<T&> {
+ public:
+ // Workaround for debatable pass-by-reference lint warning (c-library-team
+ // policy precludes NOLINT in this context)
+ typedef T& reference;
+ explicit ReferenceOrValueWrapper(reference ref)
+ : value_ptr_(&ref) {}
+ T& Unwrap() { return *value_ptr_; }
+ const T& Peek() const { return *value_ptr_; }
+
+ private:
+ T* value_ptr_;
+};
+
+// C++ treats the void type specially. For example, you cannot define
+// a void-typed variable or pass a void value to a function.
+// ActionResultHolder<T> holds a value of type T, where T must be a
+// copyable type or void (T doesn't need to be default-constructable).
+// It hides the syntactic difference between void and other types, and
+// is used to unify the code for invoking both void-returning and
+// non-void-returning mock functions.
+
+// Untyped base class for ActionResultHolder<T>.
+class UntypedActionResultHolderBase {
+ public:
+ virtual ~UntypedActionResultHolderBase() {}
+
+ // Prints the held value as an action's result to os.
+ virtual void PrintAsActionResult(::std::ostream* os) const = 0;
+};
+
+// This generic definition is used when T is not void.
+template <typename T>
+class ActionResultHolder : public UntypedActionResultHolderBase {
+ public:
+ // Returns the held value. Must not be called more than once.
+ T Unwrap() {
+ return result_.Unwrap();
+ }
+
+ // Prints the held value as an action's result to os.
+ void PrintAsActionResult(::std::ostream* os) const override {
+ *os << "\n Returns: ";
+ // T may be a reference type, so we don't use UniversalPrint().
+ UniversalPrinter<T>::Print(result_.Peek(), os);
+ }
+
+ // Performs the given mock function's default action and returns the
+ // result in a new-ed ActionResultHolder.
+ template <typename F>
+ static ActionResultHolder* PerformDefaultAction(
+ const FunctionMocker<F>* func_mocker,
+ typename Function<F>::ArgumentTuple&& args,
+ const std::string& call_description) {
+ return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction(
+ std::move(args), call_description)));
+ }
+
+ // Performs the given action and returns the result in a new-ed
+ // ActionResultHolder.
+ template <typename F>
+ static ActionResultHolder* PerformAction(
+ const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
+ return new ActionResultHolder(
+ Wrapper(action.Perform(std::move(args))));
+ }
+
+ private:
+ typedef ReferenceOrValueWrapper<T> Wrapper;
+
+ explicit ActionResultHolder(Wrapper result)
+ : result_(std::move(result)) {
+ }
+
+ Wrapper result_;
+
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
+};
+
+// Specialization for T = void.
+template <>
+class ActionResultHolder<void> : public UntypedActionResultHolderBase {
+ public:
+ void Unwrap() { }
+
+ void PrintAsActionResult(::std::ostream* /* os */) const override {}
+
+ // Performs the given mock function's default action and returns ownership
+ // of an empty ActionResultHolder*.
+ template <typename F>
+ static ActionResultHolder* PerformDefaultAction(
+ const FunctionMocker<F>* func_mocker,
+ typename Function<F>::ArgumentTuple&& args,
+ const std::string& call_description) {
+ func_mocker->PerformDefaultAction(std::move(args), call_description);
+ return new ActionResultHolder;
+ }
+
+ // Performs the given action and returns ownership of an empty
+ // ActionResultHolder*.
+ template <typename F>
+ static ActionResultHolder* PerformAction(
+ const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
+ action.Perform(std::move(args));
+ return new ActionResultHolder;
+ }
+
+ private:
+ ActionResultHolder() {}
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
+};
+
+template <typename F>
+class FunctionMocker;
+
+template <typename R, typename... Args>
+class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase {
+ using F = R(Args...);
+
+ public:
+ using Result = R;
+ using ArgumentTuple = std::tuple<Args...>;
+ using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
+
+ FunctionMocker() {}
+
+ // There is no generally useful and implementable semantics of
+ // copying a mock object, so copying a mock is usually a user error.
+ // Thus we disallow copying function mockers. If the user really
+ // wants to copy a mock object, they should implement their own copy
+ // operation, for example:
+ //
+ // class MockFoo : public Foo {
+ // public:
+ // // Defines a copy constructor explicitly.
+ // MockFoo(const MockFoo& src) {}
+ // ...
+ // };
+ FunctionMocker(const FunctionMocker&) = delete;
+ FunctionMocker& operator=(const FunctionMocker&) = delete;
+
+ // The destructor verifies that all expectations on this mock
+ // function have been satisfied. If not, it will report Google Test
+ // non-fatal failures for the violations.
+ ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
+ MutexLock l(&g_gmock_mutex);
+ VerifyAndClearExpectationsLocked();
+ Mock::UnregisterLocked(this);
+ ClearDefaultActionsLocked();
+ }
+
+ // Returns the ON_CALL spec that matches this mock function with the
+ // given arguments; returns NULL if no matching ON_CALL is found.
+ // L = *
+ const OnCallSpec<F>* FindOnCallSpec(
+ const ArgumentTuple& args) const {
+ for (UntypedOnCallSpecs::const_reverse_iterator it
+ = untyped_on_call_specs_.rbegin();
+ it != untyped_on_call_specs_.rend(); ++it) {
+ const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it);
+ if (spec->Matches(args))
+ return spec;
+ }
+
+ return nullptr;
+ }
+
+ // Performs the default action of this mock function on the given
+ // arguments and returns the result. Asserts (or throws if
+ // exceptions are enabled) with a helpful call descrption if there
+ // is no valid return value. This method doesn't depend on the
+ // mutable state of this object, and thus can be called concurrently
+ // without locking.
+ // L = *
+ Result PerformDefaultAction(ArgumentTuple&& args,
+ const std::string& call_description) const {
+ const OnCallSpec<F>* const spec =
+ this->FindOnCallSpec(args);
+ if (spec != nullptr) {
+ return spec->GetAction().Perform(std::move(args));
+ }
+ const std::string message =
+ call_description +
+ "\n The mock function has no default action "
+ "set, and its return type has no default value set.";
+#if GTEST_HAS_EXCEPTIONS
+ if (!DefaultValue<Result>::Exists()) {
+ throw std::runtime_error(message);
+ }
+#else
+ Assert(DefaultValue<Result>::Exists(), "", -1, message);
+#endif
+ return DefaultValue<Result>::Get();
+ }
+
+ // Performs the default action with the given arguments and returns
+ // the action's result. The call description string will be used in
+ // the error message to describe the call in the case the default
+ // action fails. The caller is responsible for deleting the result.
+ // L = *
+ UntypedActionResultHolderBase* UntypedPerformDefaultAction(
+ void* untyped_args, // must point to an ArgumentTuple
+ const std::string& call_description) const override {
+ ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
+ return ResultHolder::PerformDefaultAction(this, std::move(*args),
+ call_description);
+ }
+
+ // Performs the given action with the given arguments and returns
+ // the action's result. The caller is responsible for deleting the
+ // result.
