summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/util/ribbon_test.cc
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/rocksdb/util/ribbon_test.cc1308
1 files changed, 1308 insertions, 0 deletions
diff --git a/src/rocksdb/util/ribbon_test.cc b/src/rocksdb/util/ribbon_test.cc
new file mode 100644
index 000000000..6519df3d5
--- /dev/null
+++ b/src/rocksdb/util/ribbon_test.cc
@@ -0,0 +1,1308 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+// This source code is licensed under both the GPLv2 (found in the
+// COPYING file in the root directory) and Apache 2.0 License
+// (found in the LICENSE.Apache file in the root directory).
+
+#include "rocksdb/system_clock.h"
+#include "test_util/testharness.h"
+#include "util/bloom_impl.h"
+#include "util/coding.h"
+#include "util/hash.h"
+#include "util/ribbon_config.h"
+#include "util/ribbon_impl.h"
+#include "util/stop_watch.h"
+#include "util/string_util.h"
+
+#ifndef GFLAGS
+uint32_t FLAGS_thoroughness = 5;
+uint32_t FLAGS_max_add = 0;
+uint32_t FLAGS_min_check = 4000;
+uint32_t FLAGS_max_check = 100000;
+bool FLAGS_verbose = false;
+
+bool FLAGS_find_occ = false;
+bool FLAGS_find_slot_occ = false;
+double FLAGS_find_next_factor = 1.618;
+uint32_t FLAGS_find_iters = 10000;
+uint32_t FLAGS_find_min_slots = 128;
+uint32_t FLAGS_find_max_slots = 1000000;
+
+bool FLAGS_optimize_homog = false;
+uint32_t FLAGS_optimize_homog_slots = 30000000;
+uint32_t FLAGS_optimize_homog_check = 200000;
+double FLAGS_optimize_homog_granularity = 0.002;
+#else
+#include "util/gflags_compat.h"
+using GFLAGS_NAMESPACE::ParseCommandLineFlags;
+// Using 500 is a good test when you have time to be thorough.
+// Default is for general RocksDB regression test runs.
+DEFINE_uint32(thoroughness, 5, "iterations per configuration");
+DEFINE_uint32(max_add, 0,
+ "Add up to this number of entries to a single filter in "
+ "CompactnessAndBacktrackAndFpRate; 0 == reasonable default");
+DEFINE_uint32(min_check, 4000,
+ "Minimum number of novel entries for testing FP rate");
+DEFINE_uint32(max_check, 10000,
+ "Maximum number of novel entries for testing FP rate");
+DEFINE_bool(verbose, false, "Print extra details");
+
+// Options for FindOccupancy, which is more of a tool than a test.
+DEFINE_bool(find_occ, false, "whether to run the FindOccupancy tool");
+DEFINE_bool(find_slot_occ, false,
+ "whether to show individual slot occupancies with "
+ "FindOccupancy tool");
+DEFINE_double(find_next_factor, 1.618,
+ "factor to next num_slots for FindOccupancy");
+DEFINE_uint32(find_iters, 10000, "number of samples for FindOccupancy");
+DEFINE_uint32(find_min_slots, 128, "number of slots for FindOccupancy");
+DEFINE_uint32(find_max_slots, 1000000, "number of slots for FindOccupancy");
+
+// Options for OptimizeHomogAtScale, which is more of a tool than a test.
+DEFINE_bool(optimize_homog, false,
+ "whether to run the OptimizeHomogAtScale tool");
+DEFINE_uint32(optimize_homog_slots, 30000000,
+ "number of slots for OptimizeHomogAtScale");
+DEFINE_uint32(optimize_homog_check, 200000,
+ "number of queries for checking FP rate in OptimizeHomogAtScale");
+DEFINE_double(
+ optimize_homog_granularity, 0.002,
+ "overhead change between FP rate checking in OptimizeHomogAtScale");
+
+#endif // GFLAGS
+
+template <typename TypesAndSettings>
+class RibbonTypeParamTest : public ::testing::Test {};
+
+class RibbonTest : public ::testing::Test {};
+
+namespace {
+
+// Different ways of generating keys for testing
+
+// Generate semi-sequential keys
+struct StandardKeyGen {
+ StandardKeyGen(const std::string& prefix, uint64_t id)
+ : id_(id), str_(prefix) {
+ ROCKSDB_NAMESPACE::PutFixed64(&str_, /*placeholder*/ 0);
+ }
+
+ // Prefix (only one required)
+ StandardKeyGen& operator++() {
+ ++id_;
+ return *this;
+ }
+
+ StandardKeyGen& operator+=(uint64_t i) {
+ id_ += i;
+ return *this;
+ }
+
+ const std::string& operator*() {
+ // Use multiplication to mix things up a little in the key
+ ROCKSDB_NAMESPACE::EncodeFixed64(&str_[str_.size() - 8],
+ id_ * uint64_t{0x1500000001});
+ return str_;
+ }
+
+ bool operator==(const StandardKeyGen& other) {
+ // Same prefix is assumed
+ return id_ == other.id_;
+ }
+ bool operator!=(const StandardKeyGen& other) {
+ // Same prefix is assumed
+ return id_ != other.id_;
+ }
+
+ uint64_t id_;
+ std::string str_;
+};
+
+// Generate small sequential keys, that can misbehave with sequential seeds
+// as in https://github.com/Cyan4973/xxHash/issues/469.
+// These keys are only heuristically unique, but that's OK with 64 bits,
+// for testing purposes.
