summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/drivers/baseband
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/spdk/dpdk/drivers/baseband/Makefile18
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/Makefile28
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h388
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/meson.build8
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_fpga_5gnr_fec.c2187
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map10
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_fpga_5gnr_fec.h74
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_lte_fec/Makefile25
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c2675
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h74
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_lte_fec/meson.build5
-rw-r--r--src/spdk/dpdk/drivers/baseband/fpga_lte_fec/rte_pmd_bbdev_fpga_lte_fec_version.map10
-rw-r--r--src/spdk/dpdk/drivers/baseband/meson.build7
-rw-r--r--src/spdk/dpdk/drivers/baseband/null/Makefile21
-rw-r--r--src/spdk/dpdk/drivers/baseband/null/bbdev_null.c356
-rw-r--r--src/spdk/dpdk/drivers/baseband/null/meson.build5
-rw-r--r--src/spdk/dpdk/drivers/baseband/null/rte_pmd_bbdev_null_version.map3
-rw-r--r--src/spdk/dpdk/drivers/baseband/turbo_sw/Makefile52
-rw-r--r--src/spdk/dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c1999
-rw-r--r--src/spdk/dpdk/drivers/baseband/turbo_sw/meson.build39
-rw-r--r--src/spdk/dpdk/drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map3
21 files changed, 7987 insertions, 0 deletions
diff --git a/src/spdk/dpdk/drivers/baseband/Makefile b/src/spdk/dpdk/drivers/baseband/Makefile
new file mode 100644
index 000000000..dcc096917
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/Makefile
@@ -0,0 +1,18 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2017 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+core-libs := librte_eal librte_mbuf librte_mempool librte_ring
+core-libs += librte_bbdev librte_kvargs librte_cfgfile
+
+DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL) += null
+DEPDIRS-null = $(core-libs)
+DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += turbo_sw
+DEPDIRS-turbo_sw = $(core-libs)
+DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC) += fpga_lte_fec
+DEPDIRS-fpga_lte_fec = $(core-libs)
+DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC) += fpga_5gnr_fec
+DEPDIRS-fpga_5gnr_fec = $(core-libs)
+
+include $(RTE_SDK)/mk/rte.subdir.mk
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/Makefile b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/Makefile
new file mode 100644
index 000000000..7b7017c6d
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/Makefile
@@ -0,0 +1,28 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2019 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+# library name
+LIB = librte_pmd_bbdev_fpga_5gnr_fec.a
+
+# build flags
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring
+LDLIBS += -lrte_bbdev
+LDLIBS += -lrte_pci -lrte_bus_pci
+
+# versioning export map
+EXPORT_MAP := rte_pmd_bbdev_fpga_5gnr_fec_version.map
+
+# library version
+LIBABIVER := 1
+
+# library source files
+SRCS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC) += rte_fpga_5gnr_fec.c
+
+# export include files
+SYMLINK-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC)-include += rte_pmd_fpga_5gnr_fec.h
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h
new file mode 100644
index 000000000..e72c95e93
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h
@@ -0,0 +1,388 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2020 Intel Corporation
+ */
+
+#ifndef _FPGA_5GNR_FEC_H_
+#define _FPGA_5GNR_FEC_H_
+
+#include <stdint.h>
+#include <stdbool.h>
+
+/* Helper macro for logging */
+#define rte_bbdev_log(level, fmt, ...) \
+ rte_log(RTE_LOG_ ## level, fpga_5gnr_fec_logtype, fmt "\n", \
+ ##__VA_ARGS__)
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+#define rte_bbdev_log_debug(fmt, ...) \
+ rte_bbdev_log(DEBUG, "fpga_5gnr_fec: " fmt, \
+ ##__VA_ARGS__)
+#else
+#define rte_bbdev_log_debug(fmt, ...)
+#endif
+
+/* FPGA 5GNR FEC driver names */
+#define FPGA_5GNR_FEC_PF_DRIVER_NAME intel_fpga_5gnr_fec_pf
+#define FPGA_5GNR_FEC_VF_DRIVER_NAME intel_fpga_5gnr_fec_vf
+
+/* FPGA 5GNR FEC PCI vendor & device IDs */
+#define FPGA_5GNR_FEC_VENDOR_ID (0x8086)
+#define FPGA_5GNR_FEC_PF_DEVICE_ID (0x0D8F)
+#define FPGA_5GNR_FEC_VF_DEVICE_ID (0x0D90)
+
+/* Align DMA descriptors to 256 bytes - cache-aligned */
+#define FPGA_RING_DESC_ENTRY_LENGTH (8)
+/* Ring size is in 256 bits (32 bytes) units */
+#define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
+/* Maximum size of queue */
+#define FPGA_RING_MAX_SIZE (1024)
+#define FPGA_FLR_TIMEOUT_UNIT (16.384)
+
+#define FPGA_NUM_UL_QUEUES (32)
+#define FPGA_NUM_DL_QUEUES (32)
+#define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
+#define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
+
+#define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
+
+#define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
+#define FPGA_HARQ_RDY_TIMEOUT (10)
+#define FPGA_TIMEOUT_CHECK_INTERVAL (5)
+#define FPGA_DDR_OVERFLOW (0x10)
+
+#define FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES 8
+#define FPGA_5GNR_FEC_DDR_RD_DATA_LEN_IN_BYTES 8
+
+/* Constants from K0 computation from 3GPP 38.212 Table 5.4.2.1-2 */
+#define N_ZC_1 66 /* N = 66 Zc for BG 1 */
+#define N_ZC_2 50 /* N = 50 Zc for BG 2 */
+#define K0_1_1 17 /* K0 fraction numerator for rv 1 and BG 1 */
+#define K0_1_2 13 /* K0 fraction numerator for rv 1 and BG 2 */
+#define K0_2_1 33 /* K0 fraction numerator for rv 2 and BG 1 */
+#define K0_2_2 25 /* K0 fraction numerator for rv 2 and BG 2 */
+#define K0_3_1 56 /* K0 fraction numerator for rv 3 and BG 1 */
+#define K0_3_2 43 /* K0 fraction numerator for rv 3 and BG 2 */
+
+/* FPGA 5GNR FEC Register mapping on BAR0 */
+enum {
+ FPGA_5GNR_FEC_VERSION_ID = 0x00000000, /* len: 4B */
+ FPGA_5GNR_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
+ FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
+ FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
+ FPGA_5GNR_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
+ FPGA_5GNR_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
+ FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
+ FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
+ FPGA_5GNR_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
+ FPGA_5GNR_FEC_RING_CTRL_REGS = 0x00000200, /* len: 2048B */
+ FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS = 0x00000A00, /* len: 4B */
+ FPGA_5GNR_FEC_DDR4_WR_DATA_REGS = 0x00000A08, /* len: 8B */
+ FPGA_5GNR_FEC_DDR4_WR_DONE_REGS = 0x00000A10, /* len: 1B */
+ FPGA_5GNR_FEC_DDR4_RD_ADDR_REGS = 0x00000A18, /* len: 4B */
+ FPGA_5GNR_FEC_DDR4_RD_DONE_REGS = 0x00000A20, /* len: 1B */
+ FPGA_5GNR_FEC_DDR4_RD_RDY_REGS = 0x00000A28, /* len: 1B */
+ FPGA_5GNR_FEC_DDR4_RD_DATA_REGS = 0x00000A30, /* len: 8B */
+ FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS = 0x00000A38, /* len: 1B */
+ FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS = 0x00000A40, /* len: 1B */
+ FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS = 0x00000A48 /* len: 4B */
+};
+
+/* FPGA 5GNR FEC Ring Control Registers */
+enum {
+ FPGA_5GNR_FEC_RING_HEAD_ADDR = 0x00000008,
+ FPGA_5GNR_FEC_RING_SIZE = 0x00000010,
+ FPGA_5GNR_FEC_RING_MISC = 0x00000014,
+ FPGA_5GNR_FEC_RING_ENABLE = 0x00000015,
+ FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
+ FPGA_5GNR_FEC_RING_SHADOW_TAIL = 0x00000018,
+ FPGA_5GNR_FEC_RING_HEAD_POINT = 0x0000001C
+};
+
+/* FPGA 5GNR FEC DESCRIPTOR ERROR */
+enum {
+ DESC_ERR_NO_ERR = 0x0,
+ DESC_ERR_K_P_OUT_OF_RANGE = 0x1,
+ DESC_ERR_Z_C_NOT_LEGAL = 0x2,
+ DESC_ERR_DESC_OFFSET_ERR = 0x3,
+ DESC_ERR_DESC_READ_FAIL = 0x8,
+ DESC_ERR_DESC_READ_TIMEOUT = 0x9,
+ DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
+ DESC_ERR_CB_READ_FAIL = 0xC,
+ DESC_ERR_CB_READ_TIMEOUT = 0xD,
+ DESC_ERR_CB_READ_TLP_POISONED = 0xE,
+ DESC_ERR_HBSTORE_ERR = 0xF
+};
+
+
+/* FPGA 5GNR FEC DMA Encoding Request Descriptor */
+struct __rte_packed fpga_dma_enc_desc {
+ uint32_t done:1,
+ rsrvd0:7,
+ error:4,
+ rsrvd1:4,
+ num_null:10,
+ rsrvd2:6;
+ uint32_t ncb:15,
+ rsrvd3:1,
+ k0:16;
+ uint32_t irq_en:1,
+ crc_en:1,
+ rsrvd4:1,
+ qm_idx:3,
+ bg_idx:1,
+ zc:9,
+ desc_idx:10,
+ rsrvd5:6;
+ uint16_t rm_e;
+ uint16_t k_;
+ uint32_t out_addr_lw;
+ uint32_t out_addr_hi;
+ uint32_t in_addr_lw;
+ uint32_t in_addr_hi;
+
+ union {
+ struct {
+ /* Virtual addresses used to retrieve SW context info */
+ void *op_addr;
+ /* Stores information about total number of Code Blocks
+ * in currently processed Transport Block
+ */
+ uint64_t cbs_in_op;
+ };
+
+ uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
+ (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+ };
+};
+
+
+/* FPGA 5GNR DPC FEC DMA Decoding Request Descriptor */
+struct __rte_packed fpga_dma_dec_desc {
+ uint32_t done:1,
+ iter:5,
+ et_pass:1,
+ crcb_pass:1,
+ error:4,
+ qm_idx:3,
+ max_iter:5,
+ bg_idx:1,
+ rsrvd0:1,
+ harqin_en:1,
+ zc:9;
+ uint32_t hbstroe_offset:22,
+ num_null:10;
+ uint32_t irq_en:1,
+ ncb:15,
+ desc_idx:10,
+ drop_crc24b:1,
+ crc24b_ind:1,
+ rv:2,
+ et_dis:1,
+ rsrvd2:1;
+ uint32_t harq_input_length:16,
+ rm_e:16;/*the inbound data byte length*/
+ uint32_t out_addr_lw;
+ uint32_t out_addr_hi;
+ uint32_t in_addr_lw;
+ uint32_t in_addr_hi;
+
+ union {
+ struct {
+ /* Virtual addresses used to retrieve SW context info */
+ void *op_addr;
+ /* Stores information about total number of Code Blocks
+ * in currently processed Transport Block
+ */
+ uint8_t cbs_in_op;
+ };
+
+ uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+ };
+};
+
+/* FPGA 5GNR DMA Descriptor */
+union fpga_dma_desc {
+ struct fpga_dma_enc_desc enc_req;
+ struct fpga_dma_dec_desc dec_req;
+};
+
+/* FPGA 5GNR FEC Ring Control Register */
+struct __rte_packed fpga_ring_ctrl_reg {
+ uint64_t ring_base_addr;
+ uint64_t ring_head_addr;
+ uint16_t ring_size:11;
+ uint16_t rsrvd0;
+ union { /* Miscellaneous register */
+ uint8_t misc;
+ uint8_t max_ul_dec:5,
+ max_ul_dec_en:1,
+ rsrvd1:2;
+ };
+ uint8_t enable;
+ uint8_t flush_queue_en;
+ uint8_t rsrvd2;
+ uint16_t shadow_tail;
+ uint16_t rsrvd3;
+ uint16_t head_point;
+ uint16_t rsrvd4;
+
+};
+
+/* Private data structure for each FPGA FEC device */
+struct fpga_5gnr_fec_device {
+ /** Base address of MMIO registers (BAR0) */
+ void *mmio_base;
+ /** Base address of memory for sw rings */
+ void *sw_rings;
+ /** Physical address of sw_rings */
+ rte_iova_t sw_rings_phys;
+ /** Number of bytes available for each queue in device. */
+ uint32_t sw_ring_size;
+ /** Max number of entries available for each queue in device */
+ uint32_t sw_ring_max_depth;
+ /** Base address of response tail pointer buffer */
+ uint32_t *tail_ptrs;
+ /** Physical address of tail pointers */
+ rte_iova_t tail_ptr_phys;
+ /** Queues flush completion flag */
+ uint64_t *flush_queue_status;
+ /* Bitmap capturing which Queues are bound to the PF/VF */
+ uint64_t q_bound_bit_map;
+ /* Bitmap capturing which Queues have already been assigned */
+ uint64_t q_assigned_bit_map;
+ /** True if this is a PF FPGA FEC device */
+ bool pf_device;
+};
+
+/* Structure associated with each queue. */
+struct __rte_cache_aligned fpga_queue {
+ struct fpga_ring_ctrl_reg ring_ctrl_reg; /* Ring Control Register */
+ union fpga_dma_desc *ring_addr; /* Virtual address of software ring */
+ uint64_t *ring_head_addr; /* Virtual address of completion_head */
+ uint64_t shadow_completion_head; /* Shadow completion head value */
+ uint16_t head_free_desc; /* Ring head */
+ uint16_t tail; /* Ring tail */
+ /* Mask used to wrap enqueued descriptors on the sw ring */
+ uint32_t sw_ring_wrap_mask;
+ uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */
+ uint8_t q_idx; /* Queue index */
+ struct fpga_5gnr_fec_device *d;
+ /* MMIO register of shadow_tail used to enqueue descriptors */
+ void *shadow_tail_addr;
+};
+
+/* Write to 16 bit MMIO register address */
+static inline void
+mmio_write_16(void *addr, uint16_t value)
+{
+ *((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
+}
+
+/* Write to 32 bit MMIO register address */
+static inline void
+mmio_write_32(void *addr, uint32_t value)
+{
+ *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
+}
+
+/* Write to 64 bit MMIO register address */
+static inline void
+mmio_write_64(void *addr, uint64_t value)
+{
+ *((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
+}
+
+/* Write a 8 bit register of a FPGA 5GNR FEC device */
+static inline void
+fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ *((volatile uint8_t *)(reg_addr)) = payload;
+}
+
+/* Write a 16 bit register of a FPGA 5GNR FEC device */
+static inline void
+fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_16(reg_addr, payload);
+}
+
+/* Write a 32 bit register of a FPGA 5GNR FEC device */
+static inline void
+fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_32(reg_addr, payload);
+}
+
+/* Write a 64 bit register of a FPGA 5GNR FEC device */
+static inline void
+fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_64(reg_addr, payload);
+}
+
+/* Write a ring control register of a FPGA 5GNR FEC device */
+static inline void
+fpga_ring_reg_write(void *mmio_base, uint32_t offset,
+ struct fpga_ring_ctrl_reg payload)
+{
+ fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
+ fpga_reg_write_64(mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_ADDR,
+ payload.ring_head_addr);
+ fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_SIZE,
+ payload.ring_size);
+ fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_POINT,
+ payload.head_point);
+ fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN,
+ payload.flush_queue_en);
+ fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL,
+ payload.shadow_tail);
+ fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_MISC,
+ payload.misc);
+ fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
+ payload.enable);
+}
+
+/* Read a register of FPGA 5GNR FEC device */
+static inline uint32_t
+fpga_reg_read_32(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint32_t ret = *((volatile uint32_t *)(reg_addr));
+ return rte_le_to_cpu_32(ret);
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+
+/* Read a register of FPGA 5GNR FEC device */
+static inline uint16_t
+fpga_reg_read_16(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint16_t ret = *((volatile uint16_t *)(reg_addr));
+ return rte_le_to_cpu_16(ret);
+}
+
+#endif
+
+/* Read a register of FPGA 5GNR FEC device */
+static inline uint8_t
+fpga_reg_read_8(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ return *((volatile uint8_t *)(reg_addr));
+}
+
+/* Read a register of FPGA 5GNR FEC device */
+static inline uint64_t
+fpga_reg_read_64(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint64_t ret = *((volatile uint64_t *)(reg_addr));
+ return rte_le_to_cpu_64(ret);
+}
+
+#endif /* _FPGA_5GNR_FEC_H_ */
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/meson.build b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/meson.build
new file mode 100644
index 000000000..9d10bcf80
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/meson.build
@@ -0,0 +1,8 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2020 Intel Corporation
+
+deps += ['bbdev', 'bus_vdev', 'ring', 'pci', 'bus_pci']
+
+sources = files('rte_fpga_5gnr_fec.c')
+
+install_headers('rte_pmd_fpga_5gnr_fec.h')
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_fpga_5gnr_fec.c b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_fpga_5gnr_fec.c
new file mode 100644
index 000000000..e152b206e
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_fpga_5gnr_fec.c
@@ -0,0 +1,2187 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2020 Intel Corporation
+ */
+
+#include <unistd.h>
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_dev.h>
+#include <rte_malloc.h>
+#include <rte_mempool.h>
+#include <rte_errno.h>
+#include <rte_pci.h>
+#include <rte_bus_pci.h>
+#include <rte_byteorder.h>
+#ifdef RTE_BBDEV_OFFLOAD_COST
+#include <rte_cycles.h>
+#endif
+
+#include <rte_bbdev.h>
+#include <rte_bbdev_pmd.h>
+
+#include "fpga_5gnr_fec.h"
+#include "rte_pmd_fpga_5gnr_fec.h"
+
+/* 5GNR SW PMD logging ID */
+static int fpga_5gnr_fec_logtype;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+
+/* Read Ring Control Register of FPGA 5GNR FEC device */
+static inline void
+print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
+{
+ rte_bbdev_log_debug(
+ "FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
+ PRIx32, mmio_base, offset);
+ rte_bbdev_log_debug(
+ "RING_BASE_ADDR = 0x%016"PRIx64,
+ fpga_reg_read_64(mmio_base, offset));
+ rte_bbdev_log_debug(
+ "RING_HEAD_ADDR = 0x%016"PRIx64,
+ fpga_reg_read_64(mmio_base, offset +
+ FPGA_5GNR_FEC_RING_HEAD_ADDR));
+ rte_bbdev_log_debug(
+ "RING_SIZE = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_5GNR_FEC_RING_SIZE));
+ rte_bbdev_log_debug(
+ "RING_MISC = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_5GNR_FEC_RING_MISC));
+ rte_bbdev_log_debug(
+ "RING_ENABLE = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_5GNR_FEC_RING_ENABLE));
+ rte_bbdev_log_debug(
+ "RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN));
+ rte_bbdev_log_debug(
+ "RING_SHADOW_TAIL = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_5GNR_FEC_RING_SHADOW_TAIL));
+ rte_bbdev_log_debug(
+ "RING_HEAD_POINT = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_5GNR_FEC_RING_HEAD_POINT));
+}
+
+/* Read Static Register of FPGA 5GNR FEC device */
+static inline void
+print_static_reg_debug_info(void *mmio_base)
+{
+ uint16_t config = fpga_reg_read_16(mmio_base,
+ FPGA_5GNR_FEC_CONFIGURATION);
+ uint8_t qmap_done = fpga_reg_read_8(mmio_base,
+ FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE);
+ uint16_t lb_factor = fpga_reg_read_16(mmio_base,
+ FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR);
+ uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
+ FPGA_5GNR_FEC_RING_DESC_LEN);
+ uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
+ FPGA_5GNR_FEC_FLR_TIME_OUT);
+
+ rte_bbdev_log_debug("UL.DL Weights = %u.%u",
+ ((uint8_t)config), ((uint8_t)(config >> 8)));
+ rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
+ ((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
+ rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
+ (qmap_done > 0) ? "READY" : "NOT-READY");
+ rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
+ ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
+ rte_bbdev_log_debug("FLR Timeout = %f usec",
+ (float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
+}
+
+/* Print decode DMA Descriptor of FPGA 5GNR Decoder device */
+static void
+print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
+{
+ rte_bbdev_log_debug("DMA response desc %p\n"
+ "\t-- done(%"PRIu32") | iter(%"PRIu32") | et_pass(%"PRIu32")"
+ " | crcb_pass (%"PRIu32") | error(%"PRIu32")\n"
+ "\t-- qm_idx(%"PRIu32") | max_iter(%"PRIu32") | "
+ "bg_idx (%"PRIu32") | harqin_en(%"PRIu32") | zc(%"PRIu32")\n"
+ "\t-- hbstroe_offset(%"PRIu32") | num_null (%"PRIu32") "
+ "| irq_en(%"PRIu32")\n"
+ "\t-- ncb(%"PRIu32") | desc_idx (%"PRIu32") | "
+ "drop_crc24b(%"PRIu32") | RV (%"PRIu32")\n"
+ "\t-- crc24b_ind(%"PRIu32") | et_dis (%"PRIu32")\n"
+ "\t-- harq_input_length(%"PRIu32") | rm_e(%"PRIu32")\n"
+ "\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32")"
+ "| out_add (0x%08"PRIx32"%08"PRIx32")",
+ desc,
+ (uint32_t)desc->dec_req.done,
+ (uint32_t)desc->dec_req.iter,
+ (uint32_t)desc->dec_req.et_pass,
+ (uint32_t)desc->dec_req.crcb_pass,
+ (uint32_t)desc->dec_req.error,
+ (uint32_t)desc->dec_req.qm_idx,
+ (uint32_t)desc->dec_req.max_iter,
+ (uint32_t)desc->dec_req.bg_idx,
+ (uint32_t)desc->dec_req.harqin_en,
+ (uint32_t)desc->dec_req.zc,
+ (uint32_t)desc->dec_req.hbstroe_offset,
+ (uint32_t)desc->dec_req.num_null,
+ (uint32_t)desc->dec_req.irq_en,
+ (uint32_t)desc->dec_req.ncb,
+ (uint32_t)desc->dec_req.desc_idx,
+ (uint32_t)desc->dec_req.drop_crc24b,
+ (uint32_t)desc->dec_req.rv,
+ (uint32_t)desc->dec_req.crc24b_ind,
+ (uint32_t)desc->dec_req.et_dis,
+ (uint32_t)desc->dec_req.harq_input_length,
+ (uint32_t)desc->dec_req.rm_e,
+ (uint32_t)desc->dec_req.cbs_in_op,
+ (uint32_t)desc->dec_req.in_addr_hi,
+ (uint32_t)desc->dec_req.in_addr_lw,
+ (uint32_t)desc->dec_req.out_addr_hi,
+ (uint32_t)desc->dec_req.out_addr_lw);
+ uint32_t *word = (uint32_t *) desc;
+ rte_bbdev_log_debug("%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n"
+ "%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n",
+ word[0], word[1], word[2], word[3],
+ word[4], word[5], word[6], word[7]);
+}
+
+/* Print decode DMA Descriptor of FPGA 5GNR encoder device */
+static void
+print_dma_enc_desc_debug_info(union fpga_dma_desc *desc)
+{
+ rte_bbdev_log_debug("DMA response desc %p\n"
+ "%"PRIu32" %"PRIu32"\n"
+ "K' %"PRIu32" E %"PRIu32" desc %"PRIu32" Z %"PRIu32"\n"
+ "BG %"PRIu32" Qm %"PRIu32" CRC %"PRIu32" IRQ %"PRIu32"\n"
+ "k0 %"PRIu32" Ncb %"PRIu32" F %"PRIu32"\n",
+ desc,
+ (uint32_t)desc->enc_req.done,
+ (uint32_t)desc->enc_req.error,
+
+ (uint32_t)desc->enc_req.k_,
+ (uint32_t)desc->enc_req.rm_e,
+ (uint32_t)desc->enc_req.desc_idx,
+ (uint32_t)desc->enc_req.zc,
+
+ (uint32_t)desc->enc_req.bg_idx,
+ (uint32_t)desc->enc_req.qm_idx,
+ (uint32_t)desc->enc_req.crc_en,
+ (uint32_t)desc->enc_req.irq_en,
+
+ (uint32_t)desc->enc_req.k0,
+ (uint32_t)desc->enc_req.ncb,
+ (uint32_t)desc->enc_req.num_null);
+ uint32_t *word = (uint32_t *) desc;
+ rte_bbdev_log_debug("%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n"
+ "%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n",
+ word[0], word[1], word[2], word[3],
+ word[4], word[5], word[6], word[7]);
+}
+
+#endif
+
+static int
+fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
+{
+ /* Number of queues bound to a PF/VF */
+ uint32_t hw_q_num = 0;
+ uint32_t ring_size, payload, address, q_id, offset;
+ rte_iova_t phys_addr;
+ struct fpga_ring_ctrl_reg ring_reg;
+ struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
+
+ address = FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE;
+ if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
+ rte_bbdev_log(ERR,
+ "Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
+ dev->data->name);
+ return -EPERM;
+ }
+
+ /* Clear queue registers structure */
+ memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+
+ /* Scan queue map.
+ * If a queue is valid and mapped to a calling PF/VF the read value is
+ * replaced with a queue ID and if it's not then
+ * FPGA_INVALID_HW_QUEUE_ID is returned.
