summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/util/xxph3.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/rocksdb/util/xxph3.h1764
1 files changed, 1764 insertions, 0 deletions
diff --git a/src/rocksdb/util/xxph3.h b/src/rocksdb/util/xxph3.h
new file mode 100644
index 000000000..968000c3a
--- /dev/null
+++ b/src/rocksdb/util/xxph3.h
@@ -0,0 +1,1764 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+// This source code is licensed under both the GPLv2 (found in the
+// COPYING file in the root directory) and Apache 2.0 License
+// (found in the LICENSE.Apache file in the root directory).
+/*
+ xxHash - Extremely Fast Hash algorithm
+ Header File
+ Copyright (C) 2012-2016, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - xxHash source repository : https://github.com/Cyan4973/xxHash
+*/
+
+// This is a fork of a preview version of xxHash, as RocksDB depends on
+// this preview version of XXH3. To allow this to coexist with the
+// standard xxHash, including in the "unity" build where all source files
+// and headers go into a single translation unit, here "XXH" has been
+// replaced with "XXPH" for XX Preview Hash.
+
+#ifndef XXPHASH_H_5627135585666179
+#define XXPHASH_H_5627135585666179 1
+
+/* BEGIN RocksDB customizations */
+#ifndef XXPH_STATIC_LINKING_ONLY
+// Access experimental APIs
+#define XXPH_STATIC_LINKING_ONLY 1
+#endif
+#define XXPH_NAMESPACE ROCKSDB_
+#define XXPH_INLINE_ALL
+#include <cstring>
+/* END RocksDB customizations */
+
+// clang-format off
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* ****************************
+* Definitions
+******************************/
+#include <stddef.h> /* size_t */
+typedef enum { XXPH_OK=0, XXPH_ERROR } XXPH_errorcode;
+
+
+/* ****************************
+ * API modifier
+ ******************************/
+/** XXPH_INLINE_ALL (and XXPH_PRIVATE_API)
+ * This build macro includes xxhash functions in `static` mode
+ * in order to inline them, and remove their symbol from the public list.
+ * Inlining offers great performance improvement on small keys,
+ * and dramatic ones when length is expressed as a compile-time constant.
+ * See https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html .
+ * Methodology :
+ * #define XXPH_INLINE_ALL
+ * #include "xxhash.h"
+ * `xxhash.c` is automatically included.
+ * It's not useful to compile and link it as a separate object.
+ */
+#if defined(XXPH_INLINE_ALL) || defined(XXPH_PRIVATE_API)
+# ifndef XXPH_STATIC_LINKING_ONLY
+# define XXPH_STATIC_LINKING_ONLY
+# endif
+# if defined(__GNUC__)
+# define XXPH_PUBLIC_API static __inline __attribute__((unused))
+# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define XXPH_PUBLIC_API static inline
+# elif defined(_MSC_VER)
+# define XXPH_PUBLIC_API static __inline
+# else
+ /* this version may generate warnings for unused static functions */
+# define XXPH_PUBLIC_API static
+# endif
+#else
+# if defined(WIN32) && defined(_MSC_VER) && (defined(XXPH_IMPORT) || defined(XXPH_EXPORT))
+# ifdef XXPH_EXPORT
+# define XXPH_PUBLIC_API __declspec(dllexport)
+# elif XXPH_IMPORT
+# define XXPH_PUBLIC_API __declspec(dllimport)
+# endif
+# else
+# define XXPH_PUBLIC_API /* do nothing */
+# endif
+#endif /* XXPH_INLINE_ALL || XXPH_PRIVATE_API */
+
+/*! XXPH_NAMESPACE, aka Namespace Emulation :
+ *
+ * If you want to include _and expose_ xxHash functions from within your own library,
+ * but also want to avoid symbol collisions with other libraries which may also include xxHash,
+ *
+ * you can use XXPH_NAMESPACE, to automatically prefix any public symbol from xxhash library
+ * with the value of XXPH_NAMESPACE (therefore, avoid NULL and numeric values).
+ *
+ * Note that no change is required within the calling program as long as it includes `xxhash.h` :
+ * regular symbol name will be automatically translated by this header.
+ */
+#ifdef XXPH_NAMESPACE
+# define XXPH_CAT(A,B) A##B
+# define XXPH_NAME2(A,B) XXPH_CAT(A,B)
+# define XXPH_versionNumber XXPH_NAME2(XXPH_NAMESPACE, XXPH_versionNumber)
+#endif
+
+
+/* *************************************
+* Version
+***************************************/
+#define XXPH_VERSION_MAJOR 0
+#define XXPH_VERSION_MINOR 7
+#define XXPH_VERSION_RELEASE 2
+#define XXPH_VERSION_NUMBER (XXPH_VERSION_MAJOR *100*100 + XXPH_VERSION_MINOR *100 + XXPH_VERSION_RELEASE)
+XXPH_PUBLIC_API unsigned XXPH_versionNumber (void);
+
+
+/*-**********************************************************************
+* 32-bit hash
+************************************************************************/
+#if !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint32_t XXPH32_hash_t;
+#else
+# include <limits.h>
+# if UINT_MAX == 0xFFFFFFFFUL
+ typedef unsigned int XXPH32_hash_t;
+# else
+# if ULONG_MAX == 0xFFFFFFFFUL
+ typedef unsigned long XXPH32_hash_t;
+# else
+# error "unsupported platform : need a 32-bit type"
+# endif
+# endif
+#endif
+
+#ifndef XXPH_NO_LONG_LONG
+/*-**********************************************************************
+* 64-bit hash
+************************************************************************/
+#if !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint64_t XXPH64_hash_t;
+#else
+ /* the following type must have a width of 64-bit */
+ typedef unsigned long long XXPH64_hash_t;
+#endif
+
+#endif /* XXPH_NO_LONG_LONG */
+
+
+
+#ifdef XXPH_STATIC_LINKING_ONLY
+
+/* ================================================================================================
+ This section contains declarations which are not guaranteed to remain stable.
+ They may change in future versions, becoming incompatible with a different version of the library.
+ These declarations should only be used with static linking.
+ Never use them in association with dynamic linking !
+=================================================================================================== */
+
+
+/*-**********************************************************************
+* XXPH3
+* New experimental hash
+************************************************************************/
+#ifndef XXPH_NO_LONG_LONG
+
+
+/* ============================================
+ * XXPH3 is a new hash algorithm,
+ * featuring improved speed performance for both small and large inputs.
+ * See full speed analysis at : http://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
+ * In general, expect XXPH3 to run about ~2x faster on large inputs,
+ * and >3x faster on small ones, though exact differences depend on platform.
+ *
+ * The algorithm is portable, will generate the same hash on all platforms.
+ * It benefits greatly from vectorization units, but does not require it.
+ *
+ * XXPH3 offers 2 variants, _64bits and _128bits.
+ * When only 64 bits are needed, prefer calling the _64bits variant :
+ * it reduces the amount of mixing, resulting in faster speed on small inputs.
+ * It's also generally simpler to manipulate a scalar return type than a struct.
+ *
+ * The XXPH3 algorithm is still considered experimental.
+ * Produced results can still change between versions.
+ * Results produced by v0.7.x are not comparable with results from v0.7.y .
+ * It's nonetheless possible to use XXPH3 for ephemeral data (local sessions),
+ * but avoid storing values in long-term storage for later reads.
+ *
+ * The API supports one-shot hashing, streaming mode, and custom secrets.
+ *
+ * There are still a number of opened questions that community can influence during the experimental period.
+ * I'm trying to list a few of them below, though don't consider this list as complete.
+ *
+ * - 128-bits output type : currently defined as a structure of two 64-bits fields.
+ * That's because 128-bit values do not exist in C standard.
+ * Note that it means that, at byte level, result is not identical depending on endianess.
+ * However, at field level, they are identical on all platforms.
+ * The canonical representation solves the issue of identical byte-level representation across platforms,
+ * which is necessary for serialization.
+ * Q1 : Would there be a better representation for a 128-bit hash result ?
+ * Q2 : Are the names of the inner 64-bit fields important ? Should they be changed ?
+ *
+ * - Prototype XXPH128() : XXPH128() uses the same arguments as XXPH64(), for consistency.
+ * It means it maps to XXPH3_128bits_withSeed().