+ // L = *
+ UntypedActionResultHolderBase* UntypedPerformAction(
+ const void* untyped_action, void* untyped_args) const override {
+ // Make a copy of the action before performing it, in case the
+ // action deletes the mock object (and thus deletes itself).
+ const Action<F> action = *static_cast<const Action<F>*>(untyped_action);
+ ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
+ return ResultHolder::PerformAction(action, std::move(*args));
+ }
+
+ // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked():
+ // clears the ON_CALL()s set on this mock function.
+ void ClearDefaultActionsLocked() override
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+
+ // Deleting our default actions may trigger other mock objects to be
+ // deleted, for example if an action contains a reference counted smart
+ // pointer to that mock object, and that is the last reference. So if we
+ // delete our actions within the context of the global mutex we may deadlock
+ // when this method is called again. Instead, make a copy of the set of
+ // actions to delete, clear our set within the mutex, and then delete the
+ // actions outside of the mutex.
+ UntypedOnCallSpecs specs_to_delete;
+ untyped_on_call_specs_.swap(specs_to_delete);
+
+ g_gmock_mutex.Unlock();
+ for (UntypedOnCallSpecs::const_iterator it =
+ specs_to_delete.begin();
+ it != specs_to_delete.end(); ++it) {
+ delete static_cast<const OnCallSpec<F>*>(*it);
+ }
+
+ // Lock the mutex again, since the caller expects it to be locked when we
+ // return.
+ g_gmock_mutex.Lock();
+ }
+
+ // Returns the result of invoking this mock function with the given
+ // arguments. This function can be safely called from multiple
+ // threads concurrently.
+ Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
+ ArgumentTuple tuple(std::forward<Args>(args)...);
+ std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>(
+ this->UntypedInvokeWith(static_cast<void*>(&tuple))));
+ return holder->Unwrap();
+ }
+
+ MockSpec<F> With(Matcher<Args>... m) {
+ return MockSpec<F>(this, ::std::make_tuple(std::move(m)...));
+ }
+
+ protected:
+ template <typename Function>
+ friend class MockSpec;
+
+ typedef ActionResultHolder<Result> ResultHolder;
+
+ // Adds and returns a default action spec for this mock function.
+ OnCallSpec<F>& AddNewOnCallSpec(
+ const char* file, int line,
+ const ArgumentMatcherTuple& m)
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
+ Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
+ OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m);
+ untyped_on_call_specs_.push_back(on_call_spec);
+ return *on_call_spec;
+ }
+
+ // Adds and returns an expectation spec for this mock function.
+ TypedExpectation<F>& AddNewExpectation(const char* file, int line,
+ const std::string& source_text,
+ const ArgumentMatcherTuple& m)
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
+ Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
+ TypedExpectation<F>* const expectation =
+ new TypedExpectation<F>(this, file, line, source_text, m);
+ const std::shared_ptr<ExpectationBase> untyped_expectation(expectation);
+ // See the definition of untyped_expectations_ for why access to
+ // it is unprotected here.
+ untyped_expectations_.push_back(untyped_expectation);
+
+ // Adds this expectation into the implicit sequence if there is one.
+ Sequence* const implicit_sequence = g_gmock_implicit_sequence.get();
+ if (implicit_sequence != nullptr) {
+ implicit_sequence->AddExpectation(Expectation(untyped_expectation));
+ }
+
+ return *expectation;
+ }
+
+ private:
+ template <typename Func> friend class TypedExpectation;
+
+ // Some utilities needed for implementing UntypedInvokeWith().
+
+ // Describes what default action will be performed for the given
+ // arguments.
+ // L = *
+ void DescribeDefaultActionTo(const ArgumentTuple& args,
+ ::std::ostream* os) const {
+ const OnCallSpec<F>* const spec = FindOnCallSpec(args);
+
+ if (spec == nullptr) {
+ *os << (std::is_void<Result>::value ? "returning directly.\n"
+ : "returning default value.\n");
+ } else {
+ *os << "taking default action specified at:\n"
+ << FormatFileLocation(spec->file(), spec->line()) << "\n";
+ }
+ }
+
+ // Writes a message that the call is uninteresting (i.e. neither
+ // explicitly expected nor explicitly unexpected) to the given
+ // ostream.
+ void UntypedDescribeUninterestingCall(const void* untyped_args,
+ ::std::ostream* os) const override
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
+ const ArgumentTuple& args =
+ *static_cast<const ArgumentTuple*>(untyped_args);
+ *os << "Uninteresting mock function call - ";
+ DescribeDefaultActionTo(args, os);
+ *os << " Function call: " << Name();
+ UniversalPrint(args, os);
+ }
+
+ // Returns the expectation that matches the given function arguments
+ // (or NULL is there's no match); when a match is found,
+ // untyped_action is set to point to the action that should be
+ // performed (or NULL if the action is "do default"), and
+ // is_excessive is modified to indicate whether the call exceeds the
+ // expected number.
+ //
+ // Critical section: We must find the matching expectation and the
+ // corresponding action that needs to be taken in an ATOMIC
+ // transaction. Otherwise another thread may call this mock
+ // method in the middle and mess up the state.
+ //
+ // However, performing the action has to be left out of the critical
+ // section. The reason is that we have no control on what the
+ // action does (it can invoke an arbitrary user function or even a
+ // mock function) and excessive locking could cause a dead lock.
+ const ExpectationBase* UntypedFindMatchingExpectation(
+ const void* untyped_args, const void** untyped_action, bool* is_excessive,
+ ::std::ostream* what, ::std::ostream* why) override
+ GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
+ const ArgumentTuple& args =
+ *static_cast<const ArgumentTuple*>(untyped_args);
+ MutexLock l(&g_gmock_mutex);
+ TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args);
+ if (exp == nullptr) { // A match wasn't found.
+ this->FormatUnexpectedCallMessageLocked(args, what, why);
+ return nullptr;
+ }
+
+ // This line must be done before calling GetActionForArguments(),
+ // which will increment the call count for *exp and thus affect
+ // its saturation status.
+ *is_excessive = exp->IsSaturated();
+ const Action<F>* action = exp->GetActionForArguments(this, args, what, why);
+ if (action != nullptr && action->IsDoDefault())
+ action = nullptr; // Normalize "do default" to NULL.
+ *untyped_action = action;
+ return exp;
+ }
+
+ // Prints the given function arguments to the ostream.
+ void UntypedPrintArgs(const void* untyped_args,
+ ::std::ostream* os) const override {
+ const ArgumentTuple& args =
+ *static_cast<const ArgumentTuple*>(untyped_args);
+ UniversalPrint(args, os);
+ }
+
+ // Returns the expectation that matches the arguments, or NULL if no
+ // expectation matches them.
