summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/util/bloom_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/rocksdb/util/bloom_impl.h')
-rw-r--r--src/rocksdb/util/bloom_impl.h489
1 files changed, 489 insertions, 0 deletions
diff --git a/src/rocksdb/util/bloom_impl.h b/src/rocksdb/util/bloom_impl.h
new file mode 100644
index 000000000..fadd012d3
--- /dev/null
+++ b/src/rocksdb/util/bloom_impl.h
@@ -0,0 +1,489 @@
+// Copyright (c) 2019-present, Facebook, Inc. All rights reserved.
+// This source code is licensed under both the GPLv2 (found in the
+// COPYING file in the root directory) and Apache 2.0 License
+// (found in the LICENSE.Apache file in the root directory).
+//
+// Implementation details of various Bloom filter implementations used in
+// RocksDB. (DynamicBloom is in a separate file for now because it
+// supports concurrent write.)
+
+#pragma once
+#include <stddef.h>
+#include <stdint.h>
+
+#include <cmath>
+
+#include "port/port.h" // for PREFETCH
+#include "rocksdb/slice.h"
+#include "util/hash.h"
+
+#ifdef HAVE_AVX2
+#include <immintrin.h>
+#endif
+
+namespace ROCKSDB_NAMESPACE {
+
+class BloomMath {
+ public:
+ // False positive rate of a standard Bloom filter, for given ratio of
+ // filter memory bits to added keys, and number of probes per operation.
+ // (The false positive rate is effectively independent of scale, assuming
+ // the implementation scales OK.)
+ static double StandardFpRate(double bits_per_key, int num_probes) {
+ // Standard very-good-estimate formula. See
+ // https://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives
+ return std::pow(1.0 - std::exp(-num_probes / bits_per_key), num_probes);
+ }
+
+ // False positive rate of a "blocked"/"shareded"/"cache-local" Bloom filter,
+ // for given ratio of filter memory bits to added keys, number of probes per
+ // operation (all within the given block or cache line size), and block or
+ // cache line size.
+ static double CacheLocalFpRate(double bits_per_key, int num_probes,
+ int cache_line_bits) {
+ if (bits_per_key <= 0.0) {
+ // Fix a discontinuity
+ return 1.0;
+ }
+ double keys_per_cache_line = cache_line_bits / bits_per_key;
+ // A reasonable estimate is the average of the FP rates for one standard
+ // deviation above and below the mean bucket occupancy. See
+ // https://github.com/facebook/rocksdb/wiki/RocksDB-Bloom-Filter#the-math
+ double keys_stddev = std::sqrt(keys_per_cache_line);
+ double crowded_fp = StandardFpRate(
+ cache_line_bits / (keys_per_cache_line + keys_stddev), num_probes);
+ double uncrowded_fp = StandardFpRate(
+ cache_line_bits / (keys_per_cache_line - keys_stddev), num_probes);
+ return (crowded_fp + uncrowded_fp) / 2;
+ }
+
+ // False positive rate of querying a new item against `num_keys` items, all
+ // hashed to `fingerprint_bits` bits. (This assumes the fingerprint hashes
+ // themselves are stored losslessly. See Section 4 of
+ // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf)
+ static double FingerprintFpRate(size_t num_keys, int fingerprint_bits) {
+ double inv_fingerprint_space = std::pow(0.5, fingerprint_bits);
+ // Base estimate assumes each key maps to a unique fingerprint.
+ // Could be > 1 in extreme cases.
+ double base_estimate = num_keys * inv_fingerprint_space;
+ // To account for potential overlap, we choose between two formulas
+ if (base_estimate > 0.0001) {
+ // A very good formula assuming we don't construct a floating point
+ // number extremely close to 1. Always produces a probability < 1.
+ return 1.0 - std::exp(-base_estimate);
+ } else {
+ // A very good formula when base_estimate is far below 1. (Subtract
+ // away the integral-approximated sum that some key has same hash as
+ // one coming before it in a list.)
+ return base_estimate - (base_estimate * base_estimate * 0.5);
+ }
+ }
+
+ // Returns the probably of either of two independent(-ish) events
+ // happening, given their probabilities. (This is useful for combining
+ // results from StandardFpRate or CacheLocalFpRate with FingerprintFpRate
+ // for a hash-efficient Bloom filter's FP rate. See Section 4 of
+ // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf)
+ static double IndependentProbabilitySum(double rate1, double rate2) {
+ // Use formula that avoids floating point extremely close to 1 if
+ // rates are extremely small.