+ * This variant is slightly slower than XXPH3_128bits(),
+ * because the seed is now part of the algorithm, and can't be simplified.
+ * Is that a good idea ?
+ *
+ * - Seed type for XXPH128() : currently, it's a single 64-bit value, like the 64-bit variant.
+ * It could be argued that it's more logical to offer a 128-bit seed input parameter for a 128-bit hash.
+ * But 128-bit seed is more difficult to use, since it requires to pass a structure instead of a scalar value.
+ * Such a variant could either replace current one, or become an additional one.
+ * Farmhash, for example, offers both variants (the 128-bits seed variant is called `doubleSeed`).
+ * Follow up question : if both 64-bit and 128-bit seeds are allowed, which variant should be called XXPH128 ?
+ *
+ * - Result for len==0 : Currently, the result of hashing a zero-length input is always `0`.
+ * It seems okay as a return value when using "default" secret and seed.
+ * But is it still fine to return `0` when secret or seed are non-default ?
+ * Are there use cases which could depend on generating a different hash result for zero-length input when the secret is different ?
+ *
+ * - Consistency (1) : Streaming XXPH128 uses an XXPH3 state, which is the same state as XXPH3_64bits().
+ * It means a 128bit streaming loop must invoke the following symbols :
+ * XXPH3_createState(), XXPH3_128bits_reset(), XXPH3_128bits_update() (loop), XXPH3_128bits_digest(), XXPH3_freeState().
+ * Is that consistent enough ?
+ *
+ * - Consistency (2) : The canonical representation of `XXPH3_64bits` is provided by existing functions
+ * XXPH64_canonicalFromHash(), and reverse operation XXPH64_hashFromCanonical().
+ * As a mirror, canonical functions for XXPH128_hash_t results generated by `XXPH3_128bits`
+ * are XXPH128_canonicalFromHash() and XXPH128_hashFromCanonical().
+ * Which means, `XXPH3` doesn't appear in the names, because canonical functions operate on a type,
+ * independently of which algorithm was used to generate that type.
+ * Is that consistent enough ?
+ */
+
+#ifdef XXPH_NAMESPACE
+# define XXPH3_64bits XXPH_NAME2(XXPH_NAMESPACE, XXPH3_64bits)
+# define XXPH3_64bits_withSecret XXPH_NAME2(XXPH_NAMESPACE, XXPH3_64bits_withSecret)
+# define XXPH3_64bits_withSeed XXPH_NAME2(XXPH_NAMESPACE, XXPH3_64bits_withSeed)
+#endif
+
+/* XXPH3_64bits() :
+ * default 64-bit variant, using default secret and default seed of 0.
+ * It's the fastest variant. */
+XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits(const void* data, size_t len);
+
+/* XXPH3_64bits_withSecret() :
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
+ * This makes it more difficult for an external actor to prepare an intentional collision.
+ * The secret *must* be large enough (>= XXPH3_SECRET_SIZE_MIN).
+ * It should consist of random bytes.
+ * Avoid repeating same character, or sequences of bytes,
+ * and especially avoid swathes of \0.
+ * Failure to respect these conditions will result in a poor quality hash.
+ */
+#define XXPH3_SECRET_SIZE_MIN 136
+XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+
+/* XXPH3_64bits_withSeed() :
+ * This variant generates on the fly a custom secret,
+ * based on the default secret, altered using the `seed` value.
+ * While this operation is decently fast, note that it's not completely free.
+ * note : seed==0 produces same results as XXPH3_64bits() */
+XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits_withSeed(const void* data, size_t len, XXPH64_hash_t seed);
+
+#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
+# include <stdalign.h>
+# define XXPH_ALIGN(n) alignas(n)
+#elif defined(__GNUC__)
+# define XXPH_ALIGN(n) __attribute__ ((aligned(n)))
+#elif defined(_MSC_VER)
+# define XXPH_ALIGN(n) __declspec(align(n))
+#else
+# define XXPH_ALIGN(n) /* disabled */
+#endif
+
+#define XXPH3_SECRET_DEFAULT_SIZE 192 /* minimum XXPH3_SECRET_SIZE_MIN */
+
+#endif /* XXPH_NO_LONG_LONG */
+
+
+/*-**********************************************************************
+* XXPH_INLINE_ALL
+************************************************************************/
+#if defined(XXPH_INLINE_ALL) || defined(XXPH_PRIVATE_API)
+
+/* === RocksDB modification: was #include here but permanently inlining === */
+
+typedef struct {
+ XXPH64_hash_t low64;
+ XXPH64_hash_t high64;
+} XXPH128_hash_t;
+
+/* *************************************
+* Tuning parameters
+***************************************/
+/*!XXPH_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
+ * It can generate buggy code on targets which do not support unaligned memory accesses.
+ * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://stackoverflow.com/a/32095106/646947 for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef XXPH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
+# define XXPH_FORCE_MEMORY_ACCESS 2
+# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
+ (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
+# define XXPH_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+/*!XXPH_ACCEPT_NULL_INPUT_POINTER :
+ * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault.
+ * When this macro is enabled, xxHash actively checks input for null pointer.
+ * It it is, result for null input pointers is the same as a null-length input.
+ */
+#ifndef XXPH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
+# define XXPH_ACCEPT_NULL_INPUT_POINTER 0
+#endif
+
+/*!XXPH_FORCE_ALIGN_CHECK :
+ * This is a minor performance trick, only useful with lots of very small keys.
+ * It means : check for aligned/unaligned input.
+ * The check costs one initial branch per hash;
+ * set it to 0 when the input is guaranteed to be aligned,
+ * or when alignment doesn't matter for performance.
+ */
+#ifndef XXPH_FORCE_ALIGN_CHECK /* can be defined externally */
+# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+# define XXPH_FORCE_ALIGN_CHECK 0
+# else
+# define XXPH_FORCE_ALIGN_CHECK 1
+# endif
+#endif
+
+/*!XXPH_REROLL:
+ * Whether to reroll XXPH32_finalize, and XXPH64_finalize,
+ * instead of using an unrolled jump table/if statement loop.
+ *
+ * This is automatically defined on -Os/-Oz on GCC and Clang. */
+#ifndef XXPH_REROLL
+# if defined(__OPTIMIZE_SIZE__)
+# define XXPH_REROLL 1
+# else
+# define XXPH_REROLL 0
+# endif
+#endif
+
+#include <limits.h> /* ULLONG_MAX */
+
+#ifndef XXPH_STATIC_LINKING_ONLY
+#define XXPH_STATIC_LINKING_ONLY
+#endif
+
+/* BEGIN RocksDB customizations */
+#include "port/lang.h" /* for FALLTHROUGH_INTENDED, inserted as appropriate */
+/* END RocksDB customizations */
+
+/* *************************************
+* Compiler Specific Options
+***************************************/
+#ifdef _MSC_VER /* Visual Studio */
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+# define XXPH_FORCE_INLINE static __forceinline
+# define XXPH_NO_INLINE static __declspec(noinline)
+#else
+# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# ifdef __GNUC__
+# define XXPH_FORCE_INLINE static inline __attribute__((always_inline))
+# define XXPH_NO_INLINE static __attribute__((noinline))
+# else
+# define XXPH_FORCE_INLINE static inline
+# define XXPH_NO_INLINE static
+# endif
+# else
+# define XXPH_FORCE_INLINE static
+# define XXPH_NO_INLINE static
+# endif /* __STDC_VERSION__ */
+#endif
+
+
+
+/* *************************************
+* Debug
+***************************************/
+/* DEBUGLEVEL is expected to be defined externally,
+ * typically through compiler command line.
+ * Value must be a number. */
+#ifndef DEBUGLEVEL
+# define DEBUGLEVEL 0
+#endif
+
+#if (DEBUGLEVEL>=1)
+# include <assert.h> /* note : can still be disabled with NDEBUG */
+# define XXPH_ASSERT(c) assert(c)
+#else
+# define XXPH_ASSERT(c) ((void)0)
+#endif
+
+/* note : use after variable declarations */
+#define XXPH_STATIC_ASSERT(c) { enum { XXPH_sa = 1/(int)(!!(c)) }; }
+
+
+/* *************************************
+* Basic Types
+***************************************/
+#if !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+ typedef uint8_t xxh_u8;
+#else
+ typedef unsigned char xxh_u8;
+#endif
+typedef XXPH32_hash_t xxh_u32;
+
+
+/* === Memory access === */
+
+#if (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==2))
+
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+static xxh_u32 XXPH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
+
+#elif (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==1))
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
+static xxh_u32 XXPH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+
+#else
+
+/* portable and safe solution. Generally efficient.