+ */
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_QUEUE_MAP + (q_id << 2));
+
+ rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
+ dev->device->name, q_id, hw_q_id);
+
+ if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
+ fpga_dev->q_bound_bit_map |= (1ULL << q_id);
+ /* Clear queue register of found queue */
+ offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q_id);
+ fpga_ring_reg_write(fpga_dev->mmio_base,
+ offset, ring_reg);
+ ++hw_q_num;
+ }
+ }
+ if (hw_q_num == 0) {
+ rte_bbdev_log(ERR,
+ "No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
+ return -ENODEV;
+ }
+
+ if (num_queues > hw_q_num) {
+ rte_bbdev_log(ERR,
+ "Not enough queues for device %s! Requested: %u, available: %u",
+ dev->device->name, num_queues, hw_q_num);
+ return -EINVAL;
+ }
+
+ ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
+
+ /* Enforce 32 byte alignment */
+ RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
+
+ /* Allocate memory for SW descriptor rings */
+ fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
+ num_queues * ring_size, RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (fpga_dev->sw_rings == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u sw_rings",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+
+ fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
+ fpga_dev->sw_ring_size = ring_size;
+ fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
+
+ /* Allocate memory for ring flush status */
+ fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
+ sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
+ if (fpga_dev->flush_queue_status == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u flush_queue_status",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+
+ /* Set the flush status address registers */
+ phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
+
+ address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_LW;
+ payload = (uint32_t)(phys_addr);
+ fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+ address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_HI;
+ payload = (uint32_t)(phys_addr >> 32);
+ fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+ return 0;
+}
+
+static int
+fpga_dev_close(struct rte_bbdev *dev)
+{
+ struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
+
+ rte_free(fpga_dev->sw_rings);
+ rte_free(fpga_dev->flush_queue_status);
+
+ return 0;
+}
+
+static void
+fpga_dev_info_get(struct rte_bbdev *dev,
+ struct rte_bbdev_driver_info *dev_info)
+{
+ struct fpga_5gnr_fec_device *d = dev->data->dev_private;
+ uint32_t q_id = 0;
+
+ static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+ {
+ .type = RTE_BBDEV_OP_LDPC_ENC,
+ .cap.ldpc_enc = {
+ .capability_flags =
+ RTE_BBDEV_LDPC_RATE_MATCH |
+ RTE_BBDEV_LDPC_ENC_INTERRUPTS |
+ RTE_BBDEV_LDPC_CRC_24B_ATTACH,
+ .num_buffers_src =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_dst =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ }
+ },
+ {
+ .type = RTE_BBDEV_OP_LDPC_DEC,
+ .cap.ldpc_dec = {
+ .capability_flags =
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
+ RTE_BBDEV_LDPC_DEC_INTERRUPTS |
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS,
+ .llr_size = 6,
+ .llr_decimals = 2,
+ .num_buffers_src =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_hard_out =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_soft_out = 0,
+ }
+ },
+ RTE_BBDEV_END_OF_CAPABILITIES_LIST()
+ };
+
+ /* Check the HARQ DDR size available */
+ uint8_t timeout_counter = 0;
+ uint32_t harq_buf_ready = fpga_reg_read_32(d->mmio_base,
+ FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS);
+ while (harq_buf_ready != 1) {
+ usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
+ timeout_counter++;
+ harq_buf_ready = fpga_reg_read_32(d->mmio_base,
+ FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS);
+ if (timeout_counter > FPGA_HARQ_RDY_TIMEOUT) {
+ rte_bbdev_log(ERR, "HARQ Buffer not ready %d",
+ harq_buf_ready);
+ harq_buf_ready = 1;
+ }
+ }
+ uint32_t harq_buf_size = fpga_reg_read_32(d->mmio_base,
+ FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
+
+ static struct rte_bbdev_queue_conf default_queue_conf;
+ default_queue_conf.socket = dev->data->socket_id;
+ default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
+
+ dev_info->driver_name = dev->device->driver->name;
+ dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
+ dev_info->hardware_accelerated = true;
+ dev_info->min_alignment = 64;
+ dev_info->harq_buffer_size = (harq_buf_size >> 10) + 1;
+ dev_info->default_queue_conf = default_queue_conf;
+ dev_info->capabilities = bbdev_capabilities;
+ dev_info->cpu_flag_reqs = NULL;
+
+ /* Calculates number of queues assigned to device */
+ dev_info->max_num_queues = 0;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
+ FPGA_5GNR_FEC_QUEUE_MAP + (q_id << 2));
+ if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
+ dev_info->max_num_queues++;
+ }
+}
+
+/**
+ * Find index of queue bound to current PF/VF which is unassigned. Return -1
+ * when there is no available queue
+ */
+static inline int
+fpga_find_free_queue_idx(struct rte_bbdev *dev,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ struct fpga_5gnr_fec_device *d = dev->data->dev_private;
+ uint64_t q_idx;
+ uint8_t i = 0;
+ uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
+
+ if (conf->op_type == RTE_BBDEV_OP_LDPC_ENC) {
+ i = FPGA_NUM_DL_QUEUES;
+ range = FPGA_TOTAL_NUM_QUEUES;
+ }
+
+ for (; i < range; ++i) {
+ q_idx = 1ULL << i;
+ /* Check if index of queue is bound to current PF/VF */
+ if (d->q_bound_bit_map & q_idx)
+ /* Check if found queue was not already assigned */
+ if (!(d->q_assigned_bit_map & q_idx)) {
+ d->q_assigned_bit_map |= q_idx;
+ return i;
+ }
+ }
+
+ rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
+
+ return -1;
+}
+
+static int
+fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ uint32_t address, ring_offset;
+ struct fpga_5gnr_fec_device *d = dev->data->dev_private;
+ struct fpga_queue *q;
+ int8_t q_idx;
+
+ /* Check if there is a free queue to assign */
+ q_idx = fpga_find_free_queue_idx(dev, conf);
+ if (q_idx == -1)
+ return -1;
+
+ /* Allocate the queue data structure. */
+ q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
+ RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q == NULL) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_bbdev_log(ERR, "Failed to allocate queue memory");
+ return -ENOMEM;
+ }
+
+ q->d = d;
+ q->q_idx = q_idx;
+
+ /* Set ring_base_addr */
+ q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
+ q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
+ (d->sw_ring_size * queue_id);
+
+ /* Allocate memory for Completion Head variable*/
+ q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
+ sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q->ring_head_addr == NULL) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_free(q);
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u completion_head",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+ /* Set ring_head_addr */
+ q->ring_ctrl_reg.ring_head_addr =
+ rte_malloc_virt2iova(q->ring_head_addr);
+
+ /* Clear shadow_completion_head */
+ q->shadow_completion_head = 0;
+
+ /* Set ring_size */
+ if (conf->queue_size > FPGA_RING_MAX_SIZE) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_free(q->ring_head_addr);
+ rte_free(q);
+ rte_bbdev_log(ERR,
+ "Size of queue is too big %d (MAX: %d ) for %s:%u",
+ conf->queue_size, FPGA_RING_MAX_SIZE,
+ dev->device->driver->name, dev->data->dev_id);
+ return -EINVAL;
+ }
+ q->ring_ctrl_reg.ring_size = conf->queue_size;
+
+ /* Set Miscellaneous FPGA register*/
+ /* Max iteration number for TTI mitigation - todo */
+ q->ring_ctrl_reg.max_ul_dec = 0;
+ /* Enable max iteration number for TTI - todo */
+ q->ring_ctrl_reg.max_ul_dec_en = 0;
+
+ /* Enable the ring */
+ q->ring_ctrl_reg.enable = 1;
+
+ /* Set FPGA head_point and tail registers */
+ q->ring_ctrl_reg.head_point = q->tail = 0;
+
+ /* Set FPGA shadow_tail register */
+ q->ring_ctrl_reg.shadow_tail = q->tail;
+
+ /* Calculates the ring offset for found queue */
+ ring_offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q_idx);
+
+ /* Set FPGA Ring Control Registers */
+ fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
+
+ /* Store MMIO register of shadow_tail */
+ address = ring_offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL;
+ q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
+
+ q->head_free_desc = q->tail;
+
+ /* Set wrap mask */
+ q->sw_ring_wrap_mask = conf->queue_size - 1;
+
+ rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
+ dev->data->dev_id, queue_id, q->q_idx);
+
+ dev->data->queues[queue_id].queue_private = q;
+
+ rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
+ queue_id, q_idx);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Read FPGA Ring Control Registers after configuration*/
+ print_ring_reg_debug_info(d->mmio_base, ring_offset);
+#endif
+ return 0;
+}
+
+static int
+fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_5gnr_fec_device *d = dev->data->dev_private;
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ struct fpga_ring_ctrl_reg ring_reg;
+ uint32_t offset;
+
+ rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
+
+ if (q != NULL) {
+ memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+ offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ /* Disable queue */
+ fpga_reg_write_8(d->mmio_base,
+ offset + FPGA_5GNR_FEC_RING_ENABLE, 0x00);
+ /* Clear queue registers */
+ fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
+
+ /* Mark the Queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
+ rte_free(q->ring_head_addr);
+ rte_free(q);
+ dev->data->queues[queue_id].queue_private = NULL;
+ }
+
+ return 0;
+}
+
+/* Function starts a device queue. */
+static int
+fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_5gnr_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (d == NULL) {
+ rte_bbdev_log(ERR, "Invalid device pointer");
+ return -1;
+ }
+#endif
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ uint8_t enable = 0x01;
+ uint16_t zero = 0x0000;
+
+ /* Clear queue head and tail variables */
+ q->tail = q->head_free_desc = 0;
+
+ /* Clear FPGA head_point and tail registers */
+ fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_POINT,
+ zero);
+ fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL,
+ zero);
+
+ /* Enable queue */
+ fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
+ enable);
+
+ rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
+ return 0;
+}
+
+/* Function stops a device queue. */
+static int
+fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_5gnr_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (d == NULL) {
+ rte_bbdev_log(ERR, "Invalid device pointer");
+ return -1;
+ }
+#endif
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ uint8_t payload = 0x01;
+ uint8_t counter = 0;
+ uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
+ FPGA_TIMEOUT_CHECK_INTERVAL;
+
+ /* Set flush_queue_en bit to trigger queue flushing */
+ fpga_reg_write_8(d->mmio_base,
+ offset + FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN, payload);
+
+ /** Check if queue flush is completed.
+ * FPGA will update the completion flag after queue flushing is
+ * completed. If completion flag is not updated within 1ms it is
+ * considered as a failure.
+ */
+ while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx)
+ & payload)) {
+ if (counter > timeout) {
+ rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
+ queue_id);
+ return -1;
+ }
+ usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
+ counter++;
+ }
+
+ /* Disable queue */
+ payload = 0x00;
+ fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
+ payload);
+
+ rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
+ return 0;
+}
+
+static inline uint16_t
+get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
+{
+ uint16_t queue_id;
+
+ for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
+ struct fpga_queue *q = data->queues[queue_id].queue_private;
+ if (q != NULL && q->q_idx == q_idx)
+ return queue_id;
+ }
+
+ return -1;
+}
+
+/* Interrupt handler triggered by FPGA dev for handling specific interrupt */
+static void
+fpga_dev_interrupt_handler(void *cb_arg)
+{
+ struct rte_bbdev *dev = cb_arg;
+ struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
+ struct fpga_queue *q;
+ uint64_t ring_head;
+ uint64_t q_idx;
+ uint16_t queue_id;
+ uint8_t i;
+
+ /* Scan queue assigned to this device */
+ for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
+ q_idx = 1ULL << i;
+ if (fpga_dev->q_bound_bit_map & q_idx) {
+ queue_id = get_queue_id(dev->data, i);
+ if (queue_id == (uint16_t) -1)
+ continue;
+
+ /* Check if completion head was changed */
+ q = dev->data->queues[queue_id].queue_private;
+ ring_head = *q->ring_head_addr;
+ if (q->shadow_completion_head != ring_head &&
+ q->irq_enable == 1) {
+ q->shadow_completion_head = ring_head;
+ rte_bbdev_pmd_callback_process(
+ dev,
+ RTE_BBDEV_EVENT_DEQUEUE,
+ &queue_id);
+ }
+ }
+ }
+}
+
+static int
+fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+
+ if (!rte_intr_cap_multiple(dev->intr_handle))
+ return -ENOTSUP;
+
+ q->irq_enable = 1;
+
+ return 0;
+}
+
+static int
+fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ q->irq_enable = 0;
+
+ return 0;
+}
+
+static int
+fpga_intr_enable(struct rte_bbdev *dev)
+{
+ int ret;
+ uint8_t i;
+
+ if (!rte_intr_cap_multiple(dev->intr_handle)) {
+ rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
+ dev->data->name);
+ return -ENOTSUP;
+ }
+
+ /* Create event file descriptors for each of 64 queue. Event fds will be
+ * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
+ * the IRQ number is a direct translation to the queue number.
+ *
+ * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
+ * mapped the first IRQ to already created interrupt event file
+ * descriptor (intr_handle->fd).
+ */
+ if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
+ rte_bbdev_log(ERR, "Failed to create fds for %u queues",
+ dev->data->num_queues);
+ return -1;
+ }
+
+ /* TODO Each event file descriptor is overwritten by interrupt event
+ * file descriptor. That descriptor is added to epoll observed list.
+ * It ensures that callback function assigned to that descriptor will
+ * invoked when any FPGA queue issues interrupt.
+ */
+ for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
+ dev->intr_handle->efds[i] = dev->intr_handle->fd;
+
+ if (!dev->intr_handle->intr_vec) {
+ dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
+ dev->data->num_queues * sizeof(int), 0);
+ if (!dev->intr_handle->intr_vec) {
+ rte_bbdev_log(ERR, "Failed to allocate %u vectors",
+ dev->data->num_queues);
+ return -ENOMEM;
+ }
+ }
+
+ ret = rte_intr_enable(dev->intr_handle);
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "Couldn't enable interrupts for device: %s",
+ dev->data->name);
+ return ret;
+ }
+
+ ret = rte_intr_callback_register(dev->intr_handle,
+ fpga_dev_interrupt_handler, dev);
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "Couldn't register interrupt callback for device: %s",
+ dev->data->name);
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct rte_bbdev_ops fpga_ops = {
+ .setup_queues = fpga_setup_queues,
+ .intr_enable = fpga_intr_enable,
+ .close = fpga_dev_close,
+ .info_get = fpga_dev_info_get,
+ .queue_setup = fpga_queue_setup,
+ .queue_stop = fpga_queue_stop,
+ .queue_start = fpga_queue_start,
+ .queue_release = fpga_queue_release,
+ .queue_intr_enable = fpga_queue_intr_enable,
+ .queue_intr_disable = fpga_queue_intr_disable
+};
+
+static inline void
+fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
+ struct rte_bbdev_stats *queue_stats)
+{
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time = 0;
+ queue_stats->acc_offload_cycles = 0;
+#else
+ RTE_SET_USED(queue_stats);
+#endif
+
+ /* Update tail and shadow_tail register */
+ q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
+
+ rte_wmb();
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ /* Start time measurement for enqueue function offload. */
+ start_time = rte_rdtsc_precise();
+#endif
+ mmio_write_16(q->shadow_tail_addr, q->tail);
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ rte_wmb();
+ queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+}
+
+/* Read flag value 0/1/ from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+ return bitmap & bitmask;
+}
+
+/* Print an error if a descriptor error has occurred.
+ * Return 0 on success, 1 on failure
+ */
+static inline int
+check_desc_error(uint32_t error_code) {
+ switch (error_code) {
+ case DESC_ERR_NO_ERR:
+ return 0;
+ case DESC_ERR_K_P_OUT_OF_RANGE:
+ rte_bbdev_log(ERR, "Encode block size K' is out of range");
+ break;
+ case DESC_ERR_Z_C_NOT_LEGAL:
+ rte_bbdev_log(ERR, "Zc is illegal");
+ break;
+ case DESC_ERR_DESC_OFFSET_ERR:
+ rte_bbdev_log(ERR,
+ "Queue offset does not meet the expectation in the FPGA"
+ );
+ break;
+ case DESC_ERR_DESC_READ_FAIL:
+ rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
+ break;
+ case DESC_ERR_DESC_READ_TIMEOUT:
+ rte_bbdev_log(ERR, "Descriptor read time-out");
+ break;
+ case DESC_ERR_DESC_READ_TLP_POISONED:
+ rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
+ break;
+ case DESC_ERR_CB_READ_FAIL:
+ rte_bbdev_log(ERR, "Unsuccessful completion for code block");
+ break;
+ case DESC_ERR_CB_READ_TIMEOUT:
+ rte_bbdev_log(ERR, "Code block read time-out");
+ break;
+ case DESC_ERR_CB_READ_TLP_POISONED:
+ rte_bbdev_log(ERR, "Code block read TLP poisoned");
+ break;
+ case DESC_ERR_HBSTORE_ERR:
+ rte_bbdev_log(ERR, "Hbstroe exceeds HARQ buffer size.");
+ break;
+ default:
+ rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
+ error_code);
+ break;
+ }
+ return 1;
+}
+
+/* Compute value of k0.
+ * Based on 3GPP 38.212 Table 5.4.2.1-2
+ * Starting position of different redundancy versions, k0
+ */
+static inline uint16_t
+get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
+{
+ if (rv_index == 0)
+ return 0;
+ uint16_t n = (bg == 1 ? N_ZC_1 : N_ZC_2) * z_c;
+ if (n_cb == n) {
+ if (rv_index == 1)
+ return (bg == 1 ? K0_1_1 : K0_1_2) * z_c;
+ else if (rv_index == 2)
+ return (bg == 1 ? K0_2_1 : K0_2_2) * z_c;
+ else
+ return (bg == 1 ? K0_3_1 : K0_3_2) * z_c;
+ }
+ /* LBRM case - includes a division by N */
+ if (rv_index == 1)
+ return (((bg == 1 ? K0_1_1 : K0_1_2) * n_cb)
+ / n) * z_c;
+ else if (rv_index == 2)
+ return (((bg == 1 ? K0_2_1 : K0_2_2) * n_cb)
+ / n) * z_c;
+ else
+ return (((bg == 1 ? K0_3_1 : K0_3_2) * n_cb)
+ / n) * z_c;
+}
+
+/**
+ * Set DMA descriptor for encode operation (1 Code Block)
+ *
+ * @param op
+ * Pointer to a single encode operation.
+ * @param desc
+ * Pointer to DMA descriptor.
+ * @param input
+ * Pointer to pointer to input data which will be decoded.
+ * @param e
+ * E value (length of output in bits).
+ * @param ncb
+ * Ncb value (size of the soft buffer).
+ * @param out_length
+ * Length of output buffer
+ * @param in_offset
+ * Input offset in rte_mbuf structure. It is used for calculating the point
+ * where data is starting.
+ * @param out_offset
+ * Output offset in rte_mbuf structure. It is used for calculating the point
+ * where hard output data will be stored.
+ * @param cbs_in_op
+ * Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
+ struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
+ struct rte_mbuf *output, uint16_t k_, uint16_t e,
+ uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
+ uint8_t cbs_in_op)
+{
+ /* reset */
+ desc->done = 0;
+ desc->error = 0;
+ desc->k_ = k_;
+ desc->rm_e = e;
+ desc->desc_idx = desc_offset;
+ desc->zc = op->ldpc_enc.z_c;
+ desc->bg_idx = op->ldpc_enc.basegraph - 1;
+ desc->qm_idx = op->ldpc_enc.q_m / 2;
+ desc->crc_en = check_bit(op->ldpc_enc.op_flags,
+ RTE_BBDEV_LDPC_CRC_24B_ATTACH);
+ desc->irq_en = 0;
+ desc->k0 = get_k0(op->ldpc_enc.n_cb, op->ldpc_enc.z_c,
+ op->ldpc_enc.basegraph, op->ldpc_enc.rv_index);
+ desc->ncb = op->ldpc_enc.n_cb;
+ desc->num_null = op->ldpc_enc.n_filler;
+ /* Set inbound data buffer address */
+ desc->in_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+ desc->in_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset));
+
+ desc->out_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+ desc->out_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset));
+ /* Save software context needed for dequeue */
+ desc->op_addr = op;
+ /* Set total number of CBs in an op */
+ desc->cbs_in_op = cbs_in_op;
+ return 0;
+}
+
+/**
+ * Set DMA descriptor for decode operation (1 Code Block)
+ *
+ * @param op
+ * Pointer to a single encode operation.
+ * @param desc
+ * Pointer to DMA descriptor.
+ * @param input
+ * Pointer to pointer to input data which will be decoded.
+ * @param in_offset
+ * Input offset in rte_mbuf structure. It is used for calculating the point
+ * where data is starting.
+ * @param out_offset
+ * Output offset in rte_mbuf structure. It is used for calculating the point
+ * where hard output data will be stored.
+ * @param cbs_in_op
+ * Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
+ struct fpga_dma_dec_desc *desc,
+ struct rte_mbuf *input, struct rte_mbuf *output,
+ uint16_t harq_in_length,
+ uint32_t in_offset, uint32_t out_offset,
+ uint32_t harq_offset,
+ uint16_t desc_offset,
+ uint8_t cbs_in_op)
+{
+ /* reset */
+ desc->done = 0;
+ desc->error = 0;
+ /* Set inbound data buffer address */
+ desc->in_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+ desc->in_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset));
+ desc->rm_e = op->ldpc_dec.cb_params.e;
+ desc->harq_input_length = harq_in_length;
+ desc->et_dis = !check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
+ desc->rv = op->ldpc_dec.rv_index;
+ desc->crc24b_ind = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
+ desc->drop_crc24b = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP);
+ desc->desc_idx = desc_offset;
+ desc->ncb = op->ldpc_dec.n_cb;
+ desc->num_null = op->ldpc_dec.n_filler;
+ desc->hbstroe_offset = harq_offset >> 10;
+ desc->zc = op->ldpc_dec.z_c;
+ desc->harqin_en = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
+ desc->bg_idx = op->ldpc_dec.basegraph - 1;
+ desc->max_iter = op->ldpc_dec.iter_max;
+ desc->qm_idx = op->ldpc_dec.q_m / 2;
+ desc->out_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+ desc->out_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset));
+ /* Save software context needed for dequeue */
+ desc->op_addr = op;
+ /* Set total number of CBs in an op */
+ desc->cbs_in_op = cbs_in_op;
+
+ return 0;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates LDPC encoder parameters */
+static int
+validate_enc_op(struct rte_bbdev_enc_op *op __rte_unused)
+{
+ struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
+ struct rte_bbdev_op_enc_ldpc_cb_params *cb = NULL;
+ struct rte_bbdev_op_enc_ldpc_tb_params *tb = NULL;
+
+
+ if (ldpc_enc->input.length >
+ RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
+ rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
+ ldpc_enc->input.length,
+ RTE_BBDEV_LDPC_MAX_CB_SIZE);
+ return -1;
+ }
+
+ if (op->mempool == NULL) {
+ rte_bbdev_log(ERR, "Invalid mempool pointer");
+ return -1;
+ }
+ if (ldpc_enc->input.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid input pointer");
+ return -1;
+ }
+ if (ldpc_enc->output.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid output pointer");
+ return -1;
+ }
+ if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
+ rte_bbdev_log(ERR,
+ "basegraph (%u) is out of range 1 <= value <= 2",
+ ldpc_enc->basegraph);
+ return -1;
+ }
+ if (ldpc_enc->code_block_mode > 1) {
+ rte_bbdev_log(ERR,
+ "code_block_mode (%u) is out of range 0:Tb 1:CB",
+ ldpc_enc->code_block_mode);
+ return -1;
+ }
+
+ if (ldpc_enc->code_block_mode == 0) {
+ tb = &ldpc_enc->tb_params;
+ if (tb->c == 0) {
+ rte_bbdev_log(ERR,
+ "c (%u) is out of range 1 <= value <= %u",
+ tb->c, RTE_BBDEV_LDPC_MAX_CODE_BLOCKS);
+ return -1;
+ }
+ if (tb->cab > tb->c) {
+ rte_bbdev_log(ERR,
+ "cab (%u) is greater than c (%u)",
+ tb->cab, tb->c);
+ return -1;
+ }
+ if ((tb->ea < RTE_BBDEV_LDPC_MIN_CB_SIZE)
+ && tb->r < tb->cab) {
+ rte_bbdev_log(ERR,
+ "ea (%u) is less than %u or it is not even",
+ tb->ea, RTE_BBDEV_LDPC_MIN_CB_SIZE);
+ return -1;
+ }
+ if ((tb->eb < RTE_BBDEV_LDPC_MIN_CB_SIZE)
+ && tb->c > tb->cab) {
+ rte_bbdev_log(ERR,
+ "eb (%u) is less than %u",
+ tb->eb, RTE_BBDEV_LDPC_MIN_CB_SIZE);
+ return -1;
+ }
+ if (tb->r > (tb->c - 1)) {
+ rte_bbdev_log(ERR,
+ "r (%u) is greater than c - 1 (%u)",
+ tb->r, tb->c - 1);
+ return -1;
+ }
+ } else {
+ cb = &ldpc_enc->cb_params;
+ if (cb->e < RTE_BBDEV_LDPC_MIN_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "e (%u) is less than %u or it is not even",
+ cb->e, RTE_BBDEV_LDPC_MIN_CB_SIZE);
+ return -1;
+ }
+ }
+ return 0;
+}
+#endif
+
+static inline char *
+mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
+{
+ if (unlikely(len > rte_pktmbuf_tailroom(m)))
+ return NULL;
+
+ char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
+ m->data_len = (uint16_t)(m->data_len + len);
+ m_head->pkt_len = (m_head->pkt_len + len);
+ return tail;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates LDPC decoder parameters */
+static int
+validate_dec_op(struct rte_bbdev_dec_op *op __rte_unused)
+{
+ struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
+ struct rte_bbdev_op_dec_ldpc_cb_params *cb = NULL;
+ struct rte_bbdev_op_dec_ldpc_tb_params *tb = NULL;
+
+ if (op->mempool == NULL) {
+ rte_bbdev_log(ERR, "Invalid mempool pointer");
+ return -1;
+ }
+ if (ldpc_dec->rv_index > 3) {
+ rte_bbdev_log(ERR,
+ "rv_index (%u) is out of range 0 <= value <= 3",
+ ldpc_dec->rv_index);
+ return -1;
+ }
+
+ if (ldpc_dec->iter_max == 0) {
+ rte_bbdev_log(ERR,
+ "iter_max (%u) is equal to 0",
+ ldpc_dec->iter_max);
+ return -1;
+ }
+
+ if (ldpc_dec->code_block_mode > 1) {
+ rte_bbdev_log(ERR,
+ "code_block_mode (%u) is out of range 0 <= value <= 1",
+ ldpc_dec->code_block_mode);
+ return -1;
+ }
+
+ if (ldpc_dec->code_block_mode == 0) {
+ tb = &ldpc_dec->tb_params;
+ if (tb->c < 1) {
+ rte_bbdev_log(ERR,
+ "c (%u) is out of range 1 <= value <= %u",
+ tb->c, RTE_BBDEV_LDPC_MAX_CODE_BLOCKS);
+ return -1;
+ }
+ if (tb->cab > tb->c) {
+ rte_bbdev_log(ERR,
+ "cab (%u) is greater than c (%u)",
+ tb->cab, tb->c);
+ return -1;
+ }
+ } else {
+ cb = &ldpc_dec->cb_params;
+ if (cb->e < RTE_BBDEV_LDPC_MIN_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "e (%u) is out of range %u <= value <= %u",
+ cb->e, RTE_BBDEV_LDPC_MIN_CB_SIZE,
+ RTE_BBDEV_LDPC_MAX_CB_SIZE);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+#endif
+
+static inline int
+fpga_harq_write_loopback(struct fpga_5gnr_fec_device *fpga_dev,
+ struct rte_mbuf *harq_input, uint16_t harq_in_length,
+ uint32_t harq_in_offset, uint32_t harq_out_offset)
+{
+ uint32_t out_offset = harq_out_offset;
+ uint32_t in_offset = harq_in_offset;
+ uint32_t left_length = harq_in_length;
+ uint32_t reg_32, increment = 0;
+ uint64_t *input = NULL;
+ uint32_t last_transaction = left_length
+ % FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
+ uint64_t last_word;
+
+ if (last_transaction > 0)
+ left_length -= last_transaction;
+
+ /*
+ * Get HARQ buffer size for each VF/PF: When 0x00, there is no
+ * available DDR space for the corresponding VF/PF.
