summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/memtable.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/rocksdb/db/memtable.cc')
-rw-r--r--src/rocksdb/db/memtable.cc1675
1 files changed, 1675 insertions, 0 deletions
diff --git a/src/rocksdb/db/memtable.cc b/src/rocksdb/db/memtable.cc
new file mode 100644
index 000000000..45b139e80
--- /dev/null
+++ b/src/rocksdb/db/memtable.cc
@@ -0,0 +1,1675 @@
+// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
+// This source code is licensed under both the GPLv2 (found in the
+// COPYING file in the root directory) and Apache 2.0 License
+// (found in the LICENSE.Apache file in the root directory).
+//
+// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file. See the AUTHORS file for names of contributors.
+
+#include "db/memtable.h"
+
+#include <algorithm>
+#include <array>
+#include <limits>
+#include <memory>
+
+#include "db/dbformat.h"
+#include "db/kv_checksum.h"
+#include "db/merge_context.h"
+#include "db/merge_helper.h"
+#include "db/pinned_iterators_manager.h"
+#include "db/range_tombstone_fragmenter.h"
+#include "db/read_callback.h"
+#include "db/wide/wide_column_serialization.h"
+#include "logging/logging.h"
+#include "memory/arena.h"
+#include "memory/memory_usage.h"
+#include "monitoring/perf_context_imp.h"
+#include "monitoring/statistics.h"
+#include "port/lang.h"
+#include "port/port.h"
+#include "rocksdb/comparator.h"
+#include "rocksdb/env.h"
+#include "rocksdb/iterator.h"
+#include "rocksdb/merge_operator.h"
+#include "rocksdb/slice_transform.h"
+#include "rocksdb/types.h"
+#include "rocksdb/write_buffer_manager.h"
+#include "table/internal_iterator.h"
+#include "table/iterator_wrapper.h"
+#include "table/merging_iterator.h"
+#include "util/autovector.h"
+#include "util/coding.h"
+#include "util/mutexlock.h"
+
+namespace ROCKSDB_NAMESPACE {
+
+ImmutableMemTableOptions::ImmutableMemTableOptions(
+ const ImmutableOptions& ioptions,
+ const MutableCFOptions& mutable_cf_options)
+ : arena_block_size(mutable_cf_options.arena_block_size),
+ memtable_prefix_bloom_bits(
+ static_cast<uint32_t>(
+ static_cast<double>(mutable_cf_options.write_buffer_size) *
+ mutable_cf_options.memtable_prefix_bloom_size_ratio) *
+ 8u),
+ memtable_huge_page_size(mutable_cf_options.memtable_huge_page_size),
+ memtable_whole_key_filtering(
+ mutable_cf_options.memtable_whole_key_filtering),
+ inplace_update_support(ioptions.inplace_update_support),
+ inplace_update_num_locks(mutable_cf_options.inplace_update_num_locks),
+ inplace_callback(ioptions.inplace_callback),
+ max_successive_merges(mutable_cf_options.max_successive_merges),
+ statistics(ioptions.stats),
+ merge_operator(ioptions.merge_operator.get()),
+ info_log(ioptions.logger),
+ allow_data_in_errors(ioptions.allow_data_in_errors),
+ protection_bytes_per_key(
+ mutable_cf_options.memtable_protection_bytes_per_key) {}
+
+MemTable::MemTable(const InternalKeyComparator& cmp,
+ const ImmutableOptions& ioptions,
+ const MutableCFOptions& mutable_cf_options,
+ WriteBufferManager* write_buffer_manager,
+ SequenceNumber latest_seq, uint32_t column_family_id)
+ : comparator_(cmp),
+ moptions_(ioptions, mutable_cf_options),
+ refs_(0),
+ kArenaBlockSize(OptimizeBlockSize(moptions_.arena_block_size)),
+ mem_tracker_(write_buffer_manager),
+ arena_(moptions_.arena_block_size,
+ (write_buffer_manager != nullptr &&
+ (write_buffer_manager->enabled() ||
+ write_buffer_manager->cost_to_cache()))
+ ? &mem_tracker_
+ : nullptr,
+ mutable_cf_options.memtable_huge_page_size),
+ table_(ioptions.memtable_factory->CreateMemTableRep(
+ comparator_, &arena_, mutable_cf_options.prefix_extractor.get(),
+ ioptions.logger, column_family_id)),
+ range_del_table_(SkipListFactory().CreateMemTableRep(
+ comparator_, &arena_, nullptr /* transform */, ioptions.logger,
+ column_family_id)),
+ is_range_del_table_empty_(true),
+ data_size_(0),
+ num_entries_(0),
+ num_deletes_(0),
+ write_buffer_size_(mutable_cf_options.write_buffer_size),
+ flush_in_progress_(false),
+ flush_completed_(false),
+ file_number_(0),
+ first_seqno_(0),
+ earliest_seqno_(latest_seq),
+ creation_seq_(latest_seq),
+ mem_next_logfile_number_(0),
+ min_prep_log_referenced_(0),
+ locks_(moptions_.inplace_update_support
+ ? moptions_.inplace_update_num_locks
+ : 0),
+ prefix_extractor_(mutable_cf_options.prefix_extractor.get()),
+ flush_state_(FLUSH_NOT_REQUESTED),
+ clock_(ioptions.clock),
+ insert_with_hint_prefix_extractor_(
+ ioptions.memtable_insert_with_hint_prefix_extractor.get()),
+ oldest_key_time_(std::numeric_limits<uint64_t>::max()),
+ atomic_flush_seqno_(kMaxSequenceNumber),
+ approximate_memory_usage_(0) {
+ UpdateFlushState();
+ // something went wrong if we need to flush before inserting anything
+ assert(!ShouldScheduleFlush());
+
+ // use bloom_filter_ for both whole key and prefix bloom filter
+ if ((prefix_extractor_ || moptions_.memtable_whole_key_filtering) &&
+ moptions_.memtable_prefix_bloom_bits > 0) {
+ bloom_filter_.reset(
+ new DynamicBloom(&arena_, moptions_.memtable_prefix_bloom_bits,
+ 6 /* hard coded 6 probes */,
+ moptions_.memtable_huge_page_size, ioptions.logger));
+ }
+ // Initialize cached_range_tombstone_ here since it could
+ // be read before it is constructed in MemTable::Add(), which could also lead
+ // to a data race on the global mutex table backing atomic shared_ptr.
+ auto new_cache = std::make_shared<FragmentedRangeTombstoneListCache>();
+ size_t size = cached_range_tombstone_.Size();
+ for (size_t i = 0; i < size; ++i) {
+ std::shared_ptr<FragmentedRangeTombstoneListCache>* local_cache_ref_ptr =
+ cached_range_tombstone_.AccessAtCore(i);
+ auto new_local_cache_ref = std::make_shared<
+ const std::shared_ptr<FragmentedRangeTombstoneListCache>>(new_cache);
+ std::atomic_store_explicit(
+ local_cache_ref_ptr,
+ std::shared_ptr<FragmentedRangeTombstoneListCache>(new_local_cache_ref,
+ new_cache.get()),
+ std::memory_order_relaxed);
+ }
+}
+
+MemTable::~MemTable() {
+ mem_tracker_.FreeMem();
+ assert(refs_ == 0);
+}
+
+size_t MemTable::ApproximateMemoryUsage() {
+ autovector<size_t> usages = {
+ arena_.ApproximateMemoryUsage(), table_->ApproximateMemoryUsage(),
+ range_del_table_->ApproximateMemoryUsage(),
+ ROCKSDB_NAMESPACE::ApproximateMemoryUsage(insert_hints_)};
+ size_t total_usage = 0;
+ for (size_t usage : usages) {
+ // If usage + total_usage >= kMaxSizet, return kMaxSizet.
+ // the following variation is to avoid numeric overflow.
+ if (usage >= std::numeric_limits<size_t>::max() - total_usage) {
+ return std::numeric_limits<size_t>::max();
+ }
+ total_usage += usage;
+ }
+ approximate_memory_usage_.store(total_usage, std::memory_order_relaxed);
+ // otherwise, return the actual usage
+ return total_usage;
+}
+
+bool MemTable::ShouldFlushNow() {
+ size_t write_buffer_size = write_buffer_size_.load(std::memory_order_relaxed);
+ // In a lot of times, we cannot allocate arena blocks that exactly matches the
+ // buffer size. Thus we have to decide if we should over-allocate or
+ // under-allocate.
+ // This constant variable can be interpreted as: if we still have more than
+ // "kAllowOverAllocationRatio * kArenaBlockSize" space left, we'd try to over
+ // allocate one more block.
+ const double kAllowOverAllocationRatio = 0.6;
+
+ // If arena still have room for new block allocation, we can safely say it
+ // shouldn't flush.