+ * see : http://stackoverflow.com/a/32095106/646947
+ */
+static xxh_u32 XXPH_read32(const void* memPtr)
+{
+ xxh_u32 val;
+ memcpy(&val, memPtr, sizeof(val));
+ return val;
+}
+
+#endif /* XXPH_FORCE_DIRECT_MEMORY_ACCESS */
+
+
+/* === Endianess === */
+
+/* XXPH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
+#ifndef XXPH_CPU_LITTLE_ENDIAN
+# if defined(_WIN32) /* Windows is always little endian */ \
+ || defined(__LITTLE_ENDIAN__) \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+# define XXPH_CPU_LITTLE_ENDIAN 1
+# elif defined(__BIG_ENDIAN__) \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+# define XXPH_CPU_LITTLE_ENDIAN 0
+# else
+static int XXPH_isLittleEndian(void)
+{
+ const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; /* don't use static : performance detrimental */
+ return one.c[0];
+}
+# define XXPH_CPU_LITTLE_ENDIAN XXPH_isLittleEndian()
+# endif
+#endif
+
+
+
+
+/* ****************************************
+* Compiler-specific Functions and Macros
+******************************************/
+#define XXPH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+#ifndef __has_builtin
+# define __has_builtin(x) 0
+#endif
+
+#if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) && __has_builtin(__builtin_rotateleft64)
+# define XXPH_rotl32 __builtin_rotateleft32
+# define XXPH_rotl64 __builtin_rotateleft64
+/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
+#elif defined(_MSC_VER)
+# define XXPH_rotl32(x,r) _rotl(x,r)
+# define XXPH_rotl64(x,r) _rotl64(x,r)
+#else
+# define XXPH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
+# define XXPH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
+#endif
+
+#if defined(_MSC_VER) /* Visual Studio */
+# define XXPH_swap32 _byteswap_ulong
+#elif XXPH_GCC_VERSION >= 403
+# define XXPH_swap32 __builtin_bswap32
+#else
+static xxh_u32 XXPH_swap32 (xxh_u32 x)
+{
+ return ((x << 24) & 0xff000000 ) |
+ ((x << 8) & 0x00ff0000 ) |
+ ((x >> 8) & 0x0000ff00 ) |
+ ((x >> 24) & 0x000000ff );
+}
+#endif
+
+
+/* ***************************
+* Memory reads
+*****************************/
+typedef enum { XXPH_aligned, XXPH_unaligned } XXPH_alignment;
+
+XXPH_FORCE_INLINE xxh_u32 XXPH_readLE32(const void* ptr)
+{
+ return XXPH_CPU_LITTLE_ENDIAN ? XXPH_read32(ptr) : XXPH_swap32(XXPH_read32(ptr));
+}
+
+XXPH_FORCE_INLINE xxh_u32
+XXPH_readLE32_align(const void* ptr, XXPH_alignment align)
+{
+ if (align==XXPH_unaligned) {
+ return XXPH_readLE32(ptr);
+ } else {
+ return XXPH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXPH_swap32(*(const xxh_u32*)ptr);
+ }
+}
+
+
+/* *************************************
+* Misc
+***************************************/
+XXPH_PUBLIC_API unsigned XXPH_versionNumber (void) { return XXPH_VERSION_NUMBER; }
+
+
+static const xxh_u32 PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */
+static const xxh_u32 PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */
+static const xxh_u32 PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */
+static const xxh_u32 PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */
+static const xxh_u32 PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */
+
+#ifndef XXPH_NO_LONG_LONG
+
+/* *******************************************************************
+* 64-bit hash functions
+*********************************************************************/
+
+/*====== Memory access ======*/
+
+typedef XXPH64_hash_t xxh_u64;
+
+#if (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==2))
+
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+static xxh_u64 XXPH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
+
+#elif (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==1))
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
+static xxh_u64 XXPH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
+
+#else
+
+/* portable and safe solution. Generally efficient.
+ * see : http://stackoverflow.com/a/32095106/646947
+ */
+
+static xxh_u64 XXPH_read64(const void* memPtr)
+{
+ xxh_u64 val;
+ memcpy(&val, memPtr, sizeof(val));
+ return val;
+}
+
+#endif /* XXPH_FORCE_DIRECT_MEMORY_ACCESS */
+
+#if defined(_MSC_VER) /* Visual Studio */
+# define XXPH_swap64 _byteswap_uint64
+#elif XXPH_GCC_VERSION >= 403
+# define XXPH_swap64 __builtin_bswap64
+#else
+static xxh_u64 XXPH_swap64 (xxh_u64 x)
+{
+ return ((x << 56) & 0xff00000000000000ULL) |
+ ((x << 40) & 0x00ff000000000000ULL) |
+ ((x << 24) & 0x0000ff0000000000ULL) |
+ ((x << 8) & 0x000000ff00000000ULL) |
+ ((x >> 8) & 0x00000000ff000000ULL) |
+ ((x >> 24) & 0x0000000000ff0000ULL) |
+ ((x >> 40) & 0x000000000000ff00ULL) |
+ ((x >> 56) & 0x00000000000000ffULL);
+}
+#endif
+
+XXPH_FORCE_INLINE xxh_u64 XXPH_readLE64(const void* ptr)
+{
+ return XXPH_CPU_LITTLE_ENDIAN ? XXPH_read64(ptr) : XXPH_swap64(XXPH_read64(ptr));
+}
+
+XXPH_FORCE_INLINE xxh_u64
+XXPH_readLE64_align(const void* ptr, XXPH_alignment align)
+{
+ if (align==XXPH_unaligned)
+ return XXPH_readLE64(ptr);
+ else
+ return XXPH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXPH_swap64(*(const xxh_u64*)ptr);
+}
+
+
+/*====== xxh64 ======*/
+
+static const xxh_u64 PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
+static const xxh_u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
+static const xxh_u64 PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
+static const xxh_u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
+static const xxh_u64 PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
+
+
+/* *********************************************************************
+* XXPH3
+* New generation hash designed for speed on small keys and vectorization
+************************************************************************ */
+
+/*======== Was #include "xxh3.h", now inlined below ==========*/
+
+/*
+ xxHash - Extremely Fast Hash algorithm
+ Development source file for `xxh3`
+ Copyright (C) 2019-present, Yann Collet.
+
+ BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following disclaimer
+ in the documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ You can contact the author at :
+ - xxHash source repository : https://github.com/Cyan4973/xxHash
+*/
+
+/* RocksDB Note: This file contains a preview release (xxhash repository
+ version 0.7.2) of XXPH3 that is unlikely to be compatible with the final
+ version of XXPH3. We have therefore renamed this XXPH3 ("preview"), for
+ clarity so that we can continue to use this version even after
+ integrating a newer incompatible version.
+*/
+
+/* === Dependencies === */
+
+#undef XXPH_INLINE_ALL /* in case it's already defined */
+#define XXPH_INLINE_ALL
+
+
+/* === Compiler specifics === */
+
+#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
+# define XXPH_RESTRICT restrict
+#else
+/* note : it might be useful to define __restrict or __restrict__ for some C++ compilers */
+# define XXPH_RESTRICT /* disable */
+#endif
+
+#if defined(__GNUC__)
+# if defined(__AVX2__)
+# include <immintrin.h>
+# elif defined(__SSE2__)
+# include <emmintrin.h>
+# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
+# define inline __inline__ /* clang bug */
+# include <arm_neon.h>
+# undef inline
+# endif
+#elif defined(_MSC_VER)
+# include <intrin.h>
+#endif
+
+/*
+ * Sanity check.
+ *
+ * XXPH3 only requires these features to be efficient:
+ *
+ * - Usable unaligned access
+ * - A 32-bit or 64-bit ALU
+ * - If 32-bit, a decent ADC instruction
+ * - A 32 or 64-bit multiply with a 64-bit result
+ *
+ * Almost all 32-bit and 64-bit targets meet this, except for Thumb-1, the
+ * classic 16-bit only subset of ARM's instruction set.