+ */
+ reg_32 = fpga_reg_read_32(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
+ if (reg_32 < harq_in_length) {
+ left_length = reg_32;
+ rte_bbdev_log(ERR, "HARQ in length > HARQ buffer size\n");
+ }
+
+ input = (uint64_t *)rte_pktmbuf_mtod_offset(harq_input,
+ uint8_t *, in_offset);
+
+ while (left_length > 0) {
+ if (fpga_reg_read_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS) == 1) {
+ fpga_reg_write_32(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS,
+ out_offset);
+ fpga_reg_write_64(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_WR_DATA_REGS,
+ input[increment]);
+ left_length -= FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
+ out_offset += FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
+ increment++;
+ fpga_reg_write_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_WR_DONE_REGS, 1);
+ }
+ }
+ while (last_transaction > 0) {
+ if (fpga_reg_read_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS) == 1) {
+ fpga_reg_write_32(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS,
+ out_offset);
+ last_word = input[increment];
+ last_word &= (uint64_t)(1 << (last_transaction * 4))
+ - 1;
+ fpga_reg_write_64(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_WR_DATA_REGS,
+ last_word);
+ fpga_reg_write_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_WR_DONE_REGS, 1);
+ last_transaction = 0;
+ }
+ }
+ return 1;
+}
+
+static inline int
+fpga_harq_read_loopback(struct fpga_5gnr_fec_device *fpga_dev,
+ struct rte_mbuf *harq_output, uint16_t harq_in_length,
+ uint32_t harq_in_offset, uint32_t harq_out_offset)
+{
+ uint32_t left_length, in_offset = harq_in_offset;
+ uint64_t reg;
+ uint32_t increment = 0;
+ uint64_t *input = NULL;
+ uint32_t last_transaction = harq_in_length
+ % FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
+
+ if (last_transaction > 0)
+ harq_in_length += (8 - last_transaction);
+
+ reg = fpga_reg_read_32(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
+ if (reg < harq_in_length) {
+ harq_in_length = reg;
+ rte_bbdev_log(ERR, "HARQ in length > HARQ buffer size\n");
+ }
+
+ if (!mbuf_append(harq_output, harq_output, harq_in_length)) {
+ rte_bbdev_log(ERR, "HARQ output buffer warning %d %d\n",
+ harq_output->buf_len -
+ rte_pktmbuf_headroom(harq_output),
+ harq_in_length);
+ harq_in_length = harq_output->buf_len -
+ rte_pktmbuf_headroom(harq_output);
+ if (!mbuf_append(harq_output, harq_output, harq_in_length)) {
+ rte_bbdev_log(ERR, "HARQ output buffer issue %d %d\n",
+ harq_output->buf_len, harq_in_length);
+ return -1;
+ }
+ }
+ left_length = harq_in_length;
+
+ input = (uint64_t *)rte_pktmbuf_mtod_offset(harq_output,
+ uint8_t *, harq_out_offset);
+
+ while (left_length > 0) {
+ fpga_reg_write_32(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_RD_ADDR_REGS, in_offset);
+ fpga_reg_write_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_RD_DONE_REGS, 1);
+ reg = fpga_reg_read_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_RD_RDY_REGS);
+ while (reg != 1) {
+ reg = fpga_reg_read_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_RD_RDY_REGS);
+ if (reg == FPGA_DDR_OVERFLOW) {
+ rte_bbdev_log(ERR,
+ "Read address is overflow!\n");
+ return -1;
+ }
+ }
+ input[increment] = fpga_reg_read_64(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_RD_DATA_REGS);
+ left_length -= FPGA_5GNR_FEC_DDR_RD_DATA_LEN_IN_BYTES;
+ in_offset += FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
+ increment++;
+ fpga_reg_write_8(fpga_dev->mmio_base,
+ FPGA_5GNR_FEC_DDR4_RD_DONE_REGS, 0);
+ }
+ return 1;
+}
+
+static inline int
+enqueue_ldpc_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int ret;
+ uint8_t c, crc24_bits = 0;
+ struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
+ uint16_t in_offset = enc->input.offset;
+ uint16_t out_offset = enc->output.offset;
+ struct rte_mbuf *m_in = enc->input.data;
+ struct rte_mbuf *m_out = enc->output.data;
+ struct rte_mbuf *m_out_head = enc->output.data;
+ uint32_t in_length, out_length, e;
+ uint16_t total_left = enc->input.length;
+ uint16_t ring_offset;
+ uint16_t K, k_;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ /* FIXME */
+ if (validate_enc_op(op) == -1) {
+ rte_bbdev_log(ERR, "LDPC encoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ /* Clear op status */
+ op->status = 0;
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return -EINVAL;
+ }
+
+ if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH)
+ crc24_bits = 24;
+
+ if (enc->code_block_mode == 0) {
+ /* For Transport Block mode */
+ /* FIXME */
+ c = enc->tb_params.c;
+ e = enc->tb_params.ea;
+ } else { /* For Code Block mode */
+ c = 1;
+ e = enc->cb_params.e;
+ }
+
+ /* Update total_left */
+ K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
+ k_ = K - enc->n_filler;
+ in_length = (k_ - crc24_bits) >> 3;
+ out_length = (e + 7) >> 3;
+
+ total_left = rte_pktmbuf_data_len(m_in) - in_offset;
+
+ /* Update offsets */
+ if (total_left != in_length) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CBs sizes %d",
+ total_left);
+ }
+
+ mbuf_append(m_out_head, m_out, out_length);
+
+ /* Offset into the ring */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ /* Setup DMA Descriptor */
+ desc = q->ring_addr + ring_offset;
+
+ ret = fpga_dma_desc_te_fill(op, &desc->enc_req, m_in, m_out,
+ k_, e, in_offset, out_offset, ring_offset, c);
+ if (unlikely(ret < 0))
+ return ret;
+
+ /* Update lengths */
+ total_left -= in_length;
+ op->ldpc_enc.output.length += out_length;
+
+ if (total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ total_left, in_length);
+ return -1;
+ }
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_enc_desc_debug_info(desc);
+#endif
+ return 1;
+}
+
+static inline int
+enqueue_ldpc_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int ret;
+ uint16_t ring_offset;
+ uint8_t c;
+ uint16_t e, in_length, out_length, k0, l, seg_total_left, sys_cols;
+ uint16_t K, parity_offset, harq_in_length = 0, harq_out_length = 0;
+ uint16_t crc24_overlap = 0;
+ struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
+ struct rte_mbuf *m_in = dec->input.data;
+ struct rte_mbuf *m_out = dec->hard_output.data;
+ struct rte_mbuf *m_out_head = dec->hard_output.data;
+ uint16_t in_offset = dec->input.offset;
+ uint16_t out_offset = dec->hard_output.offset;
+ uint32_t harq_offset = 0;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_dec_op(op) == -1) {
+ rte_bbdev_log(ERR, "LDPC decoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ /* Clear op status */
+ op->status = 0;
+
+ /* Setup DMA Descriptor */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + ring_offset;
+
+ if (check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
+ struct rte_mbuf *harq_in = dec->harq_combined_input.data;
+ struct rte_mbuf *harq_out = dec->harq_combined_output.data;
+ harq_in_length = dec->harq_combined_input.length;
+ uint32_t harq_in_offset = dec->harq_combined_input.offset;
+ uint32_t harq_out_offset = dec->harq_combined_output.offset;
+
+ if (check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
+ )) {
+ ret = fpga_harq_write_loopback(q->d, harq_in,
+ harq_in_length, harq_in_offset,
+ harq_out_offset);
+ } else if (check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE
+ )) {
+ ret = fpga_harq_read_loopback(q->d, harq_out,
+ harq_in_length, harq_in_offset,
+ harq_out_offset);
+ dec->harq_combined_output.length = harq_in_length;
+ } else {
+ rte_bbdev_log(ERR, "OP flag Err!");
+ ret = -1;
+ }
+ /* Set descriptor for dequeue */
+ desc->dec_req.done = 1;
+ desc->dec_req.error = 0;
+ desc->dec_req.op_addr = op;
+ desc->dec_req.cbs_in_op = 1;
+ /* Mark this dummy descriptor to be dropped by HW */
+ desc->dec_req.desc_idx = (ring_offset + 1)
+ & q->sw_ring_wrap_mask;
+ return ret; /* Error or number of CB */
+ }
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return -1;
+ }
+
+ c = 1;
+ e = dec->cb_params.e;
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
+ crc24_overlap = 24;
+
+ sys_cols = (dec->basegraph == 1) ? 22 : 10;
+ K = sys_cols * dec->z_c;
+ parity_offset = K - 2 * dec->z_c;
+
+ out_length = ((K - crc24_overlap - dec->n_filler) >> 3);
+ in_length = e;
+ seg_total_left = dec->input.length;
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
+ harq_in_length = RTE_MIN(dec->harq_combined_input.length,
+ (uint32_t)dec->n_cb);
+ }
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
+ k0 = get_k0(dec->n_cb, dec->z_c,
+ dec->basegraph, dec->rv_index);
+ if (k0 > parity_offset)
+ l = k0 + e;
+ else
+ l = k0 + e + dec->n_filler;
+ harq_out_length = RTE_MIN(RTE_MAX(harq_in_length, l),
+ dec->n_cb - dec->n_filler);
+ dec->harq_combined_output.length = harq_out_length;
+ }
+
+ mbuf_append(m_out_head, m_out, out_length);
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE))
+ harq_offset = dec->harq_combined_input.offset;
+ else if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE))
+ harq_offset = dec->harq_combined_output.offset;
+
+ if ((harq_offset & 0x3FF) > 0) {
+ rte_bbdev_log(ERR, "Invalid HARQ offset %d", harq_offset);
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return -1;
+ }
+
+ ret = fpga_dma_desc_ld_fill(op, &desc->dec_req, m_in, m_out,
+ harq_in_length, in_offset, out_offset, harq_offset,
+ ring_offset, c);
+ if (unlikely(ret < 0))
+ return ret;
+ /* Update lengths */
+ seg_total_left -= in_length;
+ op->ldpc_dec.hard_output.length += out_length;
+ if (seg_total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ seg_total_left, in_length);
+ return -1;
+ }
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_dec_desc_debug_info(desc);
+#endif
+
+ return 1;
+}
+
+static uint16_t
+fpga_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ uint16_t i, total_enqueued_cbs = 0;
+ int32_t avail;
+ int enqueued_cbs;
+ struct fpga_queue *q = q_data->queue_private;
+ union fpga_dma_desc *desc;
+
+ /* Check if queue is not full */
+ if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+ q->head_free_desc))
+ return 0;
+
+ /* Calculates available space */
+ avail = (q->head_free_desc > q->tail) ?
+ q->head_free_desc - q->tail - 1 :
+ q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+ for (i = 0; i < num; ++i) {
+
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - 1 < 0))
+ break;
+ avail -= 1;
+ enqueued_cbs = enqueue_ldpc_enc_one_op_cb(q, ops[i],
+ total_enqueued_cbs);
+
+ if (enqueued_cbs < 0)
+ break;
+
+ total_enqueued_cbs += enqueued_cbs;
+
+ rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
+ total_enqueued_cbs, num,
+ q->head_free_desc, q->tail);
+ }
+
+ /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+ * only when all previous CBs were already processed.
+ */
+ desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+ & q->sw_ring_wrap_mask);
+ desc->enc_req.irq_en = q->irq_enable;
+
+ fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ return i;
+}
+
+static uint16_t
+fpga_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ uint16_t i, total_enqueued_cbs = 0;
+ int32_t avail;
+ int enqueued_cbs;
+ struct fpga_queue *q = q_data->queue_private;
+ union fpga_dma_desc *desc;
+
+ /* Check if queue is not full */
+ if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+ q->head_free_desc))
+ return 0;
+
+ /* Calculates available space */
+ avail = (q->head_free_desc > q->tail) ?
+ q->head_free_desc - q->tail - 1 :
+ q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+ for (i = 0; i < num; ++i) {
+
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - 1 < 0))
+ break;
+ avail -= 1;
+ enqueued_cbs = enqueue_ldpc_dec_one_op_cb(q, ops[i],
+ total_enqueued_cbs);
+
+ if (enqueued_cbs < 0)
+ break;
+
+ total_enqueued_cbs += enqueued_cbs;
+
+ rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
+ total_enqueued_cbs, num,
+ q->head_free_desc, q->tail);
+ }
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+ * only when all previous CBs were already processed.
+ */
+ desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+ & q->sw_ring_wrap_mask);
+ desc->enc_req.irq_en = q->irq_enable;
+ fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+ return i;
+}
+
+
+static inline int
+dequeue_ldpc_enc_one_op_cb(struct fpga_queue *q,
+ struct rte_bbdev_enc_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int desc_error;
+ /* Set current desc */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /*check if done */
+ if (desc->enc_req.done == 0)
+ return -1;
+
+ /* make sure the response is read atomically */
+ rte_smp_rmb();
+
+ rte_bbdev_log_debug("DMA response desc %p", desc);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_enc_desc_debug_info(desc);
+#endif
+
+ *op = desc->enc_req.op_addr;
+ /* Check the descriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ (*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
+
+ return 1;
+}
+
+
+static inline int
+dequeue_ldpc_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int desc_error;
+ /* Set descriptor */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /* Verify done bit is set */
+ if (desc->dec_req.done == 0)
+ return -1;
+
+ /* make sure the response is read atomically */
+ rte_smp_rmb();
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_dec_desc_debug_info(desc);
+#endif
+
+ *op = desc->dec_req.op_addr;
+
+ if (check_bit((*op)->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
+ (*op)->status = 0;
+ return 1;
+ }
+
+ /* FPGA reports iterations based on round-up minus 1 */
+ (*op)->ldpc_dec.iter_count = desc->dec_req.iter + 1;
+ /* CRC Check criteria */
+ if (desc->dec_req.crc24b_ind && !(desc->dec_req.crcb_pass))
+ (*op)->status = 1 << RTE_BBDEV_CRC_ERROR;
+ /* et_pass = 0 when decoder fails */
+ (*op)->status |= !(desc->dec_req.et_pass) << RTE_BBDEV_SYNDROME_ERROR;
+ /* Check the descriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->dec_req.error);
+ (*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
+ return 1;
+}
+
+static uint16_t
+fpga_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ struct fpga_queue *q = q_data->queue_private;
+ uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+ uint16_t i;
+ uint16_t dequeued_cbs = 0;
+ int ret;
+
+ for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+ ret = dequeue_ldpc_enc_one_op_cb(q, &ops[i], dequeued_cbs);
+
+ if (ret < 0)
+ break;
+
+ dequeued_cbs += ret;
+
+ rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
+ dequeued_cbs, num, q->head_free_desc, q->tail);
+ }
+
+ /* Update head */
+ q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+ q->sw_ring_wrap_mask;
+
+ /* Update stats */
+ q_data->queue_stats.dequeued_count += i;
+
+ return i;
+}
+
+static uint16_t
+fpga_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ struct fpga_queue *q = q_data->queue_private;
+ uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+ uint16_t i;
+ uint16_t dequeued_cbs = 0;
+ int ret;
+
+ for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+ ret = dequeue_ldpc_dec_one_op_cb(q, &ops[i], dequeued_cbs);
+
+ if (ret < 0)
+ break;
+
+ dequeued_cbs += ret;
+
+ rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
+ dequeued_cbs, num, q->head_free_desc, q->tail);
+ }
+
+ /* Update head */
+ q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+ q->sw_ring_wrap_mask;
+
+ /* Update stats */
+ q_data->queue_stats.dequeued_count += i;
+
+ return i;
+}
+
+
+/* Initialization Function */
+static void
+fpga_5gnr_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
+{
+ struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
+
+ dev->dev_ops = &fpga_ops;
+ dev->enqueue_ldpc_enc_ops = fpga_enqueue_ldpc_enc;
+ dev->enqueue_ldpc_dec_ops = fpga_enqueue_ldpc_dec;
+ dev->dequeue_ldpc_enc_ops = fpga_dequeue_ldpc_enc;
+ dev->dequeue_ldpc_dec_ops = fpga_dequeue_ldpc_dec;
+
+ ((struct fpga_5gnr_fec_device *) dev->data->dev_private)->pf_device =
+ !strcmp(drv->driver.name,
+ RTE_STR(FPGA_5GNR_FEC_PF_DRIVER_NAME));
+ ((struct fpga_5gnr_fec_device *) dev->data->dev_private)->mmio_base =
+ pci_dev->mem_resource[0].addr;
+
+ rte_bbdev_log_debug(
+ "Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
+ dev->device->driver->name, dev->data->name,
+ (void *)pci_dev->mem_resource[0].addr,
+ pci_dev->mem_resource[0].phys_addr);
+}
+
+static int
+fpga_5gnr_fec_probe(struct rte_pci_driver *pci_drv,
+ struct rte_pci_device *pci_dev)
+{
+ struct rte_bbdev *bbdev = NULL;
+ char dev_name[RTE_BBDEV_NAME_MAX_LEN];
+
+ if (pci_dev == NULL) {
+ rte_bbdev_log(ERR, "NULL PCI device");
+ return -EINVAL;
+ }
+
+ rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
+
+ /* Allocate memory to be used privately by drivers */
+ bbdev = rte_bbdev_allocate(pci_dev->device.name);
+ if (bbdev == NULL)
+ return -ENODEV;
+
+ /* allocate device private memory */
+ bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
+ sizeof(struct fpga_5gnr_fec_device),
+ RTE_CACHE_LINE_SIZE,
+ pci_dev->device.numa_node);
+
+ if (bbdev->data->dev_private == NULL) {
+ rte_bbdev_log(CRIT,
+ "Allocate of %zu bytes for device \"%s\" failed",
+ sizeof(struct fpga_5gnr_fec_device), dev_name);
+ rte_bbdev_release(bbdev);
+ return -ENOMEM;
+ }
+
+ /* Fill HW specific part of device structure */
+ bbdev->device = &pci_dev->device;
+ bbdev->intr_handle = &pci_dev->intr_handle;
+ bbdev->data->socket_id = pci_dev->device.numa_node;
+
+ /* Invoke FEC FPGA device initialization function */
+ fpga_5gnr_fec_init(bbdev, pci_drv);
+
+ rte_bbdev_log_debug("bbdev id = %u [%s]",
+ bbdev->data->dev_id, dev_name);
+
+ struct fpga_5gnr_fec_device *d = bbdev->data->dev_private;
+ uint32_t version_id = fpga_reg_read_32(d->mmio_base,
+ FPGA_5GNR_FEC_VERSION_ID);
+ rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
+ ((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (!strcmp(bbdev->device->driver->name,
+ RTE_STR(FPGA_5GNR_FEC_PF_DRIVER_NAME)))
+ print_static_reg_debug_info(d->mmio_base);
+#endif
+ return 0;
+}
+
+static int
+fpga_5gnr_fec_remove(struct rte_pci_device *pci_dev)
+{
+ struct rte_bbdev *bbdev;
+ int ret;
+ uint8_t dev_id;
+
+ if (pci_dev == NULL)
+ return -EINVAL;
+
+ /* Find device */
+ bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
+ if (bbdev == NULL) {
+ rte_bbdev_log(CRIT,
+ "Couldn't find HW dev \"%s\" to uninitialise it",
+ pci_dev->device.name);
+ return -ENODEV;
+ }
+ dev_id = bbdev->data->dev_id;
+
+ /* free device private memory before close */
+ rte_free(bbdev->data->dev_private);
+
+ /* Close device */
+ ret = rte_bbdev_close(dev_id);
+ if (ret < 0)
+ rte_bbdev_log(ERR,
+ "Device %i failed to close during uninit: %i",
+ dev_id, ret);
+
+ /* release bbdev from library */
+ ret = rte_bbdev_release(bbdev);
+ if (ret)
+ rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
+ ret);
+
+ rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
+
+ return 0;
+}
+
+static inline void
+set_default_fpga_conf(struct fpga_5gnr_fec_conf *def_conf)
+{
+ /* clear default configuration before initialization */
+ memset(def_conf, 0, sizeof(struct fpga_5gnr_fec_conf));
+ /* Set pf mode to true */
+ def_conf->pf_mode_en = true;
+
+ /* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
+ def_conf->ul_bandwidth = 3;
+ def_conf->dl_bandwidth = 3;
+
+ /* Set Load Balance Factor to 64 */
+ def_conf->dl_load_balance = 64;
+ def_conf->ul_load_balance = 64;
+}
+
+/* Initial configuration of FPGA 5GNR FEC device */
+int
+fpga_5gnr_fec_configure(const char *dev_name,
+ const struct fpga_5gnr_fec_conf *conf)
+{
+ uint32_t payload_32, address;
+ uint16_t payload_16;
+ uint8_t payload_8;
+ uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
+ struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
+ struct fpga_5gnr_fec_conf def_conf;
+
+ if (bbdev == NULL) {
+ rte_bbdev_log(ERR,
+ "Invalid dev_name (%s), or device is not yet initialised",
+ dev_name);
+ return -ENODEV;
+ }
+
+ struct fpga_5gnr_fec_device *d = bbdev->data->dev_private;
+
+ if (conf == NULL) {
+ rte_bbdev_log(ERR,
+ "FPGA Configuration was not provided. Default configuration will be loaded.");
+ set_default_fpga_conf(&def_conf);
+ conf = &def_conf;
+ }
+
+ /*
+ * Configure UL:DL ratio.
+ * [7:0]: UL weight
+ * [15:8]: DL weight
+ */
+ payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
+ address = FPGA_5GNR_FEC_CONFIGURATION;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Clear all queues registers */
+ payload_32 = FPGA_INVALID_HW_QUEUE_ID;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ address = (q_id << 2) + FPGA_5GNR_FEC_QUEUE_MAP;
+ fpga_reg_write_32(d->mmio_base, address, payload_32);
+ }
+
+ /*
+ * If PF mode is enabled allocate all queues for PF only.
+ *
+ * For VF mode each VF can have different number of UL and DL queues.
+ * Total number of queues to configure cannot exceed FPGA
+ * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
+ * Queues mapping is done according to configuration:
+ *
+ * UL queues:
+ * | Q_ID | VF_ID |
+ * | 0 | 0 |
+ * | ... | 0 |
+ * | conf->vf_dl_queues_number[0] - 1 | 0 |
+ * | conf->vf_dl_queues_number[0] | 1 |
+ * | ... | 1 |
+ * | conf->vf_dl_queues_number[1] - 1 | 1 |
+ * | ... | ... |
+ * | conf->vf_dl_queues_number[7] - 1 | 7 |
+ *
+ * DL queues:
+ * | Q_ID | VF_ID |
+ * | 32 | 0 |
+ * | ... | 0 |
+ * | conf->vf_ul_queues_number[0] - 1 | 0 |
+ * | conf->vf_ul_queues_number[0] | 1 |
+ * | ... | 1 |
+ * | conf->vf_ul_queues_number[1] - 1 | 1 |
+ * | ... | ... |
+ * | conf->vf_ul_queues_number[7] - 1 | 7 |
+ *
+ * Example of configuration:
+ * conf->vf_ul_queues_number[0] = 4; -> 4 UL queues for VF0
+ * conf->vf_dl_queues_number[0] = 4; -> 4 DL queues for VF0
+ * conf->vf_ul_queues_number[1] = 2; -> 2 UL queues for VF1
+ * conf->vf_dl_queues_number[1] = 2; -> 2 DL queues for VF1
+ *
+ * UL:
+ * | Q_ID | VF_ID |
+ * | 0 | 0 |
+ * | 1 | 0 |
+ * | 2 | 0 |
+ * | 3 | 0 |
+ * | 4 | 1 |
+ * | 5 | 1 |
+ *
+ * DL:
+ * | Q_ID | VF_ID |
+ * | 32 | 0 |
+ * | 33 | 0 |
+ * | 34 | 0 |
+ * | 35 | 0 |
+ * | 36 | 1 |
+ * | 37 | 1 |
+ */
+ if (conf->pf_mode_en) {
+ payload_32 = 0x1;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ address = (q_id << 2) + FPGA_5GNR_FEC_QUEUE_MAP;
+ fpga_reg_write_32(d->mmio_base, address, payload_32);
+ }
+ } else {
+ /* Calculate total number of UL and DL queues to configure */
+ total_ul_q_id = total_dl_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
+ total_ul_q_id += conf->vf_ul_queues_number[vf_id];
+ total_dl_q_id += conf->vf_dl_queues_number[vf_id];
+ }
+ total_q_id = total_dl_q_id + total_ul_q_id;
+ /*
+ * Check if total number of queues to configure does not exceed
+ * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
+ */
+ if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
+ (total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
+ (total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
+ rte_bbdev_log(ERR,
+ "FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
+ total_ul_q_id, total_dl_q_id,
+ FPGA_TOTAL_NUM_QUEUES);
+ return -EINVAL;
+ }
+ total_ul_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
+ for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
+ ++q_id, ++total_ul_q_id) {
+ address = (total_ul_q_id << 2) +
+ FPGA_5GNR_FEC_QUEUE_MAP;
+ payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+ fpga_reg_write_32(d->mmio_base, address,
+ payload_32);
+ }
+ }
+ total_dl_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
+ for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
+ ++q_id, ++total_dl_q_id) {
+ address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
+ << 2) + FPGA_5GNR_FEC_QUEUE_MAP;
+ payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+ fpga_reg_write_32(d->mmio_base, address,
+ payload_32);
+ }
+ }
+ }
+
+ /* Setting Load Balance Factor */
+ payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
+ address = FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Setting length of ring descriptor entry */
+ payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
+ address = FPGA_5GNR_FEC_RING_DESC_LEN;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Setting FLR timeout value */
+ payload_16 = conf->flr_time_out;
+ address = FPGA_5GNR_FEC_FLR_TIME_OUT;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Queue PF/VF mapping table is ready */
+ payload_8 = 0x1;
+ address = FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE;
+ fpga_reg_write_8(d->mmio_base, address, payload_8);
+
+ rte_bbdev_log_debug("PF FPGA 5GNR FEC configuration complete for %s",
+ dev_name);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_static_reg_debug_info(d->mmio_base);
+#endif
+ return 0;
+}
+
+/* FPGA 5GNR FEC PCI PF address map */
+static struct rte_pci_id pci_id_fpga_5gnr_fec_pf_map[] = {
+ {
+ RTE_PCI_DEVICE(FPGA_5GNR_FEC_VENDOR_ID,
+ FPGA_5GNR_FEC_PF_DEVICE_ID)
+ },
+ {.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_5gnr_fec_pci_pf_driver = {
+ .probe = fpga_5gnr_fec_probe,
+ .remove = fpga_5gnr_fec_remove,
+ .id_table = pci_id_fpga_5gnr_fec_pf_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+/* FPGA 5GNR FEC PCI VF address map */
+static struct rte_pci_id pci_id_fpga_5gnr_fec_vf_map[] = {
+ {
+ RTE_PCI_DEVICE(FPGA_5GNR_FEC_VENDOR_ID,
+ FPGA_5GNR_FEC_VF_DEVICE_ID)
+ },
+ {.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_5gnr_fec_pci_vf_driver = {
+ .probe = fpga_5gnr_fec_probe,
+ .remove = fpga_5gnr_fec_remove,
+ .id_table = pci_id_fpga_5gnr_fec_vf_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+
+RTE_PMD_REGISTER_PCI(FPGA_5GNR_FEC_PF_DRIVER_NAME, fpga_5gnr_fec_pci_pf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_5GNR_FEC_PF_DRIVER_NAME,
+ pci_id_fpga_5gnr_fec_pf_map);
+RTE_PMD_REGISTER_PCI(FPGA_5GNR_FEC_VF_DRIVER_NAME, fpga_5gnr_fec_pci_vf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_5GNR_FEC_VF_DRIVER_NAME,
+ pci_id_fpga_5gnr_fec_vf_map);
+
+RTE_INIT(fpga_5gnr_fec_init_log)
+{
+ fpga_5gnr_fec_logtype = rte_log_register("pmd.bb.fpga_5gnr_fec");
+ if (fpga_5gnr_fec_logtype >= 0)
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_log_set_level(fpga_5gnr_fec_logtype, RTE_LOG_DEBUG);
+#else
+ rte_log_set_level(fpga_5gnr_fec_logtype, RTE_LOG_NOTICE);
+#endif
+}
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map
new file mode 100644
index 000000000..b0fb9717f
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map
@@ -0,0 +1,10 @@
+DPDK_20.0 {
+ local: *;
+};
+
+EXPERIMENTAL {
+ global:
+
+ fpga_5gnr_fec_configure;
+
+};
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_fpga_5gnr_fec.h b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_fpga_5gnr_fec.h
new file mode 100644
index 000000000..70a4acf0b
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_5gnr_fec/rte_pmd_fpga_5gnr_fec.h
@@ -0,0 +1,74 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2020 Intel Corporation
+ */
+
+#ifndef _RTE_PMD_FPGA_5GNR_FEC_H_
+#define _RTE_PMD_FPGA_5GNR_FEC_H_
+
+#include <stdint.h>
+#include <stdbool.h>
+
+/**
+ * @file rte_pmd_fpga_5gnr_fec.h
+ *
+ * Interface for Intel(R) FGPA 5GNR FEC device configuration at the host level,
+ * directly accessible by the application.
+ * Configuration related to 5GNR functionality is done through
+ * librte_bbdev library.
+ *
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** Number of Virtual Functions FGPA 4G FEC supports */
+#define FPGA_5GNR_FEC_NUM_VFS 8
+
+/**
+ * Structure to pass FPGA 4G FEC configuration.
+ */
+struct fpga_5gnr_fec_conf {
+ /** 1 if PF is used for dataplane, 0 for VFs */
+ bool pf_mode_en;
+ /** Number of UL queues per VF */
+ uint8_t vf_ul_queues_number[FPGA_5GNR_FEC_NUM_VFS];
+ /** Number of DL queues per VF */
+ uint8_t vf_dl_queues_number[FPGA_5GNR_FEC_NUM_VFS];
+ /** UL bandwidth. Needed for schedule algorithm */
+ uint8_t ul_bandwidth;
+ /** DL bandwidth. Needed for schedule algorithm */
+ uint8_t dl_bandwidth;
+ /** UL Load Balance */
+ uint8_t ul_load_balance;
+ /** DL Load Balance */
+ uint8_t dl_load_balance;
+ /** FLR timeout value */
+ uint16_t flr_time_out;
+};
+
+/**
+ * Configure Intel(R) FPGA 5GNR FEC device
+ *
+ * @param dev_name
+ * The name of the device. This is the short form of PCI BDF, e.g. 00:01.0.
+ * It can also be retrieved for a bbdev device from the dev_name field in the
+ * rte_bbdev_info structure returned by rte_bbdev_info_get().
+ * @param conf
+ * Configuration to apply to FPGA 4G FEC.
+ *
+ * @return
+ * Zero on success, negative value on failure.
+ */
+__rte_experimental
+int
+fpga_5gnr_fec_configure(const char *dev_name,
+ const struct fpga_5gnr_fec_conf *conf);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _RTE_PMD_FPGA_5GNR_FEC_H_ */
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/Makefile b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/Makefile
new file mode 100644
index 000000000..30caafe3d
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/Makefile
@@ -0,0 +1,25 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2019 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+# library name
+LIB = librte_pmd_bbdev_fpga_lte_fec.a
+
+# build flags
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring
+LDLIBS += -lrte_bbdev
+LDLIBS += -lrte_pci -lrte_bus_pci
+
+# versioning export map
+EXPORT_MAP := rte_pmd_bbdev_fpga_lte_fec_version.map
+
+# library source files
+SRCS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC) += fpga_lte_fec.c
+
+# export include files
+SYMLINK-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC)-include += fpga_lte_fec.h
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c
new file mode 100644
index 000000000..abc5a1bf6
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c
@@ -0,0 +1,2675 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2019 Intel Corporation
+ */
+
+#include <unistd.h>
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_dev.h>
+#include <rte_malloc.h>
+#include <rte_mempool.h>
+#include <rte_errno.h>
+#include <rte_pci.h>
+#include <rte_bus_pci.h>
+#include <rte_byteorder.h>
+#ifdef RTE_BBDEV_OFFLOAD_COST
+#include <rte_cycles.h>
+#endif
+
+#include <rte_bbdev.h>
+#include <rte_bbdev_pmd.h>
+
+#include "fpga_lte_fec.h"
+
+/* Turbo SW PMD logging ID */
+static int fpga_lte_fec_logtype;
+
+/* Helper macro for logging */
+#define rte_bbdev_log(level, fmt, ...) \
+ rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \
+ ##__VA_ARGS__)
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+#define rte_bbdev_log_debug(fmt, ...) \
+ rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \
+ ##__VA_ARGS__)
+#else
+#define rte_bbdev_log_debug(fmt, ...)