+struct SmallKeyGen {
+ SmallKeyGen(const std::string& prefix, uint64_t id) : id_(id) {
+ // Hash the prefix for a heuristically unique offset
+ id_ += ROCKSDB_NAMESPACE::GetSliceHash64(prefix);
+ ROCKSDB_NAMESPACE::PutFixed64(&str_, id_);
+ }
+
+ // Prefix (only one required)
+ SmallKeyGen& operator++() {
+ ++id_;
+ return *this;
+ }
+
+ SmallKeyGen& operator+=(uint64_t i) {
+ id_ += i;
+ return *this;
+ }
+
+ const std::string& operator*() {
+ ROCKSDB_NAMESPACE::EncodeFixed64(&str_[str_.size() - 8], id_);
+ return str_;
+ }
+
+ bool operator==(const SmallKeyGen& other) { return id_ == other.id_; }
+ bool operator!=(const SmallKeyGen& other) { return id_ != other.id_; }
+
+ uint64_t id_;
+ std::string str_;
+};
+
+template <typename KeyGen>
+struct Hash32KeyGenWrapper : public KeyGen {
+ Hash32KeyGenWrapper(const std::string& prefix, uint64_t id)
+ : KeyGen(prefix, id) {}
+ uint32_t operator*() {
+ auto& key = *static_cast<KeyGen&>(*this);
+ // unseeded
+ return ROCKSDB_NAMESPACE::GetSliceHash(key);
+ }
+};
+
+template <typename KeyGen>
+struct Hash64KeyGenWrapper : public KeyGen {
+ Hash64KeyGenWrapper(const std::string& prefix, uint64_t id)
+ : KeyGen(prefix, id) {}
+ uint64_t operator*() {
+ auto& key = *static_cast<KeyGen&>(*this);
+ // unseeded
+ return ROCKSDB_NAMESPACE::GetSliceHash64(key);
+ }
+};
+
+using ROCKSDB_NAMESPACE::ribbon::ConstructionFailureChance;
+
+const std::vector<ConstructionFailureChance> kFailureOnly50Pct = {
+ ROCKSDB_NAMESPACE::ribbon::kOneIn2};
+
+const std::vector<ConstructionFailureChance> kFailureOnlyRare = {
+ ROCKSDB_NAMESPACE::ribbon::kOneIn1000};
+
+const std::vector<ConstructionFailureChance> kFailureAll = {
+ ROCKSDB_NAMESPACE::ribbon::kOneIn2, ROCKSDB_NAMESPACE::ribbon::kOneIn20,
+ ROCKSDB_NAMESPACE::ribbon::kOneIn1000};
+
+} // namespace
+
+using ROCKSDB_NAMESPACE::ribbon::ExpectedCollisionFpRate;
+using ROCKSDB_NAMESPACE::ribbon::StandardHasher;
+using ROCKSDB_NAMESPACE::ribbon::StandardRehasherAdapter;
+
+struct DefaultTypesAndSettings {
+ using CoeffRow = ROCKSDB_NAMESPACE::Unsigned128;
+ using ResultRow = uint8_t;
+ using Index = uint32_t;
+ using Hash = uint64_t;
+ using Seed = uint32_t;
+ using Key = ROCKSDB_NAMESPACE::Slice;
+ static constexpr bool kIsFilter = true;
+ static constexpr bool kHomogeneous = false;
+ static constexpr bool kFirstCoeffAlwaysOne = true;
+ static constexpr bool kUseSmash = false;
+ static constexpr bool kAllowZeroStarts = false;
+ static Hash HashFn(const Key& key, uint64_t raw_seed) {
+ // This version 0.7.2 preview of XXH3 (a.k.a. XXPH3) function does
+ // not pass SmallKeyGen tests below without some seed premixing from
+ // StandardHasher. See https://github.com/Cyan4973/xxHash/issues/469
+ return ROCKSDB_NAMESPACE::Hash64(key.data(), key.size(), raw_seed);
+ }
+ // For testing
+ using KeyGen = StandardKeyGen;
+ static const std::vector<ConstructionFailureChance>& FailureChanceToTest() {
+ return kFailureAll;
+ }
+};
+
+using TypesAndSettings_Coeff128 = DefaultTypesAndSettings;
+struct TypesAndSettings_Coeff128Smash : public DefaultTypesAndSettings {
+ static constexpr bool kUseSmash = true;
+};
+struct TypesAndSettings_Coeff64 : public DefaultTypesAndSettings {
+ using CoeffRow = uint64_t;
+};
+struct TypesAndSettings_Coeff64Smash : public TypesAndSettings_Coeff64 {
+ static constexpr bool kUseSmash = true;
+};
+struct TypesAndSettings_Coeff64Smash0 : public TypesAndSettings_Coeff64Smash {
+ static constexpr bool kFirstCoeffAlwaysOne = false;
+};
+
+// Homogeneous Ribbon configurations
+struct TypesAndSettings_Coeff128_Homog : public DefaultTypesAndSettings {
+ static constexpr bool kHomogeneous = true;
+ // Since our best construction success setting still has 1/1000 failure
+ // rate, the best FP rate we test is 1/256
+ using ResultRow = uint8_t;
+ // Homogeneous only makes sense with sufficient slots for equivalent of
+ // almost sure construction success
+ static const std::vector<ConstructionFailureChance>& FailureChanceToTest() {
+ return kFailureOnlyRare;
+ }
+};
+struct TypesAndSettings_Coeff128Smash_Homog
+ : public TypesAndSettings_Coeff128_Homog {
+ // Smash (extra time to save space) + Homog (extra space to save time)
+ // doesn't make much sense in practice, but we minimally test it
+ static constexpr bool kUseSmash = true;
+};
+struct TypesAndSettings_Coeff64_Homog : public TypesAndSettings_Coeff128_Homog {
+ using CoeffRow = uint64_t;
+};
+struct TypesAndSettings_Coeff64Smash_Homog
+ : public TypesAndSettings_Coeff64_Homog {
+ // Smash (extra time to save space) + Homog (extra space to save time)
+ // doesn't make much sense in practice, but we minimally test it
+ static constexpr bool kUseSmash = true;
+};
+
+// Less exhaustive mix of coverage, but still covering the most stressful case
+// (only 50% construction success)
+struct AbridgedTypesAndSettings : public DefaultTypesAndSettings {
+ static const std::vector<ConstructionFailureChance>& FailureChanceToTest() {
+ return kFailureOnly50Pct;
+ }
+};
+struct TypesAndSettings_Result16 : public AbridgedTypesAndSettings {
+ using ResultRow = uint16_t;
+};
+struct TypesAndSettings_Result32 : public AbridgedTypesAndSettings {
+ using ResultRow = uint32_t;
+};
+struct TypesAndSettings_IndexSizeT : public AbridgedTypesAndSettings {
+ using Index = size_t;
+};
+struct TypesAndSettings_Hash32 : public AbridgedTypesAndSettings {
+ using Hash = uint32_t;
+ static Hash HashFn(const Key& key, Hash raw_seed) {
+ // This MurmurHash1 function does not pass tests below without the
+ // seed premixing from StandardHasher. In fact, it needs more than
+ // just a multiplication mixer on the ordinal seed.
+ return ROCKSDB_NAMESPACE::Hash(key.data(), key.size(), raw_seed);
+ }
+};
+struct TypesAndSettings_Hash32_Result16 : public AbridgedTypesAndSettings {
+ using ResultRow = uint16_t;
+};
+struct TypesAndSettings_KeyString : public AbridgedTypesAndSettings {
+ using Key = std::string;
+};
+struct TypesAndSettings_Seed8 : public AbridgedTypesAndSettings {
+ // This is not a generally recommended configuration. With the configured
+ // hash function, it would fail with SmallKeyGen due to insufficient
+ // independence among the seeds.