+ *
+ * First of all, Thumb-1 lacks support for the UMULL instruction which
+ * performs the important long multiply. This means numerous __aeabi_lmul
+ * calls.
+ *
+ * Second of all, the 8 functional registers are just not enough.
+ * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
+ * Lo registers, and this shuffling results in thousands more MOVs than A32.
+ *
+ * A32 and T32 don't have this limitation. They can access all 14 registers,
+ * do a 32->64 multiply with UMULL, and the flexible operand is helpful too.
+ *
+ * If compiling Thumb-1 for a target which supports ARM instructions, we
+ * will give a warning.
+ *
+ * Usually, if this happens, it is because of an accident and you probably
+ * need to specify -march, as you probably meant to compileh for a newer
+ * architecture.
+ */
+#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
+# warning "XXPH3 is highly inefficient without ARM or Thumb-2."
+#endif
+
+/* ==========================================
+ * Vectorization detection
+ * ========================================== */
+#define XXPH_SCALAR 0
+#define XXPH_SSE2 1
+#define XXPH_AVX2 2
+#define XXPH_NEON 3
+#define XXPH_VSX 4
+
+#ifndef XXPH_VECTOR /* can be defined on command line */
+# if defined(__AVX2__)
+# define XXPH_VECTOR XXPH_AVX2
+# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
+# define XXPH_VECTOR XXPH_SSE2
+# elif defined(__GNUC__) /* msvc support maybe later */ \
+ && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
+ && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
+# define XXPH_VECTOR XXPH_NEON
+# elif defined(__PPC64__) && defined(__POWER8_VECTOR__) && defined(__GNUC__)
+# define XXPH_VECTOR XXPH_VSX
+# else
+# define XXPH_VECTOR XXPH_SCALAR
+# endif
+#endif
+
+/* control alignment of accumulator,
+ * for compatibility with fast vector loads */
+#ifndef XXPH_ACC_ALIGN
+# if XXPH_VECTOR == 0 /* scalar */
+# define XXPH_ACC_ALIGN 8
+# elif XXPH_VECTOR == 1 /* sse2 */
+# define XXPH_ACC_ALIGN 16
+# elif XXPH_VECTOR == 2 /* avx2 */
+# define XXPH_ACC_ALIGN 32
+# elif XXPH_VECTOR == 3 /* neon */
+# define XXPH_ACC_ALIGN 16
+# elif XXPH_VECTOR == 4 /* vsx */
+# define XXPH_ACC_ALIGN 16
+# endif
+#endif
+
+/* xxh_u64 XXPH_mult32to64(xxh_u32 a, xxh_u64 b) { return (xxh_u64)a * (xxh_u64)b; } */
+#if defined(_MSC_VER) && defined(_M_IX86)
+# include <intrin.h>
+# define XXPH_mult32to64(x, y) __emulu(x, y)
+#else
+# define XXPH_mult32to64(x, y) ((xxh_u64)((x) & 0xFFFFFFFF) * (xxh_u64)((y) & 0xFFFFFFFF))
+#endif
+
+/* VSX stuff. It's a lot because VSX support is mediocre across compilers and
+ * there is a lot of mischief with endianness. */
+#if XXPH_VECTOR == XXPH_VSX
+# include <altivec.h>
+# undef vector
+typedef __vector unsigned long long U64x2;
+typedef __vector unsigned char U8x16;
+typedef __vector unsigned U32x4;
+
+#ifndef XXPH_VSX_BE
+# if defined(__BIG_ENDIAN__) \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+# define XXPH_VSX_BE 1
+# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
+# warning "-maltivec=be is not recommended. Please use native endianness."
+# define XXPH_VSX_BE 1
+# else
+# define XXPH_VSX_BE 0
+# endif
+#endif
+
+/* We need some helpers for big endian mode. */
+#if XXPH_VSX_BE
+/* A wrapper for POWER9's vec_revb. */
+# ifdef __POWER9_VECTOR__
+# define XXPH_vec_revb vec_revb
+# else
+XXPH_FORCE_INLINE U64x2 XXPH_vec_revb(U64x2 val)
+{
+ U8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
+ 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
+ return vec_perm(val, val, vByteSwap);
+}
+# endif
+
+/* Power8 Crypto gives us vpermxor which is very handy for
+ * PPC64EB.
+ *
+ * U8x16 vpermxor(U8x16 a, U8x16 b, U8x16 mask)
+ * {
+ * U8x16 ret;
+ * for (int i = 0; i < 16; i++) {
+ * ret[i] = a[mask[i] & 0xF] ^ b[mask[i] >> 4];
+ * }
+ * return ret;
+ * }
+ *
+ * Because both of the main loops load the key, swap, and xor it with input,
+ * we can combine the key swap into this instruction.
+ */
+# ifdef vec_permxor
+# define XXPH_vec_permxor vec_permxor
+# else
+# define XXPH_vec_permxor __builtin_crypto_vpermxor
+# endif
+#endif /* XXPH_VSX_BE */
+/*
+ * Because we reinterpret the multiply, there are endian memes: vec_mulo actually becomes
+ * vec_mule.
+ *
+ * Additionally, the intrinsic wasn't added until GCC 8, despite existing for a while.
+ * Clang has an easy way to control this, we can just use the builtin which doesn't swap.
+ * GCC needs inline assembly. */
+#if __has_builtin(__builtin_altivec_vmuleuw)
+# define XXPH_vec_mulo __builtin_altivec_vmulouw
+# define XXPH_vec_mule __builtin_altivec_vmuleuw
+#else
+/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
+XXPH_FORCE_INLINE U64x2 XXPH_vec_mulo(U32x4 a, U32x4 b) {
+ U64x2 result;
+ __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+ return result;
+}
+XXPH_FORCE_INLINE U64x2 XXPH_vec_mule(U32x4 a, U32x4 b) {
+ U64x2 result;
+ __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+ return result;
+}
+#endif /* __has_builtin(__builtin_altivec_vmuleuw) */
+#endif /* XXPH_VECTOR == XXPH_VSX */
+
+/* prefetch
+ * can be disabled, by declaring XXPH_NO_PREFETCH build macro */
+#if defined(XXPH_NO_PREFETCH)
+# define XXPH_PREFETCH(ptr) (void)(ptr) /* disabled */
+#else
+#if defined(_MSC_VER) && \
+ (defined(_M_X64) || \
+ defined(_M_IX86)) /* _mm_prefetch() is not defined outside of x86/x64 */
+# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
+# define XXPH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
+# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
+# define XXPH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+# else
+# define XXPH_PREFETCH(ptr) (void)(ptr) /* disabled */
+# endif
+#endif /* XXPH_NO_PREFETCH */
+
+
+/* ==========================================
+ * XXPH3 default settings
+ * ========================================== */
+
+#define XXPH_SECRET_DEFAULT_SIZE 192 /* minimum XXPH3_SECRET_SIZE_MIN */
+
+#if (XXPH_SECRET_DEFAULT_SIZE < XXPH3_SECRET_SIZE_MIN)
+# error "default keyset is not large enough"
+#endif
+
+XXPH_ALIGN(64) static const xxh_u8 kSecret[XXPH_SECRET_DEFAULT_SIZE] = {
+ 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
+ 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
+ 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
+ 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
+ 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
+ 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
+ 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
+ 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
+
+ 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
+ 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
+ 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
+ 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
+};
+
+/*
+ * GCC for x86 has a tendency to use SSE in this loop. While it
+ * successfully avoids swapping (as MUL overwrites EAX and EDX), it
+ * slows it down because instead of free register swap shifts, it
+ * must use pshufd and punpckl/hd.
+ *
+ * To prevent this, we use this attribute to shut off SSE.
+ */
+#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
+__attribute__((__target__("no-sse")))
+#endif
+static XXPH128_hash_t
+XXPH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
+{
+ /*
+ * GCC/Clang __uint128_t method.
+ *
+ * On most 64-bit targets, GCC and Clang define a __uint128_t type.
+ * This is usually the best way as it usually uses a native long 64-bit
+ * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
+ *
+ * Usually.
