diff options
Diffstat (limited to 'src/rocksdb/util/bloom_impl.h')
-rw-r--r-- | src/rocksdb/util/bloom_impl.h | 489 |
1 files changed, 489 insertions, 0 deletions
diff --git a/src/rocksdb/util/bloom_impl.h b/src/rocksdb/util/bloom_impl.h new file mode 100644 index 000000000..fadd012d3 --- /dev/null +++ b/src/rocksdb/util/bloom_impl.h @@ -0,0 +1,489 @@ +// Copyright (c) 2019-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Implementation details of various Bloom filter implementations used in +// RocksDB. (DynamicBloom is in a separate file for now because it +// supports concurrent write.) + +#pragma once +#include <stddef.h> +#include <stdint.h> + +#include <cmath> + +#include "port/port.h" // for PREFETCH +#include "rocksdb/slice.h" +#include "util/hash.h" + +#ifdef HAVE_AVX2 +#include <immintrin.h> +#endif + +namespace ROCKSDB_NAMESPACE { + +class BloomMath { + public: + // False positive rate of a standard Bloom filter, for given ratio of + // filter memory bits to added keys, and number of probes per operation. + // (The false positive rate is effectively independent of scale, assuming + // the implementation scales OK.) + static double StandardFpRate(double bits_per_key, int num_probes) { + // Standard very-good-estimate formula. See + // https://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives + return std::pow(1.0 - std::exp(-num_probes / bits_per_key), num_probes); + } + + // False positive rate of a "blocked"/"shareded"/"cache-local" Bloom filter, + // for given ratio of filter memory bits to added keys, number of probes per + // operation (all within the given block or cache line size), and block or + // cache line size. + static double CacheLocalFpRate(double bits_per_key, int num_probes, + int cache_line_bits) { + if (bits_per_key <= 0.0) { + // Fix a discontinuity + return 1.0; + } + double keys_per_cache_line = cache_line_bits / bits_per_key; + // A reasonable estimate is the average of the FP rates for one standard + // deviation above and below the mean bucket occupancy. See + // https://github.com/facebook/rocksdb/wiki/RocksDB-Bloom-Filter#the-math + double keys_stddev = std::sqrt(keys_per_cache_line); + double crowded_fp = StandardFpRate( + cache_line_bits / (keys_per_cache_line + keys_stddev), num_probes); + double uncrowded_fp = StandardFpRate( + cache_line_bits / (keys_per_cache_line - keys_stddev), num_probes); + return (crowded_fp + uncrowded_fp) / 2; + } + + // False positive rate of querying a new item against `num_keys` items, all + // hashed to `fingerprint_bits` bits. (This assumes the fingerprint hashes + // themselves are stored losslessly. See Section 4 of + // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf) + static double FingerprintFpRate(size_t num_keys, int fingerprint_bits) { + double inv_fingerprint_space = std::pow(0.5, fingerprint_bits); + // Base estimate assumes each key maps to a unique fingerprint. + // Could be > 1 in extreme cases. + double base_estimate = num_keys * inv_fingerprint_space; + // To account for potential overlap, we choose between two formulas + if (base_estimate > 0.0001) { + // A very good formula assuming we don't construct a floating point + // number extremely close to 1. Always produces a probability < 1. + return 1.0 - std::exp(-base_estimate); + } else { + // A very good formula when base_estimate is far below 1. (Subtract + // away the integral-approximated sum that some key has same hash as + // one coming before it in a list.) + return base_estimate - (base_estimate * base_estimate * 0.5); + } + } + + // Returns the probably of either of two independent(-ish) events + // happening, given their probabilities. (This is useful for combining + // results from StandardFpRate or CacheLocalFpRate with FingerprintFpRate + // for a hash-efficient Bloom filter's FP rate. See Section 4 of + // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf) + static double IndependentProbabilitySum(double rate1, double rate2) { + // Use formula that avoids floating point extremely close to 1 if + // rates are