+ return rate1 + rate2 - (rate1 * rate2);
+ }
+};
+
+// A fast, flexible, and accurate cache-local Bloom implementation with
+// SIMD-optimized query performance (currently using AVX2 on Intel). Write
+// performance and non-SIMD read are very good, benefiting from FastRange32
+// used in place of % and single-cycle multiplication on recent processors.
+//
+// Most other SIMD Bloom implementations sacrifice flexibility and/or
+// accuracy by requiring num_probes to be a power of two and restricting
+// where each probe can occur in a cache line. This implementation sacrifices
+// SIMD-optimization for add (might still be possible, especially with AVX512)
+// in favor of allowing any num_probes, not crossing cache line boundary,
+// and accuracy close to theoretical best accuracy for a cache-local Bloom.
+// E.g. theoretical best for 10 bits/key, num_probes=6, and 512-bit bucket
+// (Intel cache line size) is 0.9535% FP rate. This implementation yields
+// about 0.957%. (Compare to LegacyLocalityBloomImpl<false> at 1.138%, or
+// about 0.951% for 1024-bit buckets, cache line size for some ARM CPUs.)
+//
+// This implementation can use a 32-bit hash (let h2 be h1 * 0x9e3779b9) or
+// a 64-bit hash (split into two uint32s). With many millions of keys, the
+// false positive rate associated with using a 32-bit hash can dominate the
+// false positive rate of the underlying filter. At 10 bits/key setting, the
+// inflection point is about 40 million keys, so 32-bit hash is a bad idea
+// with 10s of millions of keys or more.
+//
+// Despite accepting a 64-bit hash, this implementation uses 32-bit fastrange
+// to pick a cache line, which can be faster than 64-bit in some cases.
+// This only hurts accuracy as you get into 10s of GB for a single filter,
+// and accuracy abruptly breaks down at 256GB (2^32 cache lines). Switch to
+// 64-bit fastrange if you need filters so big. ;)
+//
+// Using only a 32-bit input hash within each cache line has negligible
+// impact for any reasonable cache line / bucket size, for arbitrary filter
+// size, and potentially saves intermediate data size in some cases vs.
+// tracking full 64 bits. (Even in an implementation using 64-bit arithmetic
+// to generate indices, I might do the same, as a single multiplication
+// suffices to generate a sufficiently mixed 64 bits from 32 bits.)
+//
+// This implementation is currently tied to Intel cache line size, 64 bytes ==
+// 512 bits. If there's sufficient demand for other cache line sizes, this is
+// a pretty good implementation to extend, but slight performance enhancements
+// are possible with an alternate implementation (probably not very compatible
+// with SIMD):
+// (1) Use rotation in addition to multiplication for remixing
+// (like murmur hash). (Using multiplication alone *slightly* hurts accuracy
+// because lower bits never depend on original upper bits.)
+// (2) Extract more than one bit index from each re-mix. (Only if rotation
+// or similar is part of remix, because otherwise you're making the
+// multiplication-only problem worse.)
+// (3) Re-mix full 64 bit hash, to get maximum number of bit indices per
+// re-mix.
+//
+class FastLocalBloomImpl {
+ public:
+ // NOTE: this has only been validated to enough accuracy for producing
+ // reasonable warnings / user feedback, not for making functional decisions.
+ static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes,
+ int hash_bits) {
+ return BloomMath::IndependentProbabilitySum(
+ BloomMath::CacheLocalFpRate(8.0 * bytes / keys, num_probes,
+ /*cache line bits*/ 512),
+ BloomMath::FingerprintFpRate(keys, hash_bits));
+ }
+
+ static inline int ChooseNumProbes(int millibits_per_key) {
+ // Since this implementation can (with AVX2) make up to 8 probes
+ // for the same cost, we pick the most accurate num_probes, based
+ // on actual tests of the implementation. Note that for higher
+ // bits/key, the best choice for cache-local Bloom can be notably
+ // smaller than standard bloom, e.g. 9 instead of 11 @ 16 b/k.
+ if (millibits_per_key <= 2080) {
+ return 1;
+ } else if (millibits_per_key <= 3580) {
+ return 2;
+ } else if (millibits_per_key <= 5100) {
+ return 3;
+ } else if (millibits_per_key <= 6640) {
+ return 4;
+ } else if (millibits_per_key <= 8300) {
+ return 5;
+ } else if (millibits_per_key <= 10070) {
+ return 6;
+ } else if (millibits_per_key <= 11720) {
+ return 7;
+ } else if (millibits_per_key <= 14001) {
+ // Would be something like <= 13800 but sacrificing *slightly* for
+ // more settings using <= 8 probes.