+ *
+ * Despite being a 32-bit platform, Clang (and emscripten) define this
+ * type despite not having the arithmetic for it. This results in a
+ * laggy compiler builtin call which calculates a full 128-bit multiply.
+ * In that case it is best to use the portable one.
+ * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
+ */
+#if defined(__GNUC__) && !defined(__wasm__) \
+ && defined(__SIZEOF_INT128__) \
+ || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
+
+ __uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
+ XXPH128_hash_t const r128 = { (xxh_u64)(product), (xxh_u64)(product >> 64) };
+ return r128;
+
+ /*
+ * MSVC for x64's _umul128 method.
+ *
+ * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
+ *
+ * This compiles to single operand MUL on x64.
+ */
+#elif defined(_M_X64) || defined(_M_IA64)
+
+#ifndef _MSC_VER
+# pragma intrinsic(_umul128)
+#endif
+ xxh_u64 product_high;
+ xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
+ XXPH128_hash_t const r128 = { product_low, product_high };
+ return r128;
+
+#else
+ /*
+ * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
+ *
+ * This is a fast and simple grade school multiply, which is shown
+ * below with base 10 arithmetic instead of base 0x100000000.
+ *
+ * 9 3 // D2 lhs = 93
+ * x 7 5 // D2 rhs = 75
+ * ----------
+ * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10)
+ * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10)
+ * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10)
+ * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10)
+ * ---------
+ * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21
+ * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63
+ * ---------
+ * 6 9 7 5
+ *
+ * The reasons for adding the products like this are:
+ * 1. It avoids manual carry tracking. Just like how
+ * (9 * 9) + 9 + 9 = 99, the same applies with this for
+ * UINT64_MAX. This avoids a lot of complexity.
+ *
+ * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
+ * instruction available in ARMv6+ A32/T32, which is shown below:
+ *
+ * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
+ * {
+ * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
+ * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
+ * *RdHi = (xxh_u32)(product >> 32);
+ * }
+ *
+ * This instruction was designed for efficient long multiplication,
+ * and allows this to be calculated in only 4 instructions which
+ * is comparable to some 64-bit ALUs.
+ *
+ * 3. It isn't terrible on other platforms. Usually this will be
+ * a couple of 32-bit ADD/ADCs.
+ */
+
+ /* First calculate all of the cross products. */
+ xxh_u64 const lo_lo = XXPH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
+ xxh_u64 const hi_lo = XXPH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
+ xxh_u64 const lo_hi = XXPH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
+ xxh_u64 const hi_hi = XXPH_mult32to64(lhs >> 32, rhs >> 32);
+
+ /* Now add the products together. These will never overflow. */
+ xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
+ xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
+ xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
+
+ XXPH128_hash_t r128 = { lower, upper };
+ return r128;
+#endif
+}
+
+/*
+ * We want to keep the attribute here because a target switch
+ * disables inlining.
+ *
+ * Does a 64-bit to 128-bit multiply, then XOR folds it.
+ * The reason for the separate function is to prevent passing
+ * too many structs around by value. This will hopefully inline
+ * the multiply, but we don't force it.
+ */
+#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
+__attribute__((__target__("no-sse")))
+#endif
+static xxh_u64
+XXPH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
+{
+ XXPH128_hash_t product = XXPH_mult64to128(lhs, rhs);
+ return product.low64 ^ product.high64;
+}
+
+
+static XXPH64_hash_t XXPH3_avalanche(xxh_u64 h64)
+{
+ h64 ^= h64 >> 37;
+ h64 *= PRIME64_3;
+ h64 ^= h64 >> 32;
+ return h64;
+}
+
+
+/* ==========================================
+ * Short keys
+ * ========================================== */
+
+XXPH_FORCE_INLINE XXPH64_hash_t
+XXPH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
+{
+ XXPH_ASSERT(input != NULL);
+ XXPH_ASSERT(1 <= len && len <= 3);
+ XXPH_ASSERT(secret != NULL);
+ { xxh_u8 const c1 = input[0];
+ xxh_u8 const c2 = input[len >> 1];
+ xxh_u8 const c3 = input[len - 1];
+ xxh_u32 const combined = ((xxh_u32)c1) | (((xxh_u32)c2) << 8) | (((xxh_u32)c3) << 16) | (((xxh_u32)len) << 24);
+ xxh_u64 const keyed = (xxh_u64)combined ^ (XXPH_readLE32(secret) + seed);
+ xxh_u64 const mixed = keyed * PRIME64_1;
+ return XXPH3_avalanche(mixed);
+ }
+}
+
+XXPH_FORCE_INLINE XXPH64_hash_t
+XXPH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
+{
+ XXPH_ASSERT(input != NULL);
+ XXPH_ASSERT(secret != NULL);
+ XXPH_ASSERT(4 <= len && len <= 8);
+ { xxh_u32 const input_lo = XXPH_readLE32(input);
+ xxh_u32 const input_hi = XXPH_readLE32(input + len - 4);
+ xxh_u64 const input_64 = input_lo | ((xxh_u64)input_hi << 32);
+ xxh_u64 const keyed = input_64 ^ (XXPH_readLE64(secret) + seed);
+ xxh_u64 const mix64 = len + ((keyed ^ (keyed >> 51)) * PRIME32_1);
+ return XXPH3_avalanche((mix64 ^ (mix64 >> 47)) * PRIME64_2);
+ }
+}
+
+XXPH_FORCE_INLINE XXPH64_hash_t
+XXPH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
+{
+ XXPH_ASSERT(input != NULL);
+ XXPH_ASSERT(secret != NULL);
+ XXPH_ASSERT(9 <= len && len <= 16);
+ { xxh_u64 const input_lo = XXPH_readLE64(input) ^ (XXPH_readLE64(secret) + seed);
+ xxh_u64 const input_hi = XXPH_readLE64(input + len - 8) ^ (XXPH_readLE64(secret + 8) - seed);
+ xxh_u64 const acc = len + (input_lo + input_hi) + XXPH3_mul128_fold64(input_lo, input_hi);
+ return XXPH3_avalanche(acc);
+ }
+}
+
+XXPH_FORCE_INLINE XXPH64_hash_t
+XXPH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
+{
+ XXPH_ASSERT(len <= 16);
+ { if (len > 8) return XXPH3_len_9to16_64b(input, len, secret, seed);
+ if (len >= 4) return XXPH3_len_4to8_64b(input, len, secret, seed);
+ if (len) return XXPH3_len_1to3_64b(input, len, secret, seed);
+ /*
+ * RocksDB modification from XXPH3 preview: zero result for empty
+ * string can be problematic for multiplication-based algorithms.
+ * Return a hash of the seed instead.
+ */
+ return XXPH3_mul128_fold64(seed + XXPH_readLE64(secret), PRIME64_2);
+ }
+}
+
+
+/* === Long Keys === */
+
+#define STRIPE_LEN 64
+#define XXPH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
+#define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))
+
+typedef enum { XXPH3_acc_64bits, XXPH3_acc_128bits } XXPH3_accWidth_e;
+
+XXPH_FORCE_INLINE void
+XXPH3_accumulate_512( void* XXPH_RESTRICT acc,
+ const void* XXPH_RESTRICT input,
+ const void* XXPH_RESTRICT secret,
+ XXPH3_accWidth_e accWidth)
+{
+#if (XXPH_VECTOR == XXPH_AVX2)
+
+ XXPH_ASSERT((((size_t)acc) & 31) == 0);
+ { XXPH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
+ const __m256i* const xinput = (const __m256i *) input; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
+ const __m256i* const xsecret = (const __m256i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
+
+ size_t i;
+ for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
+ __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
+ __m256i const product = _mm256_mul_epu32 (data_key, _mm256_shuffle_epi32 (data_key, 0x31)); /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
+ if (accWidth == XXPH3_acc_128bits) {
+ __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
+ __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
+ xacc[i] = _mm256_add_epi64(product, sum);
+ } else { /* XXPH3_acc_64bits */
+ __m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
+ xacc[i] = _mm256_add_epi64(product, sum);
+ }
+ } }
+
+#elif (XXPH_VECTOR == XXPH_SSE2)
+
+ XXPH_ASSERT((((size_t)acc) & 15) == 0);
+ { XXPH_ALIGN(16) __m128i* const xacc = (__m128i *) acc;
+ const __m128i* const xinput = (const __m128i *) input; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
+ const __m128i* const xsecret = (const __m128i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
+
+ size_t i;
+ for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
+ __m128i const data_vec = _mm_loadu_si128 (xinput+i);
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); /* uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
+ __m128i const product = _mm_mul_epu32 (data_key, _mm_shuffle_epi32 (data_key, 0x31)); /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
+ if (accWidth == XXPH3_acc_128bits) {
+ __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
+ __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
+ xacc[i] = _mm_add_epi64(product, sum);
+ } else { /* XXPH3_acc_64bits */
+ __m128i const sum = _mm_add_epi64(xacc[i], data_vec);
+ xacc[i] = _mm_add_epi64(product, sum);
+ }
+ } }
+
+#elif (XXPH_VECTOR == XXPH_NEON)
+
+ XXPH_ASSERT((((size_t)acc) & 15) == 0);
+ {
+ XXPH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
+ /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
+ uint8_t const* const xinput = (const uint8_t *) input;
+ uint8_t const* const xsecret = (const uint8_t *) secret;
+
+ size_t i;
+ for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
+#if !defined(__aarch64__) && !defined(__arm64__) && defined(__GNUC__) /* ARM32-specific hack */
+ /* vzip on ARMv7 Clang generates a lot of vmovs (technically vorrs) without this.