+ TypedExpectation<F>* FindMatchingExpectationLocked(
+ const ArgumentTuple& args) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ // See the definition of untyped_expectations_ for why access to
+ // it is unprotected here.
+ for (typename UntypedExpectations::const_reverse_iterator it =
+ untyped_expectations_.rbegin();
+ it != untyped_expectations_.rend(); ++it) {
+ TypedExpectation<F>* const exp =
+ static_cast<TypedExpectation<F>*>(it->get());
+ if (exp->ShouldHandleArguments(args)) {
+ return exp;
+ }
+ }
+ return nullptr;
+ }
+
+ // Returns a message that the arguments don't match any expectation.
+ void FormatUnexpectedCallMessageLocked(
+ const ArgumentTuple& args,
+ ::std::ostream* os,
+ ::std::ostream* why) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ *os << "\nUnexpected mock function call - ";
+ DescribeDefaultActionTo(args, os);
+ PrintTriedExpectationsLocked(args, why);
+ }
+
+ // Prints a list of expectations that have been tried against the
+ // current mock function call.
+ void PrintTriedExpectationsLocked(
+ const ArgumentTuple& args,
+ ::std::ostream* why) const
+ GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
+ g_gmock_mutex.AssertHeld();
+ const size_t count = untyped_expectations_.size();
+ *why << "Google Mock tried the following " << count << " "
+ << (count == 1 ? "expectation, but it didn't match" :
+ "expectations, but none matched")
+ << ":\n";
+ for (size_t i = 0; i < count; i++) {
+ TypedExpectation<F>* const expectation =
+ static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get());
+ *why << "\n";
+ expectation->DescribeLocationTo(why);
+ if (count > 1) {
+ *why << "tried expectation #" << i << ": ";
+ }
+ *why << expectation->source_text() << "...\n";
+ expectation->ExplainMatchResultTo(args, why);
+ expectation->DescribeCallCountTo(why);
+ }
+ }
+}; // class FunctionMocker
+
+// Reports an uninteresting call (whose description is in msg) in the
+// manner specified by 'reaction'.
+void ReportUninterestingCall(CallReaction reaction, const std::string& msg);
+
+} // namespace internal
+
+namespace internal {
+
+template <typename F>
+class MockFunction;
+
+template <typename R, typename... Args>
+class MockFunction<R(Args...)> {
+ public:
+ MockFunction(const MockFunction&) = delete;
+ MockFunction& operator=(const MockFunction&) = delete;
+
+ std::function<R(Args...)> AsStdFunction() {
+ return [this](Args... args) -> R {
+ return this->Call(std::forward<Args>(args)...);
+ };
+ }
+
+ // Implementation detail: the expansion of the MOCK_METHOD macro.
+ R Call(Args... args) {
+ mock_.SetOwnerAndName(this, "Call");
+ return mock_.Invoke(std::forward<Args>(args)...);
+ }
+
+ MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) {
+ mock_.RegisterOwner(this);
+ return mock_.With(std::move(m)...);
+ }
+
+ MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) {
+ return this->gmock_Call(::testing::A<Args>()...);
+ }
+
+ protected:
+ MockFunction() = default;
+ ~MockFunction() = default;
+
+ private:
+ FunctionMocker<R(Args...)> mock_;
+};
+
+/*
+The SignatureOf<F> struct is a meta-function returning function signature
+corresponding to the provided F argument.
+
+It makes use of MockFunction easier by allowing it to accept more F arguments
+than just function signatures.
+
+Specializations provided here cover only a signature type itself and
+std::function. However, if need be it can be easily extended to cover also other
+types (like for example boost::function).
+*/
+
+template <typename F>
+struct SignatureOf;
+
+template <typename R, typename... Args>
+struct SignatureOf<R(Args...)> {
+ using type = R(Args...);
+};
+
+template <typename F>
+struct SignatureOf<std::function<F>> : SignatureOf<F> {};
+
+template <typename F>
+using SignatureOfT = typename SignatureOf<F>::type;
+
+} // namespace internal
+
+// A MockFunction<F> type has one mock method whose type is
+// internal::SignatureOfT<F>. It is useful when you just want your
+// test code to emit some messages and have Google Mock verify the
+// right messages are sent (and perhaps at the right times). For
+// example, if you are exercising code:
+//
+// Foo(1);
+// Foo(2);
+// Foo(3);
+//
+// and want to verify that Foo(1) and Foo(3) both invoke
+// mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write:
+//
+// TEST(FooTest, InvokesBarCorrectly) {
+// MyMock mock;
+// MockFunction<void(string check_point_name)> check;
+// {
+// InSequence s;
+//
+// EXPECT_CALL(mock, Bar("a"));
+// EXPECT_CALL(check, Call("1"));
+// EXPECT_CALL(check, Call("2"));
+// EXPECT_CALL(mock, Bar("a"));
+// }
+// Foo(1);
+// check.Call("1");
+// Foo(2);
+// check.Call("2");
+// Foo(3);
+// }
+//
+// The expectation spec says that the first Bar("a") must happen
+// before check point "1", the second Bar("a") must happen after check
+// point "2", and nothing should happen between the two check
+// points. The explicit check points make it easy to tell which
+// Bar("a") is called by which call to Foo().
+//
+// MockFunction<F> can also be used to exercise code that accepts
+// std::function<internal::SignatureOfT<F>> callbacks. To do so, use
+// AsStdFunction() method to create std::function proxy forwarding to
+// original object's Call. Example:
+//
+// TEST(FooTest, RunsCallbackWithBarArgument) {
+// MockFunction<int(string)> callback;
+// EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1));
+// Foo(callback.AsStdFunction());
+// }
+//
+// The internal::SignatureOfT<F> indirection allows to use other types
+// than just function signature type. This is typically useful when
+// providing a mock for a predefined std::function type. Example:
+//
+// using FilterPredicate = std::function<bool(string)>;
+// void MyFilterAlgorithm(FilterPredicate predicate);
+//
+// TEST(FooTest, FilterPredicateAlwaysAccepts) {
+// MockFunction<FilterPredicate> predicateMock;
+// EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true));
+// MyFilterAlgorithm(predicateMock.AsStdFunction());
+// }
+template <typename F>
+class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> {
+ using Base = internal::MockFunction<internal::SignatureOfT<F>>;
+
+ public:
+ using Base::Base;
+};
+
+// The style guide prohibits "using" statements in a namespace scope
+// inside a header file. However, the MockSpec class template is
+// meant to be defined in the ::testing namespace. The following line
+// is just a trick for working around a bug in MSVC 8.0, which cannot
+// handle it if we define MockSpec in ::testing.
+using internal::MockSpec;
+
+// Const(x) is a convenient function for obtaining a const reference
+// to x. This is useful for setting expectations on an overloaded
+// const mock method, e.g.