extremely small. + return rate1 + rate2 - (rate1 * rate2); + } +}; + +// A fast, flexible, and accurate cache-local Bloom implementation with +// SIMD-optimized query performance (currently using AVX2 on Intel). Write +// performance and non-SIMD read are very good, benefiting from FastRange32 +// used in place of % and single-cycle multiplication on recent processors. +// +// Most other SIMD Bloom implementations sacrifice flexibility and/or +// accuracy by requiring num_probes to be a power of two and restricting +// where each probe can occur in a cache line. This implementation sacrifices +// SIMD-optimization for add (might still be possible, especially with AVX512) +// in favor of allowing any num_probes, not crossing cache line boundary, +// and accuracy close to theoretical best accuracy for a cache-local Bloom. +// E.g. theoretical best for 10 bits/key, num_probes=6, and 512-bit bucket +// (Intel cache line size) is 0.9535% FP rate. This implementation yields +// about 0.957%. (Compare to LegacyLocalityBloomImpl<false> at 1.138%, or +// about 0.951% for 1024-bit buckets, cache line size for some ARM CPUs.) +// +// This implementation can use a 32-bit hash (let h2 be h1 * 0x9e3779b9) or +// a 64-bit hash (split into two uint32s). With many millions of keys, the +// false positive rate associated with using a 32-bit hash can dominate the +// false positive rate of the underlying filter. At 10 bits/key setting, the +// inflection point is about 40 million keys, so 32-bit hash is a bad idea +// with 10s of millions of keys or more. +// +// Despite accepting a 64-bit hash, this implementation uses 32-bit fastrange +// to pick a cache line, which can be faster than 64-bit in some cases. +// This only hurts accuracy as you get into 10s of GB for a single filter, +// and accuracy abruptly breaks down at 256GB (2^32 cache lines). Switch to +// 64-bit fastrange if you need filters so big. ;) +// +// Using only a 32-bit input hash within each cache line has negligible +// impact for any reasonable cache line / bucket size, for arbitrary filter +// size, and potentially saves intermediate data size in some cases vs. +// tracking full 64 bits. (Even in an implementation using 64-bit arithmetic +// to generate indices, I might do the same, as a single multiplication +// suffices to generate a sufficiently mixed 64 bits from 32 bits.) +// +// This implementation is currently tied to Intel cache line size, 64 bytes == +// 512 bits. If there's sufficient demand for other cache line sizes, this is +// a pretty good implementation to extend, but slight performance enhancements +// are possible with an alternate implementation (probably not very compatible +// with SIMD): +// (1) Use rotation in addition to multiplication for remixing +// (like murmur hash). (Using multiplication alone *slightly* hurts accuracy +// because lower bits never depend on original upper bits.) +// (2) Extract more than one bit index from each re-mix. (Only if rotation +// or similar is part of remix, because otherwise you're making the +// multiplication-only problem worse.) +// (3) Re-mix full 64 bit hash, to get maximum number of bit indices per +// re-mix. +// +class FastLocalBloomImpl { + public: + // NOTE: this has only been validated to enough accuracy for producing + // reasonable warnings / user feedback, not for making functional decisions. + static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes, + int hash_bits) { + return BloomMath::IndependentProbabilitySum( + BloomMath::CacheLocalFpRate(8.0 * bytes / keys, num_probes, + /*cache line bits*/ 512), + BloomMath::FingerprintFpRate(keys, hash_bits)); + } + + static inline int ChooseNumProbes(int millibits_per_key) { + // Since this implementation can (with AVX2) make up to 8 probes + // for the same cost, we pick the most accurate num_probes, based + // on actual tests of the implementation. Note that for higher + // bits/key, the best choice for cache-local Bloom can be notably + // smaller than standard bloom, e.g. 9 instead of 11 @ 16 b/k. + if (millibits_per_key <= 2080) { + return 1; + } else if (millibits_per_key <= 3580) { + return 2; + } else if (millibits_per_key <= 5100) { + return 3; + } else if (millibits_per_key <= 6640) { + return 4; + } else if (millibits_per_key <= 8300) { + return 5; + } else if (millibits_per_key <= 10070) { + return 6; + } else if (millibits_per_key <= 11720) { + return 7; + } else if (millibits_per_key <= 14001) { + // Would be something like <= 13800 but sacrificing *slightly* for + // more settings using <= 8 probes. + return 8; + } else if (millibits_per_key <= 16050) { + return 9; + } else if (millibits_per_key <= 18300) { + return 10; + } else if (millibits_per_key <= 22001) { + return 11; + } else if (millibits_per_key <= 25501) { + return 12; + } else if (millibits_per_key > 50000) { + // Top out at 24 probes (three sets of 8) + return 24; + } else { + // Roughly optimal choices for remaining range + // e.g. + // 28000 -> 12, 28001 -> 13 + // 50000 -> 23, 50001 -> 24 + return (millibits_per_key - 1) / 2000 - 1; + } + } + + static inline void AddHash(uint32_t h1, uint32_t h2, uint32_t len_bytes, + int num_probes, char *data) { + uint32_t bytes_to_cache_line = FastRange32(len_bytes >> 6, h1) << 6; + AddHashPrepared(h2, num_probes, data + bytes_to_cache_line); + } + + static inline void AddHashPrepared(uint32_t h2, int num_probes, + char *data_at_cache_line) { + uint32_t h = h2; + for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) { + // 9-bit address within 512 bit cache line + int bitpos = h >> (32 - 9); + data_at_cache_line[bitpos >> 3] |= (uint8_t{1} << (bitpos & 7)); + } + } + + static inline void PrepareHash(uint32_t h1, uint32_t len_bytes, + const char *data, + uint32_t /*out*/ *byte_offset) { + uint32_t bytes_to_cache_line = FastRange32(len_bytes >> 6, h1) << 6; + PREFETCH(data + bytes_to_cache_line, 0 /* rw */, 1 /* locality */); + PREFETCH(data + bytes_to_cache_line + 63, 0 /* rw */, 1 /* locality */); + *byte_offset = bytes_to_cache_line; + } + + static inline bool HashMayMatch(uint32_t h1, uint32_t h2, uint32_t len_bytes, + int num_probes, const char *data) { + uint32_t bytes_to_cache_line = FastRange32(len_bytes >> 6, h1) << 6; + return HashMayMatchPrepared(h2, num_probes, data + bytes_to_cache_line); + } + + static inline bool HashMayMatchPrepared(uint32_t h2, int num_probes, + const char *data_at_cache_line) { + uint32_t h = h2; +#ifdef HAVE_AVX2 + int rem_probes = num_probes; + + // NOTE: For better performance for num_probes in {1, 2, 9, 10, 17, 18, + // etc.} one can insert specialized code for rem_probes <= 2, bypassing + // the SIMD code in those cases. There is a detectable but minor overhead + // applied to other values of num_probes (when not statically determined), + // but smoother performance curve vs. num_probes. But for now, when + // in doubt, don't add unnecessary code. + + // Powers of 32-bit golden ratio, mod 2**32. + const __m256i multipliers = + _mm256_setr_epi32(0x00000001, 0x9e3779b9, 0xe35e67b1, 0x734297e9, + 0x35fbe861, 0xdeb7c719, 0x448b211, 0x3459b749); + + for (;;) { + // Eight copies of hash + __m256i hash_vector = _mm256_set1_epi32(h); + + // Same effect as repeated multiplication by 0x9e3779b9 thanks to + // associativity of multiplication. + hash_vector = _mm256_mullo_epi32(hash_vector, multipliers); + + // Now the top 9 bits of each of the eight 32-bit values in + // hash_vector are bit addresses for probes within the cache line. + // While the platform-independent code uses byte addressing (6 bits + // to pick a byte + 3 bits to pick a bit within a byte), here we work + // with 32-bit words (4 bits to pick a word + 5 bits to pick a bit + // within a word) because that works well with AVX2 and is equivalent + // under little-endian. + + // Shift each right by 28 bits to get 4-bit word addresses. + const __m256i word_addresses = _mm256_srli_epi32(hash_vector, 28); + + // Gather 32-bit values spread over 512 bits by 4-bit address. In + // essence, we are dereferencing eight pointers within the cache + // line. + // + // Option 1: AVX2 gather (seems