+ * vzip on 32-bit ARM NEON will overwrite the original register, and I think that Clang
+ * assumes I don't want to destroy it and tries to make a copy. This slows down the code
+ * a lot.
+ * aarch64 not only uses an entirely different syntax, but it requires three
+ * instructions...
+ * ext v1.16B, v0.16B, #8 // select high bits because aarch64 can't address them directly
+ * zip1 v3.2s, v0.2s, v1.2s // first zip
+ * zip2 v2.2s, v0.2s, v1.2s // second zip
+ * ...to do what ARM does in one:
+ * vzip.32 d0, d1 // Interleave high and low bits and overwrite. */
+
+ /* data_vec = xsecret[i]; */
+ uint8x16_t const data_vec = vld1q_u8(xinput + (i * 16));
+ /* key_vec = xsecret[i]; */
+ uint8x16_t const key_vec = vld1q_u8(xsecret + (i * 16));
+ /* data_key = data_vec ^ key_vec; */
+ uint32x4_t data_key;
+
+ if (accWidth == XXPH3_acc_64bits) {
+ /* Add first to prevent register swaps */
+ /* xacc[i] += data_vec; */
+ xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
+ } else { /* XXPH3_acc_128bits */
+ /* xacc[i] += swap(data_vec); */
+ /* can probably be optimized better */
+ uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
+ uint64x2_t const swapped= vextq_u64(data64, data64, 1);
+ xacc[i] = vaddq_u64 (xacc[i], swapped);
+ }
+
+ data_key = vreinterpretq_u32_u8(veorq_u8(data_vec, key_vec));
+
+ /* Here's the magic. We use the quirkiness of vzip to shuffle data_key in place.
+ * shuffle: data_key[0, 1, 2, 3] = data_key[0, 2, 1, 3] */
+ __asm__("vzip.32 %e0, %f0" : "+w" (data_key));
+ /* xacc[i] += (uint64x2_t) data_key[0, 1] * (uint64x2_t) data_key[2, 3]; */
+ xacc[i] = vmlal_u32(xacc[i], vget_low_u32(data_key), vget_high_u32(data_key));
+
+#else
+ /* On aarch64, vshrn/vmovn seems to be equivalent to, if not faster than, the vzip method. */
+
+ /* data_vec = xsecret[i]; */
+ uint8x16_t const data_vec = vld1q_u8(xinput + (i * 16));
+ /* key_vec = xsecret[i]; */
+ uint8x16_t const key_vec = vld1q_u8(xsecret + (i * 16));
+ /* data_key = data_vec ^ key_vec; */
+ uint64x2_t const data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
+ /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); */
+ uint32x2_t const data_key_lo = vmovn_u64 (data_key);
+ /* data_key_hi = (uint32x2_t) (data_key >> 32); */
+ uint32x2_t const data_key_hi = vshrn_n_u64 (data_key, 32);
+ if (accWidth == XXPH3_acc_64bits) {
+ /* xacc[i] += data_vec; */
+ xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
+ } else { /* XXPH3_acc_128bits */
+ /* xacc[i] += swap(data_vec); */
+ uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
+ uint64x2_t const swapped= vextq_u64(data64, data64, 1);
+ xacc[i] = vaddq_u64 (xacc[i], swapped);
+ }
+ /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
+ xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
+
+#endif
+ }
+ }
+
+#elif (XXPH_VECTOR == XXPH_VSX) && /* work around a compiler bug */ (__GNUC__ > 5)
+ U64x2* const xacc = (U64x2*) acc; /* presumed aligned */
+ U64x2 const* const xinput = (U64x2 const*) input; /* no alignment restriction */
+ U64x2 const* const xsecret = (U64x2 const*) secret; /* no alignment restriction */
+ U64x2 const v32 = { 32, 32 };
+#if XXPH_VSX_BE
+ U8x16 const vXorSwap = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
+ 0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
+#endif
+ size_t i;
+ for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
+ /* data_vec = xinput[i]; */
+ /* key_vec = xsecret[i]; */
+#if XXPH_VSX_BE
+ /* byteswap */
+ U64x2 const data_vec = XXPH_vec_revb(vec_vsx_ld(0, xinput + i));
+ U64x2 const key_raw = vec_vsx_ld(0, xsecret + i);
+ /* See comment above. data_key = data_vec ^ swap(xsecret[i]); */
+ U64x2 const data_key = (U64x2)XXPH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
+#else
+ U64x2 const data_vec = vec_vsx_ld(0, xinput + i);
+ U64x2 const key_vec = vec_vsx_ld(0, xsecret + i);
+ U64x2 const data_key = data_vec ^ key_vec;
+#endif
+ /* shuffled = (data_key << 32) | (data_key >> 32); */
+ U32x4 const shuffled = (U32x4)vec_rl(data_key, v32);
+ /* product = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)shuffled & 0xFFFFFFFF); */
+ U64x2 const product = XXPH_vec_mulo((U32x4)data_key, shuffled);
+ xacc[i] += product;
+
+ if (accWidth == XXPH3_acc_64bits) {
+ xacc[i] += data_vec;
+ } else { /* XXPH3_acc_128bits */
+ /* swap high and low halves */
+ U64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
+ xacc[i] += data_swapped;
+ }
+ }
+
+#else /* scalar variant of Accumulator - universal */
+
+ XXPH_ALIGN(XXPH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
+ const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
+ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
+ size_t i;
+ XXPH_ASSERT(((size_t)acc & (XXPH_ACC_ALIGN-1)) == 0);
+ for (i=0; i < ACC_NB; i++) {
+ xxh_u64 const data_val = XXPH_readLE64(xinput + 8*i);
+ xxh_u64 const data_key = data_val ^ XXPH_readLE64(xsecret + i*8);
+
+ if (accWidth == XXPH3_acc_64bits) {
+ xacc[i] += data_val;
+ } else {
+ xacc[i ^ 1] += data_val; /* swap adjacent lanes */
+ }
+ xacc[i] += XXPH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
+ }
+#endif
+}
+
+XXPH_FORCE_INLINE void
+XXPH3_scrambleAcc(void* XXPH_RESTRICT acc, const void* XXPH_RESTRICT secret)
+{
+#if (XXPH_VECTOR == XXPH_AVX2)
+
+ XXPH_ASSERT((((size_t)acc) & 31) == 0);
+ { XXPH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
+ const __m256i* const xsecret = (const __m256i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this argument type */
+ const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);
+
+ size_t i;
+ for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m256i const acc_vec = xacc[i];
+ __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
+ __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
+ /* xacc[i] ^= xsecret; */
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
+
+ /* xacc[i] *= PRIME32_1; */
+ __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, 0x31);
+ __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
+ __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
+ xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
+ }
+ }
+
+#elif (XXPH_VECTOR == XXPH_SSE2)
+
+ XXPH_ASSERT((((size_t)acc) & 15) == 0);
+ { XXPH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
+ const __m128i* const xsecret = (const __m128i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this argument type */
+ const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);
+
+ size_t i;
+ for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m128i const acc_vec = xacc[i];
+ __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
+ __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
+ /* xacc[i] ^= xsecret; */
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
+
+ /* xacc[i] *= PRIME32_1; */
+ __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, 0x31);
+ __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
+ __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
+ xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
+ }
+ }
+
+#elif (XXPH_VECTOR == XXPH_NEON)
+
+ XXPH_ASSERT((((size_t)acc) & 15) == 0);
+
+ { uint64x2_t* const xacc = (uint64x2_t*) acc;
+ uint8_t const* const xsecret = (uint8_t const*) secret;
+ uint32x2_t const prime = vdup_n_u32 (PRIME32_1);
+
+ size_t i;