+ using Seed = uint8_t;
+};
+struct TypesAndSettings_NoAlwaysOne : public AbridgedTypesAndSettings {
+ static constexpr bool kFirstCoeffAlwaysOne = false;
+};
+struct TypesAndSettings_AllowZeroStarts : public AbridgedTypesAndSettings {
+ static constexpr bool kAllowZeroStarts = true;
+};
+struct TypesAndSettings_Seed64 : public AbridgedTypesAndSettings {
+ using Seed = uint64_t;
+};
+struct TypesAndSettings_Rehasher
+ : public StandardRehasherAdapter<AbridgedTypesAndSettings> {
+ using KeyGen = Hash64KeyGenWrapper<StandardKeyGen>;
+};
+struct TypesAndSettings_Rehasher_Result16 : public TypesAndSettings_Rehasher {
+ using ResultRow = uint16_t;
+};
+struct TypesAndSettings_Rehasher_Result32 : public TypesAndSettings_Rehasher {
+ using ResultRow = uint32_t;
+};
+struct TypesAndSettings_Rehasher_Seed64
+ : public StandardRehasherAdapter<TypesAndSettings_Seed64> {
+ using KeyGen = Hash64KeyGenWrapper<StandardKeyGen>;
+ // Note: 64-bit seed with Rehasher gives slightly better average reseeds
+};
+struct TypesAndSettings_Rehasher32
+ : public StandardRehasherAdapter<TypesAndSettings_Hash32> {
+ using KeyGen = Hash32KeyGenWrapper<StandardKeyGen>;
+};
+struct TypesAndSettings_Rehasher32_Coeff64
+ : public TypesAndSettings_Rehasher32 {
+ using CoeffRow = uint64_t;
+};
+struct TypesAndSettings_SmallKeyGen : public AbridgedTypesAndSettings {
+ // SmallKeyGen stresses the independence of different hash seeds
+ using KeyGen = SmallKeyGen;
+};
+struct TypesAndSettings_Hash32_SmallKeyGen : public TypesAndSettings_Hash32 {
+ // SmallKeyGen stresses the independence of different hash seeds
+ using KeyGen = SmallKeyGen;
+};
+struct TypesAndSettings_Coeff32 : public DefaultTypesAndSettings {
+ using CoeffRow = uint32_t;
+};
+struct TypesAndSettings_Coeff32Smash : public TypesAndSettings_Coeff32 {
+ static constexpr bool kUseSmash = true;
+};
+struct TypesAndSettings_Coeff16 : public DefaultTypesAndSettings {
+ using CoeffRow = uint16_t;
+};
+struct TypesAndSettings_Coeff16Smash : public TypesAndSettings_Coeff16 {
+ static constexpr bool kUseSmash = true;
+};
+
+using TestTypesAndSettings = ::testing::Types<
+ TypesAndSettings_Coeff128, TypesAndSettings_Coeff128Smash,
+ TypesAndSettings_Coeff64, TypesAndSettings_Coeff64Smash,
+ TypesAndSettings_Coeff64Smash0, TypesAndSettings_Coeff128_Homog,
+ TypesAndSettings_Coeff128Smash_Homog, TypesAndSettings_Coeff64_Homog,
+ TypesAndSettings_Coeff64Smash_Homog, TypesAndSettings_Result16,
+ TypesAndSettings_Result32, TypesAndSettings_IndexSizeT,
+ TypesAndSettings_Hash32, TypesAndSettings_Hash32_Result16,
+ TypesAndSettings_KeyString, TypesAndSettings_Seed8,
+ TypesAndSettings_NoAlwaysOne, TypesAndSettings_AllowZeroStarts,
+ TypesAndSettings_Seed64, TypesAndSettings_Rehasher,
+ TypesAndSettings_Rehasher_Result16, TypesAndSettings_Rehasher_Result32,
+ TypesAndSettings_Rehasher_Seed64, TypesAndSettings_Rehasher32,
+ TypesAndSettings_Rehasher32_Coeff64, TypesAndSettings_SmallKeyGen,
+ TypesAndSettings_Hash32_SmallKeyGen, TypesAndSettings_Coeff32,
+ TypesAndSettings_Coeff32Smash, TypesAndSettings_Coeff16,
+ TypesAndSettings_Coeff16Smash>;
+TYPED_TEST_CASE(RibbonTypeParamTest, TestTypesAndSettings);
+
+namespace {
+
+// For testing Poisson-distributed (or similar) statistics, get value for
+// `stddevs_allowed` standard deviations above expected mean
+// `expected_count`.
+// (Poisson approximates Binomial only if probability of a trial being
+// in the count is low.)
+uint64_t PoissonUpperBound(double expected_count, double stddevs_allowed) {
+ return static_cast<uint64_t>(
+ expected_count + stddevs_allowed * std::sqrt(expected_count) + 1.0);
+}
+
+uint64_t PoissonLowerBound(double expected_count, double stddevs_allowed) {
+ return static_cast<uint64_t>(std::max(
+ 0.0, expected_count - stddevs_allowed * std::sqrt(expected_count)));
+}
+
+uint64_t FrequentPoissonUpperBound(double expected_count) {
+ // Allow up to 5.0 standard deviations for frequently checked statistics
+ return PoissonUpperBound(expected_count, 5.0);
+}
+
+uint64_t FrequentPoissonLowerBound(double expected_count) {
+ return PoissonLowerBound(expected_count, 5.0);
+}
+
+uint64_t InfrequentPoissonUpperBound(double expected_count) {
+ // Allow up to 3 standard deviations for infrequently checked statistics
+ return PoissonUpperBound(expected_count, 3.0);
+}
+
+uint64_t InfrequentPoissonLowerBound(double expected_count) {
+ return PoissonLowerBound(expected_count, 3.0);
+}
+
+} // namespace
+
+TYPED_TEST(RibbonTypeParamTest, CompactnessAndBacktrackAndFpRate) {
+ IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam);
+ IMPORT_RIBBON_IMPL_TYPES(TypeParam);
+ using KeyGen = typename TypeParam::KeyGen;
+ using ConfigHelper =
+ ROCKSDB_NAMESPACE::ribbon::BandingConfigHelper<TypeParam>;
+
+ if (sizeof(CoeffRow) < 8) {
+ ROCKSDB_GTEST_BYPASS("Not fully supported");
+ return;
+ }
+
+ const auto log2_thoroughness =
+ static_cast<uint32_t>(ROCKSDB_NAMESPACE::FloorLog2(FLAGS_thoroughness));
+
+ // We are going to choose num_to_add using an exponential distribution,
+ // so that we have good representation of small-to-medium filters.
+ // Here we just pick some reasonable, practical upper bound based on
+ // kCoeffBits or option.
+ const double log_max_add = std::log(
+ FLAGS_max_add > 0 ? FLAGS_max_add
+ : static_cast<uint32_t>(kCoeffBits * kCoeffBits) *
+ std::max(FLAGS_thoroughness, uint32_t{32}));
+
+ // This needs to be enough below the minimum number of slots to get a
+ // reasonable number of samples with the minimum number of slots.
+ const double log_min_add = std::log(0.66 * SimpleSoln::RoundUpNumSlots(1));
+
+ ASSERT_GT(log_max_add, log_min_add);
+
+ const double diff_log_add = log_max_add - log_min_add;
+
+ for (ConstructionFailureChance cs : TypeParam::FailureChanceToTest()) {
+ double expected_reseeds;
+ switch (cs) {
+ default:
+ assert(false);
+ FALLTHROUGH_INTENDED;
+ case ROCKSDB_NAMESPACE::ribbon::kOneIn2:
+ fprintf(stderr, "== Failure: 50 percent\n");
+ expected_reseeds = 1.0;
+ break;
+ case ROCKSDB_NAMESPACE::ribbon::kOneIn20:
+ fprintf(stderr, "== Failure: 95 percent\n");
+ expected_reseeds = 0.053;
+ break;
+ case ROCKSDB_NAMESPACE::ribbon::kOneIn1000:
+ fprintf(stderr, "== Failure: 1/1000\n");
+ expected_reseeds = 0.001;
+ break;
+ }
+
+ uint64_t total_reseeds = 0;
+ uint64_t total_singles = 0;
+ uint64_t total_single_failures = 0;
+ uint64_t total_batch = 0;
+ uint64_t total_batch_successes = 0;
+ uint64_t total_fp_count = 0;
+ uint64_t total_added = 0;
+ uint64_t total_expand_trials = 0;
+ uint64_t total_expand_failures = 0;
+ double total_expand_overhead = 0.0;
+
+ uint64_t soln_query_nanos = 0;
+ uint64_t soln_query_count = 0;
+ uint64_t bloom_query_nanos = 0;
+ uint64_t isoln_query_nanos = 0;
+ uint64_t isoln_query_count = 0;
+
+ // Take different samples if you change thoroughness
+ ROCKSDB_NAMESPACE::Random32 rnd(FLAGS_thoroughness);
+
+ for (uint32_t i = 0; i < FLAGS_thoroughness; ++i) {
+ // We are going to choose num_to_add using an exponential distribution
+ // as noted above, but instead of randomly choosing them, we generate
+ // samples linearly using the golden ratio, which ensures a nice spread
+ // even for a small number of samples, and starting with the minimum
+ // number of slots to ensure it is tested.