to be a little slow - understandable) + // const __m256i value_vector = + // _mm256_i32gather_epi32(static_cast<const int + // *>(data_at_cache_line), + // word_addresses, + // /*bytes / i32*/ 4); + // END Option 1 + // Potentially unaligned as we're not *always* cache-aligned -> loadu + const __m256i *mm_data = + reinterpret_cast<const __m256i *>(data_at_cache_line); + __m256i lower = _mm256_loadu_si256(mm_data); + __m256i upper = _mm256_loadu_si256(mm_data + 1); + // Option 2: AVX512VL permute hack + // Only negligibly faster than Option 3, so not yet worth supporting + // const __m256i value_vector = + // _mm256_permutex2var_epi32(lower, word_addresses, upper); + // END Option 2 + // Option 3: AVX2 permute+blend hack + // Use lowest three bits to order probing values, as if all from same + // 256 bit piece. + lower = _mm256_permutevar8x32_epi32(lower, word_addresses); + upper = _mm256_permutevar8x32_epi32(upper, word_addresses); + // Just top 1 bit of address, to select between lower and upper. + const __m256i upper_lower_selector = _mm256_srai_epi32(hash_vector, 31); + // Finally: the next 8 probed 32-bit values, in probing sequence order. + const __m256i value_vector = + _mm256_blendv_epi8(lower, upper, upper_lower_selector); + // END Option 3 + + // We might not need to probe all 8, so build a mask for selecting only + // what we need. (The k_selector(s) could be pre-computed but that + // doesn't seem to make a noticeable performance difference.) + const __m256i zero_to_seven = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); + // Subtract rem_probes from each of those constants + __m256i k_selector = + _mm256_sub_epi32(zero_to_seven, _mm256_set1_epi32(rem_probes)); + // Negative after subtract -> use/select + // Keep only high bit (logical shift right each by 31). + k_selector = _mm256_srli_epi32(k_selector, 31); + + // Strip off the 4 bit word address (shift left) + __m256i bit_addresses = _mm256_slli_epi32(hash_vector, 4); + // And keep only 5-bit (32 - 27) bit-within-32-bit-word addresses. + bit_addresses = _mm256_srli_epi32(bit_addresses, 27); + // Build a bit mask + const __m256i bit_mask = _mm256_sllv_epi32(k_selector, bit_addresses); + + // Like ((~value_vector) & bit_mask) == 0) + bool match = _mm256_testc_si256(value_vector, bit_mask) != 0; + + // This check first so that it's easy for branch predictor to optimize + // num_probes <= 8 case, making it free of unpredictable branches. + if (rem_probes <= 8) { + return match; + } else if (!match) { + return false; + } + // otherwise + // Need another iteration. 0xab25f4c1 == golden ratio to the 8th power + h *= 0xab25f4c1; + rem_probes -= 8; + } +#else + for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) { + // 9-bit address within 512 bit cache line + int bitpos = h >> (32 - 9); + if ((data_at_cache_line[bitpos >> 3] & (char(1) << (bitpos & 7))) == 0) { + return false; + } + } + return true; +#endif + } +}; + +// A legacy Bloom filter implementation with no locality of probes (slow). +// It uses double hashing to generate a sequence of hash values. +// Asymptotic analysis is in [Kirsch,Mitzenmacher 2006], but known to have +// subtle accuracy flaws for practical sizes [Dillinger,Manolios 2004]. +// +// DO NOT REUSE +// +class LegacyNoLocalityBloomImpl { + public: + static inline int ChooseNumProbes(int bits_per_key) { + // We intentionally round down to reduce probing cost a little bit + int num_probes = static_cast<int>(bits_per_key * 0.69); // 0.69 =~ ln(2) + if (num_probes < 1) num_probes = 1; + if (num_probes > 30) num_probes = 30; + return num_probes; + } + + static inline void AddHash(uint32_t h, uint32_t total_bits, int num_probes, + char *data) { + const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits + for (int i = 0; i < num_probes; i++) { + const uint32_t bitpos = h % total_bits; + data[bitpos / 8] |= (1 << (bitpos % 8)); + h += delta; + } + } + + static inline bool HashMayMatch(uint32_t h, uint32_t total_bits, + int num_probes, const char *data) { + const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits + for (int i = 0; i < num_probes; i++) { + const uint32_t bitpos = h % total_bits; + if ((data[bitpos / 8] & (1 << (bitpos % 8))) == 0) { + return false; + } + h += delta; + } + return true; + } +}; + +// A legacy Bloom filter implementation with probes local to a single +// cache line (fast). Because SST files might be transported between +// platforms, the cache line size is a parameter rather than hard coded. +// (But if specified as a constant parameter, an optimizing compiler +// should take advantage of that.) +// +// When ExtraRotates is false, this implementation is notably deficient in +// accuracy. Specifically, it uses double hashing with a 1/512 chance of the +// increment being zero (when cache line size is 512 bits). Thus, there's a +// 1/512 chance of probing only one index, which we'd expect to incur about +// a 1/2 * 1/512 or absolute 0.1% FP rate penalty. More detail at +// https://github.com/facebook/rocksdb/issues/4120 +// +// DO NOT REUSE +// +template <bool ExtraRotates> +class LegacyLocalityBloomImpl { + private: + static inline uint32_t GetLine(uint32_t h, uint32_t num_lines) { + uint32_t offset_h = ExtraRotates ? (h >> 11) | (h << 21) : h; + return offset_h % num_lines; + } + + public: + // NOTE: this has only been validated to enough accuracy for producing + // reasonable warnings / user feedback, not for making functional decisions. + static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes) { + double bits_per_key = 8.0 * bytes / keys; + double filter_rate = BloomMath::CacheLocalFpRate(bits_per_key, num_probes, + /*cache line bits*/ 512); + if (!ExtraRotates) { + // Good estimate of impact of flaw in index computation. + // Adds roughly 0.002 around 50 bits/key and 0.001 around 100 bits/key. + // The + 22 shifts it nicely to fit for lower bits/key. + filter_rate += 0.1 / (bits_per_key * 0.75 + 22); + } else { + // Not yet validated + assert(false); + } + // Always uses 32-bit hash + double fingerprint_rate = BloomMath::FingerprintFpRate(keys, 32); + return BloomMath::IndependentProbabilitySum(filter_rate, fingerprint_rate); + } + + static inline void AddHash(uint32_t h, uint32_t num_lines, int num_probes, + char *data, int log2_cache_line_bytes) { + const int log2_cache_line_bits = log2_cache_line_bytes + 3; + + char *data_at_offset = + data + (GetLine(h, num_lines) << log2_cache_line_bytes); + const uint32_t delta = (h >> 17) | (h << 15); + for (int i = 0; i < num_probes; ++i) { + // Mask to bit-within-cache-line address + const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1); + data_at_offset[bitpos / 8] |= (1 << (bitpos % 8)); + if (ExtraRotates) { + h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits)); + } + h += delta; + } + } + + static inline void PrepareHashMayMatch(uint32_t h, uint32_t num_lines, + const char *data, + uint32_t /*out*/ *byte_offset, + int log2_cache_line_bytes) { + uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes; + PREFETCH(data + b, 0 /* rw */, 1 /* locality */); + PREFETCH(data + b + ((1 << log2_cache_line_bytes) - 1), 0 /* rw */, + 1 /* locality */); + *byte_offset = b; + } + + static inline bool HashMayMatch(uint32_t h, uint32_t num_lines, + int num_probes, const char *data, + int log2_cache_line_bytes) { + uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes; + return HashMayMatchPrepared(h, num_probes, data + b, log2_cache_line_bytes); + } + + static inline bool HashMayMatchPrepared(uint32_t h, int num_probes, + const char *data_at_offset, + int log2_cache_line_bytes) { + const int log2_cache_line_bits = log2_cache_line_bytes + 3; + + const uint32_t delta = (h >> 17) | (h << 15); + for (int i = 0; i < num_probes; ++i) { + // Mask to bit-within-cache-line address + const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1); + if (((data_at_offset[bitpos / 8]) & (1 << (bitpos % 8))) == 0) { + return false; + } + if (ExtraRotates) { + h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits)); + } + h += delta; + } + return true; + } +}; + +} // namespace ROCKSDB_NAMESPACE |