+ for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
+ /* data_vec = xacc[i] ^ (xacc[i] >> 47); */
+ uint64x2_t const acc_vec = xacc[i];
+ uint64x2_t const shifted = vshrq_n_u64 (acc_vec, 47);
+ uint64x2_t const data_vec = veorq_u64 (acc_vec, shifted);
+
+ /* key_vec = xsecret[i]; */
+ uint32x4_t const key_vec = vreinterpretq_u32_u8(vld1q_u8(xsecret + (i * 16)));
+ /* data_key = data_vec ^ key_vec; */
+ uint32x4_t const data_key = veorq_u32 (vreinterpretq_u32_u64(data_vec), key_vec);
+ /* shuffled = { data_key[0, 2], data_key[1, 3] }; */
+ uint32x2x2_t const shuffled = vzip_u32 (vget_low_u32(data_key), vget_high_u32(data_key));
+
+ /* data_key *= PRIME32_1 */
+
+ /* prod_hi = (data_key >> 32) * PRIME32_1; */
+ uint64x2_t const prod_hi = vmull_u32 (shuffled.val[1], prime);
+ /* xacc[i] = prod_hi << 32; */
+ xacc[i] = vshlq_n_u64(prod_hi, 32);
+ /* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
+ xacc[i] = vmlal_u32(xacc[i], shuffled.val[0], prime);
+ } }
+
+#elif (XXPH_VECTOR == XXPH_VSX) && /* work around a compiler bug */ (__GNUC__ > 5)
+
+ U64x2* const xacc = (U64x2*) acc;
+ const U64x2* const xsecret = (const U64x2*) secret;
+ /* constants */
+ U64x2 const v32 = { 32, 32 };
+ U64x2 const v47 = { 47, 47 };
+ U32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
+ size_t i;
+#if XXPH_VSX_BE
+ /* endian swap */
+ U8x16 const vXorSwap = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
+ 0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
+#endif
+ for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
+ U64x2 const acc_vec = xacc[i];
+ U64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
+ /* key_vec = xsecret[i]; */
+#if XXPH_VSX_BE
+ /* swap bytes words */
+ U64x2 const key_raw = vec_vsx_ld(0, xsecret + i);
+ U64x2 const data_key = (U64x2)XXPH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
+#else
+ U64x2 const key_vec = vec_vsx_ld(0, xsecret + i);
+ U64x2 const data_key = data_vec ^ key_vec;
+#endif
+
+ /* data_key *= PRIME32_1 */
+
+ /* prod_lo = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)prime & 0xFFFFFFFF); */
+ U64x2 const prod_even = XXPH_vec_mule((U32x4)data_key, prime);
+ /* prod_hi = ((U64x2)data_key >> 32) * ((U64x2)prime >> 32); */
+ U64x2 const prod_odd = XXPH_vec_mulo((U32x4)data_key, prime);
+ xacc[i] = prod_odd + (prod_even << v32);
+ }
+
+#else /* scalar variant of Scrambler - universal */
+
+ XXPH_ALIGN(XXPH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
+ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
+ size_t i;
+ XXPH_ASSERT((((size_t)acc) & (XXPH_ACC_ALIGN-1)) == 0);
+ for (i=0; i < ACC_NB; i++) {
+ xxh_u64 const key64 = XXPH_readLE64(xsecret + 8*i);
+ xxh_u64 acc64 = xacc[i];
+ acc64 ^= acc64 >> 47;
+ acc64 ^= key64;
+ acc64 *= PRIME32_1;
+ xacc[i] = acc64;
+ }
+
+#endif
+}
+
+#define XXPH_PREFETCH_DIST 384
+
+/* assumption : nbStripes will not overflow secret size */
+XXPH_FORCE_INLINE void
+XXPH3_accumulate( xxh_u64* XXPH_RESTRICT acc,
+ const xxh_u8* XXPH_RESTRICT input,
+ const xxh_u8* XXPH_RESTRICT secret,
+ size_t nbStripes,
+ XXPH3_accWidth_e accWidth)
+{
+ size_t n;
+ for (n = 0; n < nbStripes; n++ ) {
+ const xxh_u8* const in = input + n*STRIPE_LEN;
+ XXPH_PREFETCH(in + XXPH_PREFETCH_DIST);
+ XXPH3_accumulate_512(acc,
+ in,
+ secret + n*XXPH_SECRET_CONSUME_RATE,
+ accWidth);
+ }
+}
+
+/* note : clang auto-vectorizes well in SS2 mode _if_ this function is `static`,
+ * and doesn't auto-vectorize it at all if it is `FORCE_INLINE`.
+ * However, it auto-vectorizes better AVX2 if it is `FORCE_INLINE`
+ * Pretty much every other modes and compilers prefer `FORCE_INLINE`.
+ */
+
+#if defined(__clang__) && (XXPH_VECTOR==0) && !defined(__AVX2__) && !defined(__arm__) && !defined(__thumb__)
+static void
+#else
+XXPH_FORCE_INLINE void
+#endif
+XXPH3_hashLong_internal_loop( xxh_u64* XXPH_RESTRICT acc,
+ const xxh_u8* XXPH_RESTRICT input, size_t len,
+ const xxh_u8* XXPH_RESTRICT secret, size_t secretSize,
+ XXPH3_accWidth_e accWidth)
+{
+ size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXPH_SECRET_CONSUME_RATE;
+ size_t const block_len = STRIPE_LEN * nb_rounds;
+ size_t const nb_blocks = len / block_len;
+
+ size_t n;
+
+ XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN);
+
+ for (n = 0; n < nb_blocks; n++) {
+ XXPH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth);
+ XXPH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN);
+ }
+
+ /* last partial block */
+ XXPH_ASSERT(len > STRIPE_LEN);
+ { size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
+ XXPH_ASSERT(nbStripes <= (secretSize / XXPH_SECRET_CONSUME_RATE));
+ XXPH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth);
+
+ /* last stripe */
+ if (len & (STRIPE_LEN - 1)) {
+ const xxh_u8* const p = input + len - STRIPE_LEN;
+#define XXPH_SECRET_LASTACC_START 7 /* do not align on 8, so that secret is different from scrambler */
+ XXPH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXPH_SECRET_LASTACC_START, accWidth);
+ } }
+}
+
+XXPH_FORCE_INLINE xxh_u64
+XXPH3_mix2Accs(const xxh_u64* XXPH_RESTRICT acc, const xxh_u8* XXPH_RESTRICT secret)
+{
+ return XXPH3_mul128_fold64(
+ acc[0] ^ XXPH_readLE64(secret),
+ acc[1] ^ XXPH_readLE64(secret+8) );
+}
+
+static XXPH64_hash_t
+XXPH3_mergeAccs(const xxh_u64* XXPH_RESTRICT acc, const xxh_u8* XXPH_RESTRICT secret, xxh_u64 start)
+{
+ xxh_u64 result64 = start;
+
+ result64 += XXPH3_mix2Accs(acc+0, secret + 0);
+ result64 += XXPH3_mix2Accs(acc+2, secret + 16);
+ result64 += XXPH3_mix2Accs(acc+4, secret + 32);
+ result64 += XXPH3_mix2Accs(acc+6, secret + 48);
+
+ return XXPH3_avalanche(result64);
+}
+
+#define XXPH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
+ PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 };
+
+XXPH_FORCE_INLINE XXPH64_hash_t
+XXPH3_hashLong_internal(const xxh_u8* XXPH_RESTRICT input, size_t len,
+ const xxh_u8* XXPH_RESTRICT secret, size_t secretSize)
+{
+ XXPH_ALIGN(XXPH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXPH3_INIT_ACC;
+
+ XXPH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXPH3_acc_64bits);
+
+ /* converge into final hash */
+ XXPH_STATIC_ASSERT(sizeof(acc) == 64);
+#define XXPH_SECRET_MERGEACCS_START 11 /* do not align on 8, so that secret is different from accumulator */
+ XXPH_ASSERT(secretSize >= sizeof(acc) + XXPH_SECRET_MERGEACCS_START);
+ return XXPH3_mergeAccs(acc, secret + XXPH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
+}
+
+
+XXPH_NO_INLINE XXPH64_hash_t /* It's important for performance that XXPH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
+XXPH3_hashLong_64b_defaultSecret(const xxh_u8* XXPH_RESTRICT input, size_t len)
+{
+ return XXPH3_hashLong_internal(input, len, kSecret, sizeof(kSecret));
+}
+
+XXPH_NO_INLINE XXPH64_hash_t /* It's important for performance that XXPH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
+XXPH3_hashLong_64b_withSecret(const xxh_u8* XXPH_RESTRICT input, size_t len,
+ const xxh_u8* XXPH_RESTRICT secret, size_t secretSize)
+{
+ return XXPH3_hashLong_internal(input, len, secret, secretSize);
+}
+
+
+XXPH_FORCE_INLINE void XXPH_writeLE64(void* dst, xxh_u64 v64)
+{
+ if (!XXPH_CPU_LITTLE_ENDIAN) v64 = XXPH_swap64(v64);
+ memcpy(dst, &v64, sizeof(v64));
+}
+
+/* XXPH3_initCustomSecret() :
+ * destination `customSecret` is presumed allocated and same size as `kSecret`.