+#endif
+
+/* FPGA LTE FEC driver names */
+#define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf
+#define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf
+
+/* FPGA LTE FEC PCI vendor & device IDs */
+#define FPGA_LTE_FEC_VENDOR_ID (0x1172)
+#define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052)
+#define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050)
+
+/* Align DMA descriptors to 256 bytes - cache-aligned */
+#define FPGA_RING_DESC_ENTRY_LENGTH (8)
+/* Ring size is in 256 bits (32 bytes) units */
+#define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
+/* Maximum size of queue */
+#define FPGA_RING_MAX_SIZE (1024)
+#define FPGA_FLR_TIMEOUT_UNIT (16.384)
+
+#define FPGA_NUM_UL_QUEUES (32)
+#define FPGA_NUM_DL_QUEUES (32)
+#define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
+#define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
+
+#define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
+
+#define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
+#define FPGA_TIMEOUT_CHECK_INTERVAL (5)
+
+/* FPGA LTE FEC Register mapping on BAR0 */
+enum {
+ FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */
+ FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
+ FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
+ FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
+ FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
+ FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
+ FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
+ FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
+ FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */
+ FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */
+ FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */
+ FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */
+ FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */
+ FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */
+ FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */
+ FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */
+ FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
+ FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200 /* len: 2048B */
+};
+
+/* FPGA LTE FEC Ring Control Registers */
+enum {
+ FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008,
+ FPGA_LTE_FEC_RING_SIZE = 0x00000010,
+ FPGA_LTE_FEC_RING_MISC = 0x00000014,
+ FPGA_LTE_FEC_RING_ENABLE = 0x00000015,
+ FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
+ FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018,
+ FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C
+};
+
+/* FPGA LTE FEC DESCRIPTOR ERROR */
+enum {
+ DESC_ERR_NO_ERR = 0x0,
+ DESC_ERR_K_OUT_OF_RANGE = 0x1,
+ DESC_ERR_K_NOT_NORMAL = 0x2,
+ DESC_ERR_KPAI_NOT_NORMAL = 0x3,
+ DESC_ERR_DESC_OFFSET_ERR = 0x4,
+ DESC_ERR_DESC_READ_FAIL = 0x8,
+ DESC_ERR_DESC_READ_TIMEOUT = 0x9,
+ DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
+ DESC_ERR_CB_READ_FAIL = 0xC,
+ DESC_ERR_CB_READ_TIMEOUT = 0xD,
+ DESC_ERR_CB_READ_TLP_POISONED = 0xE
+};
+
+/* FPGA LTE FEC DMA Encoding Request Descriptor */
+struct __rte_packed fpga_dma_enc_desc {
+ uint32_t done:1,
+ rsrvd0:11,
+ error:4,
+ rsrvd1:16;
+ uint32_t ncb:16,
+ rsrvd2:14,
+ rv:2;
+ uint32_t bypass_rm:1,
+ irq_en:1,
+ crc_en:1,
+ rsrvd3:13,
+ offset:10,
+ rsrvd4:6;
+ uint16_t e;
+ uint16_t k;
+ uint32_t out_addr_lw;
+ uint32_t out_addr_hi;
+ uint32_t in_addr_lw;
+ uint32_t in_addr_hi;
+
+ union {
+ struct {
+ /* Virtual addresses used to retrieve SW context info */
+ void *op_addr;
+ /* Stores information about total number of Code Blocks
+ * in currently processed Transport Block
+ */
+ uint64_t cbs_in_op;
+ };
+
+ uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
+ (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+ };
+};
+
+/* FPGA LTE FEC DMA Decoding Request Descriptor */
+struct __rte_packed fpga_dma_dec_desc {
+ uint32_t done:1,
+ iter:5,
+ rsrvd0:2,
+ crc_pass:1,
+ rsrvd1:3,
+ error:4,
+ crc_type:1,
+ rsrvd2:7,
+ max_iter:5,
+ rsrvd3:3;
+ uint32_t rsrvd4;
+ uint32_t bypass_rm:1,
+ irq_en:1,
+ drop_crc:1,
+ rsrvd5:13,
+ offset:10,
+ rsrvd6:6;
+ uint16_t k;
+ uint16_t in_len;
+ uint32_t out_addr_lw;
+ uint32_t out_addr_hi;
+ uint32_t in_addr_lw;
+ uint32_t in_addr_hi;
+
+ union {
+ struct {
+ /* Virtual addresses used to retrieve SW context info */
+ void *op_addr;
+ /* Stores information about total number of Code Blocks
+ * in currently processed Transport Block
+ */
+ uint8_t cbs_in_op;
+ };
+
+ uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+ };
+};
+
+/* FPGA LTE DMA Descriptor */
+union fpga_dma_desc {
+ struct fpga_dma_enc_desc enc_req;
+ struct fpga_dma_dec_desc dec_req;
+};
+
+/* FPGA LTE FEC Ring Control Register */
+struct __rte_packed fpga_ring_ctrl_reg {
+ uint64_t ring_base_addr;
+ uint64_t ring_head_addr;
+ uint16_t ring_size:11;
+ uint16_t rsrvd0;
+ union { /* Miscellaneous register */
+ uint8_t misc;
+ uint8_t max_ul_dec:5,
+ max_ul_dec_en:1,
+ rsrvd1:2;
+ };
+ uint8_t enable;
+ uint8_t flush_queue_en;
+ uint8_t rsrvd2;
+ uint16_t shadow_tail;
+ uint16_t rsrvd3;
+ uint16_t head_point;
+ uint16_t rsrvd4;
+
+};
+
+/* Private data structure for each FPGA FEC device */
+struct fpga_lte_fec_device {
+ /** Base address of MMIO registers (BAR0) */
+ void *mmio_base;
+ /** Base address of memory for sw rings */
+ void *sw_rings;
+ /** Physical address of sw_rings */
+ rte_iova_t sw_rings_phys;
+ /** Number of bytes available for each queue in device. */
+ uint32_t sw_ring_size;
+ /** Max number of entries available for each queue in device */
+ uint32_t sw_ring_max_depth;
+ /** Base address of response tail pointer buffer */
+ uint32_t *tail_ptrs;
+ /** Physical address of tail pointers */
+ rte_iova_t tail_ptr_phys;
+ /** Queues flush completion flag */
+ uint64_t *flush_queue_status;
+ /* Bitmap capturing which Queues are bound to the PF/VF */
+ uint64_t q_bound_bit_map;
+ /* Bitmap capturing which Queues have already been assigned */
+ uint64_t q_assigned_bit_map;
+ /** True if this is a PF FPGA FEC device */
+ bool pf_device;
+};
+
+/* Structure associated with each queue. */
+struct __rte_cache_aligned fpga_queue {
+ struct fpga_ring_ctrl_reg ring_ctrl_reg; /* Ring Control Register */
+ union fpga_dma_desc *ring_addr; /* Virtual address of software ring */
+ uint64_t *ring_head_addr; /* Virtual address of completion_head */
+ uint64_t shadow_completion_head; /* Shadow completion head value */
+ uint16_t head_free_desc; /* Ring head */
+ uint16_t tail; /* Ring tail */
+ /* Mask used to wrap enqueued descriptors on the sw ring */
+ uint32_t sw_ring_wrap_mask;
+ uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */
+ uint8_t q_idx; /* Queue index */
+ struct fpga_lte_fec_device *d;
+ /* MMIO register of shadow_tail used to enqueue descriptors */
+ void *shadow_tail_addr;
+};
+
+/* Write to 16 bit MMIO register address */
+static inline void
+mmio_write_16(void *addr, uint16_t value)
+{
+ *((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
+}
+
+/* Write to 32 bit MMIO register address */
+static inline void
+mmio_write_32(void *addr, uint32_t value)
+{
+ *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
+}
+
+/* Write to 64 bit MMIO register address */
+static inline void
+mmio_write_64(void *addr, uint64_t value)
+{
+ *((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
+}
+
+/* Write a 8 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ *((volatile uint8_t *)(reg_addr)) = payload;
+}
+
+/* Write a 16 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_16(reg_addr, payload);
+}
+
+/* Write a 32 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_32(reg_addr, payload);
+}
+
+/* Write a 64 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_64(reg_addr, payload);
+}
+
+/* Write a ring control register of a FPGA LTE FEC device */
+static inline void
+fpga_ring_reg_write(void *mmio_base, uint32_t offset,
+ struct fpga_ring_ctrl_reg payload)
+{
+ fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
+ fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR,
+ payload.ring_head_addr);
+ fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE,
+ payload.ring_size);
+ fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
+ payload.head_point);
+ fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN,
+ payload.flush_queue_en);
+ fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
+ payload.shadow_tail);
+ fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC,
+ payload.misc);
+ fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+ payload.enable);
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint32_t
+fpga_reg_read_32(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint32_t ret = *((volatile uint32_t *)(reg_addr));
+ return rte_le_to_cpu_32(ret);
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Read a register of FPGA LTE FEC device */
+static uint8_t
+fpga_reg_read_8(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ return *((volatile uint8_t *)(reg_addr));
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint16_t
+fpga_reg_read_16(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint16_t ret = *((volatile uint16_t *)(reg_addr));
+ return rte_le_to_cpu_16(ret);
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint64_t
+fpga_reg_read_64(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint64_t ret = *((volatile uint64_t *)(reg_addr));
+ return rte_le_to_cpu_64(ret);
+}
+
+/* Read Ring Control Register of FPGA LTE FEC device */
+static inline void
+print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
+{
+ rte_bbdev_log_debug(
+ "FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
+ PRIx32, mmio_base, offset);
+ rte_bbdev_log_debug(
+ "RING_BASE_ADDR = 0x%016"PRIx64,
+ fpga_reg_read_64(mmio_base, offset));
+ rte_bbdev_log_debug(
+ "RING_HEAD_ADDR = 0x%016"PRIx64,
+ fpga_reg_read_64(mmio_base, offset +
+ FPGA_LTE_FEC_RING_HEAD_ADDR));
+ rte_bbdev_log_debug(
+ "RING_SIZE = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_LTE_FEC_RING_SIZE));
+ rte_bbdev_log_debug(
+ "RING_MISC = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_LTE_FEC_RING_MISC));
+ rte_bbdev_log_debug(
+ "RING_ENABLE = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_LTE_FEC_RING_ENABLE));
+ rte_bbdev_log_debug(
+ "RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN));
+ rte_bbdev_log_debug(
+ "RING_SHADOW_TAIL = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_LTE_FEC_RING_SHADOW_TAIL));
+ rte_bbdev_log_debug(
+ "RING_HEAD_POINT = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_LTE_FEC_RING_HEAD_POINT));
+}
+
+/* Read Static Register of FPGA LTE FEC device */
+static inline void
+print_static_reg_debug_info(void *mmio_base)
+{
+ uint16_t config = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_CONFIGURATION);
+ uint8_t qmap_done = fpga_reg_read_8(mmio_base,
+ FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE);
+ uint16_t lb_factor = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_LOAD_BALANCE_FACTOR);
+ uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_RING_DESC_LEN);
+ uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_FLR_TIME_OUT);
+
+ rte_bbdev_log_debug("UL.DL Weights = %u.%u",
+ ((uint8_t)config), ((uint8_t)(config >> 8)));
+ rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
+ ((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
+ rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
+ (qmap_done > 0) ? "READY" : "NOT-READY");
+ rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
+ ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
+ rte_bbdev_log_debug("FLR Timeout = %f usec",
+ (float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
+}
+
+/* Print decode DMA Descriptor of FPGA LTE FEC device */
+static void
+print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
+{
+ rte_bbdev_log_debug("DMA response desc %p\n"
+ "\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")"
+ " | error (%"PRIu32") | crc_type(%"PRIu32")\n"
+ "\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | "
+ "irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n"
+ "\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n"
+ "\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | "
+ "out_add (0x%08"PRIx32"%08"PRIx32")",
+ desc,
+ (uint32_t)desc->dec_req.done,
+ (uint32_t)desc->dec_req.iter,
+ (uint32_t)desc->dec_req.crc_pass,
+ (uint32_t)desc->dec_req.error,
+ (uint32_t)desc->dec_req.crc_type,
+ (uint32_t)desc->dec_req.max_iter,
+ (uint32_t)desc->dec_req.bypass_rm,
+ (uint32_t)desc->dec_req.irq_en,
+ (uint32_t)desc->dec_req.drop_crc,
+ (uint32_t)desc->dec_req.offset,
+ (uint32_t)desc->dec_req.k,
+ (uint16_t)desc->dec_req.in_len,
+ desc->dec_req.op_addr,
+ (uint32_t)desc->dec_req.cbs_in_op,
+ (uint32_t)desc->dec_req.in_addr_hi,
+ (uint32_t)desc->dec_req.in_addr_lw,
+ (uint32_t)desc->dec_req.out_addr_hi,
+ (uint32_t)desc->dec_req.out_addr_lw);
+}
+#endif
+
+static int
+fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
+{
+ /* Number of queues bound to a PF/VF */
+ uint32_t hw_q_num = 0;
+ uint32_t ring_size, payload, address, q_id, offset;
+ rte_iova_t phys_addr;
+ struct fpga_ring_ctrl_reg ring_reg;
+ struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+
+ address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
+ if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
+ rte_bbdev_log(ERR,
+ "Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
+ dev->data->name);
+ return -EPERM;
+ }
+
+ /* Clear queue registers structure */
+ memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+
+ /* Scan queue map.
+ * If a queue is valid and mapped to a calling PF/VF the read value is
+ * replaced with a queue ID and if it's not then
+ * FPGA_INVALID_HW_QUEUE_ID is returned.
+ */
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
+ FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
+
+ rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
+ dev->device->name, q_id, hw_q_id);
+
+ if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
+ fpga_dev->q_bound_bit_map |= (1ULL << q_id);
+ /* Clear queue register of found queue */
+ offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q_id);
+ fpga_ring_reg_write(fpga_dev->mmio_base,
+ offset, ring_reg);
+ ++hw_q_num;
+ }
+ }
+ if (hw_q_num == 0) {
+ rte_bbdev_log(ERR,
+ "No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
+ return -ENODEV;
+ }
+
+ if (num_queues > hw_q_num) {
+ rte_bbdev_log(ERR,
+ "Not enough queues for device %s! Requested: %u, available: %u",
+ dev->device->name, num_queues, hw_q_num);
+ return -EINVAL;
+ }
+
+ ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
+
+ /* Enforce 32 byte alignment */
+ RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
+
+ /* Allocate memory for SW descriptor rings */
+ fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
+ num_queues * ring_size, RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (fpga_dev->sw_rings == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u sw_rings",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+
+ fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
+ fpga_dev->sw_ring_size = ring_size;
+ fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
+
+ /* Allocate memory for ring flush status */
+ fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
+ sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
+ if (fpga_dev->flush_queue_status == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u flush_queue_status",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+
+ /* Set the flush status address registers */
+ phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
+
+ address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW;
+ payload = (uint32_t)(phys_addr);
+ fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+ address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI;
+ payload = (uint32_t)(phys_addr >> 32);
+ fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+ return 0;
+}
+
+static int
+fpga_dev_close(struct rte_bbdev *dev)
+{
+ struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+
+ rte_free(fpga_dev->sw_rings);
+ rte_free(fpga_dev->flush_queue_status);
+
+ return 0;
+}
+
+static void
+fpga_dev_info_get(struct rte_bbdev *dev,
+ struct rte_bbdev_driver_info *dev_info)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ uint32_t q_id = 0;
+
+ /* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set
+ * to temporary values as they are required by test application while
+ * validation phase.
+ */
+ static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+ {
+ .type = RTE_BBDEV_OP_TURBO_DEC,
+ .cap.turbo_dec = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_CRC_TYPE_24B |
+ RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
+ RTE_BBDEV_TURBO_DEC_INTERRUPTS |
+ RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP,
+ .max_llr_modulus = INT8_MAX,
+ .num_buffers_src =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
+ .num_buffers_hard_out =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
+ .num_buffers_soft_out = 0
+ }
+ },
+ {
+ .type = RTE_BBDEV_OP_TURBO_ENC,
+ .cap.turbo_enc = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_CRC_24B_ATTACH |
+ RTE_BBDEV_TURBO_RATE_MATCH |
+ RTE_BBDEV_TURBO_ENC_INTERRUPTS,
+ .num_buffers_src =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
+ .num_buffers_dst =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS
+ }
+ },
+ RTE_BBDEV_END_OF_CAPABILITIES_LIST()
+ };
+
+ static struct rte_bbdev_queue_conf default_queue_conf;
+ default_queue_conf.socket = dev->data->socket_id;
+ default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
+
+
+ dev_info->driver_name = dev->device->driver->name;
+ dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
+ dev_info->hardware_accelerated = true;
+ dev_info->min_alignment = 64;
+ dev_info->default_queue_conf = default_queue_conf;
+ dev_info->capabilities = bbdev_capabilities;
+ dev_info->cpu_flag_reqs = NULL;
+
+ /* Calculates number of queues assigned to device */
+ dev_info->max_num_queues = 0;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
+ FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
+ if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
+ dev_info->max_num_queues++;
+ }
+}
+
+/**
+ * Find index of queue bound to current PF/VF which is unassigned. Return -1
+ * when there is no available queue
+ */
+static int
+fpga_find_free_queue_idx(struct rte_bbdev *dev,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ uint64_t q_idx;
+ uint8_t i = 0;
+ uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
+
+ if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) {
+ i = FPGA_NUM_DL_QUEUES;
+ range = FPGA_TOTAL_NUM_QUEUES;
+ }
+
+ for (; i < range; ++i) {
+ q_idx = 1ULL << i;
+ /* Check if index of queue is bound to current PF/VF */
+ if (d->q_bound_bit_map & q_idx)
+ /* Check if found queue was not already assigned */
+ if (!(d->q_assigned_bit_map & q_idx)) {
+ d->q_assigned_bit_map |= q_idx;
+ return i;
+ }
+ }
+
+ rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
+
+ return -1;
+}
+
+static int
+fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ uint32_t address, ring_offset;
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ struct fpga_queue *q;
+ int8_t q_idx;
+
+ /* Check if there is a free queue to assign */
+ q_idx = fpga_find_free_queue_idx(dev, conf);
+ if (q_idx == -1)
+ return -1;
+
+ /* Allocate the queue data structure. */
+ q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
+ RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q == NULL) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_bbdev_log(ERR, "Failed to allocate queue memory");
+ return -ENOMEM;
+ }
+
+ q->d = d;
+ q->q_idx = q_idx;
+
+ /* Set ring_base_addr */
+ q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
+ q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
+ (d->sw_ring_size * queue_id);
+
+ /* Allocate memory for Completion Head variable*/
+ q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
+ sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q->ring_head_addr == NULL) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_free(q);
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u completion_head",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+ /* Set ring_head_addr */
+ q->ring_ctrl_reg.ring_head_addr =
+ rte_malloc_virt2iova(q->ring_head_addr);
+
+ /* Clear shadow_completion_head */
+ q->shadow_completion_head = 0;
+
+ /* Set ring_size */
+ if (conf->queue_size > FPGA_RING_MAX_SIZE) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_free(q->ring_head_addr);
+ rte_free(q);
+ rte_bbdev_log(ERR,
+ "Size of queue is too big %d (MAX: %d ) for %s:%u",
+ conf->queue_size, FPGA_RING_MAX_SIZE,
+ dev->device->driver->name, dev->data->dev_id);
+ return -EINVAL;
+ }
+ q->ring_ctrl_reg.ring_size = conf->queue_size;
+
+ /* Set Miscellaneous FPGA register*/
+ /* Max iteration number for TTI mitigation - todo */
+ q->ring_ctrl_reg.max_ul_dec = 0;
+ /* Enable max iteration number for TTI - todo */
+ q->ring_ctrl_reg.max_ul_dec_en = 0;
+
+ /* Enable the ring */
+ q->ring_ctrl_reg.enable = 1;
+
+ /* Set FPGA head_point and tail registers */
+ q->ring_ctrl_reg.head_point = q->tail = 0;
+
+ /* Set FPGA shadow_tail register */
+ q->ring_ctrl_reg.shadow_tail = q->tail;
+
+ /* Calculates the ring offset for found queue */
+ ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q_idx);
+
+ /* Set FPGA Ring Control Registers */
+ fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
+
+ /* Store MMIO register of shadow_tail */
+ address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL;
+ q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
+
+ q->head_free_desc = q->tail;
+
+ /* Set wrap mask */
+ q->sw_ring_wrap_mask = conf->queue_size - 1;
+
+ rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
+ dev->data->dev_id, queue_id, q->q_idx);
+
+ dev->data->queues[queue_id].queue_private = q;
+
+ rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
+ queue_id, q_idx);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Read FPGA Ring Control Registers after configuration*/
+ print_ring_reg_debug_info(d->mmio_base, ring_offset);
+#endif
+ return 0;
+}
+
+static int
+fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ struct fpga_ring_ctrl_reg ring_reg;
+ uint32_t offset;
+
+ rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
+
+ if (q != NULL) {
+ memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+ offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ /* Disable queue */
+ fpga_reg_write_8(d->mmio_base,
+ offset + FPGA_LTE_FEC_RING_ENABLE, 0x00);
+ /* Clear queue registers */
+ fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
+
+ /* Mark the Queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
+ rte_free(q->ring_head_addr);
+ rte_free(q);
+ dev->data->queues[queue_id].queue_private = NULL;
+ }
+
+ return 0;
+}
+
+/* Function starts a device queue. */
+static int
+fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (d == NULL) {
+ rte_bbdev_log(ERR, "Invalid device pointer");
+ return -1;
+ }
+#endif
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ uint8_t enable = 0x01;
+ uint16_t zero = 0x0000;
+
+ /* Clear queue head and tail variables */
+ q->tail = q->head_free_desc = 0;
+
+ /* Clear FPGA head_point and tail registers */
+ fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
+ zero);
+ fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
+ zero);
+
+ /* Enable queue */
+ fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+ enable);
+
+ rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
+ return 0;
+}
+
+/* Function stops a device queue. */
+static int
+fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (d == NULL) {
+ rte_bbdev_log(ERR, "Invalid device pointer");
+ return -1;
+ }
+#endif
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ uint8_t payload = 0x01;
+ uint8_t counter = 0;
+ uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
+ FPGA_TIMEOUT_CHECK_INTERVAL;
+
+ /* Set flush_queue_en bit to trigger queue flushing */
+ fpga_reg_write_8(d->mmio_base,
+ offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload);
+
+ /** Check if queue flush is completed.
+ * FPGA will update the completion flag after queue flushing is
+ * completed. If completion flag is not updated within 1ms it is
+ * considered as a failure.
+ */
+ while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx) & payload)) {
+ if (counter > timeout) {
+ rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
+ queue_id);
+ return -1;
+ }
+ usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
+ counter++;
+ }
+
+ /* Disable queue */
+ payload = 0x00;
+ fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+ payload);
+
+ rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
+ return 0;
+}
+
+static inline uint16_t
+get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
+{
+ uint16_t queue_id;
+
+ for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
+ struct fpga_queue *q = data->queues[queue_id].queue_private;
+ if (q != NULL && q->q_idx == q_idx)
+ return queue_id;
+ }
+
+ return -1;
+}
+
+/* Interrupt handler triggered by FPGA dev for handling specific interrupt */
+static void
+fpga_dev_interrupt_handler(void *cb_arg)
+{
+ struct rte_bbdev *dev = cb_arg;
+ struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+ struct fpga_queue *q;
+ uint64_t ring_head;
+ uint64_t q_idx;
+ uint16_t queue_id;
+ uint8_t i;
+
+ /* Scan queue assigned to this device */
+ for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
+ q_idx = 1ULL << i;
+ if (fpga_dev->q_bound_bit_map & q_idx) {
+ queue_id = get_queue_id(dev->data, i);
+ if (queue_id == (uint16_t) -1)
+ continue;
+
+ /* Check if completion head was changed */
+ q = dev->data->queues[queue_id].queue_private;
+ ring_head = *q->ring_head_addr;
+ if (q->shadow_completion_head != ring_head &&
+ q->irq_enable == 1) {
+ q->shadow_completion_head = ring_head;
+ rte_bbdev_pmd_callback_process(
+ dev,
+ RTE_BBDEV_EVENT_DEQUEUE,
+ &queue_id);
+ }
+ }
+ }
+}
+
+static int
+fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+
+ if (!rte_intr_cap_multiple(dev->intr_handle))
+ return -ENOTSUP;
+
+ q->irq_enable = 1;
+
+ return 0;
+}
+
+static int
+fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ q->irq_enable = 0;
+
+ return 0;
+}
+
+static int
+fpga_intr_enable(struct rte_bbdev *dev)
+{
+ int ret;
+ uint8_t i;
+
+ if (!rte_intr_cap_multiple(dev->intr_handle)) {
+ rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
+ dev->data->name);
+ return -ENOTSUP;
+ }
+
+ /* Create event file descriptors for each of 64 queue. Event fds will be
+ * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
+ * the IRQ number is a direct translation to the queue number.
+ *
+ * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
+ * mapped the first IRQ to already created interrupt event file
+ * descriptor (intr_handle->fd).
+ */
+ if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
+ rte_bbdev_log(ERR, "Failed to create fds for %u queues",
+ dev->data->num_queues);
+ return -1;
+ }
+
+ /* TODO Each event file descriptor is overwritten by interrupt event
+ * file descriptor. That descriptor is added to epoll observed list.
+ * It ensures that callback function assigned to that descriptor will
+ * invoked when any FPGA queue issues interrupt.
+ */
+ for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
+ dev->intr_handle->efds[i] = dev->intr_handle->fd;
+
+ if (!dev->intr_handle->intr_vec) {
+ dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
+ dev->data->num_queues * sizeof(int), 0);
+ if (!dev->intr_handle->intr_vec) {
+ rte_bbdev_log(ERR, "Failed to allocate %u vectors",
+ dev->data->num_queues);
+ return -ENOMEM;
+ }
+ }
+
+ ret = rte_intr_enable(dev->intr_handle);
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "Couldn't enable interrupts for device: %s",
+ dev->data->name);
+ return ret;
+ }
+
+ ret = rte_intr_callback_register(dev->intr_handle,
+ fpga_dev_interrupt_handler, dev);
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "Couldn't register interrupt callback for device: %s",
+ dev->data->name);
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct rte_bbdev_ops fpga_ops = {
+ .setup_queues = fpga_setup_queues,
+ .intr_enable = fpga_intr_enable,
+ .close = fpga_dev_close,
+ .info_get = fpga_dev_info_get,
+ .queue_setup = fpga_queue_setup,
+ .queue_stop = fpga_queue_stop,
+ .queue_start = fpga_queue_start,
+ .queue_release = fpga_queue_release,
+ .queue_intr_enable = fpga_queue_intr_enable,
+ .queue_intr_disable = fpga_queue_intr_disable
+};
+
+static inline void
+fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
+ struct rte_bbdev_stats *queue_stats)
+{
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time = 0;
+ queue_stats->acc_offload_cycles = 0;
+#else
+ RTE_SET_USED(queue_stats);
+#endif
+
+ /* Update tail and shadow_tail register */
+ q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
+
+ rte_wmb();
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ /* Start time measurement for enqueue function offload. */
+ start_time = rte_rdtsc_precise();
+#endif
+ mmio_write_16(q->shadow_tail_addr, q->tail);
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ rte_wmb();
+ queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+}
+
+/* Calculates number of CBs in processed encoder TB based on 'r' and input
+ * length.