+ auto allocated_memory = table_->ApproximateMemoryUsage() +
+ range_del_table_->ApproximateMemoryUsage() +
+ arena_.MemoryAllocatedBytes();
+
+ approximate_memory_usage_.store(allocated_memory, std::memory_order_relaxed);
+
+ // if we can still allocate one more block without exceeding the
+ // over-allocation ratio, then we should not flush.
+ if (allocated_memory + kArenaBlockSize <
+ write_buffer_size + kArenaBlockSize * kAllowOverAllocationRatio) {
+ return false;
+ }
+
+ // if user keeps adding entries that exceeds write_buffer_size, we need to
+ // flush earlier even though we still have much available memory left.
+ if (allocated_memory >
+ write_buffer_size + kArenaBlockSize * kAllowOverAllocationRatio) {
+ return true;
+ }
+
+ // In this code path, Arena has already allocated its "last block", which
+ // means the total allocatedmemory size is either:
+ // (1) "moderately" over allocated the memory (no more than `0.6 * arena
+ // block size`. Or,
+ // (2) the allocated memory is less than write buffer size, but we'll stop
+ // here since if we allocate a new arena block, we'll over allocate too much
+ // more (half of the arena block size) memory.
+ //
+ // In either case, to avoid over-allocate, the last block will stop allocation
+ // when its usage reaches a certain ratio, which we carefully choose "0.75
+ // full" as the stop condition because it addresses the following issue with
+ // great simplicity: What if the next inserted entry's size is
+ // bigger than AllocatedAndUnused()?
+ //
+ // The answer is: if the entry size is also bigger than 0.25 *
+ // kArenaBlockSize, a dedicated block will be allocated for it; otherwise
+ // arena will anyway skip the AllocatedAndUnused() and allocate a new, empty
+ // and regular block. In either case, we *overly* over-allocated.
+ //
+ // Therefore, setting the last block to be at most "0.75 full" avoids both
+ // cases.
+ //
+ // NOTE: the average percentage of waste space of this approach can be counted
+ // as: "arena block size * 0.25 / write buffer size". User who specify a small
+ // write buffer size and/or big arena block size may suffer.
+ return arena_.AllocatedAndUnused() < kArenaBlockSize / 4;
+}
+
+void MemTable::UpdateFlushState() {
+ auto state = flush_state_.load(std::memory_order_relaxed);
+ if (state == FLUSH_NOT_REQUESTED && ShouldFlushNow()) {
+ // ignore CAS failure, because that means somebody else requested
+ // a flush
+ flush_state_.compare_exchange_strong(state, FLUSH_REQUESTED,
+ std::memory_order_relaxed,
+ std::memory_order_relaxed);
+ }
+}
+
+void MemTable::UpdateOldestKeyTime() {
+ uint64_t oldest_key_time = oldest_key_time_.load(std::memory_order_relaxed);
+ if (oldest_key_time == std::numeric_limits<uint64_t>::max()) {
+ int64_t current_time = 0;
+ auto s = clock_->GetCurrentTime(&current_time);
+ if (s.ok()) {
+ assert(current_time >= 0);
+ // If fail, the timestamp is already set.
+ oldest_key_time_.compare_exchange_strong(
+ oldest_key_time, static_cast<uint64_t>(current_time),
+ std::memory_order_relaxed, std::memory_order_relaxed);
+ }
+ }
+}
+
+Status MemTable::VerifyEntryChecksum(const char* entry,
+ size_t protection_bytes_per_key,
+ bool allow_data_in_errors) {
+ if (protection_bytes_per_key == 0) {
+ return Status::OK();
+ }
+ uint32_t key_length;
+ const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
+ if (key_ptr == nullptr) {
+ return Status::Corruption("Unable to parse internal key length");
+ }
+ if (key_length < 8) {
+ return Status::Corruption("Memtable entry internal key length too short.");
+ }
+ Slice user_key = Slice(key_ptr, key_length - 8);
+
+ const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8);
+ ValueType type;
+ SequenceNumber seq;
+ UnPackSequenceAndType(tag, &seq, &type);
+
+ uint32_t value_length = 0;
+ const char* value_ptr = GetVarint32Ptr(
+ key_ptr + key_length, key_ptr + key_length + 5, &value_length);
+ if (value_ptr == nullptr) {
+ return Status::Corruption("Unable to parse internal key value");
+ }
+ Slice value = Slice(value_ptr, value_length);
+
+ const char* checksum_ptr = value_ptr + value_length;
+ uint64_t expected = ProtectionInfo64()
+ .ProtectKVO(user_key, value, type)
+ .ProtectS(seq)
+ .GetVal();
+ bool match = true;
+ switch (protection_bytes_per_key) {
+ case 1:
+ match = static_cast<uint8_t>(checksum_ptr[0]) ==
+ static_cast<uint8_t>(expected);
+ break;
+ case 2:
+ match = DecodeFixed16(checksum_ptr) == static_cast<uint16_t>(expected);
+ break;
+ case 4:
+ match = DecodeFixed32(checksum_ptr) == static_cast<uint32_t>(expected);
+ break;
+ case 8:
+ match = DecodeFixed64(checksum_ptr) == expected;
+ break;
+ default:
+ assert(false);
+ }
+ if (!match) {
+ std::string msg(
+ "Corrupted memtable entry, per key-value checksum verification "
+ "failed.");
+ if (allow_data_in_errors) {
+ msg.append("Unrecognized value type: " +
+ std::to_string(static_cast<int>(type)) + ". ");
+ msg.append("User key: " + user_key.ToString(/*hex=*/true) + ". ");
+ msg.append("seq: " + std::to_string(seq) + ".");
+ }
+ return Status::Corruption(msg.c_str());
+ }
+ return Status::OK();
+}
+
+int MemTable::KeyComparator::operator()(const char* prefix_len_key1,
+ const char* prefix_len_key2) const {
+ // Internal keys are encoded as length-prefixed strings.
+ Slice k1 = GetLengthPrefixedSlice(prefix_len_key1);
+ Slice k2 = GetLengthPrefixedSlice(prefix_len_key2);
+ return comparator.CompareKeySeq(k1, k2);
+}
+
+int MemTable::KeyComparator::operator()(
+ const char* prefix_len_key, const KeyComparator::DecodedType& key) const {
+ // Internal keys are encoded as length-prefixed strings.
+ Slice a = GetLengthPrefixedSlice(prefix_len_key);
+ return comparator.CompareKeySeq(a, key);
+}
+
+void MemTableRep::InsertConcurrently(KeyHandle /*handle*/) {
+#ifndef ROCKSDB_LITE
+ throw std::runtime_error("concurrent insert not supported");
+#else
+ abort();
+#endif
+}
+
+Slice MemTableRep::UserKey(const char* key) const {
+ Slice slice = GetLengthPrefixedSlice(key);
+ return Slice(slice.data(), slice.size() - 8);
+}
+
+KeyHandle MemTableRep::Allocate(const size_t len, char** buf) {
+ *buf = allocator_->Allocate(len);
+ return static_cast<KeyHandle>(*buf);
+}
+
+// Encode a suitable internal key target for "target" and return it.
+// Uses *scratch as scratch space, and the returned pointer will point
+// into this scratch space.
+const char* EncodeKey(std::string* scratch, const Slice& target) {
+ scratch->clear();
+ PutVarint32(scratch, static_cast<uint32_t>(target.size()));
+ scratch->append(target.data(), target.size());
+ return scratch->data();
+}
+
+class MemTableIterator : public InternalIterator {
+ public:
+ MemTableIterator(const MemTable& mem, const ReadOptions& read_options,
+ Arena* arena, bool use_range_del_table = false)
+ : bloom_(nullptr),
+ prefix_extractor_(mem.prefix_extractor_),
+ comparator_(mem.comparator_),
+ valid_(false),
+ arena_mode_(arena != nullptr),
+ value_pinned_(
+ !mem.GetImmutableMemTableOptions()->inplace_update_support),
+ protection_bytes_per_key_(mem.moptions_.protection_bytes_per_key),
+ status_(Status::OK()),
+ logger_(mem.moptions_.info_log) {
+ if (use_range_del_table) {
+ iter_ = mem.range_del_table_->GetIterator(arena);
+ } else if (prefix_extractor_ != nullptr && !read_options.total_order_seek &&
+ !read_options.auto_prefix_mode) {
+ // Auto prefix mode is not implemented in memtable yet.