+ */
+XXPH_FORCE_INLINE void XXPH3_initCustomSecret(xxh_u8* customSecret, xxh_u64 seed64)
+{
+ int const nbRounds = XXPH_SECRET_DEFAULT_SIZE / 16;
+ int i;
+
+ XXPH_STATIC_ASSERT((XXPH_SECRET_DEFAULT_SIZE & 15) == 0);
+
+ for (i=0; i < nbRounds; i++) {
+ XXPH_writeLE64(customSecret + 16*i, XXPH_readLE64(kSecret + 16*i) + seed64);
+ XXPH_writeLE64(customSecret + 16*i + 8, XXPH_readLE64(kSecret + 16*i + 8) - seed64);
+ }
+}
+
+
+/* XXPH3_hashLong_64b_withSeed() :
+ * Generate a custom key,
+ * based on alteration of default kSecret with the seed,
+ * and then use this key for long mode hashing.
+ * This operation is decently fast but nonetheless costs a little bit of time.
+ * Try to avoid it whenever possible (typically when seed==0).
+ */
+XXPH_NO_INLINE XXPH64_hash_t /* It's important for performance that XXPH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
+XXPH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXPH64_hash_t seed)
+{
+ XXPH_ALIGN(8) xxh_u8 secret[XXPH_SECRET_DEFAULT_SIZE];
+ if (seed==0) return XXPH3_hashLong_64b_defaultSecret(input, len);
+ XXPH3_initCustomSecret(secret, seed);
+ return XXPH3_hashLong_internal(input, len, secret, sizeof(secret));
+}
+
+
+XXPH_FORCE_INLINE xxh_u64 XXPH3_mix16B(const xxh_u8* XXPH_RESTRICT input,
+ const xxh_u8* XXPH_RESTRICT secret, xxh_u64 seed64)
+{
+ xxh_u64 const input_lo = XXPH_readLE64(input);
+ xxh_u64 const input_hi = XXPH_readLE64(input+8);
+ return XXPH3_mul128_fold64(
+ input_lo ^ (XXPH_readLE64(secret) + seed64),
+ input_hi ^ (XXPH_readLE64(secret+8) - seed64) );
+}
+
+
+XXPH_FORCE_INLINE XXPH64_hash_t
+XXPH3_len_17to128_64b(const xxh_u8* XXPH_RESTRICT input, size_t len,
+ const xxh_u8* XXPH_RESTRICT secret, size_t secretSize,
+ XXPH64_hash_t seed)
+{
+ XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXPH_ASSERT(16 < len && len <= 128);
+
+ { xxh_u64 acc = len * PRIME64_1;
+ if (len > 32) {
+ if (len > 64) {
+ if (len > 96) {
+ acc += XXPH3_mix16B(input+48, secret+96, seed);
+ acc += XXPH3_mix16B(input+len-64, secret+112, seed);
+ }
+ acc += XXPH3_mix16B(input+32, secret+64, seed);
+ acc += XXPH3_mix16B(input+len-48, secret+80, seed);
+ }
+ acc += XXPH3_mix16B(input+16, secret+32, seed);
+ acc += XXPH3_mix16B(input+len-32, secret+48, seed);
+ }
+ acc += XXPH3_mix16B(input+0, secret+0, seed);
+ acc += XXPH3_mix16B(input+len-16, secret+16, seed);
+
+ return XXPH3_avalanche(acc);
+ }
+}
+
+#define XXPH3_MIDSIZE_MAX 240
+
+XXPH_NO_INLINE XXPH64_hash_t
+XXPH3_len_129to240_64b(const xxh_u8* XXPH_RESTRICT input, size_t len,
+ const xxh_u8* XXPH_RESTRICT secret, size_t secretSize,
+ XXPH64_hash_t seed)
+{
+ XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXPH_ASSERT(128 < len && len <= XXPH3_MIDSIZE_MAX);
+
+ #define XXPH3_MIDSIZE_STARTOFFSET 3
+ #define XXPH3_MIDSIZE_LASTOFFSET 17
+
+ { xxh_u64 acc = len * PRIME64_1;
+ int const nbRounds = (int)len / 16;
+ int i;
+ for (i=0; i<8; i++) {
+ acc += XXPH3_mix16B(input+(16*i), secret+(16*i), seed);
+ }
+ acc = XXPH3_avalanche(acc);
+ XXPH_ASSERT(nbRounds >= 8);
+ for (i=8 ; i < nbRounds; i++) {
+ acc += XXPH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXPH3_MIDSIZE_STARTOFFSET, seed);
+ }
+ /* last bytes */
+ acc += XXPH3_mix16B(input + len - 16, secret + XXPH3_SECRET_SIZE_MIN - XXPH3_MIDSIZE_LASTOFFSET, seed);
+ return XXPH3_avalanche(acc);
+ }
+}
+
+/* === Public entry point === */
+
+XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits(const void* input, size_t len)
+{
+ if (len <= 16) return XXPH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0);
+ if (len <= 128) return XXPH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
+ if (len <= XXPH3_MIDSIZE_MAX) return XXPH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
+ return XXPH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len);
+}
+
+XXPH_PUBLIC_API XXPH64_hash_t
+XXPH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+{
+ XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN);
+ /* if an action must be taken should `secret` conditions not be respected,
+ * it should be done here.
+ * For now, it's a contract pre-condition.
+ * Adding a check and a branch here would cost performance at every hash */
+ if (len <= 16) return XXPH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
+ if (len <= 128) return XXPH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
+ if (len <= XXPH3_MIDSIZE_MAX) return XXPH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
+ return XXPH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
+}
+
+XXPH_PUBLIC_API XXPH64_hash_t
+XXPH3_64bits_withSeed(const void* input, size_t len, XXPH64_hash_t seed)
+{
+ if (len <= 16) return XXPH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed);
+ if (len <= 128) return XXPH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
+ if (len <= XXPH3_MIDSIZE_MAX) return XXPH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
+ return XXPH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed);
+}
+
+/* === XXPH3 streaming === */
+
+/* RocksDB Note: unused & removed due to bug in preview version */
+
+/*======== END #include "xxh3.h", now inlined above ==========*/
+
+#endif /* XXPH_NO_LONG_LONG */
+
+/* === END RocksDB modification of permanently inlining === */
+
+#endif /* defined(XXPH_INLINE_ALL) || defined(XXPH_PRIVATE_API) */
+
+#endif /* XXPH_STATIC_LINKING_ONLY */
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* XXPHASH_H_5627135585666179 */