+ */
+static inline uint8_t
+get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
+{
+ uint8_t c, c_neg, r, crc24_bits = 0;
+ uint16_t k, k_neg, k_pos;
+ uint8_t cbs_in_op = 0;
+ int32_t length;
+
+ length = turbo_enc->input.length;
+ r = turbo_enc->tb_params.r;
+ c = turbo_enc->tb_params.c;
+ c_neg = turbo_enc->tb_params.c_neg;
+ k_neg = turbo_enc->tb_params.k_neg;
+ k_pos = turbo_enc->tb_params.k_pos;
+ crc24_bits = 24;
+ while (length > 0 && r < c) {
+ k = (r < c_neg) ? k_neg : k_pos;
+ length -= (k - crc24_bits) >> 3;
+ r++;
+ cbs_in_op++;
+ }
+
+ return cbs_in_op;
+}
+
+/* Calculates number of CBs in processed decoder TB based on 'r' and input
+ * length.
+ */
+static inline uint16_t
+get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
+{
+ uint8_t c, c_neg, r = 0;
+ uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0;
+ int32_t length;
+
+ length = turbo_dec->input.length;
+ r = turbo_dec->tb_params.r;
+ c = turbo_dec->tb_params.c;
+ c_neg = turbo_dec->tb_params.c_neg;
+ k_neg = turbo_dec->tb_params.k_neg;
+ k_pos = turbo_dec->tb_params.k_pos;
+ while (length > 0 && r < c) {
+ k = (r < c_neg) ? k_neg : k_pos;
+ kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+ length -= kw;
+ r++;
+ cbs_in_op++;
+ }
+
+ return cbs_in_op;
+}
+
+/* Read flag value 0/1/ from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+ return bitmap & bitmask;
+}
+
+/* Print an error if a descriptor error has occurred.
+ * Return 0 on success, 1 on failure
+ */
+static inline int
+check_desc_error(uint32_t error_code) {
+ switch (error_code) {
+ case DESC_ERR_NO_ERR:
+ return 0;
+ case DESC_ERR_K_OUT_OF_RANGE:
+ rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)");
+ break;
+ case DESC_ERR_K_NOT_NORMAL:
+ rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range");
+ break;
+ case DESC_ERR_KPAI_NOT_NORMAL:
+ rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only");
+ break;
+ case DESC_ERR_DESC_OFFSET_ERR:
+ rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA");
+ break;
+ case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR):
+ rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error");
+ break;
+ case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
+ rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error");
+ break;
+ case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
+ rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error");
+ break;
+ case DESC_ERR_DESC_READ_FAIL:
+ rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
+ break;
+ case DESC_ERR_DESC_READ_TIMEOUT:
+ rte_bbdev_log(ERR, "Descriptor read time-out");
+ break;
+ case DESC_ERR_DESC_READ_TLP_POISONED:
+ rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
+ break;
+ case DESC_ERR_CB_READ_FAIL:
+ rte_bbdev_log(ERR, "Unsuccessful completion for code block");
+ break;
+ case DESC_ERR_CB_READ_TIMEOUT:
+ rte_bbdev_log(ERR, "Code block read time-out");
+ break;
+ case DESC_ERR_CB_READ_TLP_POISONED:
+ rte_bbdev_log(ERR, "Code block read TLP poisoned");
+ break;
+ default:
+ rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
+ error_code);
+ break;
+ }
+ return 1;
+}
+
+/**
+ * Set DMA descriptor for encode operation (1 Code Block)
+ *
+ * @param op
+ * Pointer to a single encode operation.
+ * @param desc
+ * Pointer to DMA descriptor.
+ * @param input
+ * Pointer to pointer to input data which will be decoded.
+ * @param k
+ * K value (length of input in bits).
+ * @param e
+ * E value (length of output in bits).
+ * @param ncb
+ * Ncb value (size of the soft buffer).
+ * @param out_length
+ * Length of output buffer
+ * @param in_offset
+ * Input offset in rte_mbuf structure. It is used for calculating the point
+ * where data is starting.
+ * @param out_offset
+ * Output offset in rte_mbuf structure. It is used for calculating the point
+ * where hard output data will be stored.
+ * @param cbs_in_op
+ * Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
+ struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
+ struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb,
+ uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
+ uint8_t cbs_in_op)
+
+{
+ /* reset */
+ desc->done = 0;
+ desc->crc_en = check_bit(op->turbo_enc.op_flags,
+ RTE_BBDEV_TURBO_CRC_24B_ATTACH);
+ desc->bypass_rm = !check_bit(op->turbo_enc.op_flags,
+ RTE_BBDEV_TURBO_RATE_MATCH);
+ desc->k = k;
+ desc->e = e;
+ desc->ncb = ncb;
+ desc->rv = op->turbo_enc.rv_index;
+ desc->offset = desc_offset;
+ /* Set inbound data buffer address */
+ desc->in_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+ desc->in_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset));
+
+ desc->out_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+ desc->out_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset));
+
+ /* Save software context needed for dequeue */
+ desc->op_addr = op;
+
+ /* Set total number of CBs in an op */
+ desc->cbs_in_op = cbs_in_op;
+
+ return 0;
+}
+
+/**
+ * Set DMA descriptor for encode operation (1 Code Block)
+ *
+ * @param op
+ * Pointer to a single encode operation.
+ * @param desc
+ * Pointer to DMA descriptor.
+ * @param input
+ * Pointer to pointer to input data which will be decoded.
+ * @param in_length
+ * Length of an input.
+ * @param k
+ * K value (length of an output in bits).
+ * @param in_offset
+ * Input offset in rte_mbuf structure. It is used for calculating the point
+ * where data is starting.
+ * @param out_offset
+ * Output offset in rte_mbuf structure. It is used for calculating the point
+ * where hard output data will be stored.
+ * @param cbs_in_op
+ * Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
+ struct fpga_dma_dec_desc *desc, struct rte_mbuf *input,
+ struct rte_mbuf *output, uint16_t in_length, uint16_t k,
+ uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
+ uint8_t cbs_in_op)
+{
+ /* reset */
+ desc->done = 0;
+ /* Set inbound data buffer address */
+ desc->in_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+ desc->in_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset));
+ desc->in_len = in_length;
+ desc->k = k;
+ desc->crc_type = !check_bit(op->turbo_dec.op_flags,
+ RTE_BBDEV_TURBO_CRC_TYPE_24B);
+ if ((op->turbo_dec.code_block_mode == 0)
+ && !check_bit(op->turbo_dec.op_flags,
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+ desc->drop_crc = 1;
+ desc->max_iter = op->turbo_dec.iter_max * 2;
+ desc->offset = desc_offset;
+ desc->out_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+ desc->out_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset));
+
+ /* Save software context needed for dequeue */
+ desc->op_addr = op;
+
+ /* Set total number of CBs in an op */
+ desc->cbs_in_op = cbs_in_op;
+
+ return 0;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates turbo encoder parameters */
+static int
+validate_enc_op(struct rte_bbdev_enc_op *op)
+{
+ struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
+ struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
+ struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
+ uint16_t kw, kw_neg, kw_pos;
+
+ if (turbo_enc->input.length >
+ RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
+ rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
+ turbo_enc->input.length,
+ RTE_BBDEV_TURBO_MAX_TB_SIZE);
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return -1;
+ }
+
+ if (op->mempool == NULL) {
+ rte_bbdev_log(ERR, "Invalid mempool pointer");
+ return -1;
+ }
+ if (turbo_enc->input.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid input pointer");
+ return -1;
+ }
+ if (turbo_enc->output.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid output pointer");
+ return -1;
+ }
+ if (turbo_enc->rv_index > 3) {
+ rte_bbdev_log(ERR,
+ "rv_index (%u) is out of range 0 <= value <= 3",
+ turbo_enc->rv_index);
+ return -1;
+ }
+ if (turbo_enc->code_block_mode != 0 &&
+ turbo_enc->code_block_mode != 1) {
+ rte_bbdev_log(ERR,
+ "code_block_mode (%u) is out of range 0 <= value <= 1",
+ turbo_enc->code_block_mode);
+ return -1;
+ }
+
+ if (turbo_enc->code_block_mode == 0) {
+ tb = &turbo_enc->tb_params;
+ if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
+ || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
+ && tb->c_neg > 0) {
+ rte_bbdev_log(ERR,
+ "k_neg (%u) is out of range %u <= value <= %u",
+ tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE);
+ return -1;
+ }
+ if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
+ || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "k_pos (%u) is out of range %u <= value <= %u",
+ tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE);
+ return -1;
+ }
+ if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
+ rte_bbdev_log(ERR,
+ "c_neg (%u) is out of range 0 <= value <= %u",
+ tb->c_neg,
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
+ if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
+ rte_bbdev_log(ERR,
+ "c (%u) is out of range 1 <= value <= %u",
+ tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
+ return -1;
+ }
+ if (tb->cab > tb->c) {
+ rte_bbdev_log(ERR,
+ "cab (%u) is greater than c (%u)",
+ tb->cab, tb->c);
+ return -1;
+ }
+ if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
+ && tb->r < tb->cab) {
+ rte_bbdev_log(ERR,
+ "ea (%u) is less than %u or it is not even",
+ tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
+ return -1;
+ }
+ if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
+ && tb->c > tb->cab) {
+ rte_bbdev_log(ERR,
+ "eb (%u) is less than %u or it is not even",
+ tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
+ return -1;
+ }
+
+ kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
+ RTE_BBDEV_TURBO_C_SUBBLOCK);
+ if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
+ rte_bbdev_log(ERR,
+ "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
+ tb->ncb_neg, tb->k_neg, kw_neg);
+ return -1;
+ }
+
+ kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
+ RTE_BBDEV_TURBO_C_SUBBLOCK);
+ if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
+ rte_bbdev_log(ERR,
+ "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
+ tb->ncb_pos, tb->k_pos, kw_pos);
+ return -1;
+ }
+ if (tb->r > (tb->c - 1)) {
+ rte_bbdev_log(ERR,
+ "r (%u) is greater than c - 1 (%u)",
+ tb->r, tb->c - 1);
+ return -1;
+ }
+ } else {
+ cb = &turbo_enc->cb_params;
+ if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
+ || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "k (%u) is out of range %u <= value <= %u",
+ cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE);
+ return -1;
+ }
+
+ if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
+ rte_bbdev_log(ERR,
+ "e (%u) is less than %u or it is not even",
+ cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
+ return -1;
+ }
+
+ kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
+ if (cb->ncb < cb->k || cb->ncb > kw) {
+ rte_bbdev_log(ERR,
+ "ncb (%u) is out of range (%u) k <= value <= (%u) kw",
+ cb->ncb, cb->k, kw);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+#endif
+
+static inline char *
+mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
+{
+ if (unlikely(len > rte_pktmbuf_tailroom(m)))
+ return NULL;
+
+ char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
+ m->data_len = (uint16_t)(m->data_len + len);
+ m_head->pkt_len = (m_head->pkt_len + len);
+ return tail;
+}
+
+static inline int
+enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input;
+ struct rte_mbuf *output;
+ int ret;
+ uint16_t k, e, ncb, ring_offset;
+ uint32_t total_left, in_length, out_length, in_offset, out_offset;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_enc_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo encoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_enc.input.data;
+ output = op->turbo_enc.output.data;
+ in_offset = op->turbo_enc.input.offset;
+ out_offset = op->turbo_enc.output.offset;
+ total_left = op->turbo_enc.input.length;
+ k = op->turbo_enc.cb_params.k;
+ e = op->turbo_enc.cb_params.e;
+ ncb = op->turbo_enc.cb_params.ncb;
+
+ if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
+ in_length = ((k - 24) >> 3);
+ else
+ in_length = k >> 3;
+
+ if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
+ out_length = (e + 7) >> 3;
+ else
+ out_length = (k >> 3) * 3 + 2;
+
+ mbuf_append(output, output, out_length);
+
+ /* Offset into the ring */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ /* Setup DMA Descriptor */
+ desc = q->ring_addr + ring_offset;
+
+ ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e,
+ ncb, in_offset, out_offset, ring_offset, 1);
+ if (unlikely(ret < 0))
+ return ret;
+
+ /* Update lengths */
+ total_left -= in_length;
+ op->turbo_enc.output.length += out_length;
+
+ if (total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ total_left, in_length);
+ return -1;
+ }
+
+ return 1;
+}
+
+static inline int
+enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t desc_offset, uint8_t cbs_in_op)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input, *output_head, *output;
+ int ret;
+ uint8_t r, c, crc24_bits = 0;
+ uint16_t k, e, ncb, ring_offset;
+ uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset;
+ uint32_t seg_total_left;
+ uint16_t current_enqueued_cbs = 0;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_enc_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo encoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_enc.input.data;
+ output_head = output = op->turbo_enc.output.data;
+ in_offset = op->turbo_enc.input.offset;
+ out_offset = op->turbo_enc.output.offset;
+ mbuf_total_left = op->turbo_enc.input.length;
+
+ c = op->turbo_enc.tb_params.c;
+ r = op->turbo_enc.tb_params.r;
+
+ if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
+ crc24_bits = 24;
+
+ while (mbuf_total_left > 0 && r < c && input != NULL) {
+ seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
+
+ e = (r < op->turbo_enc.tb_params.cab) ?
+ op->turbo_enc.tb_params.ea :
+ op->turbo_enc.tb_params.eb;
+ k = (r < op->turbo_enc.tb_params.c_neg) ?
+ op->turbo_enc.tb_params.k_neg :
+ op->turbo_enc.tb_params.k_pos;
+ ncb = (r < op->turbo_enc.tb_params.c_neg) ?
+ op->turbo_enc.tb_params.ncb_neg :
+ op->turbo_enc.tb_params.ncb_pos;
+
+ in_length = ((k - crc24_bits) >> 3);
+
+ if (check_bit(op->turbo_enc.op_flags,
+ RTE_BBDEV_TURBO_RATE_MATCH))
+ out_length = (e + 7) >> 3;
+ else
+ out_length = (k >> 3) * 3 + 2;
+
+ mbuf_append(output_head, output, out_length);
+
+ /* Setup DMA Descriptor */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + ring_offset;
+ ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output,
+ k, e, ncb, in_offset, out_offset, ring_offset,
+ cbs_in_op);
+ if (unlikely(ret < 0))
+ return ret;
+
+ rte_bbdev_log_debug("DMA request desc %p", desc);
+
+ /* Update lengths */
+ op->turbo_enc.output.length += out_length;
+ mbuf_total_left -= in_length;
+
+ /* Update offsets */
+ if (seg_total_left == in_length) {
+ /* Go to the next mbuf */
+ input = input->next;
+ output = output->next;
+ in_offset = 0;
+ out_offset = 0;
+ } else {
+ in_offset += in_length;
+ out_offset += out_length;
+ }
+
+ r++;
+ desc_offset++;
+ current_enqueued_cbs++;
+ }
+
+ if (mbuf_total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Some date still left for processing: mbuf_total_left = %u",
+ mbuf_total_left);
+ return -1;
+ }
+
+ return current_enqueued_cbs;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates turbo decoder parameters */
+static int
+validate_dec_op(struct rte_bbdev_dec_op *op)
+{
+ struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
+ struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
+ struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
+
+ if (op->mempool == NULL) {
+ rte_bbdev_log(ERR, "Invalid mempool pointer");
+ return -1;
+ }
+ if (turbo_dec->input.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid input pointer");
+ return -1;
+ }
+ if (turbo_dec->hard_output.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid hard_output pointer");
+ return -1;
+ }
+ if (turbo_dec->rv_index > 3) {
+ rte_bbdev_log(ERR,
+ "rv_index (%u) is out of range 0 <= value <= 3",
+ turbo_dec->rv_index);
+ return -1;
+ }
+ if (turbo_dec->iter_min < 1) {
+ rte_bbdev_log(ERR,
+ "iter_min (%u) is less than 1",
+ turbo_dec->iter_min);
+ return -1;
+ }
+ if (turbo_dec->iter_max <= 2) {
+ rte_bbdev_log(ERR,
+ "iter_max (%u) is less than or equal to 2",
+ turbo_dec->iter_max);
+ return -1;
+ }
+ if (turbo_dec->iter_min > turbo_dec->iter_max) {
+ rte_bbdev_log(ERR,
+ "iter_min (%u) is greater than iter_max (%u)",
+ turbo_dec->iter_min, turbo_dec->iter_max);
+ return -1;
+ }
+ if (turbo_dec->code_block_mode != 0 &&
+ turbo_dec->code_block_mode != 1) {
+ rte_bbdev_log(ERR,
+ "code_block_mode (%u) is out of range 0 <= value <= 1",
+ turbo_dec->code_block_mode);
+ return -1;
+ }
+
+ if (turbo_dec->code_block_mode == 0) {
+
+ if ((turbo_dec->op_flags &
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) &&
+ !(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) {
+ rte_bbdev_log(ERR,
+ "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B");
+ return -1;
+ }
+
+ tb = &turbo_dec->tb_params;
+ if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
+ || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
+ && tb->c_neg > 0) {
+ rte_bbdev_log(ERR,
+ "k_neg (%u) is out of range %u <= value <= %u",
+ tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE);
+ return -1;
+ }
+ if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
+ || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
+ && tb->c > tb->c_neg) {
+ rte_bbdev_log(ERR,
+ "k_pos (%u) is out of range %u <= value <= %u",
+ tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE);
+ return -1;
+ }
+ if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
+ rte_bbdev_log(ERR,
+ "c_neg (%u) is out of range 0 <= value <= %u",
+ tb->c_neg,
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
+ if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
+ rte_bbdev_log(ERR,
+ "c (%u) is out of range 1 <= value <= %u",
+ tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
+ return -1;
+ }
+ if (tb->cab > tb->c) {
+ rte_bbdev_log(ERR,
+ "cab (%u) is greater than c (%u)",
+ tb->cab, tb->c);
+ return -1;
+ }
+ } else {
+
+ if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) {
+ rte_bbdev_log(ERR,
+ "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode");
+ return -1;
+ }
+
+ cb = &turbo_dec->cb_params;
+ if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
+ || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "k (%u) is out of range %u <= value <= %u",
+ cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+#endif
+
+static inline int
+enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input;
+ struct rte_mbuf *output;
+ int ret;
+ uint16_t k, kw, ring_offset;
+ uint32_t total_left, in_length, out_length, in_offset, out_offset;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_dec_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo decoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_dec.input.data;
+ output = op->turbo_dec.hard_output.data;
+ total_left = op->turbo_dec.input.length;
+ in_offset = op->turbo_dec.input.offset;
+ out_offset = op->turbo_dec.hard_output.offset;
+
+ k = op->turbo_dec.cb_params.k;
+ kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+ in_length = kw;
+ out_length = k >> 3;
+
+ mbuf_append(output, output, out_length);
+
+ /* Setup DMA Descriptor */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + ring_offset;
+ ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
+ in_length, k, in_offset, out_offset, ring_offset, 1);
+ if (unlikely(ret < 0))
+ return ret;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_dec_desc_debug_info(desc);
+#endif
+
+ /* Update lengths */
+ total_left -= in_length;
+ op->turbo_dec.hard_output.length += out_length;
+
+ if (total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ total_left, in_length);
+ return -1;
+ }
+
+ return 1;
+}
+
+
+static inline int
+enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
+ uint16_t desc_offset, uint8_t cbs_in_op)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input, *output_head, *output;
+ int ret;
+ uint8_t r, c;
+ uint16_t k, kw, in_length, out_length, ring_offset;
+ uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset;
+ uint16_t current_enqueued_cbs = 0;
+ uint16_t crc24_overlap = 0;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_dec_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo decoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_dec.input.data;
+ output_head = output = op->turbo_dec.hard_output.data;
+ mbuf_total_left = op->turbo_dec.input.length;
+ in_offset = op->turbo_dec.input.offset;
+ out_offset = op->turbo_dec.hard_output.offset;
+
+ if (!check_bit(op->turbo_dec.op_flags,
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+ crc24_overlap = 24;
+
+ c = op->turbo_dec.tb_params.c;
+ r = op->turbo_dec.tb_params.r;
+
+ while (mbuf_total_left > 0 && r < c && input != NULL) {
+ seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
+ k = (r < op->turbo_dec.tb_params.c_neg) ?
+ op->turbo_dec.tb_params.k_neg :
+ op->turbo_dec.tb_params.k_pos;
+ kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+
+ in_length = kw;
+ out_length = (k - crc24_overlap) >> 3;
+
+ mbuf_append(output_head, output, out_length);
+
+ if (seg_total_left < in_length) {
+ rte_bbdev_log(ERR,
+ "Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!");
+ return -1;
+ }
+
+ /* Setup DMA Descriptor */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + ring_offset;
+ ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
+ in_length, k, in_offset, out_offset,
+ ring_offset, cbs_in_op);
+ if (unlikely(ret < 0))
+ return ret;
+
+ /* Update lengths */
+ ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data,
+ (crc24_overlap >> 3));
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "The length to remove is greater than the length of the last segment");
+ return -EINVAL;
+ }
+#endif
+ op->turbo_dec.hard_output.length += out_length;
+ mbuf_total_left -= in_length;
+
+ /* Update offsets */
+ if (seg_total_left == in_length) {
+ /* Go to the next mbuf */
+ input = input->next;
+ output = output->next;
+ in_offset = 0;
+ out_offset = 0;
+ } else {
+ in_offset += in_length;
+ out_offset += out_length;
+ }
+
+ r++;
+ desc_offset++;
+ current_enqueued_cbs++;
+ }
+
+ if (mbuf_total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Some date still left for processing: mbuf_total_left = %u",
+ mbuf_total_left);
+ return -1;
+ }
+
+ return current_enqueued_cbs;
+}
+
+static uint16_t
+fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ uint8_t cbs_in_op;
+ uint16_t i, total_enqueued_cbs = 0;
+ int32_t avail;
+ int enqueued_cbs;
+ struct fpga_queue *q = q_data->queue_private;
+ union fpga_dma_desc *desc;
+
+ /* Check if queue is not full */
+ if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+ q->head_free_desc))
+ return 0;
+
+ /* Calculates available space */
+ avail = (q->head_free_desc > q->tail) ?
+ q->head_free_desc - q->tail - 1 :
+ q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+ for (i = 0; i < num; ++i) {
+ if (ops[i]->turbo_enc.code_block_mode == 0) {
+ cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc);
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - cbs_in_op < 0))
+ break;
+ avail -= cbs_in_op;
+ enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i],
+ total_enqueued_cbs, cbs_in_op);
+ } else {
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - 1 < 0))
+ break;
+ avail -= 1;
+ enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i],
+ total_enqueued_cbs);
+ }
+
+ if (enqueued_cbs < 0)
+ break;
+
+ total_enqueued_cbs += enqueued_cbs;
+
+ rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
+ total_enqueued_cbs, num,
+ q->head_free_desc, q->tail);
+ }
+
+ /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+ * only when all previous CBs were already processed.
+ */
+ desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+ & q->sw_ring_wrap_mask);
+ desc->enc_req.irq_en = q->irq_enable;
+
+ fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ return i;
+}
+
+static uint16_t
+fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ uint8_t cbs_in_op;
+ uint16_t i, total_enqueued_cbs = 0;
+ int32_t avail;
+ int enqueued_cbs;
+ struct fpga_queue *q = q_data->queue_private;
+ union fpga_dma_desc *desc;
+
+ /* Check if queue is not full */
+ if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+ q->head_free_desc))
+ return 0;
+
+ /* Calculates available space */
+ avail = (q->head_free_desc > q->tail) ?
+ q->head_free_desc - q->tail - 1 :
+ q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+ for (i = 0; i < num; ++i) {
+ if (ops[i]->turbo_dec.code_block_mode == 0) {
+ cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec);
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - cbs_in_op < 0))
+ break;
+ avail -= cbs_in_op;
+ enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i],
+ total_enqueued_cbs, cbs_in_op);
+ } else {
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - 1 < 0))
+ break;
+ avail -= 1;
+ enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i],
+ total_enqueued_cbs);
+ }
+
+ if (enqueued_cbs < 0)
+ break;
+
+ total_enqueued_cbs += enqueued_cbs;
+
+ rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
+ total_enqueued_cbs, num,
+ q->head_free_desc, q->tail);
+ }
+
+ /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+ * only when all previous CBs were already processed.