+ return 8;
+ } else if (millibits_per_key <= 16050) {
+ return 9;
+ } else if (millibits_per_key <= 18300) {
+ return 10;
+ } else if (millibits_per_key <= 22001) {
+ return 11;
+ } else if (millibits_per_key <= 25501) {
+ return 12;
+ } else if (millibits_per_key > 50000) {
+ // Top out at 24 probes (three sets of 8)
+ return 24;
+ } else {
+ // Roughly optimal choices for remaining range
+ // e.g.
+ // 28000 -> 12, 28001 -> 13
+ // 50000 -> 23, 50001 -> 24
+ return (millibits_per_key - 1) / 2000 - 1;
+ }
+ }
+
+ static inline void AddHash(uint32_t h1, uint32_t h2, uint32_t len_bytes,
+ int num_probes, char *data) {
+ uint32_t bytes_to_cache_line = FastRange32(len_bytes >> 6, h1) << 6;
+ AddHashPrepared(h2, num_probes, data + bytes_to_cache_line);
+ }
+
+ static inline void AddHashPrepared(uint32_t h2, int num_probes,
+ char *data_at_cache_line) {
+ uint32_t h = h2;
+ for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) {
+ // 9-bit address within 512 bit cache line
+ int bitpos = h >> (32 - 9);
+ data_at_cache_line[bitpos >> 3] |= (uint8_t{1} << (bitpos & 7));
+ }
+ }
+
+ static inline void PrepareHash(uint32_t h1, uint32_t len_bytes,
+ const char *data,
+ uint32_t /*out*/ *byte_offset) {
+ uint32_t bytes_to_cache_line = FastRange32(len_bytes >> 6, h1) << 6;
+ PREFETCH(data + bytes_to_cache_line, 0 /* rw */, 1 /* locality */);
+ PREFETCH(data + bytes_to_cache_line + 63, 0 /* rw */, 1 /* locality */);
+ *byte_offset = bytes_to_cache_line;
+ }
+
+ static inline bool HashMayMatch(uint32_t h1, uint32_t h2, uint32_t len_bytes,
+ int num_probes, const char *data) {
+ uint32_t bytes_to_cache_line = FastRange32(len_bytes >> 6, h1) << 6;
+ return HashMayMatchPrepared(h2, num_probes, data + bytes_to_cache_line);
+ }
+
+ static inline bool HashMayMatchPrepared(uint32_t h2, int num_probes,
+ const char *data_at_cache_line) {
+ uint32_t h = h2;
+#ifdef HAVE_AVX2
+ int rem_probes = num_probes;
+
+ // NOTE: For better performance for num_probes in {1, 2, 9, 10, 17, 18,
+ // etc.} one can insert specialized code for rem_probes <= 2, bypassing
+ // the SIMD code in those cases. There is a detectable but minor overhead
+ // applied to other values of num_probes (when not statically determined),
+ // but smoother performance curve vs. num_probes. But for now, when
+ // in doubt, don't add unnecessary code.
+
+ // Powers of 32-bit golden ratio, mod 2**32.
+ const __m256i multipliers =
+ _mm256_setr_epi32(0x00000001, 0x9e3779b9, 0xe35e67b1, 0x734297e9,
+ 0x35fbe861, 0xdeb7c719, 0x448b211, 0x3459b749);
+
+ for (;;) {
+ // Eight copies of hash
+ __m256i hash_vector = _mm256_set1_epi32(h);
+
+ // Same effect as repeated multiplication by 0x9e3779b9 thanks to
+ // associativity of multiplication.
+ hash_vector = _mm256_mullo_epi32(hash_vector, multipliers);
+
+ // Now the top 9 bits of each of the eight 32-bit values in
+ // hash_vector are bit addresses for probes within the cache line.
+ // While the platform-independent code uses byte addressing (6 bits
+ // to pick a byte + 3 bits to pick a bit within a byte), here we work
+ // with 32-bit words (4 bits to pick a word + 5 bits to pick a bit
+ // within a word) because that works well with AVX2 and is equivalent
+ // under little-endian.
+
+ // Shift each right by 28 bits to get 4-bit word addresses.
+ const __m256i word_addresses = _mm256_srli_epi32(hash_vector, 28);
+
+ // Gather 32-bit values spread over 512 bits by 4-bit address. In
+ // essence, we are dereferencing eight pointers within the cache
+ // line.