+ bloom_ = mem.bloom_filter_.get();
+ iter_ = mem.table_->GetDynamicPrefixIterator(arena);
+ } else {
+ iter_ = mem.table_->GetIterator(arena);
+ }
+ status_.PermitUncheckedError();
+ }
+ // No copying allowed
+ MemTableIterator(const MemTableIterator&) = delete;
+ void operator=(const MemTableIterator&) = delete;
+
+ ~MemTableIterator() override {
+#ifndef NDEBUG
+ // Assert that the MemTableIterator is never deleted while
+ // Pinning is Enabled.
+ assert(!pinned_iters_mgr_ || !pinned_iters_mgr_->PinningEnabled());
+#endif
+ if (arena_mode_) {
+ iter_->~Iterator();
+ } else {
+ delete iter_;
+ }
+ }
+
+#ifndef NDEBUG
+ void SetPinnedItersMgr(PinnedIteratorsManager* pinned_iters_mgr) override {
+ pinned_iters_mgr_ = pinned_iters_mgr;
+ }
+ PinnedIteratorsManager* pinned_iters_mgr_ = nullptr;
+#endif
+
+ bool Valid() const override { return valid_ && status_.ok(); }
+ void Seek(const Slice& k) override {
+ PERF_TIMER_GUARD(seek_on_memtable_time);
+ PERF_COUNTER_ADD(seek_on_memtable_count, 1);
+ if (bloom_) {
+ // iterator should only use prefix bloom filter
+ auto ts_sz = comparator_.comparator.user_comparator()->timestamp_size();
+ Slice user_k_without_ts(ExtractUserKeyAndStripTimestamp(k, ts_sz));
+ if (prefix_extractor_->InDomain(user_k_without_ts)) {
+ if (!bloom_->MayContain(
+ prefix_extractor_->Transform(user_k_without_ts))) {
+ PERF_COUNTER_ADD(bloom_memtable_miss_count, 1);
+ valid_ = false;
+ return;
+ } else {
+ PERF_COUNTER_ADD(bloom_memtable_hit_count, 1);
+ }
+ }
+ }
+ iter_->Seek(k, nullptr);
+ valid_ = iter_->Valid();
+ VerifyEntryChecksum();
+ }
+ void SeekForPrev(const Slice& k) override {
+ PERF_TIMER_GUARD(seek_on_memtable_time);
+ PERF_COUNTER_ADD(seek_on_memtable_count, 1);
+ if (bloom_) {
+ auto ts_sz = comparator_.comparator.user_comparator()->timestamp_size();
+ Slice user_k_without_ts(ExtractUserKeyAndStripTimestamp(k, ts_sz));
+ if (prefix_extractor_->InDomain(user_k_without_ts)) {
+ if (!bloom_->MayContain(
+ prefix_extractor_->Transform(user_k_without_ts))) {
+ PERF_COUNTER_ADD(bloom_memtable_miss_count, 1);
+ valid_ = false;
+ return;
+ } else {
+ PERF_COUNTER_ADD(bloom_memtable_hit_count, 1);
+ }
+ }
+ }
+ iter_->Seek(k, nullptr);
+ valid_ = iter_->Valid();
+ VerifyEntryChecksum();
+ if (!Valid() && status().ok()) {
+ SeekToLast();
+ }
+ while (Valid() && comparator_.comparator.Compare(k, key()) < 0) {
+ Prev();
+ }
+ }
+ void SeekToFirst() override {
+ iter_->SeekToFirst();
+ valid_ = iter_->Valid();
+ VerifyEntryChecksum();
+ }
+ void SeekToLast() override {
+ iter_->SeekToLast();
+ valid_ = iter_->Valid();
+ VerifyEntryChecksum();
+ }
+ void Next() override {
+ PERF_COUNTER_ADD(next_on_memtable_count, 1);
+ assert(Valid());
+ iter_->Next();
+ TEST_SYNC_POINT_CALLBACK("MemTableIterator::Next:0", iter_);
+ valid_ = iter_->Valid();
+ VerifyEntryChecksum();
+ }
+ bool NextAndGetResult(IterateResult* result) override {
+ Next();
+ bool is_valid = Valid();
+ if (is_valid) {
+ result->key = key();
+ result->bound_check_result = IterBoundCheck::kUnknown;
+ result->value_prepared = true;
+ }
+ return is_valid;
+ }
+ void Prev() override {
+ PERF_COUNTER_ADD(prev_on_memtable_count, 1);
+ assert(Valid());
+ iter_->Prev();
+ valid_ = iter_->Valid();
+ VerifyEntryChecksum();
+ }
+ Slice key() const override {
+ assert(Valid());
+ return GetLengthPrefixedSlice(iter_->key());
+ }
+ Slice value() const override {
+ assert(Valid());
+ Slice key_slice = GetLengthPrefixedSlice(iter_->key());
+ return GetLengthPrefixedSlice(key_slice.data() + key_slice.size());
+ }
+
+ Status status() const override { return status_; }
+
+ bool IsKeyPinned() const override {
+ // memtable data is always pinned
+ return true;
+ }
+
+ bool IsValuePinned() const override {
+ // memtable value is always pinned, except if we allow inplace update.
+ return value_pinned_;
+ }
+
+ private:
+ DynamicBloom* bloom_;
+ const SliceTransform* const prefix_extractor_;
+ const MemTable::KeyComparator comparator_;
+ MemTableRep::Iterator* iter_;
+ bool valid_;
+ bool arena_mode_;
+ bool value_pinned_;
+ size_t protection_bytes_per_key_;
+ Status status_;
+ Logger* logger_;
+
+ void VerifyEntryChecksum() {
+ if (protection_bytes_per_key_ > 0 && Valid()) {
+ status_ = MemTable::VerifyEntryChecksum(iter_->key(),
+ protection_bytes_per_key_);
+ if (!status_.ok()) {
+ ROCKS_LOG_ERROR(logger_, "In MemtableIterator: %s", status_.getState());
+ }
+ }
+ }
+};
+
+InternalIterator* MemTable::NewIterator(const ReadOptions& read_options,
+ Arena* arena) {
+ assert(arena != nullptr);
+ auto mem = arena->AllocateAligned(sizeof(MemTableIterator));
+ return new (mem) MemTableIterator(*this, read_options, arena);
+}
+
+FragmentedRangeTombstoneIterator* MemTable::NewRangeTombstoneIterator(
+ const ReadOptions& read_options, SequenceNumber read_seq,
+ bool immutable_memtable) {
+ if (read_options.ignore_range_deletions ||
+ is_range_del_table_empty_.load(std::memory_order_relaxed)) {
+ return nullptr;
+ }
+ return NewRangeTombstoneIteratorInternal(read_options, read_seq,
+ immutable_memtable);
+}
+
+FragmentedRangeTombstoneIterator* MemTable::NewRangeTombstoneIteratorInternal(
+ const ReadOptions& read_options, SequenceNumber read_seq,
+ bool immutable_memtable) {
+ if (immutable_memtable) {
+ // Note that caller should already have verified that
+ // !is_range_del_table_empty_
+ assert(IsFragmentedRangeTombstonesConstructed());
+ return new FragmentedRangeTombstoneIterator(
+ fragmented_range_tombstone_list_.get(), comparator_.comparator,
+ read_seq, read_options.timestamp);
+ }
+
+ // takes current cache
+ std::shared_ptr<FragmentedRangeTombstoneListCache> cache =
+ std::atomic_load_explicit(cached_range_tombstone_.Access(),
+ std::memory_order_relaxed);
+ // construct fragmented tombstone list if necessary
+ if (!cache->initialized.load(std::memory_order_acquire)) {
+ cache->reader_mutex.lock();
+ if (!cache->tombstones) {
+ auto* unfragmented_iter =
+ new MemTableIterator(*this, read_options, nullptr /* arena */,
+ true /* use_range_del_table */);
+ cache->tombstones.reset(new FragmentedRangeTombstoneList(
+ std::unique_ptr<InternalIterator>(unfragmented_iter),
+ comparator_.comparator));
+ cache->initialized.store(true, std::memory_order_release);
+ }
+ cache->reader_mutex.unlock();
+ }
+
+ auto* fragmented_iter = new FragmentedRangeTombstoneIterator(
+ cache, comparator_.comparator, read_seq, read_options.timestamp);
+ return fragmented_iter;
+}
+
+void MemTable::ConstructFragmentedRangeTombstones() {
+ assert(!IsFragmentedRangeTombstonesConstructed(false));
+ // There should be no concurrent Construction
+ if (!is_range_del_table_empty_.load(std::memory_order_relaxed)) {
+ auto* unfragmented_iter =
+ new MemTableIterator(*this, ReadOptions(), nullptr /* arena */,
+ true /* use_range_del_table */);
+
+ fragmented_range_tombstone_list_ =
+ std::make_unique<FragmentedRangeTombstoneList>(
+ std::unique_ptr<InternalIterator>(unfragmented_iter),
+ comparator_.comparator);
+ }
+}
+
+port::RWMutex* MemTable::GetLock(const Slice& key) {
+ return &locks_[GetSliceRangedNPHash(key, locks_.size())];
+}
+
+MemTable::MemTableStats MemTable::ApproximateStats(const Slice& start_ikey,
+ const Slice& end_ikey) {
+ uint64_t entry_count = table_->ApproximateNumEntries(start_ikey, end_ikey);
+ entry_count += range_del_table_->ApproximateNumEntries(start_ikey, end_ikey);
+ if (entry_count == 0) {
+ return {0, 0};
+ }
+ uint64_t n = num_entries_.load(std::memory_order_relaxed);
+ if (n == 0) {
+ return {0, 0};
+ }
+ if (entry_count > n) {
+ // (range_del_)table_->ApproximateNumEntries() is just an estimate so it can
+ // be larger than actual entries we have. Cap it to entries we have to limit
+ // the inaccuracy.