+ */
+ desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+ & q->sw_ring_wrap_mask);
+ desc->dec_req.irq_en = q->irq_enable;
+
+ fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ return i;
+}
+
+static inline int
+dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int desc_error = 0;
+
+ /* Set current desc */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /*check if done */
+ if (desc->enc_req.done == 0)
+ return -1;
+
+ /* make sure the response is read atomically */
+ rte_smp_rmb();
+
+ rte_bbdev_log_debug("DMA response desc %p", desc);
+
+ *op = desc->enc_req.op_addr;
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ (*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
+
+ return 1;
+}
+
+static inline int
+dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ uint8_t cbs_in_op, cb_idx;
+ int desc_error = 0;
+ int status = 0;
+
+ /* Set descriptor */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /* Verify if done bit is set */
+ if (desc->enc_req.done == 0)
+ return -1;
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ /* Verify if done bit in all CBs is set */
+ cbs_in_op = desc->enc_req.cbs_in_op;
+ for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ if (desc->enc_req.done == 0)
+ return -1;
+ }
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ status |= desc_error << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log_debug("DMA response desc %p", desc);
+ }
+
+ *op = desc->enc_req.op_addr;
+ (*op)->status = status;
+ return cbs_in_op;
+}
+
+static inline int
+dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int desc_error = 0;
+ /* Set descriptor */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /* Verify done bit is set */
+ if (desc->dec_req.done == 0)
+ return -1;
+
+ /* make sure the response is read atomically */
+ rte_smp_rmb();
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_dec_desc_debug_info(desc);
+
+#endif
+
+ *op = desc->dec_req.op_addr;
+ /* FPGA reports in half-iterations, from 0 to 31. get ceiling */
+ (*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1;
+ /* crc_pass = 0 when decoder fails */
+ (*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ (*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
+ return 1;
+}
+
+static inline int
+dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ uint8_t cbs_in_op, cb_idx, iter_count = 0;
+ int status = 0;
+ int desc_error = 0;
+ /* Set descriptor */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /* Verify if done bit is set */
+ if (desc->dec_req.done == 0)
+ return -1;
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ /* Verify if done bit in all CBs is set */
+ cbs_in_op = desc->dec_req.cbs_in_op;
+ for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ if (desc->dec_req.done == 0)
+ return -1;
+ }
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ /* get max iter_count for all CBs in op */
+ iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter);
+ /* crc_pass = 0 when decoder fails, one fails all */
+ status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ status |= desc_error << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log_debug("DMA response desc %p", desc);
+ }
+
+ *op = desc->dec_req.op_addr;
+
+ /* FPGA reports in half-iterations, get ceiling */
+ (*op)->turbo_dec.iter_count = (iter_count + 2) >> 1;
+ (*op)->status = status;
+ return cbs_in_op;
+}
+
+static uint16_t
+fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ struct fpga_queue *q = q_data->queue_private;
+ uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+ uint16_t i;
+ uint16_t dequeued_cbs = 0;
+ struct rte_bbdev_enc_op *op;
+ int ret;
+
+ for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+ op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
+ & q->sw_ring_wrap_mask))->enc_req.op_addr;
+ if (op->turbo_enc.code_block_mode == 0)
+ ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs);
+ else
+ ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs);
+
+ if (ret < 0)
+ break;
+
+ dequeued_cbs += ret;
+
+ rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
+ dequeued_cbs, num, q->head_free_desc, q->tail);
+ }
+
+ /* Update head */
+ q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+ q->sw_ring_wrap_mask;
+
+ /* Update stats */
+ q_data->queue_stats.dequeued_count += i;
+
+ return i;
+}
+
+static uint16_t
+fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ struct fpga_queue *q = q_data->queue_private;
+ uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+ uint16_t i;
+ uint16_t dequeued_cbs = 0;
+ struct rte_bbdev_dec_op *op;
+ int ret;
+
+ for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+ op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
+ & q->sw_ring_wrap_mask))->dec_req.op_addr;
+ if (op->turbo_dec.code_block_mode == 0)
+ ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs);
+ else
+ ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs);
+
+ if (ret < 0)
+ break;
+
+ dequeued_cbs += ret;
+
+ rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
+ dequeued_cbs, num, q->head_free_desc, q->tail);
+ }
+
+ /* Update head */
+ q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+ q->sw_ring_wrap_mask;
+
+ /* Update stats */
+ q_data->queue_stats.dequeued_count += i;
+
+ return i;
+}
+
+/* Initialization Function */
+static void
+fpga_lte_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
+{
+ struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
+
+ dev->dev_ops = &fpga_ops;
+ dev->enqueue_enc_ops = fpga_enqueue_enc;
+ dev->enqueue_dec_ops = fpga_enqueue_dec;
+ dev->dequeue_enc_ops = fpga_dequeue_enc;
+ dev->dequeue_dec_ops = fpga_dequeue_dec;
+
+ ((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device =
+ !strcmp(drv->driver.name,
+ RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME));
+ ((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base =
+ pci_dev->mem_resource[0].addr;
+
+ rte_bbdev_log_debug(
+ "Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
+ dev->device->driver->name, dev->data->name,
+ (void *)pci_dev->mem_resource[0].addr,
+ pci_dev->mem_resource[0].phys_addr);
+}
+
+static int
+fpga_lte_fec_probe(struct rte_pci_driver *pci_drv,
+ struct rte_pci_device *pci_dev)
+{
+ struct rte_bbdev *bbdev = NULL;
+ char dev_name[RTE_BBDEV_NAME_MAX_LEN];
+
+ if (pci_dev == NULL) {
+ rte_bbdev_log(ERR, "NULL PCI device");
+ return -EINVAL;
+ }
+
+ rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
+
+ /* Allocate memory to be used privately by drivers */
+ bbdev = rte_bbdev_allocate(pci_dev->device.name);
+ if (bbdev == NULL)
+ return -ENODEV;
+
+ /* allocate device private memory */
+ bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
+ sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE,
+ pci_dev->device.numa_node);
+
+ if (bbdev->data->dev_private == NULL) {
+ rte_bbdev_log(CRIT,
+ "Allocate of %zu bytes for device \"%s\" failed",
+ sizeof(struct fpga_lte_fec_device), dev_name);
+ rte_bbdev_release(bbdev);
+ return -ENOMEM;
+ }
+
+ /* Fill HW specific part of device structure */
+ bbdev->device = &pci_dev->device;
+ bbdev->intr_handle = &pci_dev->intr_handle;
+ bbdev->data->socket_id = pci_dev->device.numa_node;
+
+ /* Invoke FEC FPGA device initialization function */
+ fpga_lte_fec_init(bbdev, pci_drv);
+
+ rte_bbdev_log_debug("bbdev id = %u [%s]",
+ bbdev->data->dev_id, dev_name);
+
+ struct fpga_lte_fec_device *d = bbdev->data->dev_private;
+ uint32_t version_id = fpga_reg_read_32(d->mmio_base,
+ FPGA_LTE_FEC_VERSION_ID);
+ rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
+ ((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (!strcmp(bbdev->device->driver->name,
+ RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)))
+ print_static_reg_debug_info(d->mmio_base);
+#endif
+ return 0;
+}
+
+static int
+fpga_lte_fec_remove(struct rte_pci_device *pci_dev)
+{
+ struct rte_bbdev *bbdev;
+ int ret;
+ uint8_t dev_id;
+
+ if (pci_dev == NULL)
+ return -EINVAL;
+
+ /* Find device */
+ bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
+ if (bbdev == NULL) {
+ rte_bbdev_log(CRIT,
+ "Couldn't find HW dev \"%s\" to uninitialise it",
+ pci_dev->device.name);
+ return -ENODEV;
+ }
+ dev_id = bbdev->data->dev_id;
+
+ /* free device private memory before close */
+ rte_free(bbdev->data->dev_private);
+
+ /* Close device */
+ ret = rte_bbdev_close(dev_id);
+ if (ret < 0)
+ rte_bbdev_log(ERR,
+ "Device %i failed to close during uninit: %i",
+ dev_id, ret);
+
+ /* release bbdev from library */
+ ret = rte_bbdev_release(bbdev);
+ if (ret)
+ rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
+ ret);
+
+ rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
+
+ return 0;
+}
+
+static inline void
+set_default_fpga_conf(struct fpga_lte_fec_conf *def_conf)
+{
+ /* clear default configuration before initialization */
+ memset(def_conf, 0, sizeof(struct fpga_lte_fec_conf));
+ /* Set pf mode to true */
+ def_conf->pf_mode_en = true;
+
+ /* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
+ def_conf->ul_bandwidth = 3;
+ def_conf->dl_bandwidth = 3;
+
+ /* Set Load Balance Factor to 64 */
+ def_conf->dl_load_balance = 64;
+ def_conf->ul_load_balance = 64;
+}
+
+/* Initial configuration of FPGA LTE FEC device */
+int
+fpga_lte_fec_configure(const char *dev_name,
+ const struct fpga_lte_fec_conf *conf)
+{
+ uint32_t payload_32, address;
+ uint16_t payload_16;
+ uint8_t payload_8;
+ uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
+ struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
+ struct fpga_lte_fec_conf def_conf;
+
+ if (bbdev == NULL) {
+ rte_bbdev_log(ERR,
+ "Invalid dev_name (%s), or device is not yet initialised",
+ dev_name);
+ return -ENODEV;
+ }
+
+ struct fpga_lte_fec_device *d = bbdev->data->dev_private;
+
+ if (conf == NULL) {
+ rte_bbdev_log(ERR,
+ "FPGA Configuration was not provided. Default configuration will be loaded.");
+ set_default_fpga_conf(&def_conf);
+ conf = &def_conf;
+ }
+
+ /*
+ * Configure UL:DL ratio.
+ * [7:0]: UL weight
+ * [15:8]: DL weight
+ */
+ payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
+ address = FPGA_LTE_FEC_CONFIGURATION;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Clear all queues registers */
+ payload_32 = FPGA_INVALID_HW_QUEUE_ID;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+ fpga_reg_write_32(d->mmio_base, address, payload_32);
+ }
+
+ /*
+ * If PF mode is enabled allocate all queues for PF only.
+ *
+ * For VF mode each VF can have different number of UL and DL queues.
+ * Total number of queues to configure cannot exceed FPGA
+ * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
+ * Queues mapping is done according to configuration:
+ *
+ * UL queues:
+ * | Q_ID | VF_ID |
+ * | 0 | 0 |
+ * | ... | 0 |
+ * | conf->vf_dl_queues_number[0] - 1 | 0 |
+ * | conf->vf_dl_queues_number[0] | 1 |
+ * | ... | 1 |
+ * | conf->vf_dl_queues_number[1] - 1 | 1 |
+ * | ... | ... |
+ * | conf->vf_dl_queues_number[7] - 1 | 7 |
+ *
+ * DL queues:
+ * | Q_ID | VF_ID |
+ * | 32 | 0 |
+ * | ... | 0 |
+ * | conf->vf_ul_queues_number[0] - 1 | 0 |
+ * | conf->vf_ul_queues_number[0] | 1 |
+ * | ... | 1 |
+ * | conf->vf_ul_queues_number[1] - 1 | 1 |
+ * | ... | ... |
+ * | conf->vf_ul_queues_number[7] - 1 | 7 |
+ *
+ * Example of configuration:
+ * conf->vf_ul_queues_number[0] = 4; -> 4 UL queues for VF0
+ * conf->vf_dl_queues_number[0] = 4; -> 4 DL queues for VF0
+ * conf->vf_ul_queues_number[1] = 2; -> 2 UL queues for VF1
+ * conf->vf_dl_queues_number[1] = 2; -> 2 DL queues for VF1
+ *
+ * UL:
+ * | Q_ID | VF_ID |
+ * | 0 | 0 |
+ * | 1 | 0 |
+ * | 2 | 0 |
+ * | 3 | 0 |
+ * | 4 | 1 |
+ * | 5 | 1 |
+ *
+ * DL:
+ * | Q_ID | VF_ID |
+ * | 32 | 0 |
+ * | 33 | 0 |
+ * | 34 | 0 |
+ * | 35 | 0 |
+ * | 36 | 1 |
+ * | 37 | 1 |
+ */
+ if (conf->pf_mode_en) {
+ payload_32 = 0x1;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+ fpga_reg_write_32(d->mmio_base, address, payload_32);
+ }
+ } else {
+ /* Calculate total number of UL and DL queues to configure */
+ total_ul_q_id = total_dl_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+ total_ul_q_id += conf->vf_ul_queues_number[vf_id];
+ total_dl_q_id += conf->vf_dl_queues_number[vf_id];
+ }
+ total_q_id = total_dl_q_id + total_ul_q_id;
+ /*
+ * Check if total number of queues to configure does not exceed
+ * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
+ */
+ if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
+ (total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
+ (total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
+ rte_bbdev_log(ERR,
+ "FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
+ total_ul_q_id, total_dl_q_id,
+ FPGA_TOTAL_NUM_QUEUES);
+ return -EINVAL;
+ }
+ total_ul_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+ for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
+ ++q_id, ++total_ul_q_id) {
+ address = (total_ul_q_id << 2) +
+ FPGA_LTE_FEC_QUEUE_MAP;
+ payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+ fpga_reg_write_32(d->mmio_base, address,
+ payload_32);
+ }
+ }
+ total_dl_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+ for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
+ ++q_id, ++total_dl_q_id) {
+ address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
+ << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+ payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+ fpga_reg_write_32(d->mmio_base, address,
+ payload_32);
+ }
+ }
+ }
+
+ /* Setting Load Balance Factor */
+ payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
+ address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Setting length of ring descriptor entry */
+ payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
+ address = FPGA_LTE_FEC_RING_DESC_LEN;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Setting FLR timeout value */
+ payload_16 = conf->flr_time_out;
+ address = FPGA_LTE_FEC_FLR_TIME_OUT;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Queue PF/VF mapping table is ready */
+ payload_8 = 0x1;
+ address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
+ fpga_reg_write_8(d->mmio_base, address, payload_8);
+
+ rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s",
+ dev_name);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_static_reg_debug_info(d->mmio_base);
+#endif
+ return 0;
+}
+
+/* FPGA LTE FEC PCI PF address map */
+static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = {
+ {
+ RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
+ FPGA_LTE_FEC_PF_DEVICE_ID)
+ },
+ {.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = {
+ .probe = fpga_lte_fec_probe,
+ .remove = fpga_lte_fec_remove,
+ .id_table = pci_id_fpga_lte_fec_pf_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+/* FPGA LTE FEC PCI VF address map */
+static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = {
+ {
+ RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
+ FPGA_LTE_FEC_VF_DEVICE_ID)
+ },
+ {.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = {
+ .probe = fpga_lte_fec_probe,
+ .remove = fpga_lte_fec_remove,
+ .id_table = pci_id_fpga_lte_fec_vf_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+
+RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME,
+ pci_id_fpga_lte_fec_pf_map);
+RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME,
+ pci_id_fpga_lte_fec_vf_map);
+
+RTE_INIT(fpga_lte_fec_init_log)
+{
+ fpga_lte_fec_logtype = rte_log_register("pmd.bb.fpga_lte_fec");
+ if (fpga_lte_fec_logtype >= 0)
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_DEBUG);
+#else
+ rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_NOTICE);
+#endif
+}
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h
new file mode 100644
index 000000000..b2e423c87
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h
@@ -0,0 +1,74 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2019 Intel Corporation
+ */
+
+#ifndef _FPGA_LTE_FEC_H_
+#define _FPGA_LTE_FEC_H_
+
+#include <stdint.h>
+#include <stdbool.h>
+
+/**
+ * @file fpga_lte_fec.h
+ *
+ * Interface for Intel(R) FGPA LTE FEC device configuration at the host level,
+ * directly accessible by the application.
+ * Configuration related to LTE Turbo coding functionality is done through
+ * librte_bbdev library.
+ *
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**< Number of Virtual Functions FGPA 4G FEC supports */
+#define FPGA_LTE_FEC_NUM_VFS 8
+
+/**
+ * Structure to pass FPGA 4G FEC configuration.
+ */
+struct fpga_lte_fec_conf {
+ /**< 1 if PF is used for dataplane, 0 for VFs */
+ bool pf_mode_en;
+ /**< Number of UL queues per VF */
+ uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS];
+ /**< Number of DL queues per VF */
+ uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS];
+ /**< UL bandwidth. Needed for schedule algorithm */
+ uint8_t ul_bandwidth;
+ /**< DL bandwidth. Needed for schedule algorithm */
+ uint8_t dl_bandwidth;
+ /**< UL Load Balance */
+ uint8_t ul_load_balance;
+ /**< DL Load Balance */
+ uint8_t dl_load_balance;
+ /**< FLR timeout value */
+ uint16_t flr_time_out;
+};
+
+/**
+ * Configure Intel(R) FPGA LTE FEC device
+ *
+ * @param dev_name
+ * The name of the device. This is the short form of PCI BDF, e.g. 00:01.0.
+ * It can also be retrieved for a bbdev device from the dev_name field in the
+ * rte_bbdev_info structure returned by rte_bbdev_info_get().
+ * @param conf
+ * Configuration to apply to FPGA 4G FEC.
+ *
+ * @return
+ * Zero on success, negative value on failure.
+ */
+__rte_experimental
+int
+fpga_lte_fec_configure(const char *dev_name,
+ const struct fpga_lte_fec_conf *conf);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _FPGA_LTE_FEC_H_ */
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/meson.build b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/meson.build
new file mode 100644
index 000000000..e00688da3
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/meson.build
@@ -0,0 +1,5 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2019 Intel Corporation
+
+deps += ['bbdev', 'bus_vdev', 'ring', 'pci', 'bus_pci']
+sources = files('fpga_lte_fec.c')
diff --git a/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/rte_pmd_bbdev_fpga_lte_fec_version.map b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/rte_pmd_bbdev_fpga_lte_fec_version.map
new file mode 100644
index 000000000..6bcea2cc7
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/fpga_lte_fec/rte_pmd_bbdev_fpga_lte_fec_version.map
@@ -0,0 +1,10 @@
+DPDK_20.0 {
+ local: *;
+};
+
+EXPERIMENTAL {
+ global:
+
+ fpga_lte_fec_configure;
+
+};
diff --git a/src/spdk/dpdk/drivers/baseband/meson.build b/src/spdk/dpdk/drivers/baseband/meson.build
new file mode 100644
index 000000000..4d909f9a6
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/meson.build
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2018 Luca Boccassi <bluca@debian.org>
+
+drivers = ['null', 'turbo_sw', 'fpga_lte_fec', 'fpga_5gnr_fec']
+
+config_flag_fmt = 'RTE_LIBRTE_PMD_BBDEV_@0@'
+driver_name_fmt = 'rte_pmd_bbdev_@0@'
diff --git a/src/spdk/dpdk/drivers/baseband/null/Makefile b/src/spdk/dpdk/drivers/baseband/null/Makefile
new file mode 100644
index 000000000..0ee500166
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/null/Makefile
@@ -0,0 +1,21 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2017 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+# library name
+LIB = librte_pmd_bbdev_null.a
+
+# build flags
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring -lrte_kvargs
+LDLIBS += -lrte_bbdev
+LDLIBS += -lrte_bus_vdev
+
+# versioning export map
+EXPORT_MAP := rte_pmd_bbdev_null_version.map
+
+# library source files
+SRCS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL) += bbdev_null.c
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/src/spdk/dpdk/drivers/baseband/null/bbdev_null.c b/src/spdk/dpdk/drivers/baseband/null/bbdev_null.c
new file mode 100644
index 000000000..2f2515101
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/null/bbdev_null.c
@@ -0,0 +1,356 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017 Intel Corporation
+ */
+
+#include <string.h>
+
+#include <rte_common.h>
+#include <rte_bus_vdev.h>
+#include <rte_malloc.h>
+#include <rte_ring.h>
+#include <rte_kvargs.h>
+
+#include <rte_bbdev.h>
+#include <rte_bbdev_pmd.h>
+
+#define DRIVER_NAME baseband_null
+
+/* NULL BBDev logging ID */
+static int bbdev_null_logtype;
+
+/* Helper macro for logging */
+#define rte_bbdev_log(level, fmt, ...) \
+ rte_log(RTE_LOG_ ## level, bbdev_null_logtype, fmt "\n", ##__VA_ARGS__)
+
+#define rte_bbdev_log_debug(fmt, ...) \
+ rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
+ ##__VA_ARGS__)
+
+/* Initialisation params structure that can be used by null BBDEV driver */
+struct bbdev_null_params {
+ int socket_id; /*< Null BBDEV socket */
+ uint16_t queues_num; /*< Null BBDEV queues number */
+};
+
+/* Accecptable params for null BBDEV devices */
+#define BBDEV_NULL_MAX_NB_QUEUES_ARG "max_nb_queues"
+#define BBDEV_NULL_SOCKET_ID_ARG "socket_id"
+
+static const char * const bbdev_null_valid_params[] = {
+ BBDEV_NULL_MAX_NB_QUEUES_ARG,
+ BBDEV_NULL_SOCKET_ID_ARG
+};
+
+/* private data structure */
+struct bbdev_private {
+ unsigned int max_nb_queues; /**< Max number of queues */
+};
+
+/* queue */
+struct bbdev_queue {
+ struct rte_ring *processed_pkts; /* Ring for processed packets */
+} __rte_cache_aligned;
+
+/* Get device info */
+static void
+info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
+{
+ struct bbdev_private *internals = dev->data->dev_private;
+
+ static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+ RTE_BBDEV_END_OF_CAPABILITIES_LIST(),
+ };
+
+ static struct rte_bbdev_queue_conf default_queue_conf = {
+ .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
+ };
+
+ default_queue_conf.socket = dev->data->socket_id;
+
+ dev_info->driver_name = RTE_STR(DRIVER_NAME);
+ dev_info->max_num_queues = internals->max_nb_queues;
+ dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
+ dev_info->hardware_accelerated = false;
+ dev_info->max_dl_queue_priority = 0;
+ dev_info->max_ul_queue_priority = 0;
+ dev_info->default_queue_conf = default_queue_conf;
+ dev_info->capabilities = bbdev_capabilities;
+ dev_info->cpu_flag_reqs = NULL;
+ dev_info->min_alignment = 0;
+
+ rte_bbdev_log_debug("got device info from %u", dev->data->dev_id);
+}
+
+/* Release queue */
+static int
+q_release(struct rte_bbdev *dev, uint16_t q_id)
+{
+ struct bbdev_queue *q = dev->data->queues[q_id].queue_private;
+
+ if (q != NULL) {
+ rte_ring_free(q->processed_pkts);
+ rte_free(q);
+ dev->data->queues[q_id].queue_private = NULL;
+ }
+
+ rte_bbdev_log_debug("released device queue %u:%u",
+ dev->data->dev_id, q_id);
+ return 0;
+}
+
+/* Setup a queue */
+static int
+q_setup(struct rte_bbdev *dev, uint16_t q_id,
+ const struct rte_bbdev_queue_conf *queue_conf)
+{
+ struct bbdev_queue *q;
+ char ring_name[RTE_RING_NAMESIZE];
+ snprintf(ring_name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME) "%u:%u",
+ dev->data->dev_id, q_id);
+
+ /* Allocate the queue data structure. */
+ q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate queue memory");
+ return -ENOMEM;
+ }
+
+ q->processed_pkts = rte_ring_create(ring_name, queue_conf->queue_size,
+ queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
+ if (q->processed_pkts == NULL) {
+ rte_bbdev_log(ERR, "Failed to create ring");
+ goto free_q;
+ }
+
+ dev->data->queues[q_id].queue_private = q;
+ rte_bbdev_log_debug("setup device queue %s", ring_name);
+ return 0;
+
+free_q:
+ rte_free(q);
+ return -EFAULT;
+}
+
+static const struct rte_bbdev_ops pmd_ops = {
+ .info_get = info_get,
+ .queue_setup = q_setup,
+ .queue_release = q_release
+};
+
+/* Enqueue decode burst */
+static uint16_t
+enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
+{
+ struct bbdev_queue *q = q_data->queue_private;
+ uint16_t nb_enqueued = rte_ring_enqueue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Enqueue encode burst */
+static uint16_t
+enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
+{
+ struct bbdev_queue *q = q_data->queue_private;
+ uint16_t nb_enqueued = rte_ring_enqueue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Dequeue decode burst */
+static uint16_t
+dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
+{
+ struct bbdev_queue *q = q_data->queue_private;
+ uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+ q_data->queue_stats.dequeued_count += nb_dequeued;
+
+ return nb_dequeued;
+}
+
+/* Dequeue encode burst */
+static uint16_t
+dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
+{
+ struct bbdev_queue *q = q_data->queue_private;
+ uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+ q_data->queue_stats.dequeued_count += nb_dequeued;
+
+ return nb_dequeued;
+}
+
+/* Parse 16bit integer from string argument */
+static inline int
+parse_u16_arg(const char *key, const char *value, void *extra_args)
+{
+ uint16_t *u16 = extra_args;
+ unsigned int long result;
+
+ if ((value == NULL) || (extra_args == NULL))
+ return -EINVAL;
+ errno = 0;
+ result = strtoul(value, NULL, 0);
+ if ((result >= (1 << 16)) || (errno != 0)) {
+ rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
+ return -ERANGE;
+ }
+ *u16 = (uint16_t)result;
+ return 0;
+}
+
+/* Parse parameters used to create device */
+static int
+parse_bbdev_null_params(struct bbdev_null_params *params,
+ const char *input_args)
+{
+ struct rte_kvargs *kvlist = NULL;
+ int ret = 0;
+
+ if (params == NULL)
+ return -EINVAL;
+ if (input_args) {
+ kvlist = rte_kvargs_parse(input_args, bbdev_null_valid_params);
+ if (kvlist == NULL)
+ return -EFAULT;
+
+ ret = rte_kvargs_process(kvlist, bbdev_null_valid_params[0],
+ &parse_u16_arg, &params->queues_num);
+ if (ret < 0)
+ goto exit;
+
+ ret = rte_kvargs_process(kvlist, bbdev_null_valid_params[1],
+ &parse_u16_arg, &params->socket_id);
+ if (ret < 0)
+ goto exit;
+
+ if (params->socket_id >= RTE_MAX_NUMA_NODES) {
+ rte_bbdev_log(ERR, "Invalid socket, must be < %u",
+ RTE_MAX_NUMA_NODES);
+ goto exit;
+ }
+ }
+
+exit:
+ if (kvlist)
+ rte_kvargs_free(kvlist);
+ return ret;
+}
+
+/* Create device */
+static int
+null_bbdev_create(struct rte_vdev_device *vdev,
+ struct bbdev_null_params *init_params)
+{
+ struct rte_bbdev *bbdev;
+ const char *name = rte_vdev_device_name(vdev);
+
+ bbdev = rte_bbdev_allocate(name);
+ if (bbdev == NULL)
+ return -ENODEV;
+
+ bbdev->data->dev_private = rte_zmalloc_socket(name,
+ sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
+ init_params->socket_id);
+ if (bbdev->data->dev_private == NULL) {
+ rte_bbdev_release(bbdev);
+ return -ENOMEM;
+ }
+
+ bbdev->dev_ops = &pmd_ops;
+ bbdev->device = &vdev->device;
+ bbdev->data->socket_id = init_params->socket_id;
+ bbdev->intr_handle = NULL;
+
+ /* register rx/tx burst functions for data path */
+ bbdev->dequeue_enc_ops = dequeue_enc_ops;
+ bbdev->dequeue_dec_ops = dequeue_dec_ops;
+ bbdev->enqueue_enc_ops = enqueue_enc_ops;
+ bbdev->enqueue_dec_ops = enqueue_dec_ops;
+ ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
+ init_params->queues_num;
+
+ return 0;
+}
+
+/* Initialise device */
+static int
+null_bbdev_probe(struct rte_vdev_device *vdev)
+{
+ struct bbdev_null_params init_params = {
+ rte_socket_id(),
+ RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
+ };
+ const char *name;
+ const char *input_args;
+
+ if (vdev == NULL)
+ return -EINVAL;
+
+ name = rte_vdev_device_name(vdev);
+ if (name == NULL)
+ return -EINVAL;
+
+ input_args = rte_vdev_device_args(vdev);
+ parse_bbdev_null_params(&init_params, input_args);
+
+ rte_bbdev_log_debug("Init %s on NUMA node %d with max queues: %d",
+ name, init_params.socket_id, init_params.queues_num);
+
+ return null_bbdev_create(vdev, &init_params);
+}
+
+/* Uninitialise device */
+static int
+null_bbdev_remove(struct rte_vdev_device *vdev)
+{
+ struct rte_bbdev *bbdev;
+ const char *name;
+
+ if (vdev == NULL)
+ return -EINVAL;
+
+ name = rte_vdev_device_name(vdev);
+ if (name == NULL)
+ return -EINVAL;
+
+ bbdev = rte_bbdev_get_named_dev(name);
+ if (bbdev == NULL)
+ return -EINVAL;
+
+ rte_free(bbdev->data->dev_private);
+
+ return rte_bbdev_release(bbdev);
+}
+
+static struct rte_vdev_driver bbdev_null_pmd_drv = {
+ .probe = null_bbdev_probe,
+ .remove = null_bbdev_remove
+};
+
+RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_null_pmd_drv);
+RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
+ BBDEV_NULL_MAX_NB_QUEUES_ARG"=<int> "
+ BBDEV_NULL_SOCKET_ID_ARG"=<int>");
+RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, bbdev_null);
+
+RTE_INIT(null_bbdev_init_log)
+{
+ bbdev_null_logtype = rte_log_register("pmd.bb.null");
+ if (bbdev_null_logtype >= 0)
+ rte_log_set_level(bbdev_null_logtype, RTE_LOG_NOTICE);
+}
diff --git a/src/spdk/dpdk/drivers/baseband/null/meson.build b/src/spdk/dpdk/drivers/baseband/null/meson.build
new file mode 100644
index 000000000..02ef7db57
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/null/meson.build
@@ -0,0 +1,5 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2018 Luca Boccassi <bluca@debian.org>
+
+deps += ['bbdev', 'bus_vdev', 'ring']
+sources = files('bbdev_null.c')
diff --git a/src/spdk/dpdk/drivers/baseband/null/rte_pmd_bbdev_null_version.map b/src/spdk/dpdk/drivers/baseband/null/rte_pmd_bbdev_null_version.map
new file mode 100644
index 000000000..f9f17e4f6
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/null/rte_pmd_bbdev_null_version.map
@@ -0,0 +1,3 @@
+DPDK_20.0 {
+ local: *;
+};
diff --git a/src/spdk/dpdk/drivers/baseband/turbo_sw/Makefile b/src/spdk/dpdk/drivers/baseband/turbo_sw/Makefile
new file mode 100644
index 000000000..c2a6fe0f8
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/turbo_sw/Makefile
@@ -0,0 +1,52 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2017 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+# library name
+LIB = librte_pmd_bbdev_turbo_sw.a
+
+# build flags
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring -lrte_kvargs
+LDLIBS += -lrte_bbdev
+LDLIBS += -lrte_bus_vdev
+
+# versioning export map
+EXPORT_MAP := rte_pmd_bbdev_turbo_sw_version.map
+
+# external library dependencies if available
+ifeq ($(CONFIG_RTE_BBDEV_SDK_AVX2),y)
+ifeq ($(FLEXRAN_SDK),)
+$(error "Please define FLEXRAN_SDK environment variable")
+endif
+CFLAGS += -I$(FLEXRAN_SDK)/lib_common
+CFLAGS += -I$(FLEXRAN_SDK)/lib_turbo
+CFLAGS += -I$(FLEXRAN_SDK)/lib_crc
+CFLAGS += -I$(FLEXRAN_SDK)/lib_rate_matching
+LDLIBS += -L$(FLEXRAN_SDK)/lib_turbo -lturbo
+LDLIBS += -L$(FLEXRAN_SDK)/lib_crc -lcrc
+LDLIBS += -L$(FLEXRAN_SDK)/lib_rate_matching -lrate_matching
+LDLIBS += -L$(FLEXRAN_SDK)/lib_common -lcommon
+LDLIBS += -lstdc++ -lirc -limf -lipps -lsvml
+endif
+
+ifeq ($(CONFIG_RTE_BBDEV_SDK_AVX512),y)
+ifeq ($(CONFIG_RTE_BBDEV_SDK_AVX2),n)
+$(error "CONFIG_RTE_BBDEV_SDK_AVX512 requires CONFIG_RTE_BBDEV_SDK_AVX2 set")
+endif
+CFLAGS += -I$(FLEXRAN_SDK)/lib_ldpc_encoder_5gnr
+CFLAGS += -I$(FLEXRAN_SDK)/lib_ldpc_decoder_5gnr
+CFLAGS += -I$(FLEXRAN_SDK)/lib_LDPC_ratematch_5gnr
+CFLAGS += -I$(FLEXRAN_SDK)/lib_rate_dematching_5gnr
+LDLIBS += -L$(FLEXRAN_SDK)/lib_ldpc_encoder_5gnr -lldpc_encoder_5gnr
+LDLIBS += -L$(FLEXRAN_SDK)/lib_ldpc_decoder_5gnr -lldpc_decoder_5gnr
+LDLIBS += -L$(FLEXRAN_SDK)/lib_LDPC_ratematch_5gnr -lLDPC_ratematch_5gnr
+LDLIBS += -L$(FLEXRAN_SDK)/lib_rate_dematching_5gnr -lrate_dematching_5gnr
+endif
+
+# library source files
+SRCS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += bbdev_turbo_software.c
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/src/spdk/dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c b/src/spdk/dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c
new file mode 100644
index 000000000..bb62276b9
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c
@@ -0,0 +1,1999 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017 Intel Corporation
+ */
+
+#include <string.h>
+
+#include <rte_common.h>
+#include <rte_bus_vdev.h>
+#include <rte_malloc.h>
+#include <rte_ring.h>
+#include <rte_kvargs.h>
+#include <rte_cycles.h>
+
+#include <rte_bbdev.h>
+#include <rte_bbdev_pmd.h>
+
+#include <rte_hexdump.h>
+#include <rte_log.h>
+
+#ifdef RTE_BBDEV_SDK_AVX2
+#include <ipp.h>
+#include <ipps.h>
+#include <phy_turbo.h>
+#include <phy_crc.h>
+#include <phy_rate_match.h>
+#endif
+#ifdef RTE_BBDEV_SDK_AVX512
+#include <bit_reverse.h>
+#include <phy_ldpc_encoder_5gnr.h>
+#include <phy_ldpc_decoder_5gnr.h>
+#include <phy_LDPC_ratematch_5gnr.h>
+#include <phy_rate_dematching_5gnr.h>
+#endif
+
+#define DRIVER_NAME baseband_turbo_sw
+
+/* Turbo SW PMD logging ID */
+static int bbdev_turbo_sw_logtype;
+
+/* Helper macro for logging */
+#define rte_bbdev_log(level, fmt, ...) \
+ rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
+ ##__VA_ARGS__)
+
+#define rte_bbdev_log_debug(fmt, ...) \
+ rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
+ ##__VA_ARGS__)
+
+#define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) + 1) * 48)
+#define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
+#define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_TURBO_MAX_CB_SIZE + 4) * 48)
+
+/* private data structure */
+struct bbdev_private {
+ unsigned int max_nb_queues; /**< Max number of queues */
+};
+
+/* Initialisation params structure that can be used by Turbo SW driver */
+struct turbo_sw_params {
+ int socket_id; /*< Turbo SW device socket */
+ uint16_t queues_num; /*< Turbo SW device queues number */
+};
+
+/* Accecptable params for Turbo SW devices */
+#define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues"
+#define TURBO_SW_SOCKET_ID_ARG "socket_id"
+
+static const char * const turbo_sw_valid_params[] = {
+ TURBO_SW_MAX_NB_QUEUES_ARG,
+ TURBO_SW_SOCKET_ID_ARG
+};
+
+/* queue */
+struct turbo_sw_queue {
+ /* Ring for processed (encoded/decoded) operations which are ready to
+ * be dequeued.