+ //
+ // Option 1: AVX2 gather (seems to be a little slow - understandable)
+ // const __m256i value_vector =
+ // _mm256_i32gather_epi32(static_cast<const int
+ // *>(data_at_cache_line),
+ // word_addresses,
+ // /*bytes / i32*/ 4);
+ // END Option 1
+ // Potentially unaligned as we're not *always* cache-aligned -> loadu
+ const __m256i *mm_data =
+ reinterpret_cast<const __m256i *>(data_at_cache_line);
+ __m256i lower = _mm256_loadu_si256(mm_data);
+ __m256i upper = _mm256_loadu_si256(mm_data + 1);
+ // Option 2: AVX512VL permute hack
+ // Only negligibly faster than Option 3, so not yet worth supporting
+ // const __m256i value_vector =
+ // _mm256_permutex2var_epi32(lower, word_addresses, upper);
+ // END Option 2
+ // Option 3: AVX2 permute+blend hack
+ // Use lowest three bits to order probing values, as if all from same
+ // 256 bit piece.
+ lower = _mm256_permutevar8x32_epi32(lower, word_addresses);
+ upper = _mm256_permutevar8x32_epi32(upper, word_addresses);
+ // Just top 1 bit of address, to select between lower and upper.
+ const __m256i upper_lower_selector = _mm256_srai_epi32(hash_vector, 31);
+ // Finally: the next 8 probed 32-bit values, in probing sequence order.
+ const __m256i value_vector =
+ _mm256_blendv_epi8(lower, upper, upper_lower_selector);
+ // END Option 3
+
+ // We might not need to probe all 8, so build a mask for selecting only
+ // what we need. (The k_selector(s) could be pre-computed but that
+ // doesn't seem to make a noticeable performance difference.)
+ const __m256i zero_to_seven = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
+ // Subtract rem_probes from each of those constants
+ __m256i k_selector =
+ _mm256_sub_epi32(zero_to_seven, _mm256_set1_epi32(rem_probes));
+ // Negative after subtract -> use/select
+ // Keep only high bit (logical shift right each by 31).
+ k_selector = _mm256_srli_epi32(k_selector, 31);
+
+ // Strip off the 4 bit word address (shift left)
+ __m256i bit_addresses = _mm256_slli_epi32(hash_vector, 4);
+ // And keep only 5-bit (32 - 27) bit-within-32-bit-word addresses.
+ bit_addresses = _mm256_srli_epi32(bit_addresses, 27);
+ // Build a bit mask
+ const __m256i bit_mask = _mm256_sllv_epi32(k_selector, bit_addresses);
+
+ // Like ((~value_vector) & bit_mask) == 0)
+ bool match = _mm256_testc_si256(value_vector, bit_mask) != 0;
+
+ // This check first so that it's easy for branch predictor to optimize
+ // num_probes <= 8 case, making it free of unpredictable branches.
+ if (rem_probes <= 8) {
+ return match;
+ } else if (!match) {
+ return false;
+ }
+ // otherwise
+ // Need another iteration. 0xab25f4c1 == golden ratio to the 8th power
+ h *= 0xab25f4c1;
+ rem_probes -= 8;
+ }
+#else
+ for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) {
+ // 9-bit address within 512 bit cache line
+ int bitpos = h >> (32 - 9);
+ if ((data_at_cache_line[bitpos >> 3] & (char(1) << (bitpos & 7))) == 0) {
+ return false;
+ }
+ }
+ return true;
+#endif
+ }
+};
+
+// A legacy Bloom filter implementation with no locality of probes (slow).
+// It uses double hashing to generate a sequence of hash values.
+// Asymptotic analysis is in [Kirsch,Mitzenmacher 2006], but known to have
+// subtle accuracy flaws for practical sizes [Dillinger,Manolios 2004].
+//
+// DO NOT REUSE
+//
+class LegacyNoLocalityBloomImpl {
+ public:
+ static inline int ChooseNumProbes(int bits_per_key) {
+ // We intentionally round down to reduce probing cost a little bit
+ int num_probes = static_cast<int>(bits_per_key * 0.69); // 0.69 =~ ln(2)
+ if (num_probes < 1) num_probes = 1;
+ if (num_probes > 30) num_probes = 30;
+ return num_probes;
+ }
+
+ static inline void AddHash(uint32_t h, uint32_t total_bits, int num_probes,
+ char *data) {
+ const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
+ for (int i = 0; i < num_probes; i++) {
+ const uint32_t bitpos = h % total_bits;
+ data[bitpos / 8] |= (1 << (bitpos % 8));
+ h += delta;
+ }
+ }
+
+ static inline bool HashMayMatch(uint32_t h, uint32_t total_bits,
+ int num_probes, const char *data) {
+ const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
+ for (int i = 0; i < num_probes; i++) {
+ const uint32_t bitpos = h % total_bits;
+ if ((data[bitpos / 8] & (1 << (bitpos % 8))) == 0) {
+ return false;
+ }
+ h += delta;
+ }
+ return true;
+ }
+};
+
+// A legacy Bloom filter implementation with probes local to a single
+// cache line (fast). Because SST files might be transported between
+// platforms, the cache line size is a parameter rather than hard coded.