+//
+// class MockFoo : public FooInterface {
+// public:
+// MOCK_METHOD0(Bar, int());
+// MOCK_CONST_METHOD0(Bar, int&());
+// };
+//
+// MockFoo foo;
+// // Expects a call to non-const MockFoo::Bar().
+// EXPECT_CALL(foo, Bar());
+// // Expects a call to const MockFoo::Bar().
+// EXPECT_CALL(Const(foo), Bar());
+template <typename T>
+inline const T& Const(const T& x) { return x; }
+
+// Constructs an Expectation object that references and co-owns exp.
+inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT
+ : expectation_base_(exp.GetHandle().expectation_base()) {}
+
+} // namespace testing
+
+GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
+
+// Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is
+// required to avoid compile errors when the name of the method used in call is
+// a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro
+// tests in internal/gmock-spec-builders_test.cc for more details.
+//
+// This macro supports statements both with and without parameter matchers. If
+// the parameter list is omitted, gMock will accept any parameters, which allows
+// tests to be written that don't need to encode the number of method
+// parameter. This technique may only be used for non-overloaded methods.
+//
+// // These are the same:
+// ON_CALL(mock, NoArgsMethod()).WillByDefault(...);
+// ON_CALL(mock, NoArgsMethod).WillByDefault(...);
+//
+// // As are these:
+// ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...);
+// ON_CALL(mock, TwoArgsMethod).WillByDefault(...);
+//
+// // Can also specify args if you want, of course:
+// ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...);
+//
+// // Overloads work as long as you specify parameters:
+// ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...);
+// ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...);
+//
+// // Oops! Which overload did you want?
+// ON_CALL(mock, OverloadedMethod).WillByDefault(...);
+// => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous
+//
+// How this works: The mock class uses two overloads of the gmock_Method
+// expectation setter method plus an operator() overload on the MockSpec object.
+// In the matcher list form, the macro expands to:
+//
+// // This statement:
+// ON_CALL(mock, TwoArgsMethod(_, 45))...
+//
+// // ...expands to:
+// mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)...
+// |-------------v---------------||------------v-------------|
+// invokes first overload swallowed by operator()
+//
+// // ...which is essentially:
+// mock.gmock_TwoArgsMethod(_, 45)...
+//
+// Whereas the form without a matcher list:
+//
+// // This statement:
+// ON_CALL(mock, TwoArgsMethod)...
+//
+// // ...expands to:
+// mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)...
+// |-----------------------v--------------------------|
+// invokes second overload
+//
+// // ...which is essentially:
+// mock.gmock_TwoArgsMethod(_, _)...
+//
+// The WithoutMatchers() argument is used to disambiguate overloads and to
+// block the caller from accidentally invoking the second overload directly. The
+// second argument is an internal type derived from the method signature. The
+// failure to disambiguate two overloads of this method in the ON_CALL statement
+// is how we block callers from setting expectations on overloaded methods.
+#define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \
+ ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \
+ nullptr) \
+ .Setter(__FILE__, __LINE__, #mock_expr, #call)
+
+#define ON_CALL(obj, call) \
+ GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call)
+
+#define EXPECT_CALL(obj, call) \
+ GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call)
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
+
+namespace testing {
+namespace internal {
+template <typename T>
+using identity_t = T;
+
+template <typename Pattern>
+struct ThisRefAdjuster {
+ template <typename T>
+ using AdjustT = typename std::conditional<
+ std::is_const<typename std::remove_reference<Pattern>::type>::value,
+ typename std::conditional<std::is_lvalue_reference<Pattern>::value,
+ const T&, const T&&>::type,
+ typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&,
+ T&&>::type>::type;
+
+ template <typename MockType>
+ static AdjustT<MockType> Adjust(const MockType& mock) {
+ return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock));
+ }
+};
+
+} // namespace internal
+
+// The style guide prohibits "using" statements in a namespace scope
+// inside a header file. However, the FunctionMocker class template
+// is meant to be defined in the ::testing namespace. The following
+// line is just a trick for working around a bug in MSVC 8.0, which
+// cannot handle it if we define FunctionMocker in ::testing.
+using internal::FunctionMocker;
+} // namespace testing
+
+#define MOCK_METHOD(...) \
+ GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__)
+
+#define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \
+ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
+
+#define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \
+ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
+
+#define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \
+ GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ())
+
+#define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \
+ GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \
+ GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \
+ GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
+ GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \
+ GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
+ GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
+ GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \
+ GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \
+ GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \
+ GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \
+ (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)))
+
+#define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \
+ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
+
+#define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \
+ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
+
+#define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \
+ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
+
+#define GMOCK_INTERNAL_WRONG_ARITY(...) \
+ static_assert( \
+ false, \
+ "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \
+ "_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \
+ "enclosed in parentheses. If _Ret is a type with unprotected commas, " \
+ "it must also be enclosed in parentheses.")
+
+#define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \
+ static_assert( \
+ GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \
+ GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.")
+
+#define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \
+ static_assert( \
+ std::is_function<__VA_ARGS__>::value, \
+ "Signature must be a function type, maybe return type contains " \
+ "unprotected comma."); \
+ static_assert( \
+ ::testing::tuple_size<typename ::testing::internal::Function< \
+ __VA_ARGS__>::ArgumentTuple>::value == _N, \
+ "This method does not take " GMOCK_PP_STRINGIZE( \
+ _N) " arguments. Parenthesize all types with unprotected commas.")
+
+#define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec)
+
+#define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \
+ _Override, _Final, _NoexceptSpec, \
+ _CallType, _RefSpec, _Signature) \
+ typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \
+ _Signature)>::Result \
+ GMOCK_INTERNAL_EXPAND(_CallType) \
+ _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \
+ GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \
+ GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \
+ GMOCK_MOCKER_(_N, _Constness, _MethodName) \
+ .SetOwnerAndName(this, #_MethodName); \
+ return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
+ .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \
+ } \
+ ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
+ GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \
+ GMOCK_PP_IF(_Constness, const, ) _RefSpec { \
+ GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \
+ return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
+ .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \
+ } \
+ ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
+ const ::testing::internal::WithoutMatchers&, \
+ GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \
+ GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \
+ return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \
+ _Constness, const, ) int _RefSpec>::Adjust(*this) \
+ .gmock_##_MethodName(GMOCK_PP_REPEAT( \
+ GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \
+ } \
+ mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \
+ GMOCK_MOCKER_(_N, _Constness, _MethodName)
+
+#define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__
+
+// Five Valid modifiers.