+ */
+ struct rte_ring *processed_pkts;
+ /* Stores input for turbo encoder (used when CRC attachment is
+ * performed
+ */
+ uint8_t *enc_in;
+ /* Stores output from turbo encoder */
+ uint8_t *enc_out;
+ /* Alpha gamma buf for bblib_turbo_decoder() function */
+ int8_t *ag;
+ /* Temp buf for bblib_turbo_decoder() function */
+ uint16_t *code_block;
+ /* Input buf for bblib_rate_dematching_lte() function */
+ uint8_t *deint_input;
+ /* Output buf for bblib_rate_dematching_lte() function */
+ uint8_t *deint_output;
+ /* Output buf for bblib_turbodec_adapter_lte() function */
+ uint8_t *adapter_output;
+ /* Operation type of this queue */
+ enum rte_bbdev_op_type type;
+} __rte_cache_aligned;
+
+
+#ifdef RTE_BBDEV_SDK_AVX2
+static inline char *
+mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
+{
+ if (unlikely(len > rte_pktmbuf_tailroom(m)))
+ return NULL;
+
+ char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
+ m->data_len = (uint16_t)(m->data_len + len);
+ m_head->pkt_len = (m_head->pkt_len + len);
+ return tail;
+}
+
+/* Calculate index based on Table 5.1.3-3 from TS34.212 */
+static inline int32_t
+compute_idx(uint16_t k)
+{
+ int32_t result = 0;
+
+ if (k < RTE_BBDEV_TURBO_MIN_CB_SIZE || k > RTE_BBDEV_TURBO_MAX_CB_SIZE)
+ return -1;
+
+ if (k > 2048) {
+ if ((k - 2048) % 64 != 0)
+ result = -1;
+
+ result = 124 + (k - 2048) / 64;
+ } else if (k <= 512) {
+ if ((k - 40) % 8 != 0)
+ result = -1;
+
+ result = (k - 40) / 8 + 1;
+ } else if (k <= 1024) {
+ if ((k - 512) % 16 != 0)
+ result = -1;
+
+ result = 60 + (k - 512) / 16;
+ } else { /* 1024 < k <= 2048 */
+ if ((k - 1024) % 32 != 0)
+ result = -1;
+
+ result = 92 + (k - 1024) / 32;
+ }
+
+ return result;
+}
+#endif
+
+/* Read flag value 0/1 from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+ return bitmap & bitmask;
+}
+
+/* Get device info */
+static void
+info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
+{
+ struct bbdev_private *internals = dev->data->dev_private;
+
+ static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+#ifdef RTE_BBDEV_SDK_AVX2
+ {
+ .type = RTE_BBDEV_OP_TURBO_DEC,
+ .cap.turbo_dec = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
+ RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
+ RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
+ RTE_BBDEV_TURBO_CRC_TYPE_24B |
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
+ RTE_BBDEV_TURBO_EARLY_TERMINATION,
+ .max_llr_modulus = 16,
+ .num_buffers_src =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
+ .num_buffers_hard_out =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
+ .num_buffers_soft_out = 0,
+ }
+ },
+ {
+ .type = RTE_BBDEV_OP_TURBO_ENC,
+ .cap.turbo_enc = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_CRC_24B_ATTACH |
+ RTE_BBDEV_TURBO_CRC_24A_ATTACH |
+ RTE_BBDEV_TURBO_RATE_MATCH |
+ RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
+ .num_buffers_src =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
+ .num_buffers_dst =
+ RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
+ }
+ },
+#endif
+#ifdef RTE_BBDEV_SDK_AVX512
+ {
+ .type = RTE_BBDEV_OP_LDPC_ENC,
+ .cap.ldpc_enc = {
+ .capability_flags =
+ RTE_BBDEV_LDPC_RATE_MATCH |
+ RTE_BBDEV_LDPC_CRC_24A_ATTACH |
+ RTE_BBDEV_LDPC_CRC_24B_ATTACH,
+ .num_buffers_src =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_dst =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ }
+ },
+ {
+ .type = RTE_BBDEV_OP_LDPC_DEC,
+ .cap.ldpc_dec = {
+ .capability_flags =
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
+ RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK |
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE,
+ .llr_size = 8,
+ .llr_decimals = 4,
+ .num_buffers_src =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_hard_out =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_soft_out = 0,
+ }
+ },
+#endif
+ RTE_BBDEV_END_OF_CAPABILITIES_LIST()
+ };
+
+ static struct rte_bbdev_queue_conf default_queue_conf = {
+ .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
+ };
+#ifdef RTE_BBDEV_SDK_AVX2
+ static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
+ dev_info->cpu_flag_reqs = &cpu_flag;
+#else
+ dev_info->cpu_flag_reqs = NULL;
+#endif
+ default_queue_conf.socket = dev->data->socket_id;
+
+ dev_info->driver_name = RTE_STR(DRIVER_NAME);
+ dev_info->max_num_queues = internals->max_nb_queues;
+ dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
+ dev_info->hardware_accelerated = false;
+ dev_info->max_dl_queue_priority = 0;
+ dev_info->max_ul_queue_priority = 0;
+ dev_info->default_queue_conf = default_queue_conf;
+ dev_info->capabilities = bbdev_capabilities;
+ dev_info->min_alignment = 64;
+ dev_info->harq_buffer_size = 0;
+
+ rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
+}
+
+/* Release queue */
+static int
+q_release(struct rte_bbdev *dev, uint16_t q_id)
+{
+ struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
+
+ if (q != NULL) {
+ rte_ring_free(q->processed_pkts);
+ rte_free(q->enc_out);
+ rte_free(q->enc_in);
+ rte_free(q->ag);
+ rte_free(q->code_block);
+ rte_free(q->deint_input);
+ rte_free(q->deint_output);
+ rte_free(q->adapter_output);
+ rte_free(q);
+ dev->data->queues[q_id].queue_private = NULL;
+ }
+
+ rte_bbdev_log_debug("released device queue %u:%u",
+ dev->data->dev_id, q_id);
+ return 0;
+}
+
+/* Setup a queue */
+static int
+q_setup(struct rte_bbdev *dev, uint16_t q_id,
+ const struct rte_bbdev_queue_conf *queue_conf)
+{
+ int ret;
+ struct turbo_sw_queue *q;
+ char name[RTE_RING_NAMESIZE];
+
+ /* Allocate the queue data structure. */
+ q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate queue memory");
+ return -ENOMEM;
+ }
+
+ /* Allocate memory for encoder output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->enc_out = rte_zmalloc_socket(name,
+ ((RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) + 3) *
+ sizeof(*q->enc_out) * 3,
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->enc_out == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for rate matching output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
+ q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->enc_in = rte_zmalloc_socket(name,
+ (RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->enc_in == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Alpha Gamma temp buffer. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->ag = rte_zmalloc_socket(name,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE * 10 * sizeof(*q->ag),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->ag == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for code block temp buffer. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->code_block = rte_zmalloc_socket(name,
+ RTE_BBDEV_TURBO_MAX_CB_SIZE * sizeof(*q->code_block),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->code_block == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Deinterleaver input. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_de_i%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->deint_input = rte_zmalloc_socket(name,
+ DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->deint_input == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Deinterleaver output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_de_o%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->deint_output = rte_zmalloc_socket(NULL,
+ DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->deint_output == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Adapter output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->adapter_output = rte_zmalloc_socket(NULL,
+ ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->adapter_output == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Create ring for packets awaiting to be dequeued. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
+ queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
+ if (q->processed_pkts == NULL) {
+ rte_bbdev_log(ERR, "Failed to create ring for %s", name);
+ goto free_q;
+ }
+
+ q->type = queue_conf->op_type;
+
+ dev->data->queues[q_id].queue_private = q;
+ rte_bbdev_log_debug("setup device queue %s", name);
+ return 0;
+
+free_q:
+ rte_ring_free(q->processed_pkts);
+ rte_free(q->enc_out);
+ rte_free(q->enc_in);
+ rte_free(q->ag);
+ rte_free(q->code_block);
+ rte_free(q->deint_input);
+ rte_free(q->deint_output);
+ rte_free(q->adapter_output);
+ rte_free(q);
+ return -EFAULT;
+}
+
+static const struct rte_bbdev_ops pmd_ops = {
+ .info_get = info_get,
+ .queue_setup = q_setup,
+ .queue_release = q_release
+};
+
+#ifdef RTE_BBDEV_SDK_AVX2
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Checks if the encoder input buffer is correct.
+ * Returns 0 if it's valid, -1 otherwise.
+ */
+static inline int
+is_enc_input_valid(const uint16_t k, const int32_t k_idx,
+ const uint16_t in_length)
+{
+ if (k_idx < 0) {
+ rte_bbdev_log(ERR, "K Index is invalid");
+ return -1;
+ }
+
+ if (in_length - (k >> 3) < 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between input length (%u bytes) and K (%u bits)",
+ in_length, k);
+ return -1;
+ }
+
+ if (k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
+ k, RTE_BBDEV_TURBO_MAX_CB_SIZE);
+ return -1;
+ }
+
+ return 0;
+}
+
+/* Checks if the decoder input buffer is correct.
+ * Returns 0 if it's valid, -1 otherwise.
+ */
+static inline int
+is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
+{
+ if (k_idx < 0) {
+ rte_bbdev_log(ERR, "K index is invalid");
+ return -1;
+ }
+
+ if (in_length < kw) {
+ rte_bbdev_log(ERR,
+ "Mismatch between input length (%u) and kw (%u)",
+ in_length, kw);
+ return -1;
+ }
+
+ if (kw > RTE_BBDEV_TURBO_MAX_KW) {
+ rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
+ kw, RTE_BBDEV_TURBO_MAX_KW);
+ return -1;
+ }
+
+ return 0;
+}
+#endif
+#endif
+
+static inline void
+process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
+ uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
+ uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
+ struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
+ uint16_t in_length, struct rte_bbdev_stats *q_stats)
+{
+#ifdef RTE_BBDEV_SDK_AVX2
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ int ret;
+#else
+ RTE_SET_USED(in_length);
+#endif
+ int16_t k_idx;
+ uint16_t m;
+ uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
+ uint64_t first_3_bytes = 0;
+ struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
+ struct bblib_crc_request crc_req;
+ struct bblib_crc_response crc_resp;
+ struct bblib_turbo_encoder_request turbo_req;
+ struct bblib_turbo_encoder_response turbo_resp;
+ struct bblib_rate_match_dl_request rm_req;
+ struct bblib_rate_match_dl_response rm_resp;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time;
+#else
+ RTE_SET_USED(q_stats);
+#endif
+
+ k_idx = compute_idx(k);
+ in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
+
+ /* CRC24A (for TB) */
+ if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
+ (enc->code_block_mode == 1)) {
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ ret = is_enc_input_valid(k - 24, k_idx, in_length);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+#endif
+
+ crc_req.data = in;
+ crc_req.len = k - 24;
+ /* Check if there is a room for CRC bits if not use
+ * the temporary buffer.
+ */
+ if (mbuf_append(m_in, m_in, 3) == NULL) {
+ rte_memcpy(q->enc_in, in, (k - 24) >> 3);
+ in = q->enc_in;
+ } else {
+ /* Store 3 first bytes of next CB as they will be
+ * overwritten by CRC bytes. If it is the last CB then
+ * there is no point to store 3 next bytes and this
+ * if..else branch will be omitted.
+ */
+ first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
+ }
+
+ crc_resp.data = in;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ /* CRC24A generation */
+ bblib_lte_crc24a_gen(&crc_req, &crc_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+ } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
+ /* CRC24B */
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ ret = is_enc_input_valid(k - 24, k_idx, in_length);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+#endif
+
+ crc_req.data = in;
+ crc_req.len = k - 24;
+ /* Check if there is a room for CRC bits if this is the last
+ * CB in TB. If not use temporary buffer.
+ */
+ if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
+ rte_memcpy(q->enc_in, in, (k - 24) >> 3);
+ in = q->enc_in;
+ } else if (c - r > 1) {
+ /* Store 3 first bytes of next CB as they will be
+ * overwritten by CRC bytes. If it is the last CB then
+ * there is no point to store 3 next bytes and this
+ * if..else branch will be omitted.
+ */
+ first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
+ }
+
+ crc_resp.data = in;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ /* CRC24B generation */
+ bblib_lte_crc24b_gen(&crc_req, &crc_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+ }
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ else {
+ ret = is_enc_input_valid(k, k_idx, in_length);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+ }
+#endif
+
+ /* Turbo encoder */
+
+ /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
+ * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
+ * So dst_data's length should be 3*(k/8) + 3 bytes.
+ * In Rate-matching bypass case outputs pointers passed to encoder
+ * (out0, out1 and out2) can directly point to addresses of output from
+ * turbo_enc entity.
+ */
+ if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
+ out0 = q->enc_out;
+ out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
+ out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
+ } else {
+ out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
+ (k >> 3) * 3 + 2);
+ if (out0 == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Too little space in output mbuf");
+ return;
+ }
+ enc->output.length += (k >> 3) * 3 + 2;
+ /* rte_bbdev_op_data.offset can be different than the
+ * offset of the appended bytes
+ */
+ out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+ out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
+ out_offset + (k >> 3) + 1);
+ out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
+ out_offset + 2 * ((k >> 3) + 1));
+ }
+
+ turbo_req.case_id = k_idx;
+ turbo_req.input_win = in;
+ turbo_req.length = k >> 3;
+ turbo_resp.output_win_0 = out0;
+ turbo_resp.output_win_1 = out1;
+ turbo_resp.output_win_2 = out2;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ /* Turbo encoding */
+ if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "Turbo Encoder failed");
+ return;
+ }
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+
+ /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
+ if (first_3_bytes != 0)
+ *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
+
+ /* Rate-matching */
+ if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
+ uint8_t mask_id;
+ /* Integer round up division by 8 */
+ uint16_t out_len = (e + 7) >> 3;
+ /* The mask array is indexed using E%8. E is an even number so
+ * there are only 4 possible values.
+ */
+ const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
+
+ /* get output data starting address */
+ rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
+ if (rm_out == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Too little space in output mbuf");
+ return;
+ }
+ /* rte_bbdev_op_data.offset can be different than the offset
+ * of the appended bytes
+ */
+ rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+
+ /* index of current code block */
+ rm_req.r = r;
+ /* total number of code block */
+ rm_req.C = c;
+ /* For DL - 1, UL - 0 */
+ rm_req.direction = 1;
+ /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
+ * and MDL_HARQ are used for Ncb calculation. As Ncb is already
+ * known we can adjust those parameters
+ */
+ rm_req.Nsoft = ncb * rm_req.C;
+ rm_req.KMIMO = 1;
+ rm_req.MDL_HARQ = 1;
+ /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
+ * are used for E calculation. As E is already known we can
+ * adjust those parameters
+ */
+ rm_req.NL = e;
+ rm_req.Qm = 1;
+ rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
+
+ rm_req.rvidx = enc->rv_index;
+ rm_req.Kidx = k_idx - 1;
+ rm_req.nLen = k + 4;
+ rm_req.tin0 = out0;
+ rm_req.tin1 = out1;
+ rm_req.tin2 = out2;
+ rm_resp.output = rm_out;
+ rm_resp.OutputLen = out_len;
+ if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
+ rm_req.bypass_rvidx = 1;
+ else
+ rm_req.bypass_rvidx = 0;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ /* Rate-Matching */
+ if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "Rate matching failed");
+ return;
+ }
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+
+ /* SW fills an entire last byte even if E%8 != 0. Clear the
+ * superfluous data bits for consistency with HW device.
+ */
+ mask_id = (e & 7) >> 1;
+ rm_out[out_len - 1] &= mask_out[mask_id];
+ enc->output.length += rm_resp.OutputLen;
+ } else {
+ /* Rate matching is bypassed */
+
+ /* Completing last byte of out0 (where 4 tail bits are stored)
+ * by moving first 4 bits from out1
+ */
+ tmp_out = (uint8_t *) --out1;
+ *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
+ tmp_out++;
+ /* Shifting out1 data by 4 bits to the left */
+ for (m = 0; m < k >> 3; ++m) {
+ uint8_t *first = tmp_out;
+ uint8_t second = *(tmp_out + 1);
+ *first = (*first << 4) | ((second & 0xF0) >> 4);
+ tmp_out++;
+ }
+ /* Shifting out2 data by 8 bits to the left */
+ for (m = 0; m < (k >> 3) + 1; ++m) {
+ *tmp_out = *(tmp_out + 1);
+ tmp_out++;
+ }
+ *tmp_out = 0;
+ }
+#else
+ RTE_SET_USED(q);
+ RTE_SET_USED(op);
+ RTE_SET_USED(r);
+ RTE_SET_USED(c);
+ RTE_SET_USED(k);
+ RTE_SET_USED(ncb);
+ RTE_SET_USED(e);
+ RTE_SET_USED(m_in);
+ RTE_SET_USED(m_out_head);
+ RTE_SET_USED(m_out);
+ RTE_SET_USED(in_offset);
+ RTE_SET_USED(out_offset);
+ RTE_SET_USED(in_length);
+ RTE_SET_USED(q_stats);
+#endif
+}
+
+
+static inline void
+process_ldpc_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
+ uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
+ struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
+ uint16_t seg_total_left, struct rte_bbdev_stats *q_stats)
+{
+#ifdef RTE_BBDEV_SDK_AVX512
+ RTE_SET_USED(seg_total_left);
+ uint8_t *in, *rm_out;
+ struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
+ struct bblib_ldpc_encoder_5gnr_request ldpc_req;
+ struct bblib_ldpc_encoder_5gnr_response ldpc_resp;
+ struct bblib_LDPC_ratematch_5gnr_request rm_req;
+ struct bblib_LDPC_ratematch_5gnr_response rm_resp;
+ struct bblib_crc_request crc_req;
+ struct bblib_crc_response crc_resp;
+ uint16_t msgLen, puntBits, parity_offset, out_len;
+ uint16_t K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
+ uint16_t in_length_in_bits = K - enc->n_filler;
+ uint16_t in_length_in_bytes = (in_length_in_bits + 7) >> 3;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time = rte_rdtsc_precise();
+#else
+ RTE_SET_USED(q_stats);
+#endif
+
+ in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
+
+ /* Masking the Filler bits explicitly */
+ memset(q->enc_in + (in_length_in_bytes - 3), 0,
+ ((K + 7) >> 3) - (in_length_in_bytes - 3));
+ /* CRC Generation */
+ if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) {
+ rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
+ crc_req.data = in;
+ crc_req.len = in_length_in_bits - 24;
+ crc_resp.data = q->enc_in;
+ bblib_lte_crc24a_gen(&crc_req, &crc_resp);
+ } else if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH) {
+ rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
+ crc_req.data = in;
+ crc_req.len = in_length_in_bits - 24;
+ crc_resp.data = q->enc_in;
+ bblib_lte_crc24b_gen(&crc_req, &crc_resp);
+ } else
+ rte_memcpy(q->enc_in, in, in_length_in_bytes);
+
+ /* LDPC Encoding */
+ ldpc_req.Zc = enc->z_c;
+ ldpc_req.baseGraph = enc->basegraph;
+ /* Number of rows set to maximum */
+ ldpc_req.nRows = ldpc_req.baseGraph == 1 ? 46 : 42;
+ ldpc_req.numberCodeblocks = 1;
+ ldpc_req.input[0] = (int8_t *) q->enc_in;
+ ldpc_resp.output[0] = (int8_t *) q->enc_out;
+
+ bblib_bit_reverse(ldpc_req.input[0], in_length_in_bytes << 3);
+
+ if (bblib_ldpc_encoder_5gnr(&ldpc_req, &ldpc_resp) != 0) {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "LDPC Encoder failed");
+ return;
+ }
+
+ /*
+ * Systematic + Parity : Recreating stream with filler bits, ideally
+ * the bit select could handle this in the RM SDK
+ */
+ msgLen = (ldpc_req.baseGraph == 1 ? 22 : 10) * ldpc_req.Zc;
+ puntBits = 2 * ldpc_req.Zc;
+ parity_offset = msgLen - puntBits;
+ ippsCopyBE_1u(((uint8_t *) ldpc_req.input[0]) + (puntBits / 8),
+ puntBits%8, q->adapter_output, 0, parity_offset);
+ ippsCopyBE_1u(q->enc_out, 0, q->adapter_output + (parity_offset / 8),
+ parity_offset % 8, ldpc_req.nRows * ldpc_req.Zc);
+
+ out_len = (e + 7) >> 3;
+ /* get output data starting address */
+ rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
+ if (rm_out == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Too little space in output mbuf");
+ return;
+ }
+ /*
+ * rte_bbdev_op_data.offset can be different than the offset
+ * of the appended bytes
+ */
+ rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+
+ /* Rate-Matching */
+ rm_req.E = e;
+ rm_req.Ncb = enc->n_cb;
+ rm_req.Qm = enc->q_m;
+ rm_req.Zc = enc->z_c;
+ rm_req.baseGraph = enc->basegraph;
+ rm_req.input = q->adapter_output;
+ rm_req.nLen = enc->n_filler;
+ rm_req.nullIndex = parity_offset - enc->n_filler;
+ rm_req.rvidx = enc->rv_index;
+ rm_resp.output = q->deint_output;
+
+ if (bblib_LDPC_ratematch_5gnr(&rm_req, &rm_resp) != 0) {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "Rate matching failed");
+ return;
+ }
+
+ /* RM SDK may provide non zero bits on last byte */
+ if ((e % 8) != 0)
+ q->deint_output[out_len-1] &= (1 << (e % 8)) - 1;
+
+ bblib_bit_reverse((int8_t *) q->deint_output, out_len << 3);
+
+ rte_memcpy(rm_out, q->deint_output, out_len);
+ enc->output.length += out_len;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+#else
+ RTE_SET_USED(q);
+ RTE_SET_USED(op);
+ RTE_SET_USED(e);
+ RTE_SET_USED(m_in);
+ RTE_SET_USED(m_out_head);
+ RTE_SET_USED(m_out);
+ RTE_SET_USED(in_offset);
+ RTE_SET_USED(out_offset);
+ RTE_SET_USED(seg_total_left);
+ RTE_SET_USED(q_stats);
+#endif
+}
+
+static inline void
+enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
+ struct rte_bbdev_stats *queue_stats)
+{
+ uint8_t c, r, crc24_bits = 0;
+ uint16_t k, ncb;
+ uint32_t e;
+ struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
+ uint16_t in_offset = enc->input.offset;
+ uint16_t out_offset = enc->output.offset;
+ struct rte_mbuf *m_in = enc->input.data;
+ struct rte_mbuf *m_out = enc->output.data;
+ struct rte_mbuf *m_out_head = enc->output.data;
+ uint32_t in_length, mbuf_total_left = enc->input.length;
+ uint16_t seg_total_left;
+
+ /* Clear op status */
+ op->status = 0;
+
+ if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
+ rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
+ mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
+ (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
+ crc24_bits = 24;
+
+ if (enc->code_block_mode == 0) { /* For Transport Block mode */
+ c = enc->tb_params.c;
+ r = enc->tb_params.r;
+ } else {/* For Code Block mode */
+ c = 1;
+ r = 0;
+ }
+
+ while (mbuf_total_left > 0 && r < c) {
+
+ seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
+
+ if (enc->code_block_mode == 0) {
+ k = (r < enc->tb_params.c_neg) ?
+ enc->tb_params.k_neg : enc->tb_params.k_pos;
+ ncb = (r < enc->tb_params.c_neg) ?
+ enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
+ e = (r < enc->tb_params.cab) ?
+ enc->tb_params.ea : enc->tb_params.eb;
+ } else {
+ k = enc->cb_params.k;
+ ncb = enc->cb_params.ncb;
+ e = enc->cb_params.e;
+ }
+
+ process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
+ m_out, in_offset, out_offset, seg_total_left,
+ queue_stats);
+ /* Update total_left */
+ in_length = ((k - crc24_bits) >> 3);
+ mbuf_total_left -= in_length;
+ /* Update offsets for next CBs (if exist) */
+ in_offset += (k - crc24_bits) >> 3;
+ if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
+ out_offset += e >> 3;
+ else
+ out_offset += (k >> 3) * 3 + 2;
+
+ /* Update offsets */
+ if (seg_total_left == in_length) {
+ /* Go to the next mbuf */
+ m_in = m_in->next;
+ m_out = m_out->next;
+ in_offset = 0;
+ out_offset = 0;
+ }
+ r++;
+ }
+
+ /* check if all input data was processed */
+ if (mbuf_total_left != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CBs sizes");
+ }
+}
+
+
+static inline void
+enqueue_ldpc_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
+ struct rte_bbdev_stats *queue_stats)
+{
+ uint8_t c, r, crc24_bits = 0;
+ uint32_t e;
+ struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
+ uint16_t in_offset = enc->input.offset;
+ uint16_t out_offset = enc->output.offset;
+ struct rte_mbuf *m_in = enc->input.data;
+ struct rte_mbuf *m_out = enc->output.data;
+ struct rte_mbuf *m_out_head = enc->output.data;
+ uint32_t in_length, mbuf_total_left = enc->input.length;
+
+ uint16_t seg_total_left;
+
+ /* Clear op status */
+ op->status = 0;
+
+ if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
+ rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
+ mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
+ (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
+ crc24_bits = 24;
+
+ if (enc->code_block_mode == 0) { /* For Transport Block mode */
+ c = enc->tb_params.c;
+ r = enc->tb_params.r;
+ } else { /* For Code Block mode */
+ c = 1;
+ r = 0;
+ }
+
+ while (mbuf_total_left > 0 && r < c) {
+
+ seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
+
+ if (enc->code_block_mode == 0) {
+ e = (r < enc->tb_params.cab) ?