+ entry_count = n;
+ }
+ uint64_t data_size = data_size_.load(std::memory_order_relaxed);
+ return {entry_count * (data_size / n), entry_count};
+}
+
+Status MemTable::VerifyEncodedEntry(Slice encoded,
+ const ProtectionInfoKVOS64& kv_prot_info) {
+ uint32_t ikey_len = 0;
+ if (!GetVarint32(&encoded, &ikey_len)) {
+ return Status::Corruption("Unable to parse internal key length");
+ }
+ size_t ts_sz = GetInternalKeyComparator().user_comparator()->timestamp_size();
+ if (ikey_len < 8 + ts_sz) {
+ return Status::Corruption("Internal key length too short");
+ }
+ if (ikey_len > encoded.size()) {
+ return Status::Corruption("Internal key length too long");
+ }
+ uint32_t value_len = 0;
+ const size_t user_key_len = ikey_len - 8;
+ Slice key(encoded.data(), user_key_len);
+ encoded.remove_prefix(user_key_len);
+
+ uint64_t packed = DecodeFixed64(encoded.data());
+ ValueType value_type = kMaxValue;
+ SequenceNumber sequence_number = kMaxSequenceNumber;
+ UnPackSequenceAndType(packed, &sequence_number, &value_type);
+ encoded.remove_prefix(8);
+
+ if (!GetVarint32(&encoded, &value_len)) {
+ return Status::Corruption("Unable to parse value length");
+ }
+ if (value_len < encoded.size()) {
+ return Status::Corruption("Value length too short");
+ }
+ if (value_len > encoded.size()) {
+ return Status::Corruption("Value length too long");
+ }
+ Slice value(encoded.data(), value_len);
+
+ return kv_prot_info.StripS(sequence_number)
+ .StripKVO(key, value, value_type)
+ .GetStatus();
+}
+
+void MemTable::UpdateEntryChecksum(const ProtectionInfoKVOS64* kv_prot_info,
+ const Slice& key, const Slice& value,
+ ValueType type, SequenceNumber s,
+ char* checksum_ptr) {
+ if (moptions_.protection_bytes_per_key == 0) {
+ return;
+ }
+
+ uint64_t checksum = 0;
+ if (kv_prot_info == nullptr) {
+ checksum =
+ ProtectionInfo64().ProtectKVO(key, value, type).ProtectS(s).GetVal();
+ } else {
+ checksum = kv_prot_info->GetVal();
+ }
+ switch (moptions_.protection_bytes_per_key) {
+ case 1:
+ checksum_ptr[0] = static_cast<uint8_t>(checksum);
+ break;
+ case 2:
+ EncodeFixed16(checksum_ptr, static_cast<uint16_t>(checksum));
+ break;
+ case 4:
+ EncodeFixed32(checksum_ptr, static_cast<uint32_t>(checksum));
+ break;
+ case 8:
+ EncodeFixed64(checksum_ptr, checksum);
+ break;
+ default:
+ assert(false);
+ }
+}
+
+Status MemTable::Add(SequenceNumber s, ValueType type,
+ const Slice& key, /* user key */
+ const Slice& value,
+ const ProtectionInfoKVOS64* kv_prot_info,
+ bool allow_concurrent,
+ MemTablePostProcessInfo* post_process_info, void** hint) {
+ // Format of an entry is concatenation of:
+ // key_size : varint32 of internal_key.size()
+ // key bytes : char[internal_key.size()]
+ // value_size : varint32 of value.size()
+ // value bytes : char[value.size()]
+ // checksum : char[moptions_.protection_bytes_per_key]
+ uint32_t key_size = static_cast<uint32_t>(key.size());
+ uint32_t val_size = static_cast<uint32_t>(value.size());
+ uint32_t internal_key_size = key_size + 8;
+ const uint32_t encoded_len = VarintLength(internal_key_size) +
+ internal_key_size + VarintLength(val_size) +
+ val_size + moptions_.protection_bytes_per_key;
+ char* buf = nullptr;
+ std::unique_ptr<MemTableRep>& table =
+ type == kTypeRangeDeletion ? range_del_table_ : table_;
+ KeyHandle handle = table->Allocate(encoded_len, &buf);
+
+ char* p = EncodeVarint32(buf, internal_key_size);
+ memcpy(p, key.data(), key_size);
+ Slice key_slice(p, key_size);
+ p += key_size;
+ uint64_t packed = PackSequenceAndType(s, type);
+ EncodeFixed64(p, packed);
+ p += 8;
+ p = EncodeVarint32(p, val_size);
+ memcpy(p, value.data(), val_size);
+ assert((unsigned)(p + val_size - buf + moptions_.protection_bytes_per_key) ==
+ (unsigned)encoded_len);
+
+ UpdateEntryChecksum(kv_prot_info, key, value, type, s,
+ buf + encoded_len - moptions_.protection_bytes_per_key);
+ Slice encoded(buf, encoded_len - moptions_.protection_bytes_per_key);
+ if (kv_prot_info != nullptr) {
+ TEST_SYNC_POINT_CALLBACK("MemTable::Add:Encoded", &encoded);
+ Status status = VerifyEncodedEntry(encoded, *kv_prot_info);
+ if (!status.ok()) {
+ return status;
+ }
+ }
+
+ size_t ts_sz = GetInternalKeyComparator().user_comparator()->timestamp_size();
+ Slice key_without_ts = StripTimestampFromUserKey(key, ts_sz);
+
+ if (!allow_concurrent) {
+ // Extract prefix for insert with hint.
+ if (insert_with_hint_prefix_extractor_ != nullptr &&
+ insert_with_hint_prefix_extractor_->InDomain(key_slice)) {
+ Slice prefix = insert_with_hint_prefix_extractor_->Transform(key_slice);
+ bool res = table->InsertKeyWithHint(handle, &insert_hints_[prefix]);
+ if (UNLIKELY(!res)) {
+ return Status::TryAgain("key+seq exists");
+ }
+ } else {
+ bool res = table->InsertKey(handle);
+ if (UNLIKELY(!res)) {
+ return Status::TryAgain("key+seq exists");
+ }
+ }
+
+ // this is a bit ugly, but is the way to avoid locked instructions
+ // when incrementing an atomic
+ num_entries_.store(num_entries_.load(std::memory_order_relaxed) + 1,
+ std::memory_order_relaxed);
+ data_size_.store(data_size_.load(std::memory_order_relaxed) + encoded_len,
+ std::memory_order_relaxed);
+ if (type == kTypeDeletion || type == kTypeSingleDeletion ||
+ type == kTypeDeletionWithTimestamp) {
+ num_deletes_.store(num_deletes_.load(std::memory_order_relaxed) + 1,
+ std::memory_order_relaxed);
+ }
+
+ if (bloom_filter_ && prefix_extractor_ &&
+ prefix_extractor_->InDomain(key_without_ts)) {
+ bloom_filter_->Add(prefix_extractor_->Transform(key_without_ts));
+ }
+ if (bloom_filter_ && moptions_.memtable_whole_key_filtering) {
+ bloom_filter_->Add(key_without_ts);
+ }
+
+ // The first sequence number inserted into the memtable
+ assert(first_seqno_ == 0 || s >= first_seqno_);
+ if (first_seqno_ == 0) {
+ first_seqno_.store(s, std::memory_order_relaxed);
+
+ if (earliest_seqno_ == kMaxSequenceNumber) {
+ earliest_seqno_.store(GetFirstSequenceNumber(),
+ std::memory_order_relaxed);
+ }
+ assert(first_seqno_.load() >= earliest_seqno_.load());
+ }
+ assert(post_process_info == nullptr);
+ UpdateFlushState();
+ } else {
+ bool res = (hint == nullptr)
+ ? table->InsertKeyConcurrently(handle)
+ : table->InsertKeyWithHintConcurrently(handle, hint);
+ if (UNLIKELY(!res)) {
+ return Status::TryAgain("key+seq exists");
+ }
+
+ assert(post_process_info != nullptr);
+ post_process_info->num_entries++;
+ post_process_info->data_size += encoded_len;
+ if (type == kTypeDeletion) {
+ post_process_info->num_deletes++;
+ }
+
+ if (bloom_filter_ && prefix_extractor_ &&
+ prefix_extractor_->InDomain(key_without_ts)) {
+ bloom_filter_->AddConcurrently(
+ prefix_extractor_->Transform(key_without_ts));
+ }
+ if (bloom_filter_ && moptions_.memtable_whole_key_filtering) {
+ bloom_filter_->AddConcurrently(key_without_ts);
+ }
+
+ // atomically update first_seqno_ and earliest_seqno_.