+ double log_add =
+ std::fmod(0.6180339887498948482 * diff_log_add * i, diff_log_add) +
+ log_min_add;
+ uint32_t num_to_add = static_cast<uint32_t>(std::exp(log_add));
+
+ // Most of the time, test the Interleaved solution storage, but when
+ // we do we have to make num_slots a multiple of kCoeffBits. So
+ // sometimes we want to test without that limitation.
+ bool test_interleaved = (i % 7) != 6;
+
+ // Compute num_slots, and re-adjust num_to_add to get as close as possible
+ // to next num_slots, to stress that num_slots in terms of construction
+ // success. Ensure at least one iteration:
+ Index num_slots = Index{0} - 1;
+ --num_to_add;
+ for (;;) {
+ Index next_num_slots = SimpleSoln::RoundUpNumSlots(
+ ConfigHelper::GetNumSlots(num_to_add + 1, cs));
+ if (test_interleaved) {
+ next_num_slots = InterleavedSoln::RoundUpNumSlots(next_num_slots);
+ // assert idempotent
+ EXPECT_EQ(next_num_slots,
+ InterleavedSoln::RoundUpNumSlots(next_num_slots));
+ }
+ // assert idempotent with InterleavedSoln::RoundUpNumSlots
+ EXPECT_EQ(next_num_slots, SimpleSoln::RoundUpNumSlots(next_num_slots));
+
+ if (next_num_slots > num_slots) {
+ break;
+ }
+ num_slots = next_num_slots;
+ ++num_to_add;
+ }
+ assert(num_slots < Index{0} - 1);
+
+ total_added += num_to_add;
+
+ std::string prefix;
+ ROCKSDB_NAMESPACE::PutFixed32(&prefix, rnd.Next());
+
+ // Batch that must be added
+ std::string added_str = prefix + "added";
+ KeyGen keys_begin(added_str, 0);
+ KeyGen keys_end(added_str, num_to_add);
+
+ // A couple more that will probably be added
+ KeyGen one_more(prefix + "more", 1);
+ KeyGen two_more(prefix + "more", 2);
+
+ // Batch that may or may not be added
+ uint32_t batch_size =
+ static_cast<uint32_t>(2.0 * std::sqrt(num_slots - num_to_add));
+ if (batch_size < 10U) {
+ batch_size = 0;
+ }
+ std::string batch_str = prefix + "batch";
+ KeyGen batch_begin(batch_str, 0);
+ KeyGen batch_end(batch_str, batch_size);
+
+ // Batch never (successfully) added, but used for querying FP rate
+ std::string not_str = prefix + "not";
+ KeyGen other_keys_begin(not_str, 0);
+ KeyGen other_keys_end(not_str, FLAGS_max_check);
+
+ double overhead_ratio = 1.0 * num_slots / num_to_add;
+ if (FLAGS_verbose) {
+ fprintf(stderr, "Adding(%s) %u / %u Overhead: %g Batch size: %u\n",
+ test_interleaved ? "i" : "s", (unsigned)num_to_add,
+ (unsigned)num_slots, overhead_ratio, (unsigned)batch_size);
+ }
+
+ // Vary bytes for InterleavedSoln to use number of solution columns
+ // from 0 to max allowed by ResultRow type (and used by SimpleSoln).
+ // Specifically include 0 and max, and otherwise skew toward max.
+ uint32_t max_ibytes =
+ static_cast<uint32_t>(sizeof(ResultRow) * num_slots);
+ size_t ibytes;
+ if (i == 0) {
+ ibytes = 0;
+ } else if (i == 1) {
+ ibytes = max_ibytes;
+ } else {
+ // Skewed
+ ibytes =
+ std::max(rnd.Uniformish(max_ibytes), rnd.Uniformish(max_ibytes));
+ }
+ std::unique_ptr<char[]> idata(new char[ibytes]);
+ InterleavedSoln isoln(idata.get(), ibytes);
+
+ SimpleSoln soln;
+ Hasher hasher;
+ bool first_single;
+ bool second_single;
+ bool batch_success;
+ {
+ Banding banding;
+ // Traditional solve for a fixed set.
+ ASSERT_TRUE(
+ banding.ResetAndFindSeedToSolve(num_slots, keys_begin, keys_end));
+
+ Index occupied_count = banding.GetOccupiedCount();
+ Index more_added = 0;
+
+ if (TypeParam::kHomogeneous || overhead_ratio < 1.01 ||
+ batch_size == 0) {
+ // Homogeneous not compatible with backtracking because add
+ // doesn't fail. Small overhead ratio too packed to expect more
+ first_single = false;
+ second_single = false;
+ batch_success = false;
+ } else {
+ // Now to test backtracking, starting with guaranteed fail. By using
+ // the keys that will be used to test FP rate, we are then doing an
+ // extra check that after backtracking there are no remnants (e.g. in
+ // result side of banding) of these entries.
+ KeyGen other_keys_too_big_end = other_keys_begin;
+ other_keys_too_big_end += num_to_add;
+ banding.EnsureBacktrackSize(std::max(num_to_add, batch_size));
+ EXPECT_FALSE(banding.AddRangeOrRollBack(other_keys_begin,
+ other_keys_too_big_end));
+ EXPECT_EQ(occupied_count, banding.GetOccupiedCount());
+
+ // Check that we still have a good chance of adding a couple more
+ // individually
+ first_single = banding.Add(*one_more);
+ second_single = banding.Add(*two_more);
+ more_added += (first_single ? 1 : 0) + (second_single ? 1 : 0);
+ total_singles += 2U;
+ total_single_failures += 2U - more_added;
+
+ // Or as a batch
+ batch_success = banding.AddRangeOrRollBack(batch_begin, batch_end);
+ ++total_batch;
+ if (batch_success) {
+ more_added += batch_size;
+ ++total_batch_successes;
+ }
+ EXPECT_LE(banding.GetOccupiedCount(), occupied_count + more_added);
+ }
+
+ // Also verify that redundant adds are OK (no effect)
+ ASSERT_TRUE(
+ banding.AddRange(keys_begin, KeyGen(added_str, num_to_add / 8)));
+ EXPECT_LE(banding.GetOccupiedCount(), occupied_count + more_added);
+
+ // Now back-substitution
+ soln.BackSubstFrom(banding);
+ if (test_interleaved) {
+ isoln.BackSubstFrom(banding);
+ }
+
+ Seed reseeds = banding.GetOrdinalSeed();
+ total_reseeds += reseeds;
+
+ EXPECT_LE(reseeds, 8 + log2_thoroughness);
+ if (reseeds > log2_thoroughness + 1) {
+ fprintf(
+ stderr, "%s high reseeds at %u, %u/%u: %u\n",
+ reseeds > log2_thoroughness + 8 ? "ERROR Extremely" : "Somewhat",
+ static_cast<unsigned>(i), static_cast<unsigned>(num_to_add),
+ static_cast<unsigned>(num_slots), static_cast<unsigned>(reseeds));
+ }
+
+ if (reseeds > 0) {
+ // "Expand" test: given a failed construction, how likely is it to
+ // pass with same seed and more slots. At each step, we increase
+ // enough to ensure there is at least one shift within each coeff
+ // block.