+ enc->tb_params.ea : enc->tb_params.eb;
+ } else {
+ e = enc->cb_params.e;
+ }
+
+ process_ldpc_enc_cb(q, op, e, m_in, m_out_head,
+ m_out, in_offset, out_offset, seg_total_left,
+ queue_stats);
+ /* Update total_left */
+ in_length = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
+ in_length = ((in_length - crc24_bits - enc->n_filler) >> 3);
+ mbuf_total_left -= in_length;
+ /* Update offsets for next CBs (if exist) */
+ in_offset += in_length;
+ out_offset += (e + 7) >> 3;
+
+ /* Update offsets */
+ if (seg_total_left == in_length) {
+ /* Go to the next mbuf */
+ m_in = m_in->next;
+ m_out = m_out->next;
+ in_offset = 0;
+ out_offset = 0;
+ }
+ r++;
+ }
+
+ /* check if all input data was processed */
+ if (mbuf_total_left != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CBs sizes %d",
+ mbuf_total_left);
+ }
+}
+
+static inline uint16_t
+enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
+ uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
+{
+ uint16_t i;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ queue_stats->acc_offload_cycles = 0;
+#endif
+
+ for (i = 0; i < nb_ops; ++i)
+ enqueue_enc_one_op(q, ops[i], queue_stats);
+
+ return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
+ NULL);
+}
+
+static inline uint16_t
+enqueue_ldpc_enc_all_ops(struct turbo_sw_queue *q,
+ struct rte_bbdev_enc_op **ops,
+ uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
+{
+ uint16_t i;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ queue_stats->acc_offload_cycles = 0;
+#endif
+
+ for (i = 0; i < nb_ops; ++i)
+ enqueue_ldpc_enc_one_op(q, ops[i], queue_stats);
+
+ return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
+ NULL);
+}
+
+#ifdef RTE_BBDEV_SDK_AVX2
+static inline void
+move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
+ uint16_t ncb)
+{
+ uint16_t d = k + 4;
+ uint16_t kpi = ncb / 3;
+ uint16_t nd = kpi - d;
+
+ rte_memcpy(&out[nd], in, d);
+ rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
+ rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
+}
+#endif
+
+static inline void
+process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
+ uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
+ struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
+ uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
+ uint16_t crc24_overlap, uint16_t in_length,
+ struct rte_bbdev_stats *q_stats)
+{
+#ifdef RTE_BBDEV_SDK_AVX2
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ int ret;
+#else
+ RTE_SET_USED(in_length);
+#endif
+ int32_t k_idx;
+ int32_t iter_cnt;
+ uint8_t *in, *out, *adapter_input;
+ int32_t ncb, ncb_without_null;
+ struct bblib_turbo_adapter_ul_response adapter_resp;
+ struct bblib_turbo_adapter_ul_request adapter_req;
+ struct bblib_turbo_decoder_request turbo_req;
+ struct bblib_turbo_decoder_response turbo_resp;
+ struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time;
+#else
+ RTE_SET_USED(q_stats);
+#endif
+
+ k_idx = compute_idx(k);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ ret = is_dec_input_valid(k_idx, kw, in_length);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+#endif
+
+ in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
+ ncb = kw;
+ ncb_without_null = (k + 4) * 3;
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
+ struct bblib_deinterleave_ul_request deint_req;
+ struct bblib_deinterleave_ul_response deint_resp;
+
+ deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
+ deint_req.pharqbuffer = in;
+ deint_req.ncb = ncb;
+ deint_resp.pinteleavebuffer = q->deint_output;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ /* Sub-block De-Interleaving */
+ bblib_deinterleave_ul(&deint_req, &deint_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+ } else
+ move_padding_bytes(in, q->deint_output, k, ncb);
+
+ adapter_input = q->deint_output;
+
+ if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
+ adapter_req.isinverted = 1;
+ else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
+ adapter_req.isinverted = 0;
+ else {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "LLR format wasn't specified");
+ return;
+ }
+
+ adapter_req.ncb = ncb_without_null;
+ adapter_req.pinteleavebuffer = adapter_input;
+ adapter_resp.pharqout = q->adapter_output;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ /* Turbo decode adaptation */
+ bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+
+ out = (uint8_t *)mbuf_append(m_out_head, m_out,
+ ((k - crc24_overlap) >> 3));
+ if (out == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR, "Too little space in output mbuf");
+ return;
+ }
+ /* rte_bbdev_op_data.offset can be different than the offset of the
+ * appended bytes
+ */
+ out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+ if (check_crc_24b)
+ turbo_req.c = c + 1;
+ else
+ turbo_req.c = c;
+ turbo_req.input = (int8_t *)q->adapter_output;
+ turbo_req.k = k;
+ turbo_req.k_idx = k_idx;
+ turbo_req.max_iter_num = dec->iter_max;
+ turbo_req.early_term_disable = !check_bit(dec->op_flags,
+ RTE_BBDEV_TURBO_EARLY_TERMINATION);
+ turbo_resp.ag_buf = q->ag;
+ turbo_resp.cb_buf = q->code_block;
+ turbo_resp.output = out;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ /* Turbo decode */
+ iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+ dec->hard_output.length += (k >> 3);
+
+ if (iter_cnt > 0) {
+ /* Temporary solution for returned iter_count from SDK */
+ iter_cnt = (iter_cnt - 1) >> 1;
+ dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
+ } else {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR, "Turbo Decoder failed");
+ return;
+ }
+#else
+ RTE_SET_USED(q);
+ RTE_SET_USED(op);
+ RTE_SET_USED(c);
+ RTE_SET_USED(k);
+ RTE_SET_USED(kw);
+ RTE_SET_USED(m_in);
+ RTE_SET_USED(m_out_head);
+ RTE_SET_USED(m_out);
+ RTE_SET_USED(in_offset);
+ RTE_SET_USED(out_offset);
+ RTE_SET_USED(check_crc_24b);
+ RTE_SET_USED(crc24_overlap);
+ RTE_SET_USED(in_length);
+ RTE_SET_USED(q_stats);
+#endif
+}
+
+static inline void
+process_ldpc_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
+ uint8_t c, uint16_t out_length, uint32_t e,
+ struct rte_mbuf *m_in,
+ struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
+ struct rte_mbuf *m_harq_in,
+ struct rte_mbuf *m_harq_out_head, struct rte_mbuf *m_harq_out,
+ uint16_t in_offset, uint16_t out_offset,
+ uint16_t harq_in_offset, uint16_t harq_out_offset,
+ bool check_crc_24b,
+ uint16_t crc24_overlap, uint16_t in_length,
+ struct rte_bbdev_stats *q_stats)
+{
+#ifdef RTE_BBDEV_SDK_AVX512
+ RTE_SET_USED(in_length);
+ RTE_SET_USED(c);
+ uint8_t *in, *out, *harq_in, *harq_out, *adapter_input;
+ struct bblib_rate_dematching_5gnr_request derm_req;
+ struct bblib_rate_dematching_5gnr_response derm_resp;
+ struct bblib_ldpc_decoder_5gnr_request dec_req;
+ struct bblib_ldpc_decoder_5gnr_response dec_resp;
+ struct bblib_crc_request crc_req;
+ struct bblib_crc_response crc_resp;
+ struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
+ uint16_t K, parity_offset, sys_cols, outLenWithCrc;
+ int16_t deRmOutSize, numRows;
+
+ /* Compute some LDPC BG lengths */
+ outLenWithCrc = out_length + (crc24_overlap >> 3);
+ sys_cols = (dec->basegraph == 1) ? 22 : 10;
+ K = sys_cols * dec->z_c;
+ parity_offset = K - 2 * dec->z_c;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time = rte_rdtsc_precise();
+#else
+ RTE_SET_USED(q_stats);
+#endif
+
+ in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
+ /**
+ * Single contiguous block from the first LLR of the
+ * circular buffer.
+ */
+ harq_in = NULL;
+ if (m_harq_in != NULL)
+ harq_in = rte_pktmbuf_mtod_offset(m_harq_in,
+ uint8_t *, harq_in_offset);
+ if (harq_in == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR, "No space in harq input mbuf");
+ return;
+ }
+ uint16_t harq_in_length = RTE_MIN(
+ dec->harq_combined_input.length,
+ (uint32_t) dec->n_cb);
+ memset(q->ag + harq_in_length, 0,
+ dec->n_cb - harq_in_length);
+ rte_memcpy(q->ag, harq_in, harq_in_length);
+ }
+
+ derm_req.p_in = (int8_t *) in;
+ derm_req.p_harq = q->ag; /* This doesn't include the filler bits */
+ derm_req.base_graph = dec->basegraph;
+ derm_req.zc = dec->z_c;
+ derm_req.ncb = dec->n_cb;
+ derm_req.e = e;
+ derm_req.k0 = 0; /* Actual output from SDK */
+ derm_req.isretx = check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
+ derm_req.rvid = dec->rv_index;
+ derm_req.modulation_order = dec->q_m;
+ derm_req.start_null_index = parity_offset - dec->n_filler;
+ derm_req.num_of_null = dec->n_filler;
+
+ bblib_rate_dematching_5gnr(&derm_req, &derm_resp);
+
+ /* Compute RM out size and number of rows */
+ deRmOutSize = RTE_MIN(
+ derm_req.k0 + derm_req.e -
+ ((derm_req.k0 < derm_req.start_null_index) ?
+ 0 : dec->n_filler),
+ dec->n_cb - dec->n_filler);
+ if (m_harq_in != NULL)
+ deRmOutSize = RTE_MAX(deRmOutSize,
+ RTE_MIN(dec->n_cb - dec->n_filler,
+ m_harq_in->data_len));
+ numRows = ((deRmOutSize + dec->n_filler + dec->z_c - 1) / dec->z_c)
+ - sys_cols + 2;
+ numRows = RTE_MAX(4, numRows);
+
+ /* get output data starting address */
+ out = (uint8_t *)mbuf_append(m_out_head, m_out, out_length);
+ if (out == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Too little space in LDPC decoder output mbuf");
+ return;
+ }
+
+ /* rte_bbdev_op_data.offset can be different than the offset
+ * of the appended bytes
+ */
+ out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+ adapter_input = q->enc_out;
+
+ dec_req.Zc = dec->z_c;
+ dec_req.baseGraph = dec->basegraph;
+ dec_req.nRows = numRows;
+ dec_req.numChannelLlrs = deRmOutSize;
+ dec_req.varNodes = derm_req.p_harq;
+ dec_req.numFillerBits = dec->n_filler;
+ dec_req.maxIterations = dec->iter_max;
+ dec_req.enableEarlyTermination = check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
+ dec_resp.varNodes = (int16_t *) q->adapter_output;
+ dec_resp.compactedMessageBytes = q->enc_out;
+
+ bblib_ldpc_decoder_5gnr(&dec_req, &dec_resp);
+
+ dec->iter_count = RTE_MAX(dec_resp.iterationAtTermination,
+ dec->iter_count);
+ if (!dec_resp.parityPassedAtTermination)
+ op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
+
+ bblib_bit_reverse((int8_t *) q->enc_out, outLenWithCrc << 3);
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK) ||
+ check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK)) {
+ crc_req.data = adapter_input;
+ crc_req.len = K - dec->n_filler - 24;
+ crc_resp.check_passed = false;
+ crc_resp.data = adapter_input;
+ if (check_crc_24b)
+ bblib_lte_crc24b_check(&crc_req, &crc_resp);
+ else
+ bblib_lte_crc24a_check(&crc_req, &crc_resp);
+ if (!crc_resp.check_passed)
+ op->status |= 1 << RTE_BBDEV_CRC_ERROR;
+ }
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
+ harq_out = NULL;
+ if (m_harq_out != NULL) {
+ /* Initialize HARQ data length since we overwrite */
+ m_harq_out->data_len = 0;
+ /* Check there is enough space
+ * in the HARQ outbound buffer
+ */
+ harq_out = (uint8_t *)mbuf_append(m_harq_out_head,
+ m_harq_out, deRmOutSize);
+ }
+ if (harq_out == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR, "No space in HARQ output mbuf");
+ return;
+ }
+ /* get output data starting address and overwrite the data */
+ harq_out = rte_pktmbuf_mtod_offset(m_harq_out, uint8_t *,
+ harq_out_offset);
+ rte_memcpy(harq_out, derm_req.p_harq, deRmOutSize);
+ dec->harq_combined_output.length += deRmOutSize;
+ }
+
+ rte_memcpy(out, adapter_input, out_length);
+ dec->hard_output.length += out_length;
+#else
+ RTE_SET_USED(q);
+ RTE_SET_USED(op);
+ RTE_SET_USED(c);
+ RTE_SET_USED(out_length);
+ RTE_SET_USED(e);
+ RTE_SET_USED(m_in);
+ RTE_SET_USED(m_out_head);
+ RTE_SET_USED(m_out);
+ RTE_SET_USED(m_harq_in);
+ RTE_SET_USED(m_harq_out_head);
+ RTE_SET_USED(m_harq_out);
+ RTE_SET_USED(harq_in_offset);
+ RTE_SET_USED(harq_out_offset);
+ RTE_SET_USED(in_offset);
+ RTE_SET_USED(out_offset);
+ RTE_SET_USED(check_crc_24b);
+ RTE_SET_USED(crc24_overlap);
+ RTE_SET_USED(in_length);
+ RTE_SET_USED(q_stats);
+#endif
+}
+
+
+static inline void
+enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
+ struct rte_bbdev_stats *queue_stats)
+{
+ uint8_t c, r = 0;
+ uint16_t kw, k = 0;
+ uint16_t crc24_overlap = 0;
+ struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
+ struct rte_mbuf *m_in = dec->input.data;
+ struct rte_mbuf *m_out = dec->hard_output.data;
+ struct rte_mbuf *m_out_head = dec->hard_output.data;
+ uint16_t in_offset = dec->input.offset;
+ uint16_t out_offset = dec->hard_output.offset;
+ uint32_t mbuf_total_left = dec->input.length;
+ uint16_t seg_total_left;
+
+ /* Clear op status */
+ op->status = 0;
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if (dec->code_block_mode == 0) { /* For Transport Block mode */
+ c = dec->tb_params.c;
+ } else { /* For Code Block mode */
+ k = dec->cb_params.k;
+ c = 1;
+ }
+
+ if ((c > 1) && !check_bit(dec->op_flags,
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+ crc24_overlap = 24;
+
+ while (mbuf_total_left > 0) {
+ if (dec->code_block_mode == 0)
+ k = (r < dec->tb_params.c_neg) ?
+ dec->tb_params.k_neg : dec->tb_params.k_pos;
+
+ seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
+
+ /* Calculates circular buffer size (Kw).
+ * According to 3gpp 36.212 section 5.1.4.2
+ * Kw = 3 * Kpi,
+ * where:
+ * Kpi = nCol * nRow
+ * where nCol is 32 and nRow can be calculated from:
+ * D =< nCol * nRow
+ * where D is the size of each output from turbo encoder block
+ * (k + 4).
+ */
+ kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
+
+ process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
+ in_offset, out_offset, check_bit(dec->op_flags,
+ RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
+ seg_total_left, queue_stats);
+
+ /* To keep CRC24 attached to end of Code block, use
+ * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
+ * removed by default once verified.
+ */
+
+ mbuf_total_left -= kw;
+
+ /* Update offsets */
+ if (seg_total_left == kw) {
+ /* Go to the next mbuf */
+ m_in = m_in->next;
+ m_out = m_out->next;
+ in_offset = 0;
+ out_offset = 0;
+ } else {
+ /* Update offsets for next CBs (if exist) */
+ in_offset += kw;
+ out_offset += ((k - crc24_overlap) >> 3);
+ }
+ r++;
+ }
+}
+
+static inline void
+enqueue_ldpc_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
+ struct rte_bbdev_stats *queue_stats)
+{
+ uint8_t c, r = 0;
+ uint32_t e;
+ uint16_t out_length, crc24_overlap = 0;
+ struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
+ struct rte_mbuf *m_in = dec->input.data;
+ struct rte_mbuf *m_harq_in = dec->harq_combined_input.data;
+ struct rte_mbuf *m_harq_out = dec->harq_combined_output.data;
+ struct rte_mbuf *m_harq_out_head = dec->harq_combined_output.data;
+ struct rte_mbuf *m_out = dec->hard_output.data;
+ struct rte_mbuf *m_out_head = dec->hard_output.data;
+ uint16_t in_offset = dec->input.offset;
+ uint16_t harq_in_offset = dec->harq_combined_input.offset;
+ uint16_t harq_out_offset = dec->harq_combined_output.offset;
+ uint16_t out_offset = dec->hard_output.offset;
+ uint32_t mbuf_total_left = dec->input.length;
+ uint16_t seg_total_left;
+
+ /* Clear op status */
+ op->status = 0;
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if (dec->code_block_mode == 0) { /* For Transport Block mode */
+ c = dec->tb_params.c;
+ e = dec->tb_params.ea;
+ } else { /* For Code Block mode */
+ c = 1;
+ e = dec->cb_params.e;
+ }
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
+ crc24_overlap = 24;
+
+ out_length = (dec->basegraph == 1 ? 22 : 10) * dec->z_c; /* K */
+ out_length = ((out_length - crc24_overlap - dec->n_filler) >> 3);
+
+ while (mbuf_total_left > 0) {
+ if (dec->code_block_mode == 0)
+ e = (r < dec->tb_params.cab) ?
+ dec->tb_params.ea : dec->tb_params.eb;
+ /* Special case handling when overusing mbuf */
+ if (e < RTE_BBDEV_LDPC_E_MAX_MBUF)
+ seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
+ else
+ seg_total_left = e;
+
+ process_ldpc_dec_cb(q, op, c, out_length, e,
+ m_in, m_out_head, m_out,
+ m_harq_in, m_harq_out_head, m_harq_out,
+ in_offset, out_offset, harq_in_offset,
+ harq_out_offset,
+ check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK),
+ crc24_overlap,
+ seg_total_left, queue_stats);
+
+ /* To keep CRC24 attached to end of Code block, use
+ * RTE_BBDEV_LDPC_DEC_TB_CRC_24B_KEEP flag as it
+ * removed by default once verified.
+ */
+
+ mbuf_total_left -= e;
+
+ /* Update offsets */
+ if (seg_total_left == e) {
+ /* Go to the next mbuf */
+ m_in = m_in->next;
+ m_out = m_out->next;
+ if (m_harq_in != NULL)
+ m_harq_in = m_harq_in->next;
+ if (m_harq_out != NULL)
+ m_harq_out = m_harq_out->next;
+ in_offset = 0;
+ out_offset = 0;
+ harq_in_offset = 0;
+ harq_out_offset = 0;
+ } else {
+ /* Update offsets for next CBs (if exist) */
+ in_offset += e;
+ out_offset += out_length;
+ }
+ r++;
+ }
+}
+
+static inline uint16_t
+enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
+ uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
+{
+ uint16_t i;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ queue_stats->acc_offload_cycles = 0;
+#endif
+
+ for (i = 0; i < nb_ops; ++i)
+ enqueue_dec_one_op(q, ops[i], queue_stats);
+
+ return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
+ NULL);
+}
+
+static inline uint16_t
+enqueue_ldpc_dec_all_ops(struct turbo_sw_queue *q,
+ struct rte_bbdev_dec_op **ops,
+ uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
+{
+ uint16_t i;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ queue_stats->acc_offload_cycles = 0;
+#endif
+
+ for (i = 0; i < nb_ops; ++i)
+ enqueue_ldpc_dec_one_op(q, ops[i], queue_stats);
+
+ return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
+ NULL);
+}
+
+/* Enqueue burst */
+static uint16_t
+enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
+{
+ void *queue = q_data->queue_private;
+ struct turbo_sw_queue *q = queue;
+ uint16_t nb_enqueued = 0;
+
+ nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Enqueue burst */
+static uint16_t
+enqueue_ldpc_enc_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
+{
+ void *queue = q_data->queue_private;
+ struct turbo_sw_queue *q = queue;
+ uint16_t nb_enqueued = 0;
+
+ nb_enqueued = enqueue_ldpc_enc_all_ops(
+ q, ops, nb_ops, &q_data->queue_stats);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Enqueue burst */
+static uint16_t
+enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
+{
+ void *queue = q_data->queue_private;
+ struct turbo_sw_queue *q = queue;
+ uint16_t nb_enqueued = 0;
+
+ nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Enqueue burst */
+static uint16_t
+enqueue_ldpc_dec_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
+{
+ void *queue = q_data->queue_private;
+ struct turbo_sw_queue *q = queue;
+ uint16_t nb_enqueued = 0;
+
+ nb_enqueued = enqueue_ldpc_dec_all_ops(q, ops, nb_ops,
+ &q_data->queue_stats);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Dequeue decode burst */
+static uint16_t
+dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
+{
+ struct turbo_sw_queue *q = q_data->queue_private;
+ uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+ q_data->queue_stats.dequeued_count += nb_dequeued;
+
+ return nb_dequeued;
+}
+
+/* Dequeue encode burst */
+static uint16_t
+dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
+{
+ struct turbo_sw_queue *q = q_data->queue_private;
+ uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+ q_data->queue_stats.dequeued_count += nb_dequeued;
+
+ return nb_dequeued;
+}
+
+/* Parse 16bit integer from string argument */
+static inline int
+parse_u16_arg(const char *key, const char *value, void *extra_args)
+{
+ uint16_t *u16 = extra_args;
+ unsigned int long result;
+
+ if ((value == NULL) || (extra_args == NULL))
+ return -EINVAL;
+ errno = 0;
+ result = strtoul(value, NULL, 0);
+ if ((result >= (1 << 16)) || (errno != 0)) {
+ rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
+ return -ERANGE;
+ }
+ *u16 = (uint16_t)result;
+ return 0;
+}
+
+/* Parse parameters used to create device */
+static int
+parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
+{
+ struct rte_kvargs *kvlist = NULL;
+ int ret = 0;
+
+ if (params == NULL)
+ return -EINVAL;
+ if (input_args) {
+ kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
+ if (kvlist == NULL)
+ return -EFAULT;
+
+ ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
+ &parse_u16_arg, &params->queues_num);
+ if (ret < 0)
+ goto exit;
+
+ ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
+ &parse_u16_arg, &params->socket_id);
+ if (ret < 0)
+ goto exit;
+
+ if (params->socket_id >= RTE_MAX_NUMA_NODES) {
+ rte_bbdev_log(ERR, "Invalid socket, must be < %u",
+ RTE_MAX_NUMA_NODES);
+ goto exit;
+ }
+ }
+
+exit:
+ if (kvlist)
+ rte_kvargs_free(kvlist);
+ return ret;
+}
+
+/* Create device */
+static int
+turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
+ struct turbo_sw_params *init_params)
+{
+ struct rte_bbdev *bbdev;
+ const char *name = rte_vdev_device_name(vdev);
+
+ bbdev = rte_bbdev_allocate(name);
+ if (bbdev == NULL)
+ return -ENODEV;
+
+ bbdev->data->dev_private = rte_zmalloc_socket(name,
+ sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
+ init_params->socket_id);
+ if (bbdev->data->dev_private == NULL) {
+ rte_bbdev_release(bbdev);
+ return -ENOMEM;
+ }
+
+ bbdev->dev_ops = &pmd_ops;
+ bbdev->device = &vdev->device;
+ bbdev->data->socket_id = init_params->socket_id;
+ bbdev->intr_handle = NULL;
+
+ /* register rx/tx burst functions for data path */
+ bbdev->dequeue_enc_ops = dequeue_enc_ops;
+ bbdev->dequeue_dec_ops = dequeue_dec_ops;
+ bbdev->enqueue_enc_ops = enqueue_enc_ops;
+ bbdev->enqueue_dec_ops = enqueue_dec_ops;
+ bbdev->dequeue_ldpc_enc_ops = dequeue_enc_ops;
+ bbdev->dequeue_ldpc_dec_ops = dequeue_dec_ops;
+ bbdev->enqueue_ldpc_enc_ops = enqueue_ldpc_enc_ops;
+ bbdev->enqueue_ldpc_dec_ops = enqueue_ldpc_dec_ops;
+ ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
+ init_params->queues_num;
+
+ return 0;
+}
+
+/* Initialise device */
+static int
+turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
+{
+ struct turbo_sw_params init_params = {
+ rte_socket_id(),
+ RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
+ };
+ const char *name;
+ const char *input_args;
+
+ if (vdev == NULL)
+ return -EINVAL;
+
+ name = rte_vdev_device_name(vdev);
+ if (name == NULL)
+ return -EINVAL;
+ input_args = rte_vdev_device_args(vdev);
+ parse_turbo_sw_params(&init_params, input_args);
+
+ rte_bbdev_log_debug(
+ "Initialising %s on NUMA node %d with max queues: %d\n",
+ name, init_params.socket_id, init_params.queues_num);
+
+ return turbo_sw_bbdev_create(vdev, &init_params);
+}
+
+/* Uninitialise device */
+static int
+turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
+{
+ struct rte_bbdev *bbdev;
+ const char *name;
+
+ if (vdev == NULL)
+ return -EINVAL;
+
+ name = rte_vdev_device_name(vdev);
+ if (name == NULL)
+ return -EINVAL;
+
+ bbdev = rte_bbdev_get_named_dev(name);
+ if (bbdev == NULL)
+ return -EINVAL;
+
+ rte_free(bbdev->data->dev_private);
+
+ return rte_bbdev_release(bbdev);
+}
+
+static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
+ .probe = turbo_sw_bbdev_probe,
+ .remove = turbo_sw_bbdev_remove
+};
+
+RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
+RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
+ TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
+ TURBO_SW_SOCKET_ID_ARG"=<int>");
+RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
+
+RTE_INIT(turbo_sw_bbdev_init_log)
+{
+ bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
+ if (bbdev_turbo_sw_logtype >= 0)
+ rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
+}
diff --git a/src/spdk/dpdk/drivers/baseband/turbo_sw/meson.build b/src/spdk/dpdk/drivers/baseband/turbo_sw/meson.build
new file mode 100644
index 000000000..f5a1ab3fc
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/turbo_sw/meson.build
@@ -0,0 +1,39 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2019 Intel Corporation
+
+path = get_option('flexran_sdk')
+
+if dpdk_conf.has('RTE_BBDEV_SDK_AVX2')
+ lib = cc.find_library('libturbo', dirs: [path + '/lib_turbo'], required: false)
+ if not lib.found()
+ build = false
+ reason = 'missing dependency, "libturbo"'
+ else
+ ext_deps += cc.find_library('libturbo', dirs: [path + '/lib_turbo'], required: true)
+ ext_deps += cc.find_library('libcrc', dirs: [path + '/lib_crc'], required: true)
+ ext_deps += cc.find_library('librate_matching', dirs: [path + '/lib_rate_matching'], required: true)
+ ext_deps += cc.find_library('libcommon', dirs: [path + '/lib_common'], required: true)
+ ext_deps += cc.find_library('libstdc++', required: true)
+ ext_deps += cc.find_library('libirc', required: true)
+ ext_deps += cc.find_library('libimf', required: true)
+ ext_deps += cc.find_library('libipps', required: true)
+ ext_deps += cc.find_library('libsvml', required: true)
+ includes += include_directories(path + '/lib_turbo')
+ includes += include_directories(path + '/lib_crc')
+ includes += include_directories(path + '/lib_rate_matching')
+ includes += include_directories(path + '/lib_common')
+ endif
+endif
+if dpdk_conf.has('RTE_BBDEV_SDK_AVX512')
+ ext_deps += cc.find_library('libldpc_encoder_5gnr', dirs: [path + '/lib_ldpc_encoder_5gnr'], required: true)
+ ext_deps += cc.find_library('libldpc_decoder_5gnr', dirs: [path + '/lib_ldpc_decoder_5gnr'], required: true)
+ ext_deps += cc.find_library('libLDPC_ratematch_5gnr', dirs: [path + '/lib_LDPC_ratematch_5gnr'], required: true)
+ ext_deps += cc.find_library('librate_dematching_5gnr', dirs: [path + '/lib_rate_dematching_5gnr'], required: true)
+ includes += include_directories(path + '/lib_ldpc_encoder_5gnr')
+ includes += include_directories(path + '/lib_ldpc_decoder_5gnr')
+ includes += include_directories(path + '/lib_LDPC_ratematch_5gnr')
+ includes += include_directories(path + '/lib_rate_dematching_5gnr')
+endif
+
+deps += ['bbdev', 'bus_vdev', 'ring']
+sources = files('bbdev_turbo_software.c')
diff --git a/src/spdk/dpdk/drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map b/src/spdk/dpdk/drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map
new file mode 100644
index 000000000..f9f17e4f6
--- /dev/null
+++ b/src/spdk/dpdk/drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map
@@ -0,0 +1,3 @@
+DPDK_20.0 {
+ local: *;
+};