+ uint64_t cur_seq_num = first_seqno_.load(std::memory_order_relaxed);
+ while ((cur_seq_num == 0 || s < cur_seq_num) &&
+ !first_seqno_.compare_exchange_weak(cur_seq_num, s)) {
+ }
+ uint64_t cur_earliest_seqno =
+ earliest_seqno_.load(std::memory_order_relaxed);
+ while (
+ (cur_earliest_seqno == kMaxSequenceNumber || s < cur_earliest_seqno) &&
+ !first_seqno_.compare_exchange_weak(cur_earliest_seqno, s)) {
+ }
+ }
+ if (type == kTypeRangeDeletion) {
+ auto new_cache = std::make_shared<FragmentedRangeTombstoneListCache>();
+ size_t size = cached_range_tombstone_.Size();
+ if (allow_concurrent) {
+ range_del_mutex_.lock();
+ }
+ for (size_t i = 0; i < size; ++i) {
+ std::shared_ptr<FragmentedRangeTombstoneListCache>* local_cache_ref_ptr =
+ cached_range_tombstone_.AccessAtCore(i);
+ auto new_local_cache_ref = std::make_shared<
+ const std::shared_ptr<FragmentedRangeTombstoneListCache>>(new_cache);
+ // It is okay for some reader to load old cache during invalidation as
+ // the new sequence number is not published yet.
+ // Each core will have a shared_ptr to a shared_ptr to the cached
+ // fragmented range tombstones, so that ref count is maintianed locally
+ // per-core using the per-core shared_ptr.
+ std::atomic_store_explicit(
+ local_cache_ref_ptr,
+ std::shared_ptr<FragmentedRangeTombstoneListCache>(
+ new_local_cache_ref, new_cache.get()),
+ std::memory_order_relaxed);
+ }
+ if (allow_concurrent) {
+ range_del_mutex_.unlock();
+ }
+ is_range_del_table_empty_.store(false, std::memory_order_relaxed);
+ }
+ UpdateOldestKeyTime();
+
+ TEST_SYNC_POINT_CALLBACK("MemTable::Add:BeforeReturn:Encoded", &encoded);
+ return Status::OK();
+}
+
+// Callback from MemTable::Get()
+namespace {
+
+struct Saver {
+ Status* status;
+ const LookupKey* key;
+ bool* found_final_value; // Is value set correctly? Used by KeyMayExist
+ bool* merge_in_progress;
+ std::string* value;
+ PinnableWideColumns* columns;
+ SequenceNumber seq;
+ std::string* timestamp;
+ const MergeOperator* merge_operator;
+ // the merge operations encountered;
+ MergeContext* merge_context;
+ SequenceNumber max_covering_tombstone_seq;
+ MemTable* mem;
+ Logger* logger;
+ Statistics* statistics;
+ bool inplace_update_support;
+ bool do_merge;
+ SystemClock* clock;
+
+ ReadCallback* callback_;
+ bool* is_blob_index;
+ bool allow_data_in_errors;
+ size_t protection_bytes_per_key;
+ bool CheckCallback(SequenceNumber _seq) {
+ if (callback_) {
+ return callback_->IsVisible(_seq);
+ }
+ return true;
+ }
+};
+} // anonymous namespace
+
+static bool SaveValue(void* arg, const char* entry) {
+ TEST_SYNC_POINT_CALLBACK("Memtable::SaveValue:Begin:entry", &entry);
+ Saver* s = reinterpret_cast<Saver*>(arg);
+ assert(s != nullptr);
+ assert(!s->value || !s->columns);
+
+ if (s->protection_bytes_per_key > 0) {
+ *(s->status) = MemTable::VerifyEntryChecksum(
+ entry, s->protection_bytes_per_key, s->allow_data_in_errors);
+ if (!s->status->ok()) {
+ ROCKS_LOG_ERROR(s->logger, "In SaveValue: %s", s->status->getState());
+ // Memtable entry corrupted
+ return false;
+ }
+ }
+
+ MergeContext* merge_context = s->merge_context;
+ SequenceNumber max_covering_tombstone_seq = s->max_covering_tombstone_seq;
+ const MergeOperator* merge_operator = s->merge_operator;
+
+ assert(merge_context != nullptr);
+
+ // Refer to comments under MemTable::Add() for entry format.
+ // Check that it belongs to same user key.
+ uint32_t key_length = 0;
+ const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
+ assert(key_length >= 8);
+ Slice user_key_slice = Slice(key_ptr, key_length - 8);
+ const Comparator* user_comparator =
+ s->mem->GetInternalKeyComparator().user_comparator();
+ size_t ts_sz = user_comparator->timestamp_size();
+ if (ts_sz && s->timestamp && max_covering_tombstone_seq > 0) {
+ // timestamp should already be set to range tombstone timestamp
+ assert(s->timestamp->size() == ts_sz);
+ }
+ if (user_comparator->EqualWithoutTimestamp(user_key_slice,
+ s->key->user_key())) {
+ // Correct user key
+ const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8);
+ ValueType type;
+ SequenceNumber seq;
+ UnPackSequenceAndType(tag, &seq, &type);
+ // If the value is not in the snapshot, skip it
+ if (!s->CheckCallback(seq)) {
+ return true; // to continue to the next seq
+ }
+
+ if (s->seq == kMaxSequenceNumber) {
+ s->seq = seq;
+ if (s->seq > max_covering_tombstone_seq) {
+ if (ts_sz && s->timestamp != nullptr) {
+ // `timestamp` was set to range tombstone's timestamp before
+ // `SaveValue` is ever called. This key has a higher sequence number
+ // than range tombstone, and is the key with the highest seqno across
+ // all keys with this user_key, so we update timestamp here.
+ Slice ts = ExtractTimestampFromUserKey(user_key_slice, ts_sz);
+ s->timestamp->assign(ts.data(), ts_sz);
+ }
+ } else {
+ s->seq = max_covering_tombstone_seq;
+ }
+ }
+
+ if (ts_sz > 0 && s->timestamp != nullptr) {
+ if (!s->timestamp->empty()) {
+ assert(ts_sz == s->timestamp->size());
+ }
+ // TODO optimize for smaller size ts
+ const std::string kMaxTs(ts_sz, '\xff');
+ if (s->timestamp->empty() ||
+ user_comparator->CompareTimestamp(*(s->timestamp), kMaxTs) == 0) {
+ Slice ts = ExtractTimestampFromUserKey(user_key_slice, ts_sz);
+ s->timestamp->assign(ts.data(), ts_sz);
+ }
+ }
+
+ if ((type == kTypeValue || type == kTypeMerge || type == kTypeBlobIndex ||
+ type == kTypeWideColumnEntity || type == kTypeDeletion ||
+ type == kTypeSingleDeletion || type == kTypeDeletionWithTimestamp) &&
+ max_covering_tombstone_seq > seq) {
+ type = kTypeRangeDeletion;
+ }
+ switch (type) {
+ case kTypeBlobIndex: {
+ if (!s->do_merge) {
+ *(s->status) = Status::NotSupported(
+ "GetMergeOperands not supported by stacked BlobDB");
+ *(s->found_final_value) = true;
+ return false;
+ }
+
+ if (*(s->merge_in_progress)) {
+ *(s->status) = Status::NotSupported(
+ "Merge operator not supported by stacked BlobDB");
+ *(s->found_final_value) = true;
+ return false;
+ }
+
+ if (s->is_blob_index == nullptr) {
+ ROCKS_LOG_ERROR(s->logger, "Encountered unexpected blob index.");
+ *(s->status) = Status::NotSupported(
+ "Encountered unexpected blob index. Please open DB with "
+ "ROCKSDB_NAMESPACE::blob_db::BlobDB.");
+ *(s->found_final_value) = true;
+ return false;
+ }
+
+ if (s->inplace_update_support) {
+ s->mem->GetLock(s->key->user_key())->ReadLock();
+ }
+
+ Slice v = GetLengthPrefixedSlice(key_ptr + key_length);
+
+ *(s->status) = Status::OK();
+
+ if (s->value) {
+ s->value->assign(v.data(), v.size());
+ } else if (s->columns) {
+ s->columns->SetPlainValue(v);
+ }
+
+ if (s->inplace_update_support) {
+ s->mem->GetLock(s->key->user_key())->ReadUnlock();
+ }
+
+ *(s->found_final_value) = true;
+ *(s->is_blob_index) = true;
+
+ return false;
+ }
+ case kTypeValue: {
+ if (s->inplace_update_support) {
+ s->mem->GetLock(s->key->user_key())->ReadLock();
+ }
+
+ Slice v = GetLengthPrefixedSlice(key_ptr + key_length);
+
+ *(s->status) = Status::OK();
+
+ if (!s->do_merge) {
+ // Preserve the value with the goal of returning it as part of
+ // raw merge operands to the user
+ // TODO(yanqin) update MergeContext so that timestamps information
+ // can also be retained.