+// (But if specified as a constant parameter, an optimizing compiler
+// should take advantage of that.)
+//
+// When ExtraRotates is false, this implementation is notably deficient in
+// accuracy. Specifically, it uses double hashing with a 1/512 chance of the
+// increment being zero (when cache line size is 512 bits). Thus, there's a
+// 1/512 chance of probing only one index, which we'd expect to incur about
+// a 1/2 * 1/512 or absolute 0.1% FP rate penalty. More detail at
+// https://github.com/facebook/rocksdb/issues/4120
+//
+// DO NOT REUSE
+//
+template <bool ExtraRotates>
+class LegacyLocalityBloomImpl {
+ private:
+ static inline uint32_t GetLine(uint32_t h, uint32_t num_lines) {
+ uint32_t offset_h = ExtraRotates ? (h >> 11) | (h << 21) : h;
+ return offset_h % num_lines;
+ }
+
+ public:
+ // NOTE: this has only been validated to enough accuracy for producing
+ // reasonable warnings / user feedback, not for making functional decisions.
+ static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes) {
+ double bits_per_key = 8.0 * bytes / keys;
+ double filter_rate = BloomMath::CacheLocalFpRate(bits_per_key, num_probes,
+ /*cache line bits*/ 512);
+ if (!ExtraRotates) {
+ // Good estimate of impact of flaw in index computation.
+ // Adds roughly 0.002 around 50 bits/key and 0.001 around 100 bits/key.
+ // The + 22 shifts it nicely to fit for lower bits/key.
+ filter_rate += 0.1 / (bits_per_key * 0.75 + 22);
+ } else {
+ // Not yet validated
+ assert(false);
+ }
+ // Always uses 32-bit hash
+ double fingerprint_rate = BloomMath::FingerprintFpRate(keys, 32);
+ return BloomMath::IndependentProbabilitySum(filter_rate, fingerprint_rate);
+ }
+
+ static inline void AddHash(uint32_t h, uint32_t num_lines, int num_probes,
+ char *data, int log2_cache_line_bytes) {
+ const int log2_cache_line_bits = log2_cache_line_bytes + 3;
+
+ char *data_at_offset =
+ data + (GetLine(h, num_lines) << log2_cache_line_bytes);
+ const uint32_t delta = (h >> 17) | (h << 15);
+ for (int i = 0; i < num_probes; ++i) {
+ // Mask to bit-within-cache-line address
+ const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1);
+ data_at_offset[bitpos / 8] |= (1 << (bitpos % 8));
+ if (ExtraRotates) {
+ h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits));
+ }
+ h += delta;
+ }
+ }
+
+ static inline void PrepareHashMayMatch(uint32_t h, uint32_t num_lines,
+ const char *data,
+ uint32_t /*out*/ *byte_offset,
+ int log2_cache_line_bytes) {
+ uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes;
+ PREFETCH(data + b, 0 /* rw */, 1 /* locality */);
+ PREFETCH(data + b + ((1 << log2_cache_line_bytes) - 1), 0 /* rw */,
+ 1 /* locality */);
+ *byte_offset = b;
+ }
+
+ static inline bool HashMayMatch(uint32_t h, uint32_t num_lines,
+ int num_probes, const char *data,
+ int log2_cache_line_bytes) {
+ uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes;
+ return HashMayMatchPrepared(h, num_probes, data + b, log2_cache_line_bytes);
+ }
+
+ static inline bool HashMayMatchPrepared(uint32_t h, int num_probes,
+ const char *data_at_offset,
+ int log2_cache_line_bytes) {
+ const int log2_cache_line_bits = log2_cache_line_bytes + 3;
+
+ const uint32_t delta = (h >> 17) | (h << 15);
+ for (int i = 0; i < num_probes; ++i) {
+ // Mask to bit-within-cache-line address
+ const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1);
+ if (((data_at_offset[bitpos / 8]) & (1 << (bitpos % 8))) == 0) {
+ return false;
+ }
+ if (ExtraRotates) {
+ h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits));
+ }
+ h += delta;
+ }
+ return true;
+ }
+};
+
+} // namespace ROCKSDB_NAMESPACE