+ ++total_expand_trials;
+ Index expand_count = 0;
+ Index ex_slots = num_slots;
+ banding.SetOrdinalSeed(0);
+ for (;; ++expand_count) {
+ ASSERT_LE(expand_count, log2_thoroughness);
+ ex_slots += ex_slots / kCoeffBits;
+ if (test_interleaved) {
+ ex_slots = InterleavedSoln::RoundUpNumSlots(ex_slots);
+ }
+ banding.Reset(ex_slots);
+ bool success = banding.AddRange(keys_begin, keys_end);
+ if (success) {
+ break;
+ }
+ }
+ total_expand_failures += expand_count;
+ total_expand_overhead += 1.0 * (ex_slots - num_slots) / num_slots;
+ }
+
+ hasher.SetOrdinalSeed(reseeds);
+ }
+ // soln and hasher now independent of Banding object
+
+ // Verify keys added
+ KeyGen cur = keys_begin;
+ while (cur != keys_end) {
+ ASSERT_TRUE(soln.FilterQuery(*cur, hasher));
+ ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*cur, hasher));
+ ++cur;
+ }
+ // We (maybe) snuck these in!
+ if (first_single) {
+ ASSERT_TRUE(soln.FilterQuery(*one_more, hasher));
+ ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*one_more, hasher));
+ }
+ if (second_single) {
+ ASSERT_TRUE(soln.FilterQuery(*two_more, hasher));
+ ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*two_more, hasher));
+ }
+ if (batch_success) {
+ cur = batch_begin;
+ while (cur != batch_end) {
+ ASSERT_TRUE(soln.FilterQuery(*cur, hasher));
+ ASSERT_TRUE(!test_interleaved || isoln.FilterQuery(*cur, hasher));
+ ++cur;
+ }
+ }
+
+ // Check FP rate (depends only on number of result bits == solution
+ // columns)
+ Index fp_count = 0;
+ cur = other_keys_begin;
+ {
+ ROCKSDB_NAMESPACE::StopWatchNano timer(
+ ROCKSDB_NAMESPACE::SystemClock::Default().get(), true);
+ while (cur != other_keys_end) {
+ bool fp = soln.FilterQuery(*cur, hasher);
+ fp_count += fp ? 1 : 0;
+ ++cur;
+ }
+ soln_query_nanos += timer.ElapsedNanos();
+ soln_query_count += FLAGS_max_check;
+ }
+ {
+ double expected_fp_count = soln.ExpectedFpRate() * FLAGS_max_check;
+ // For expected FP rate, also include false positives due to collisions
+ // in Hash value. (Negligible for 64-bit, can matter for 32-bit.)
+ double correction =
+ FLAGS_max_check * ExpectedCollisionFpRate(hasher, num_to_add);
+
+ // NOTE: rare violations expected with kHomogeneous
+ EXPECT_LE(fp_count,
+ FrequentPoissonUpperBound(expected_fp_count + correction));
+ EXPECT_GE(fp_count,
+ FrequentPoissonLowerBound(expected_fp_count + correction));
+ }
+ total_fp_count += fp_count;
+
+ // And also check FP rate for isoln
+ if (test_interleaved) {
+ Index ifp_count = 0;
+ cur = other_keys_begin;
+ ROCKSDB_NAMESPACE::StopWatchNano timer(
+ ROCKSDB_NAMESPACE::SystemClock::Default().get(), true);
+ while (cur != other_keys_end) {
+ ifp_count += isoln.FilterQuery(*cur, hasher) ? 1 : 0;
+ ++cur;
+ }
+ isoln_query_nanos += timer.ElapsedNanos();
+ isoln_query_count += FLAGS_max_check;
+ {
+ double expected_fp_count = isoln.ExpectedFpRate() * FLAGS_max_check;
+ // For expected FP rate, also include false positives due to
+ // collisions in Hash value. (Negligible for 64-bit, can matter for
+ // 32-bit.)
+ double correction =
+ FLAGS_max_check * ExpectedCollisionFpRate(hasher, num_to_add);
+
+ // NOTE: rare violations expected with kHomogeneous
+ EXPECT_LE(ifp_count,
+ FrequentPoissonUpperBound(expected_fp_count + correction));
+
+ // FIXME: why sometimes can we slightly "beat the odds"?
+ // (0.95 factor should not be needed)
+ EXPECT_GE(ifp_count, FrequentPoissonLowerBound(
+ 0.95 * expected_fp_count + correction));
+ }
+ // Since the bits used in isoln are a subset of the bits used in soln,
+ // it cannot have fewer FPs
+ EXPECT_GE(ifp_count, fp_count);
+ }
+
+ // And compare to Bloom time, for fun
+ if (ibytes >= /* minimum Bloom impl bytes*/ 64) {
+ Index bfp_count = 0;
+ cur = other_keys_begin;
+ ROCKSDB_NAMESPACE::StopWatchNano timer(
+ ROCKSDB_NAMESPACE::SystemClock::Default().get(), true);
+ while (cur != other_keys_end) {
+ uint64_t h = hasher.GetHash(*cur);
+ uint32_t h1 = ROCKSDB_NAMESPACE::Lower32of64(h);
+ uint32_t h2 = sizeof(Hash) >= 8 ? ROCKSDB_NAMESPACE::Upper32of64(h)
+ : h1 * 0x9e3779b9;
+ bfp_count +=
+ ROCKSDB_NAMESPACE::FastLocalBloomImpl::HashMayMatch(
+ h1, h2, static_cast<uint32_t>(ibytes), 6, idata.get())
+ ? 1
+ : 0;
+ ++cur;
+ }
+ bloom_query_nanos += timer.ElapsedNanos();
+ // ensure bfp_count is used
+ ASSERT_LT(bfp_count, FLAGS_max_check);
+ }
+ }
+
+ // "outside" == key not in original set so either negative or false positive
+ fprintf(stderr,
+ "Simple outside query, hot, incl hashing, ns/key: %g\n",
+ 1.0 * soln_query_nanos / soln_query_count);
+ fprintf(stderr,
+ "Interleaved outside query, hot, incl hashing, ns/key: %g\n",
+ 1.0 * isoln_query_nanos / isoln_query_count);
+ fprintf(stderr,
+ "Bloom outside query, hot, incl hashing, ns/key: %g\n",
+ 1.0 * bloom_query_nanos / soln_query_count);
+
+ if (TypeParam::kHomogeneous) {
+ EXPECT_EQ(total_reseeds, 0U);
+ } else {
+ double average_reseeds = 1.0 * total_reseeds / FLAGS_thoroughness;
+ fprintf(stderr, "Average re-seeds: %g\n", average_reseeds);
+ // Values above were chosen to target around 50% chance of encoding
+ // success rate (average of 1.0 re-seeds) or slightly better. But 1.15 is
+ // also close enough.