+
+ merge_context->PushOperand(
+ v, s->inplace_update_support == false /* operand_pinned */);
+ } else if (*(s->merge_in_progress)) {
+ assert(s->do_merge);
+
+ if (s->value || s->columns) {
+ std::string result;
+ *(s->status) = MergeHelper::TimedFullMerge(
+ merge_operator, s->key->user_key(), &v,
+ merge_context->GetOperands(), &result, s->logger, s->statistics,
+ s->clock, /* result_operand */ nullptr,
+ /* update_num_ops_stats */ true);
+
+ if (s->status->ok()) {
+ if (s->value) {
+ *(s->value) = std::move(result);
+ } else {
+ assert(s->columns);
+ s->columns->SetPlainValue(result);
+ }
+ }
+ }
+ } else if (s->value) {
+ s->value->assign(v.data(), v.size());
+ } else if (s->columns) {
+ s->columns->SetPlainValue(v);
+ }
+
+ if (s->inplace_update_support) {
+ s->mem->GetLock(s->key->user_key())->ReadUnlock();
+ }
+
+ *(s->found_final_value) = true;
+
+ if (s->is_blob_index != nullptr) {
+ *(s->is_blob_index) = false;
+ }
+
+ return false;
+ }
+ case kTypeWideColumnEntity: {
+ if (s->inplace_update_support) {
+ s->mem->GetLock(s->key->user_key())->ReadLock();
+ }
+
+ Slice v = GetLengthPrefixedSlice(key_ptr + key_length);
+
+ *(s->status) = Status::OK();
+
+ if (!s->do_merge) {
+ // Preserve the value with the goal of returning it as part of
+ // raw merge operands to the user
+
+ Slice value_of_default;
+ *(s->status) = WideColumnSerialization::GetValueOfDefaultColumn(
+ v, value_of_default);
+
+ if (s->status->ok()) {
+ merge_context->PushOperand(
+ value_of_default,
+ s->inplace_update_support == false /* operand_pinned */);
+ }
+ } else if (*(s->merge_in_progress)) {
+ assert(s->do_merge);
+
+ if (s->value) {
+ Slice value_of_default;
+ *(s->status) = WideColumnSerialization::GetValueOfDefaultColumn(
+ v, value_of_default);
+ if (s->status->ok()) {
+ *(s->status) = MergeHelper::TimedFullMerge(
+ merge_operator, s->key->user_key(), &value_of_default,
+ merge_context->GetOperands(), s->value, s->logger,
+ s->statistics, s->clock, /* result_operand */ nullptr,
+ /* update_num_ops_stats */ true);
+ }
+ } else if (s->columns) {
+ std::string result;
+ *(s->status) = MergeHelper::TimedFullMergeWithEntity(
+ merge_operator, s->key->user_key(), v,
+ merge_context->GetOperands(), &result, s->logger, s->statistics,
+ s->clock, /* update_num_ops_stats */ true);
+
+ if (s->status->ok()) {
+ *(s->status) = s->columns->SetWideColumnValue(result);
+ }
+ }
+ } else if (s->value) {
+ Slice value_of_default;
+ *(s->status) = WideColumnSerialization::GetValueOfDefaultColumn(
+ v, value_of_default);
+ if (s->status->ok()) {
+ s->value->assign(value_of_default.data(), value_of_default.size());
+ }
+ } else if (s->columns) {
+ *(s->status) = s->columns->SetWideColumnValue(v);
+ }
+
+ if (s->inplace_update_support) {
+ s->mem->GetLock(s->key->user_key())->ReadUnlock();
+ }
+
+ *(s->found_final_value) = true;
+
+ if (s->is_blob_index != nullptr) {
+ *(s->is_blob_index) = false;
+ }
+
+ return false;
+ }
+ case kTypeDeletion:
+ case kTypeDeletionWithTimestamp:
+ case kTypeSingleDeletion:
+ case kTypeRangeDeletion: {
+ if (*(s->merge_in_progress)) {
+ if (s->value || s->columns) {
+ std::string result;
+ *(s->status) = MergeHelper::TimedFullMerge(
+ merge_operator, s->key->user_key(), nullptr,
+ merge_context->GetOperands(), &result, s->logger, s->statistics,
+ s->clock, /* result_operand */ nullptr,
+ /* update_num_ops_stats */ true);
+
+ if (s->status->ok()) {
+ if (s->value) {
+ *(s->value) = std::move(result);
+ } else {
+ assert(s->columns);
+ s->columns->SetPlainValue(result);
+ }
+ }
+ }
+ } else {
+ *(s->status) = Status::NotFound();
+ }
+ *(s->found_final_value) = true;
+ return false;
+ }
+ case kTypeMerge: {
+ if (!merge_operator) {
+ *(s->status) = Status::InvalidArgument(
+ "merge_operator is not properly initialized.");
+ // Normally we continue the loop (return true) when we see a merge
+ // operand. But in case of an error, we should stop the loop
+ // immediately and pretend we have found the value to stop further
+ // seek. Otherwise, the later call will override this error status.
+ *(s->found_final_value) = true;
+ return false;
+ }
+ Slice v = GetLengthPrefixedSlice(key_ptr + key_length);
+ *(s->merge_in_progress) = true;
+ merge_context->PushOperand(
+ v, s->inplace_update_support == false /* operand_pinned */);
+ if (s->do_merge && merge_operator->ShouldMerge(
+ merge_context->GetOperandsDirectionBackward())) {
+ if (s->value || s->columns) {
+ std::string result;
+ *(s->status) = MergeHelper::TimedFullMerge(
+ merge_operator, s->key->user_key(), nullptr,
+ merge_context->GetOperands(), &result, s->logger, s->statistics,
+ s->clock, /* result_operand */ nullptr,
+ /* update_num_ops_stats */ true);
+
+ if (s->status->ok()) {
+ if (s->value) {
+ *(s->value) = std::move(result);
+ } else {
+ assert(s->columns);
+ s->columns->SetPlainValue(result);
+ }
+ }
+ }
+
+ *(s->found_final_value) = true;
+ return false;
+ }
+ return true;
+ }
+ default: {
+ std::string msg("Corrupted value not expected.");
+ if (s->allow_data_in_errors) {
+ msg.append("Unrecognized value type: " +
+ std::to_string(static_cast<int>(type)) + ". ");
+ msg.append("User key: " + user_key_slice.ToString(/*hex=*/true) +
+ ". ");
+ msg.append("seq: " + std::to_string(seq) + ".");
+ }
+ *(s->status) = Status::Corruption(msg.c_str());
+ return false;
+ }
+ }
+ }
+
+ // s->state could be Corrupt, merge or notfound
+ return false;
+}
+
+bool MemTable::Get(const LookupKey& key, std::string* value,
+ PinnableWideColumns* columns, std::string* timestamp,
+ Status* s, MergeContext* merge_context,
+ SequenceNumber* max_covering_tombstone_seq,
+ SequenceNumber* seq, const ReadOptions& read_opts,
+ bool immutable_memtable, ReadCallback* callback,
+ bool* is_blob_index, bool do_merge) {
+ // The sequence number is updated synchronously in version_set.h
+ if (IsEmpty()) {
+ // Avoiding recording stats for speed.
+ return false;
+ }
+ PERF_TIMER_GUARD(get_from_memtable_time);
+
+ std::unique_ptr<FragmentedRangeTombstoneIterator> range_del_iter(
+ NewRangeTombstoneIterator(read_opts,
+ GetInternalKeySeqno(key.internal_key()),
+ immutable_memtable));
+ if (range_del_iter != nullptr) {
+ SequenceNumber covering_seq =
+ range_del_iter->MaxCoveringTombstoneSeqnum(key.user_key());
+ if (covering_seq > *max_covering_tombstone_seq) {
+ *max_covering_tombstone_seq = covering_seq;
+ if (timestamp) {
+ // Will be overwritten in SaveValue() if there is a point key with
+ // a higher seqno.