+#define GMOCK_INTERNAL_HAS_CONST(_Tuple) \
+ GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple))
+
+#define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \
+ GMOCK_PP_HAS_COMMA( \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple))
+
+#define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \
+ GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple))
+
+#define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple)
+
+#define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \
+ GMOCK_PP_IF( \
+ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \
+ _elem, )
+
+#define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple)
+
+#define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \
+ GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), )
+
+#define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple)
+
+#define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \
+ static_assert( \
+ (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \
+ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \
+ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \
+ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \
+ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \
+ GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \
+ GMOCK_PP_STRINGIZE( \
+ _elem) " cannot be recognized as a valid specification modifier.");
+
+// Modifiers implementation.
+#define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem)
+
+#define GMOCK_INTERNAL_DETECT_CONST_I_const ,
+
+#define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem)
+
+#define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override ,
+
+#define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem)
+
+#define GMOCK_INTERNAL_DETECT_FINAL_I_final ,
+
+#define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem)
+
+#define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept ,
+
+#define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem)
+
+#define GMOCK_INTERNAL_DETECT_REF_I_ref ,
+
+#define GMOCK_INTERNAL_UNPACK_ref(x) x
+
+#define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \
+ GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \
+ GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \
+ (_elem)
+
+// TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and
+// GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows
+// maybe they can be simplified somehow.
+#define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \
+ GMOCK_INTERNAL_IS_CALLTYPE_I( \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
+#define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg)
+
+#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \
+ GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \
+ GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
+#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \
+ GMOCK_PP_IDENTITY _arg
+
+#define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype
+
+// Note: The use of `identity_t` here allows _Ret to represent return types that
+// would normally need to be specified in a different way. For example, a method
+// returning a function pointer must be written as
+//
+// fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...)
+//
+// But we only support placing the return type at the beginning. To handle this,
+// we wrap all calls in identity_t, so that a declaration will be expanded to
+//
+// identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...)
+//
+// This allows us to work around the syntactic oddities of function/method
+// types.
+#define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \
+ ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \
+ GMOCK_PP_REMOVE_PARENS, \
+ GMOCK_PP_IDENTITY)(_Ret)>( \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args))
+
+#define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \
+ GMOCK_PP_COMMA_IF(_i) \
+ GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \
+ GMOCK_PP_IDENTITY) \
+ (_elem)
+
+#define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \
+ GMOCK_PP_COMMA_IF(_i) \
+ GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
+ gmock_a##_i
+
+#define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \
+ GMOCK_PP_COMMA_IF(_i) \
+ ::std::forward<GMOCK_INTERNAL_ARG_O( \
+ _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i)
+
+#define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \
+ GMOCK_PP_COMMA_IF(_i) \
+ GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
+ gmock_a##_i
+
+#define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \
+ GMOCK_PP_COMMA_IF(_i) \
+ gmock_a##_i
+
+#define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \
+ GMOCK_PP_COMMA_IF(_i) \
+ ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>()
+
+#define GMOCK_INTERNAL_ARG_O(_i, ...) \
+ typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type
+
+#define GMOCK_INTERNAL_MATCHER_O(_i, ...) \
+ const ::testing::Matcher<typename ::testing::internal::Function< \
+ __VA_ARGS__>::template Arg<_i>::type>&
+
+#define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__)
+#define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__)
+#define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__)
+#define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__)
+#define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__)
+#define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__)
+#define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__)
+#define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__)
+#define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__)
+#define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__)
+#define MOCK_METHOD10(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__)
+
+#define MOCK_CONST_METHOD0(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__)
+#define MOCK_CONST_METHOD1(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__)
+#define MOCK_CONST_METHOD2(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__)
+#define MOCK_CONST_METHOD3(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__)
+#define MOCK_CONST_METHOD4(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__)
+#define MOCK_CONST_METHOD5(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__)
+#define MOCK_CONST_METHOD6(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__)
+#define MOCK_CONST_METHOD7(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__)
+#define MOCK_CONST_METHOD8(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__)
+#define MOCK_CONST_METHOD9(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__)
+#define MOCK_CONST_METHOD10(m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__)
+
+#define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__)
+#define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__)
+#define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__)
+#define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__)
+#define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__)
+#define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__)
+#define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__)
+#define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__)
+#define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__)
+#define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__)
+#define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__)
+
+#define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__)
+#define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__)
+
+#define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__)
+#define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__)
+#define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__)
+#define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__)
+#define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__)
+#define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__)
+#define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__)
+#define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__)
+#define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__)
+#define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__)
+#define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__)
+
+#define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__)
+#define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__)
+#define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__)
+#define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__)
+#define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__)
+#define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__)
+#define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__)
+#define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__)
+#define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__)
+#define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__)
+#define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \
+ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__)
+
+#define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+
+#define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+#define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
+ MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
+
+#define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \
+ GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
+ args_num, ::testing::internal::identity_t<__VA_ARGS__>); \
+ GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
+ args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \
+ (::testing::internal::identity_t<__VA_ARGS__>))
+
+#define GMOCK_MOCKER_(arity, constness, Method) \
+ GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__)
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file implements some commonly used variadic actions.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
+
+#include <memory>
+#include <utility>
+
+
+// Include any custom callback actions added by the local installation.
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
+
+// Sometimes you want to give an action explicit template parameters
+// that cannot be inferred from its value parameters. ACTION() and
+// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
+// and can be viewed as an extension to ACTION() and ACTION_P*().
+//
+// The syntax:
+//
+// ACTION_TEMPLATE(ActionName,
+// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
+// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
+//
+// defines an action template that takes m explicit template
+// parameters and n value parameters. name_i is the name of the i-th
+// template parameter, and kind_i specifies whether it's a typename,
+// an integral constant, or a template. p_i is the name of the i-th
+// value parameter.
+//
+// Example:
+//
+// // DuplicateArg<k, T>(output) converts the k-th argument of the mock
+// // function to type T and copies it to *output.
+// ACTION_TEMPLATE(DuplicateArg,
+// HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
+// AND_1_VALUE_PARAMS(output)) {
+// *output = T(::std::get<k>(args));
+// }
+// ...
+// int n;
+// EXPECT_CALL(mock, Foo(_, _))
+// .WillOnce(DuplicateArg<1, unsigned char>(&n));
+//
+// To create an instance of an action template, write:
+//
+// ActionName<t1, ..., t_m>(v1, ..., v_n)
+//
+// where the ts are the template arguments and the vs are the value
+// arguments. The value argument types are inferred by the compiler.
+// If you want to explicitly specify the value argument types, you can
+// provide additional template arguments:
+//
+// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
+//
+// where u_i is the desired type of v_i.
+//
+// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
+// number of value parameters, but not on the number of template
+// parameters. Without the restriction, the meaning of the following
+// is unclear:
+//
+// OverloadedAction<int, bool>(x);
+//
+// Are we using a single-template-parameter action where 'bool' refers
+// to the type of x, or are we using a two-template-parameter action
+// where the compiler is asked to infer the type of x?