+ EXPECT_LE(total_reseeds,
+ InfrequentPoissonUpperBound(1.15 * expected_reseeds *
+ FLAGS_thoroughness));
+ // Would use 0.85 here instead of 0.75, but
+ // TypesAndSettings_Hash32_SmallKeyGen can "beat the odds" because of
+ // sequential keys with a small, cheap hash function. We accept that
+ // there are surely inputs that are somewhat bad for this setup, but
+ // these somewhat good inputs are probably more likely.
+ EXPECT_GE(total_reseeds,
+ InfrequentPoissonLowerBound(0.75 * expected_reseeds *
+ FLAGS_thoroughness));
+ }
+
+ if (total_expand_trials > 0) {
+ double average_expand_failures =
+ 1.0 * total_expand_failures / total_expand_trials;
+ fprintf(stderr, "Average expand failures, and overhead: %g, %g\n",
+ average_expand_failures,
+ total_expand_overhead / total_expand_trials);
+ // Seems to be a generous allowance
+ EXPECT_LE(total_expand_failures,
+ InfrequentPoissonUpperBound(1.0 * total_expand_trials));
+ } else {
+ fprintf(stderr, "Average expand failures: N/A\n");
+ }
+
+ if (total_singles > 0) {
+ double single_failure_rate = 1.0 * total_single_failures / total_singles;
+ fprintf(stderr, "Add'l single, failure rate: %g\n", single_failure_rate);
+ // A rough bound (one sided) based on nothing in particular
+ double expected_single_failures = 1.0 * total_singles /
+ (sizeof(CoeffRow) == 16 ? 128
+ : TypeParam::kUseSmash ? 64
+ : 32);
+ EXPECT_LE(total_single_failures,
+ InfrequentPoissonUpperBound(expected_single_failures));
+ }
+
+ if (total_batch > 0) {
+ // Counting successes here for Poisson to approximate the Binomial
+ // distribution.
+ // A rough bound (one sided) based on nothing in particular.
+ double expected_batch_successes = 1.0 * total_batch / 2;
+ uint64_t lower_bound =
+ InfrequentPoissonLowerBound(expected_batch_successes);
+ fprintf(stderr, "Add'l batch, success rate: %g (>= %g)\n",
+ 1.0 * total_batch_successes / total_batch,
+ 1.0 * lower_bound / total_batch);
+ EXPECT_GE(total_batch_successes, lower_bound);
+ }
+
+ {
+ uint64_t total_checked = uint64_t{FLAGS_max_check} * FLAGS_thoroughness;
+ double expected_total_fp_count =
+ total_checked * std::pow(0.5, 8U * sizeof(ResultRow));
+ // For expected FP rate, also include false positives due to collisions
+ // in Hash value. (Negligible for 64-bit, can matter for 32-bit.)
+ double average_added = 1.0 * total_added / FLAGS_thoroughness;
+ expected_total_fp_count +=
+ total_checked * ExpectedCollisionFpRate(Hasher(), average_added);
+
+ uint64_t upper_bound =
+ InfrequentPoissonUpperBound(expected_total_fp_count);
+ uint64_t lower_bound =
+ InfrequentPoissonLowerBound(expected_total_fp_count);
+ fprintf(stderr, "Average FP rate: %g (~= %g, <= %g, >= %g)\n",
+ 1.0 * total_fp_count / total_checked,
+ expected_total_fp_count / total_checked,
+ 1.0 * upper_bound / total_checked,
+ 1.0 * lower_bound / total_checked);
+ EXPECT_LE(total_fp_count, upper_bound);
+ EXPECT_GE(total_fp_count, lower_bound);
+ }
+ }
+}
+
+TYPED_TEST(RibbonTypeParamTest, Extremes) {
+ IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam);
+ IMPORT_RIBBON_IMPL_TYPES(TypeParam);
+ using KeyGen = typename TypeParam::KeyGen;
+
+ size_t bytes = 128 * 1024;
+ std::unique_ptr<char[]> buf(new char[bytes]);
+ InterleavedSoln isoln(buf.get(), bytes);
+ SimpleSoln soln;
+ Hasher hasher;
+ Banding banding;
+
+ // ########################################
+ // Add zero keys to minimal number of slots
+ KeyGen begin_and_end("foo", 123);
+ ASSERT_TRUE(banding.ResetAndFindSeedToSolve(
+ /*slots*/ kCoeffBits, begin_and_end, begin_and_end, /*first seed*/ 0,
+ /* seed mask*/ 0));
+
+ soln.BackSubstFrom(banding);
+ isoln.BackSubstFrom(banding);
+
+ // Because there's plenty of memory, we expect the interleaved solution to
+ // use maximum supported columns (same as simple solution)
+ ASSERT_EQ(isoln.GetUpperNumColumns(), 8U * sizeof(ResultRow));
+ ASSERT_EQ(isoln.GetUpperStartBlock(), 0U);
+
+ // Somewhat oddly, we expect same FP rate as if we had essentially filled
+ // up the slots.
+ KeyGen other_keys_begin("not", 0);
+ KeyGen other_keys_end("not", FLAGS_max_check);
+
+ Index fp_count = 0;
+ KeyGen cur = other_keys_begin;
+ while (cur != other_keys_end) {
+ bool isoln_query_result = isoln.FilterQuery(*cur, hasher);
+ bool soln_query_result = soln.FilterQuery(*cur, hasher);
+ // Solutions are equivalent
+ ASSERT_EQ(isoln_query_result, soln_query_result);
+ if (!TypeParam::kHomogeneous) {
+ // And in fact we only expect an FP when ResultRow is 0
+ // (except Homogeneous)
+ ASSERT_EQ(soln_query_result, hasher.GetResultRowFromHash(
+ hasher.GetHash(*cur)) == ResultRow{0});
+ }
+ fp_count += soln_query_result ? 1 : 0;
+ ++cur;
+ }
+ {
+ ASSERT_EQ(isoln.ExpectedFpRate(), soln.ExpectedFpRate());
+ double expected_fp_count = isoln.ExpectedFpRate() * FLAGS_max_check;
+ EXPECT_LE(fp_count, InfrequentPoissonUpperBound(expected_fp_count));
+ if (TypeParam::kHomogeneous) {
+ // Pseudorandom garbage in Homogeneous filter can "beat the odds" if
+ // nothing added
+ } else {
+ EXPECT_GE(fp_count, InfrequentPoissonLowerBound(expected_fp_count));
+ }
+ }
+
+ // ######################################################
+ // Use zero bytes for interleaved solution (key(s) added)
+
+ // Add one key
+ KeyGen key_begin("added", 0);
+ KeyGen key_end("added", 1);
+ ASSERT_TRUE(banding.ResetAndFindSeedToSolve(