+ timestamp->assign(range_del_iter->timestamp().data(),
+ range_del_iter->timestamp().size());
+ }
+ }
+ }
+
+ bool found_final_value = false;
+ bool merge_in_progress = s->IsMergeInProgress();
+ bool may_contain = true;
+ size_t ts_sz = GetInternalKeyComparator().user_comparator()->timestamp_size();
+ Slice user_key_without_ts = StripTimestampFromUserKey(key.user_key(), ts_sz);
+ bool bloom_checked = false;
+ if (bloom_filter_) {
+ // when both memtable_whole_key_filtering and prefix_extractor_ are set,
+ // only do whole key filtering for Get() to save CPU
+ if (moptions_.memtable_whole_key_filtering) {
+ may_contain = bloom_filter_->MayContain(user_key_without_ts);
+ bloom_checked = true;
+ } else {
+ assert(prefix_extractor_);
+ if (prefix_extractor_->InDomain(user_key_without_ts)) {
+ may_contain = bloom_filter_->MayContain(
+ prefix_extractor_->Transform(user_key_without_ts));
+ bloom_checked = true;
+ }
+ }
+ }
+
+ if (bloom_filter_ && !may_contain) {
+ // iter is null if prefix bloom says the key does not exist
+ PERF_COUNTER_ADD(bloom_memtable_miss_count, 1);
+ *seq = kMaxSequenceNumber;
+ } else {
+ if (bloom_checked) {
+ PERF_COUNTER_ADD(bloom_memtable_hit_count, 1);
+ }
+ GetFromTable(key, *max_covering_tombstone_seq, do_merge, callback,
+ is_blob_index, value, columns, timestamp, s, merge_context,
+ seq, &found_final_value, &merge_in_progress);
+ }
+
+ // No change to value, since we have not yet found a Put/Delete
+ // Propagate corruption error
+ if (!found_final_value && merge_in_progress && !s->IsCorruption()) {
+ *s = Status::MergeInProgress();
+ }
+ PERF_COUNTER_ADD(get_from_memtable_count, 1);
+ return found_final_value;
+}
+
+void MemTable::GetFromTable(const LookupKey& key,
+ SequenceNumber max_covering_tombstone_seq,
+ bool do_merge, ReadCallback* callback,
+ bool* is_blob_index, std::string* value,
+ PinnableWideColumns* columns,
+ std::string* timestamp, Status* s,
+ MergeContext* merge_context, SequenceNumber* seq,
+ bool* found_final_value, bool* merge_in_progress) {
+ Saver saver;
+ saver.status = s;
+ saver.found_final_value = found_final_value;
+ saver.merge_in_progress = merge_in_progress;
+ saver.key = &key;
+ saver.value = value;
+ saver.columns = columns;
+ saver.timestamp = timestamp;
+ saver.seq = kMaxSequenceNumber;
+ saver.mem = this;
+ saver.merge_context = merge_context;
+ saver.max_covering_tombstone_seq = max_covering_tombstone_seq;
+ saver.merge_operator = moptions_.merge_operator;
+ saver.logger = moptions_.info_log;
+ saver.inplace_update_support = moptions_.inplace_update_support;
+ saver.statistics = moptions_.statistics;
+ saver.clock = clock_;
+ saver.callback_ = callback;
+ saver.is_blob_index = is_blob_index;
+ saver.do_merge = do_merge;
+ saver.allow_data_in_errors = moptions_.allow_data_in_errors;
+ saver.protection_bytes_per_key = moptions_.protection_bytes_per_key;
+ table_->Get(key, &saver, SaveValue);
+ *seq = saver.seq;
+}
+
+void MemTable::MultiGet(const ReadOptions& read_options, MultiGetRange* range,
+ ReadCallback* callback, bool immutable_memtable) {
+ // The sequence number is updated synchronously in version_set.h
+ if (IsEmpty()) {
+ // Avoiding recording stats for speed.
+ return;
+ }
+ PERF_TIMER_GUARD(get_from_memtable_time);
+
+ // For now, memtable Bloom filter is effectively disabled if there are any
+ // range tombstones. This is the simplest way to ensure range tombstones are
+ // handled. TODO: allow Bloom checks where max_covering_tombstone_seq==0
+ bool no_range_del = read_options.ignore_range_deletions ||
+ is_range_del_table_empty_.load(std::memory_order_relaxed);
+ MultiGetRange temp_range(*range, range->begin(), range->end());
+ if (bloom_filter_ && no_range_del) {
+ bool whole_key =
+ !prefix_extractor_ || moptions_.memtable_whole_key_filtering;
+ std::array<Slice, MultiGetContext::MAX_BATCH_SIZE> bloom_keys;
+ std::array<bool, MultiGetContext::MAX_BATCH_SIZE> may_match;
+ std::array<size_t, MultiGetContext::MAX_BATCH_SIZE> range_indexes;
+ int num_keys = 0;
+ for (auto iter = temp_range.begin(); iter != temp_range.end(); ++iter) {
+ if (whole_key) {
+ bloom_keys[num_keys] = iter->ukey_without_ts;
+ range_indexes[num_keys++] = iter.index();
+ } else if (prefix_extractor_->InDomain(iter->ukey_without_ts)) {
+ bloom_keys[num_keys] =
+ prefix_extractor_->Transform(iter->ukey_without_ts);
+ range_indexes[num_keys++] = iter.index();
+ }
+ }
+ bloom_filter_->MayContain(num_keys, &bloom_keys[0], &may_match[0]);
+ for (int i = 0; i < num_keys; ++i) {
+ if (!may_match[i]) {
+ temp_range.SkipIndex(range_indexes[i]);
+ PERF_COUNTER_ADD(bloom_memtable_miss_count, 1);
+ } else {
+ PERF_COUNTER_ADD(bloom_memtable_hit_count, 1);
+ }
+ }
+ }
+ for (auto iter = temp_range.begin(); iter != temp_range.end(); ++iter) {
+ bool found_final_value{false};
+ bool merge_in_progress = iter->s->IsMergeInProgress();
+ if (!no_range_del) {
+ std::unique_ptr<FragmentedRangeTombstoneIterator> range_del_iter(
+ NewRangeTombstoneIteratorInternal(
+ read_options, GetInternalKeySeqno(iter->lkey->internal_key()),
+ immutable_memtable));
+ SequenceNumber covering_seq =
+ range_del_iter->MaxCoveringTombstoneSeqnum(iter->lkey->user_key());
+ if (covering_seq > iter->max_covering_tombstone_seq) {
+ iter->max_covering_tombstone_seq = covering_seq;
+ if (iter->timestamp) {
+ // Will be overwritten in SaveValue() if there is a point key with
+ // a higher seqno.
+ iter->timestamp->assign(range_del_iter->timestamp().data(),
+ range_del_iter->timestamp().size());
+ }
+ }
+ }
+ SequenceNumber dummy_seq;
+ GetFromTable(*(iter->lkey), iter->max_covering_tombstone_seq, true,
+ callback, &iter->is_blob_index, iter->value->GetSelf(),
+ /*columns=*/nullptr, iter->timestamp, iter->s,
+ &(iter->merge_context), &dummy_seq, &found_final_value,
+ &merge_in_progress);
+
+ if (!found_final_value && merge_in_progress) {
+ *(iter->s) = Status::MergeInProgress();
+ }
+
+ if (found_final_value) {
+ iter->value->PinSelf();
+ range->AddValueSize(iter->value->size());
+ range->MarkKeyDone(iter);
+ RecordTick(moptions_.statistics, MEMTABLE_HIT);
+ if (range->GetValueSize() > read_options.value_size_soft_limit) {
+ // Set all remaining keys in range to Abort
+ for (auto range_iter = range->begin(); range_iter != range->end();
+ ++range_iter) {
+ range->MarkKeyDone(range_iter);
+ *(range_iter->s) = Status::Aborted();
+ }
+ break;
+ }
+ }
+ }
+ PERF_COUNTER_ADD(get_from_memtable_count, 1);
+}
+
+Status MemTable::Update(SequenceNumber seq, ValueType value_type,
+ const Slice& key, const Slice& value,
+ const ProtectionInfoKVOS64* kv_prot_info) {
+ LookupKey lkey(key, seq);
+ Slice mem_key = lkey.memtable_key();
+
+ std::unique_ptr<MemTableRep::Iterator> iter(
+ table_->GetDynamicPrefixIterator());
+ iter->Seek(lkey.internal_key(), mem_key.data());
+
+ if (iter->Valid()) {
+ // Refer to comments under MemTable::Add() for entry format.