+//
+// Implementation notes:
+//
+// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
+// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
+// implementing ACTION_TEMPLATE. The main trick we use is to create
+// new macro invocations when expanding a macro. For example, we have
+//
+// #define ACTION_TEMPLATE(name, template_params, value_params)
+// ... GMOCK_INTERNAL_DECL_##template_params ...
+//
+// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
+// to expand to
+//
+// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
+//
+// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
+// preprocessor will continue to expand it to
+//
+// ... typename T ...
+//
+// This technique conforms to the C++ standard and is portable. It
+// allows us to implement action templates using O(N) code, where N is
+// the maximum number of template/value parameters supported. Without
+// using it, we'd have to devote O(N^2) amount of code to implement all
+// combinations of m and n.
+
+// Declares the template parameters.
+#define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0
+#define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
+ name1) kind0 name0, kind1 name1
+#define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2) kind0 name0, kind1 name1, kind2 name2
+#define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \
+ kind3 name3
+#define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \
+ kind2 name2, kind3 name3, kind4 name4
+#define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \
+ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5
+#define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
+ name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \
+ kind5 name5, kind6 name6
+#define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
+ kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \
+ kind4 name4, kind5 name5, kind6 name6, kind7 name7
+#define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
+ kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \
+ kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \
+ kind8 name8
+#define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
+ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
+ name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \
+ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \
+ kind6 name6, kind7 name7, kind8 name8, kind9 name9
+
+// Lists the template parameters.
+#define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0
+#define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
+ name1) name0, name1
+#define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2) name0, name1, name2
+#define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3) name0, name1, name2, name3
+#define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \
+ name4
+#define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \
+ name2, name3, name4, name5
+#define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
+ name6) name0, name1, name2, name3, name4, name5, name6
+#define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
+ kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7
+#define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
+ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
+ kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \
+ name6, name7, name8
+#define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
+ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
+ name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \
+ name3, name4, name5, name6, name7, name8, name9
+
+// Declares the types of value parameters.
+#define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS()
+#define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \
+ typename p0##_type, typename p1##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \
+ typename p0##_type, typename p1##_type, typename p2##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
+ typename p0##_type, typename p1##_type, typename p2##_type, \
+ typename p3##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
+ typename p0##_type, typename p1##_type, typename p2##_type, \
+ typename p3##_type, typename p4##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
+ typename p0##_type, typename p1##_type, typename p2##_type, \
+ typename p3##_type, typename p4##_type, typename p5##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6) , typename p0##_type, typename p1##_type, typename p2##_type, \
+ typename p3##_type, typename p4##_type, typename p5##_type, \
+ typename p6##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \
+ typename p3##_type, typename p4##_type, typename p5##_type, \
+ typename p6##_type, typename p7##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \
+ typename p3##_type, typename p4##_type, typename p5##_type, \
+ typename p6##_type, typename p7##_type, typename p8##_type
+#define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \
+ typename p2##_type, typename p3##_type, typename p4##_type, \
+ typename p5##_type, typename p6##_type, typename p7##_type, \
+ typename p8##_type, typename p9##_type
+
+// Initializes the value parameters.
+#define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\
+ ()
+#define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\
+ (p0##_type gmock_p0) : p0(::std::move(gmock_p0))
+#define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\
+ (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1))
+#define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, \
+ p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2))
+#define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
+ p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
+ p3(::std::move(gmock_p3))
+#define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
+ p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
+ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4))
+#define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
+ p3##_type gmock_p3, p4##_type gmock_p4, \
+ p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
+ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
+ p5(::std::move(gmock_p5))
+#define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
+ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
+ p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
+ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
+ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6))
+#define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
+ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
+ p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
+ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
+ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
+ p7(::std::move(gmock_p7))
+#define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
+ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
+ p6##_type gmock_p6, p7##_type gmock_p7, \
+ p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
+ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
+ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
+ p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8))
+#define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8, p9)\
+ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
+ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
+ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
+ p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \
+ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
+ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
+ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
+ p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \
+ p9(::std::move(gmock_p9))
+
+// Defines the copy constructor
+#define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \
+ {} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134
+#define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default;
+#define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default;
+
+// Declares the fields for storing the value parameters.
+#define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS()
+#define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0;
+#define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \
+ p1##_type p1;
+#define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \
+ p1##_type p1; p2##_type p2;
+#define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \
+ p1##_type p1; p2##_type p2; p3##_type p3;
+#define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
+ p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4;
+#define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
+ p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
+ p5##_type p5;
+#define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
+ p5##_type p5; p6##_type p6;
+#define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
+ p5##_type p5; p6##_type p6; p7##_type p7;
+#define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
+ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8;
+#define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
+ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \
+ p9##_type p9;
+
+// Lists the value parameters.
+#define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS()
+#define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0
+#define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1
+#define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2
+#define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3
+#define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \
+ p2, p3, p4
+#define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \
+ p1, p2, p3, p4, p5
+#define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6) p0, p1, p2, p3, p4, p5, p6
+#define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7) p0, p1, p2, p3, p4, p5, p6, p7
+#define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8
+#define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9
+
+// Lists the value parameter types.
+#define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS()
+#define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \
+ p1##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \
+ p1##_type, p2##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
+ p0##_type, p1##_type, p2##_type, p3##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
+ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
+ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \
+ p6##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
+ p5##_type, p6##_type, p7##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
+ p5##_type, p6##_type, p7##_type, p8##_type
+#define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
+ p5##_type, p6##_type, p7##_type, p8##_type, p9##_type
+
+// Declares the value parameters.
+#define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS()
+#define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0
+#define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \
+ p1##_type p1
+#define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \
+ p1##_type p1, p2##_type p2
+#define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \
+ p1##_type p1, p2##_type p2, p3##_type p3
+#define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
+ p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4
+#define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
+ p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
+ p5##_type p5
+#define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
+ p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
+ p5##_type p5, p6##_type p6
+#define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
+ p5##_type p5, p6##_type p6, p7##_type p7
+#define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
+ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8
+#define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
+ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
+ p9##_type p9
+
+// The suffix of the class template implementing the action template.
+#define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS()
+#define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P
+#define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2
+#define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3
+#define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4
+#define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5
+#define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6
+#define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7
+#define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7) P8
+#define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8) P9
+#define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8, p9) P10
+
+// The name of the class template implementing the action template.