+ /*slots*/ kCoeffBits, key_begin, key_end, /*first seed*/ 0,
+ /* seed mask*/ 0));
+
+ InterleavedSoln isoln2(nullptr, /*bytes*/ 0);
+
+ isoln2.BackSubstFrom(banding);
+
+ ASSERT_EQ(isoln2.GetUpperNumColumns(), 0U);
+ ASSERT_EQ(isoln2.GetUpperStartBlock(), 0U);
+
+ // All queries return true
+ ASSERT_TRUE(isoln2.FilterQuery(*other_keys_begin, hasher));
+ ASSERT_EQ(isoln2.ExpectedFpRate(), 1.0);
+}
+
+TEST(RibbonTest, AllowZeroStarts) {
+ IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings_AllowZeroStarts);
+ IMPORT_RIBBON_IMPL_TYPES(TypesAndSettings_AllowZeroStarts);
+ using KeyGen = StandardKeyGen;
+
+ InterleavedSoln isoln(nullptr, /*bytes*/ 0);
+ SimpleSoln soln;
+ Hasher hasher;
+ Banding banding;
+
+ KeyGen begin("foo", 0);
+ KeyGen end("foo", 1);
+ // Can't add 1 entry
+ ASSERT_FALSE(banding.ResetAndFindSeedToSolve(/*slots*/ 0, begin, end));
+
+ KeyGen begin_and_end("foo", 123);
+ // Can add 0 entries
+ ASSERT_TRUE(banding.ResetAndFindSeedToSolve(/*slots*/ 0, begin_and_end,
+ begin_and_end));
+
+ Seed reseeds = banding.GetOrdinalSeed();
+ ASSERT_EQ(reseeds, 0U);
+ hasher.SetOrdinalSeed(reseeds);
+
+ // Can construct 0-slot solutions
+ isoln.BackSubstFrom(banding);
+ soln.BackSubstFrom(banding);
+
+ // Should always return false
+ ASSERT_FALSE(isoln.FilterQuery(*begin, hasher));
+ ASSERT_FALSE(soln.FilterQuery(*begin, hasher));
+
+ // And report that in FP rate
+ ASSERT_EQ(isoln.ExpectedFpRate(), 0.0);
+ ASSERT_EQ(soln.ExpectedFpRate(), 0.0);
+}
+
+TEST(RibbonTest, RawAndOrdinalSeeds) {
+ StandardHasher<TypesAndSettings_Seed64> hasher64;
+ StandardHasher<DefaultTypesAndSettings> hasher64_32;
+ StandardHasher<TypesAndSettings_Hash32> hasher32;
+ StandardHasher<TypesAndSettings_Seed8> hasher8;
+
+ for (uint32_t limit : {0xffU, 0xffffU}) {
+ std::vector<bool> seen(limit + 1);
+ for (uint32_t i = 0; i < limit; ++i) {
+ hasher64.SetOrdinalSeed(i);
+ auto raw64 = hasher64.GetRawSeed();
+ hasher32.SetOrdinalSeed(i);
+ auto raw32 = hasher32.GetRawSeed();
+ hasher8.SetOrdinalSeed(static_cast<uint8_t>(i));
+ auto raw8 = hasher8.GetRawSeed();
+ {
+ hasher64_32.SetOrdinalSeed(i);
+ auto raw64_32 = hasher64_32.GetRawSeed();
+ ASSERT_EQ(raw64_32, raw32); // Same size seed
+ }
+ if (i == 0) {
+ // Documented that ordinal seed 0 == raw seed 0
+ ASSERT_EQ(raw64, 0U);
+ ASSERT_EQ(raw32, 0U);
+ ASSERT_EQ(raw8, 0U);
+ } else {
+ // Extremely likely that upper bits are set
+ ASSERT_GT(raw64, raw32);
+ ASSERT_GT(raw32, raw8);
+ }
+ // Hashers agree on lower bits
+ ASSERT_EQ(static_cast<uint32_t>(raw64), raw32);
+ ASSERT_EQ(static_cast<uint8_t>(raw32), raw8);
+
+ // The translation is one-to-one for this size prefix
+ uint32_t v = static_cast<uint32_t>(raw32 & limit);
+ ASSERT_EQ(raw64 & limit, v);
+ ASSERT_FALSE(seen[v]);
+ seen[v] = true;
+ }
+ }
+}
+
+namespace {
+
+struct PhsfInputGen {
+ PhsfInputGen(const std::string& prefix, uint64_t id) : id_(id) {
+ val_.first = prefix;
+ ROCKSDB_NAMESPACE::PutFixed64(&val_.first, /*placeholder*/ 0);
+ }
+
+ // Prefix (only one required)
+ PhsfInputGen& operator++() {
+ ++id_;
+ return *this;
+ }
+
+ const std::pair<std::string, uint8_t>& operator*() {
+ // Use multiplication to mix things up a little in the key
+ ROCKSDB_NAMESPACE::EncodeFixed64(&val_.first[val_.first.size() - 8],
+ id_ * uint64_t{0x1500000001});
+ // Occasionally repeat values etc.
+ val_.second = static_cast<uint8_t>(id_ * 7 / 8);
+ return val_;
+ }
+
+ const std::pair<std::string, uint8_t>* operator->() { return &**this; }
+
+ bool operator==(const PhsfInputGen& other) {
+ // Same prefix is assumed
+ return id_ == other.id_;
+ }
+ bool operator!=(const PhsfInputGen& other) {
+ // Same prefix is assumed
+ return id_ != other.id_;
+ }
+
+ uint64_t id_;
+ std::pair<std::string, uint8_t> val_;
+};
+
+struct PhsfTypesAndSettings : public DefaultTypesAndSettings {
+ static constexpr bool kIsFilter = false;
+};
+} // namespace
+
+TEST(RibbonTest, PhsfBasic) {
+ IMPORT_RIBBON_TYPES_AND_SETTINGS(PhsfTypesAndSettings);
+ IMPORT_RIBBON_IMPL_TYPES(PhsfTypesAndSettings);
+
+ Index num_slots = 12800;
+ Index num_to_add = static_cast<Index>(num_slots / 1.02);
+
+ PhsfInputGen begin("in", 0);
+ PhsfInputGen end("in", num_to_add);
+
+ std::unique_ptr<char[]> idata(new char[/*bytes*/ num_slots]);
+ InterleavedSoln isoln(idata.get(), /*bytes*/ num_slots);
+ SimpleSoln soln;
+ Hasher hasher;
+
+ {
+ Banding banding;
+ ASSERT_TRUE(banding.ResetAndFindSeedToSolve(num_slots, begin, end));
+
+ soln.BackSubstFrom(banding);
+ isoln.BackSubstFrom(banding);
+
+ hasher.SetOrdinalSeed(banding.GetOrdinalSeed());
+ }
+
+ for (PhsfInputGen cur = begin; cur != end; ++cur) {
+ ASSERT_EQ(cur->second, soln.PhsfQuery(cur->first, hasher));
+ ASSERT_EQ(cur->second, isoln.PhsfQuery(cur->first, hasher));
+ }
+}
+
+// Not a real test, but a tool used to build APIs in ribbon_config.h
+TYPED_TEST(RibbonTypeParamTest, FindOccupancy) {
+ IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam);
+ IMPORT_RIBBON_IMPL_TYPES(TypeParam);
+ using KeyGen = typename TypeParam::KeyGen;
+
+ if (!FLAGS_find_occ) {
+ ROCKSDB_GTEST_BYPASS("Tool disabled during unit test runs");
+ return;
+ }
+
+ KeyGen cur(std::to_string(testing::UnitTest::GetInstance()->random_seed()),
+ 0);
+
+ Banding banding;
+ Index num_slots = InterleavedSoln::RoundUpNumSlots(FLAGS_find_min_slots);
+ Index max_slots = InterleavedSoln::RoundUpNumSlots(FLAGS_find_max_slots);