+ // Check that it belongs to same user key. We do not check the
+ // sequence number since the Seek() call above should have skipped
+ // all entries with overly large sequence numbers.
+ const char* entry = iter->key();
+ uint32_t key_length = 0;
+ const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
+ if (comparator_.comparator.user_comparator()->Equal(
+ Slice(key_ptr, key_length - 8), lkey.user_key())) {
+ // Correct user key
+ const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8);
+ ValueType type;
+ SequenceNumber existing_seq;
+ UnPackSequenceAndType(tag, &existing_seq, &type);
+ assert(existing_seq != seq);
+ if (type == value_type) {
+ Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length);
+ uint32_t prev_size = static_cast<uint32_t>(prev_value.size());
+ uint32_t new_size = static_cast<uint32_t>(value.size());
+
+ // Update value, if new value size <= previous value size
+ if (new_size <= prev_size) {
+ char* p =
+ EncodeVarint32(const_cast<char*>(key_ptr) + key_length, new_size);
+ WriteLock wl(GetLock(lkey.user_key()));
+ memcpy(p, value.data(), value.size());
+ assert((unsigned)((p + value.size()) - entry) ==
+ (unsigned)(VarintLength(key_length) + key_length +
+ VarintLength(value.size()) + value.size()));
+ RecordTick(moptions_.statistics, NUMBER_KEYS_UPDATED);
+ if (kv_prot_info != nullptr) {
+ ProtectionInfoKVOS64 updated_kv_prot_info(*kv_prot_info);
+ // `seq` is swallowed and `existing_seq` prevails.
+ updated_kv_prot_info.UpdateS(seq, existing_seq);
+ UpdateEntryChecksum(&updated_kv_prot_info, key, value, type,
+ existing_seq, p + value.size());
+ Slice encoded(entry, p + value.size() - entry);
+ return VerifyEncodedEntry(encoded, updated_kv_prot_info);
+ } else {
+ UpdateEntryChecksum(nullptr, key, value, type, existing_seq,
+ p + value.size());
+ }
+ return Status::OK();
+ }
+ }
+ }
+ }
+
+ // The latest value is not value_type or key doesn't exist
+ return Add(seq, value_type, key, value, kv_prot_info);
+}
+
+Status MemTable::UpdateCallback(SequenceNumber seq, const Slice& key,
+ const Slice& delta,
+ const ProtectionInfoKVOS64* kv_prot_info) {
+ LookupKey lkey(key, seq);
+ Slice memkey = lkey.memtable_key();
+
+ std::unique_ptr<MemTableRep::Iterator> iter(
+ table_->GetDynamicPrefixIterator());
+ iter->Seek(lkey.internal_key(), memkey.data());
+
+ if (iter->Valid()) {
+ // Refer to comments under MemTable::Add() for entry format.
+ // Check that it belongs to same user key. We do not check the
+ // sequence number since the Seek() call above should have skipped
+ // all entries with overly large sequence numbers.
+ const char* entry = iter->key();
+ uint32_t key_length = 0;
+ const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
+ if (comparator_.comparator.user_comparator()->Equal(
+ Slice(key_ptr, key_length - 8), lkey.user_key())) {
+ // Correct user key
+ const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8);
+ ValueType type;
+ uint64_t existing_seq;
+ UnPackSequenceAndType(tag, &existing_seq, &type);
+ if (type == kTypeValue) {
+ Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length);
+ uint32_t prev_size = static_cast<uint32_t>(prev_value.size());
+
+ char* prev_buffer = const_cast<char*>(prev_value.data());
+ uint32_t new_prev_size = prev_size;
+
+ std::string str_value;
+ WriteLock wl(GetLock(lkey.user_key()));
+ auto status = moptions_.inplace_callback(prev_buffer, &new_prev_size,
+ delta, &str_value);
+ if (status == UpdateStatus::UPDATED_INPLACE) {
+ // Value already updated by callback.
+ assert(new_prev_size <= prev_size);
+ if (new_prev_size < prev_size) {
+ // overwrite the new prev_size
+ char* p = EncodeVarint32(const_cast<char*>(key_ptr) + key_length,
+ new_prev_size);
+ if (VarintLength(new_prev_size) < VarintLength(prev_size)) {
+ // shift the value buffer as well.
+ memcpy(p, prev_buffer, new_prev_size);
+ prev_buffer = p;
+ }
+ }
+ RecordTick(moptions_.statistics, NUMBER_KEYS_UPDATED);
+ UpdateFlushState();
+ Slice new_value(prev_buffer, new_prev_size);
+ if (kv_prot_info != nullptr) {
+ ProtectionInfoKVOS64 updated_kv_prot_info(*kv_prot_info);
+ // `seq` is swallowed and `existing_seq` prevails.
+ updated_kv_prot_info.UpdateS(seq, existing_seq);
+ updated_kv_prot_info.UpdateV(delta, new_value);
+ Slice encoded(entry, prev_buffer + new_prev_size - entry);
+ UpdateEntryChecksum(&updated_kv_prot_info, key, new_value, type,
+ existing_seq, prev_buffer + new_prev_size);
+ return VerifyEncodedEntry(encoded, updated_kv_prot_info);
+ } else {
+ UpdateEntryChecksum(nullptr, key, new_value, type, existing_seq,
+ prev_buffer + new_prev_size);
+ }
+ return Status::OK();
+ } else if (status == UpdateStatus::UPDATED) {
+ Status s;
+ if (kv_prot_info != nullptr) {
+ ProtectionInfoKVOS64 updated_kv_prot_info(*kv_prot_info);
+ updated_kv_prot_info.UpdateV(delta, str_value);
+ s = Add(seq, kTypeValue, key, Slice(str_value),
+ &updated_kv_prot_info);
+ } else {
+ s = Add(seq, kTypeValue, key, Slice(str_value),
+ nullptr /* kv_prot_info */);
+ }
+ RecordTick(moptions_.statistics, NUMBER_KEYS_WRITTEN);
+ UpdateFlushState();
+ return s;
+ } else if (status == UpdateStatus::UPDATE_FAILED) {
+ // `UPDATE_FAILED` is named incorrectly. It indicates no update
+ // happened. It does not indicate a failure happened.
+ UpdateFlushState();
+ return Status::OK();
+ }
+ }
+ }
+ }
+ // The latest value is not `kTypeValue` or key doesn't exist
+ return Status::NotFound();
+}
+
+size_t MemTable::CountSuccessiveMergeEntries(const LookupKey& key) {
+ Slice memkey = key.memtable_key();
+
+ // A total ordered iterator is costly for some memtablerep (prefix aware
+ // reps). By passing in the user key, we allow efficient iterator creation.
+ // The iterator only needs to be ordered within the same user key.
+ std::unique_ptr<MemTableRep::Iterator> iter(
+ table_->GetDynamicPrefixIterator());
+ iter->Seek(key.internal_key(), memkey.data());
+
+ size_t num_successive_merges = 0;
+
+ for (; iter->Valid(); iter->Next()) {
+ const char* entry = iter->key();
+ uint32_t key_length = 0;
+ const char* iter_key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
+ if (!comparator_.comparator.user_comparator()->Equal(
+ Slice(iter_key_ptr, key_length - 8), key.user_key())) {
+ break;
+ }
+
+ const uint64_t tag = DecodeFixed64(iter_key_ptr + key_length - 8);
+ ValueType type;
+ uint64_t unused;
+ UnPackSequenceAndType(tag, &unused, &type);
+ if (type != kTypeMerge) {
+ break;
+ }
+
+ ++num_successive_merges;
+ }
+
+ return num_successive_merges;
+}
+
+void MemTableRep::Get(const LookupKey& k, void* callback_args,
+ bool (*callback_func)(void* arg, const char* entry)) {
+ auto iter = GetDynamicPrefixIterator();
+ for (iter->Seek(k.internal_key(), k.memtable_key().data());
+ iter->Valid() && callback_func(callback_args, iter->key());
+ iter->Next()) {
+ }
+}
+
+void MemTable::RefLogContainingPrepSection(uint64_t log) {
+ assert(log > 0);
+ auto cur = min_prep_log_referenced_.load();
+ while ((log < cur || cur == 0) &&
+ !min_prep_log_referenced_.compare_exchange_strong(cur, log)) {
+ cur = min_prep_log_referenced_.load();
+ }
+}
+
+uint64_t MemTable::GetMinLogContainingPrepSection() {
+ return min_prep_log_referenced_.load();
+}
+
+} // namespace ROCKSDB_NAMESPACE