+#define GMOCK_ACTION_CLASS_(name, value_params)\
+ GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
+
+#define ACTION_TEMPLATE(name, template_params, value_params) \
+ template <GMOCK_INTERNAL_DECL_##template_params \
+ GMOCK_INTERNAL_DECL_TYPE_##value_params> \
+ class GMOCK_ACTION_CLASS_(name, value_params) { \
+ public: \
+ explicit GMOCK_ACTION_CLASS_(name, value_params)( \
+ GMOCK_INTERNAL_DECL_##value_params) \
+ GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
+ = default; , \
+ : impl_(std::make_shared<gmock_Impl>( \
+ GMOCK_INTERNAL_LIST_##value_params)) { }) \
+ GMOCK_ACTION_CLASS_(name, value_params)( \
+ const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \
+ GMOCK_INTERNAL_DEFN_COPY_##value_params \
+ GMOCK_ACTION_CLASS_(name, value_params)( \
+ GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \
+ GMOCK_INTERNAL_DEFN_COPY_##value_params \
+ template <typename F> \
+ operator ::testing::Action<F>() const { \
+ return GMOCK_PP_IF( \
+ GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
+ (::testing::internal::MakeAction<F, gmock_Impl>()), \
+ (::testing::internal::MakeAction<F>(impl_))); \
+ } \
+ private: \
+ class gmock_Impl { \
+ public: \
+ explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \
+ template <typename function_type, typename return_type, \
+ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+ GMOCK_INTERNAL_DEFN_##value_params \
+ }; \
+ GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
+ , std::shared_ptr<const gmock_Impl> impl_;) \
+ }; \
+ template <GMOCK_INTERNAL_DECL_##template_params \
+ GMOCK_INTERNAL_DECL_TYPE_##value_params> \
+ GMOCK_ACTION_CLASS_(name, value_params)< \
+ GMOCK_INTERNAL_LIST_##template_params \
+ GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
+ GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \
+ template <GMOCK_INTERNAL_DECL_##template_params \
+ GMOCK_INTERNAL_DECL_TYPE_##value_params> \
+ inline GMOCK_ACTION_CLASS_(name, value_params)< \
+ GMOCK_INTERNAL_LIST_##template_params \
+ GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
+ GMOCK_INTERNAL_DECL_##value_params) { \
+ return GMOCK_ACTION_CLASS_(name, value_params)< \
+ GMOCK_INTERNAL_LIST_##template_params \
+ GMOCK_INTERNAL_LIST_TYPE_##value_params>( \
+ GMOCK_INTERNAL_LIST_##value_params); \
+ } \
+ template <GMOCK_INTERNAL_DECL_##template_params \
+ GMOCK_INTERNAL_DECL_TYPE_##value_params> \
+ template <typename function_type, typename return_type, typename args_type, \
+ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type GMOCK_ACTION_CLASS_(name, value_params)< \
+ GMOCK_INTERNAL_LIST_##template_params \
+ GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \
+ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
+
+namespace testing {
+
+// The ACTION*() macros trigger warning C4100 (unreferenced formal
+// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
+// the macro definition, as the warnings are generated when the macro
+// is expanded and macro expansion cannot contain #pragma. Therefore
+// we suppress them here.
+#ifdef _MSC_VER
+# pragma warning(push)
+# pragma warning(disable:4100)
+#endif
+
+namespace internal {
+
+// internal::InvokeArgument - a helper for InvokeArgument action.
+// The basic overloads are provided here for generic functors.
+// Overloads for other custom-callables are provided in the
+// internal/custom/gmock-generated-actions.h header.
+template <typename F, typename... Args>
+auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
+ return f(args...);
+}
+
+template <std::size_t index, typename... Params>
+struct InvokeArgumentAction {
+ template <typename... Args>
+ auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument(
+ std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)),
+ std::declval<const Params&>()...)) {
+ internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{},
+ std::forward<Args>(args)...);
+ return params.Apply([&](const Params&... unpacked_params) {
+ auto&& callable = args_tuple.template Get<index>();
+ return internal::InvokeArgument(
+ std::forward<decltype(callable)>(callable), unpacked_params...);
+ });
+ }
+
+ internal::FlatTuple<Params...> params;
+};
+
+} // namespace internal
+
+// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
+// (0-based) argument, which must be a k-ary callable, of the mock
+// function, with arguments a1, a2, ..., a_k.
+//
+// Notes:
+//
+// 1. The arguments are passed by value by default. If you need to
+// pass an argument by reference, wrap it inside std::ref(). For
+// example,
+//
+// InvokeArgument<1>(5, string("Hello"), std::ref(foo))
+//
+// passes 5 and string("Hello") by value, and passes foo by
+// reference.
+//
+// 2. If the callable takes an argument by reference but std::ref() is
+// not used, it will receive the reference to a copy of the value,
+// instead of the original value. For example, when the 0-th
+// argument of the mock function takes a const string&, the action
+//
+// InvokeArgument<0>(string("Hello"))
+//
+// makes a copy of the temporary string("Hello") object and passes a
+// reference of the copy, instead of the original temporary object,
+// to the callable. This makes it easy for a user to define an
+// InvokeArgument action from temporary values and have it performed
+// later.
+template <std::size_t index, typename... Params>
+internal::InvokeArgumentAction<index, typename std::decay<Params>::type...>
+InvokeArgument(Params&&... params) {
+ return {internal::FlatTuple<typename std::decay<Params>::type...>(
+ internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)};
+}
+
+#ifdef _MSC_VER
+# pragma warning(pop)
+#endif
+
+} // namespace testing
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
+// Copyright 2013, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file implements some matchers that depend on gmock-matchers.h.
+//
+// Note that tests are implemented in gmock-matchers_test.cc rather than
+// gmock-more-matchers-test.cc.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
+
+
+namespace testing {
+
+// Silence C4100 (unreferenced formal
+// parameter) for MSVC
+#ifdef _MSC_VER
+# pragma warning(push)
+# pragma warning(disable:4100)
+#if (_MSC_VER == 1900)
+// and silence C4800 (C4800: 'int *const ': forcing value
+// to bool 'true' or 'false') for MSVC 14
+# pragma warning(disable:4800)
+ #endif
+#endif
+
+// Defines a matcher that matches an empty container. The container must
+// support both size() and empty(), which all STL-like containers provide.
+MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") {
+ if (arg.empty()) {
+ return true;
+ }
+ *result_listener << "whose size is " << arg.size();
+ return false;
+}
+
+// Define a matcher that matches a value that evaluates in boolean
+// context to true. Useful for types that define "explicit operator
+// bool" operators and so can't be compared for equality with true
+// and false.
+MATCHER(IsTrue, negation ? "is false" : "is true") {
+ return static_cast<bool>(arg);
+}
+
+// Define a matcher that matches a value that evaluates in boolean
+// context to false. Useful for types that define "explicit operator
+// bool" operators and so can't be compared for equality with true
+// and false.
+MATCHER(IsFalse, negation ? "is true" : "is false") {
+ return !static_cast<bool>(arg);
+}
+
+#ifdef _MSC_VER
+# pragma warning(pop)
+#endif
+
+
+} // namespace testing
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
+// Copyright 2008, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Implements class templates NiceMock, NaggyMock, and StrictMock.
+//
+// Given a mock class MockFoo that is created using Google Mock,
+// NiceMock<MockFoo> is a subclass of MockFoo that allows
+// uninteresting calls (i.e. calls to mock methods that have no
+// EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo
+// that prints a warning when an uninteresting call occurs, and
+// StrictMock<MockFoo> is a subclass of MockFoo that treats all
+// uninteresting calls as errors.