+ while (num_slots <= max_slots) {
+ std::map<int32_t, uint32_t> rem_histogram;
+ std::map<Index, uint32_t> slot_histogram;
+ if (FLAGS_find_slot_occ) {
+ for (Index i = 0; i < kCoeffBits; ++i) {
+ slot_histogram[i] = 0;
+ slot_histogram[num_slots - 1 - i] = 0;
+ slot_histogram[num_slots / 2 - kCoeffBits / 2 + i] = 0;
+ }
+ }
+ uint64_t total_added = 0;
+ for (uint32_t i = 0; i < FLAGS_find_iters; ++i) {
+ banding.Reset(num_slots);
+ uint32_t j = 0;
+ KeyGen end = cur;
+ end += num_slots + num_slots / 10;
+ for (; cur != end; ++cur) {
+ if (banding.Add(*cur)) {
+ ++j;
+ } else {
+ break;
+ }
+ }
+ total_added += j;
+ for (auto& slot : slot_histogram) {
+ slot.second += banding.IsOccupied(slot.first);
+ }
+
+ int32_t bucket =
+ static_cast<int32_t>(num_slots) - static_cast<int32_t>(j);
+ rem_histogram[bucket]++;
+ if (FLAGS_verbose) {
+ fprintf(stderr, "num_slots: %u i: %u / %u avg_overhead: %g\r",
+ static_cast<unsigned>(num_slots), static_cast<unsigned>(i),
+ static_cast<unsigned>(FLAGS_find_iters),
+ 1.0 * (i + 1) * num_slots / total_added);
+ }
+ }
+ if (FLAGS_verbose) {
+ fprintf(stderr, "\n");
+ }
+
+ uint32_t cumulative = 0;
+
+ double p50_rem = 0;
+ double p95_rem = 0;
+ double p99_9_rem = 0;
+
+ for (auto& h : rem_histogram) {
+ double before = 1.0 * cumulative / FLAGS_find_iters;
+ double not_after = 1.0 * (cumulative + h.second) / FLAGS_find_iters;
+ if (FLAGS_verbose) {
+ fprintf(stderr, "overhead: %g before: %g not_after: %g\n",
+ 1.0 * num_slots / (num_slots - h.first), before, not_after);
+ }
+ cumulative += h.second;
+ if (before < 0.5 && 0.5 <= not_after) {
+ // fake it with linear interpolation
+ double portion = (0.5 - before) / (not_after - before);
+ p50_rem = h.first + portion;
+ } else if (before < 0.95 && 0.95 <= not_after) {
+ // fake it with linear interpolation
+ double portion = (0.95 - before) / (not_after - before);
+ p95_rem = h.first + portion;
+ } else if (before < 0.999 && 0.999 <= not_after) {
+ // fake it with linear interpolation
+ double portion = (0.999 - before) / (not_after - before);
+ p99_9_rem = h.first + portion;
+ }
+ }
+ for (auto& slot : slot_histogram) {
+ fprintf(stderr, "slot[%u] occupied: %g\n", (unsigned)slot.first,
+ 1.0 * slot.second / FLAGS_find_iters);
+ }
+
+ double mean_rem =
+ (1.0 * FLAGS_find_iters * num_slots - total_added) / FLAGS_find_iters;
+ fprintf(
+ stderr,
+ "num_slots: %u iters: %u mean_ovr: %g p50_ovr: %g p95_ovr: %g "
+ "p99.9_ovr: %g mean_rem: %g p50_rem: %g p95_rem: %g p99.9_rem: %g\n",
+ static_cast<unsigned>(num_slots),
+ static_cast<unsigned>(FLAGS_find_iters),
+ 1.0 * num_slots / (num_slots - mean_rem),
+ 1.0 * num_slots / (num_slots - p50_rem),
+ 1.0 * num_slots / (num_slots - p95_rem),
+ 1.0 * num_slots / (num_slots - p99_9_rem), mean_rem, p50_rem, p95_rem,
+ p99_9_rem);
+
+ num_slots = std::max(
+ num_slots + 1, static_cast<Index>(num_slots * FLAGS_find_next_factor));
+ num_slots = InterleavedSoln::RoundUpNumSlots(num_slots);
+ }
+}
+
+// Not a real test, but a tool to understand Homogeneous Ribbon
+// behavior (TODO: configuration APIs & tests)
+TYPED_TEST(RibbonTypeParamTest, OptimizeHomogAtScale) {
+ IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam);
+ IMPORT_RIBBON_IMPL_TYPES(TypeParam);
+ using KeyGen = typename TypeParam::KeyGen;
+
+ if (!FLAGS_optimize_homog) {
+ ROCKSDB_GTEST_BYPASS("Tool disabled during unit test runs");
+ return;
+ }
+
+ if (!TypeParam::kHomogeneous) {
+ ROCKSDB_GTEST_BYPASS("Only for Homogeneous Ribbon");
+ return;
+ }
+
+ KeyGen cur(std::to_string(testing::UnitTest::GetInstance()->random_seed()),
+ 0);
+
+ Banding banding;
+ Index num_slots = SimpleSoln::RoundUpNumSlots(FLAGS_optimize_homog_slots);
+ banding.Reset(num_slots);
+
+ // This and "band_ovr" is the "allocated overhead", or slots over added.
+ // It does not take into account FP rates.
+ double target_overhead = 1.20;
+ uint32_t num_added = 0;
+
+ do {
+ do {
+ (void)banding.Add(*cur);
+ ++cur;
+ ++num_added;
+ } while (1.0 * num_slots / num_added > target_overhead);
+
+ SimpleSoln soln;
+ soln.BackSubstFrom(banding);
+
+ std::array<uint32_t, 8U * sizeof(ResultRow)> fp_counts_by_cols;
+ fp_counts_by_cols.fill(0U);
+ for (uint32_t i = 0; i < FLAGS_optimize_homog_check; ++i) {
+ ResultRow r = soln.PhsfQuery(*cur, banding);
+ ++cur;
+ for (size_t j = 0; j < fp_counts_by_cols.size(); ++j) {
+ if ((r & 1) == 1) {
+ break;
+ }
+ fp_counts_by_cols[j]++;
+ r /= 2;
+ }
+ }
+ fprintf(stderr, "band_ovr: %g ", 1.0 * num_slots / num_added);
+ for (unsigned j = 0; j < fp_counts_by_cols.size(); ++j) {
+ double inv_fp_rate =
+ 1.0 * FLAGS_optimize_homog_check / fp_counts_by_cols[j];
+ double equiv_cols = std::log(inv_fp_rate) * 1.4426950409;
+ // Overhead vs. information-theoretic minimum based on observed
+ // FP rate (subject to sampling error, especially for low FP rates)
+ double actual_overhead =
+ 1.0 * (j + 1) * num_slots / (equiv_cols * num_added);
+ fprintf(stderr, "ovr_%u: %g ", j + 1, actual_overhead);
+ }
+ fprintf(stderr, "\n");
+ target_overhead -= FLAGS_optimize_homog_granularity;
+ } while (target_overhead > 1.0);
+}
+
+int main(int argc, char** argv) {
+ ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
+ ::testing::InitGoogleTest(&argc, argv);
+#ifdef GFLAGS
+ ParseCommandLineFlags(&argc, &argv, true);
+#endif // GFLAGS
+ return RUN_ALL_TESTS();
+}