+//
+// Currently a mock is naggy by default, so MockFoo and
+// NaggyMock<MockFoo> behave like the same. However, we will soon
+// switch the default behavior of mocks to be nice, as that in general
+// leads to more maintainable tests. When that happens, MockFoo will
+// stop behaving like NaggyMock<MockFoo> and start behaving like
+// NiceMock<MockFoo>.
+//
+// NiceMock, NaggyMock, and StrictMock "inherit" the constructors of
+// their respective base class. Therefore you can write
+// NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo
+// has a constructor that accepts (int, const char*), for example.
+//
+// A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>,
+// and StrictMock<MockFoo> only works for mock methods defined using
+// the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class.
+// If a mock method is defined in a base class of MockFoo, the "nice"
+// or "strict" modifier may not affect it, depending on the compiler.
+// In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT
+// supported.
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
+
+#include <type_traits>
+
+
+namespace testing {
+template <class MockClass>
+class NiceMock;
+template <class MockClass>
+class NaggyMock;
+template <class MockClass>
+class StrictMock;
+
+namespace internal {
+template <typename T>
+std::true_type StrictnessModifierProbe(const NiceMock<T>&);
+template <typename T>
+std::true_type StrictnessModifierProbe(const NaggyMock<T>&);
+template <typename T>
+std::true_type StrictnessModifierProbe(const StrictMock<T>&);
+std::false_type StrictnessModifierProbe(...);
+
+template <typename T>
+constexpr bool HasStrictnessModifier() {
+ return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value;
+}
+
+// Base classes that register and deregister with testing::Mock to alter the
+// default behavior around uninteresting calls. Inheriting from one of these
+// classes first and then MockClass ensures the MockClass constructor is run
+// after registration, and that the MockClass destructor runs before
+// deregistration. This guarantees that MockClass's constructor and destructor
+// run with the same level of strictness as its instance methods.
+
+#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \
+ (defined(_MSC_VER) || defined(__clang__))
+// We need to mark these classes with this declspec to ensure that
+// the empty base class optimization is performed.
+#define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases)
+#else
+#define GTEST_INTERNAL_EMPTY_BASE_CLASS
+#endif
+
+template <typename Base>
+class NiceMockImpl {
+ public:
+ NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); }
+
+ ~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
+};
+
+template <typename Base>
+class NaggyMockImpl {
+ public:
+ NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); }
+
+ ~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
+};
+
+template <typename Base>
+class StrictMockImpl {
+ public:
+ StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); }
+
+ ~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
+};
+
+} // namespace internal
+
+template <class MockClass>
+class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock
+ : private internal::NiceMockImpl<MockClass>,
+ public MockClass {
+ public:
+ static_assert(!internal::HasStrictnessModifier<MockClass>(),
+ "Can't apply NiceMock to a class hierarchy that already has a "
+ "strictness modifier. See "
+ "https://google.github.io/googletest/"
+ "gmock_cook_book.html#NiceStrictNaggy");
+ NiceMock() : MockClass() {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ // Ideally, we would inherit base class's constructors through a using
+ // declaration, which would preserve their visibility. However, many existing
+ // tests rely on the fact that current implementation reexports protected
+ // constructors as public. These tests would need to be cleaned up first.
+
+ // Single argument constructor is special-cased so that it can be
+ // made explicit.
+ template <typename A>
+ explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ template <typename TArg1, typename TArg2, typename... An>
+ NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
+ : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
+ std::forward<An>(args)...) {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ private:
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock);
+};
+
+template <class MockClass>
+class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock
+ : private internal::NaggyMockImpl<MockClass>,
+ public MockClass {
+ static_assert(!internal::HasStrictnessModifier<MockClass>(),
+ "Can't apply NaggyMock to a class hierarchy that already has a "
+ "strictness modifier. See "
+ "https://google.github.io/googletest/"
+ "gmock_cook_book.html#NiceStrictNaggy");
+
+ public:
+ NaggyMock() : MockClass() {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ // Ideally, we would inherit base class's constructors through a using
+ // declaration, which would preserve their visibility. However, many existing
+ // tests rely on the fact that current implementation reexports protected
+ // constructors as public. These tests would need to be cleaned up first.
+
+ // Single argument constructor is special-cased so that it can be
+ // made explicit.
+ template <typename A>
+ explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ template <typename TArg1, typename TArg2, typename... An>
+ NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
+ : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
+ std::forward<An>(args)...) {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ private:
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock);
+};
+
+template <class MockClass>
+class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock
+ : private internal::StrictMockImpl<MockClass>,
+ public MockClass {
+ public:
+ static_assert(
+ !internal::HasStrictnessModifier<MockClass>(),
+ "Can't apply StrictMock to a class hierarchy that already has a "
+ "strictness modifier. See "
+ "https://google.github.io/googletest/"
+ "gmock_cook_book.html#NiceStrictNaggy");
+ StrictMock() : MockClass() {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ // Ideally, we would inherit base class's constructors through a using
+ // declaration, which would preserve their visibility. However, many existing
+ // tests rely on the fact that current implementation reexports protected
+ // constructors as public. These tests would need to be cleaned up first.
+
+ // Single argument constructor is special-cased so that it can be
+ // made explicit.
+ template <typename A>
+ explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ template <typename TArg1, typename TArg2, typename... An>
+ StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
+ : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
+ std::forward<An>(args)...) {
+ static_assert(sizeof(*this) == sizeof(MockClass),
+ "The impl subclass shouldn't introduce any padding");
+ }
+
+ private:
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock);
+};
+
+#undef GTEST_INTERNAL_EMPTY_BASE_CLASS
+
+} // namespace testing
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
+
+namespace testing {
+
+// Declares Google Mock flags that we want a user to use programmatically.
+GMOCK_DECLARE_bool_(catch_leaked_mocks);
+GMOCK_DECLARE_string_(verbose);
+GMOCK_DECLARE_int32_(default_mock_behavior);
+
+// Initializes Google Mock. This must be called before running the
+// tests. In particular, it parses the command line for the flags
+// that Google Mock recognizes. Whenever a Google Mock flag is seen,
+// it is removed from argv, and *argc is decremented.
+//
+// No value is returned. Instead, the Google Mock flag variables are
+// updated.
+//
+// Since Google Test is needed for Google Mock to work, this function
+// also initializes Google Test and parses its flags, if that hasn't
+// been done.
+GTEST_API_ void InitGoogleMock(int* argc, char** argv);
+
+// This overloaded version can be used in Windows programs compiled in
+// UNICODE mode.
+GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv);
+
+// This overloaded version can be used on Arduino/embedded platforms where
+// there is no argc/argv.
+GTEST_API_ void InitGoogleMock();
+
+} // namespace testing
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_