summaryrefslogtreecommitdiffstats
path: root/src/spdk/examples/nvme/reconnect/reconnect.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/spdk/examples/nvme/reconnect/reconnect.c')
-rw-r--r--src/spdk/examples/nvme/reconnect/reconnect.c1185
1 files changed, 1185 insertions, 0 deletions
diff --git a/src/spdk/examples/nvme/reconnect/reconnect.c b/src/spdk/examples/nvme/reconnect/reconnect.c
new file mode 100644
index 000000000..74c5f3657
--- /dev/null
+++ b/src/spdk/examples/nvme/reconnect/reconnect.c
@@ -0,0 +1,1185 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright (c) Intel Corporation. All rights reserved.
+ * Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
+ *
+ * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "spdk/stdinc.h"
+
+#include "spdk/env.h"
+#include "spdk/nvme.h"
+#include "spdk/queue.h"
+#include "spdk/string.h"
+#include "spdk/util.h"
+#include "spdk/log.h"
+#include "spdk/likely.h"
+
+struct ctrlr_entry {
+ struct spdk_nvme_ctrlr *ctrlr;
+ struct spdk_nvme_transport_id failover_trid;
+ enum spdk_nvme_transport_type trtype;
+ struct ctrlr_entry *next;
+ char name[1024];
+ int num_resets;
+};
+
+struct ns_entry {
+ struct spdk_nvme_ctrlr *ctrlr;
+ struct spdk_nvme_ns *ns;
+
+ struct ns_entry *next;
+ uint32_t io_size_blocks;
+ uint32_t num_io_requests;
+ uint64_t size_in_ios;
+ uint32_t block_size;
+ uint32_t io_flags;
+ char name[1024];
+};
+
+struct ns_worker_ctx {
+ struct ns_entry *entry;
+ uint64_t io_completed;
+ uint64_t current_queue_depth;
+ uint64_t offset_in_ios;
+ bool is_draining;
+
+ int num_qpairs;
+ struct spdk_nvme_qpair **qpair;
+ int last_qpair;
+
+ struct ns_worker_ctx *next;
+};
+
+struct perf_task {
+ struct ns_worker_ctx *ns_ctx;
+ struct iovec iov;
+ bool is_read;
+};
+
+struct worker_thread {
+ struct ns_worker_ctx *ns_ctx;
+ struct worker_thread *next;
+ unsigned lcore;
+};
+
+/* For basic reset handling. */
+static int g_max_ctrlr_resets = 15;
+
+static struct ctrlr_entry *g_controllers = NULL;
+static struct ns_entry *g_namespaces = NULL;
+static int g_num_namespaces = 0;
+static struct worker_thread *g_workers = NULL;
+static int g_num_workers = 0;
+
+static uint64_t g_tsc_rate;
+
+static uint32_t g_io_align = 0x200;
+static uint32_t g_io_size_bytes;
+static uint32_t g_max_io_size_blocks;
+static int g_rw_percentage;
+static int g_is_random;
+static int g_queue_depth;
+static int g_time_in_sec;
+static uint32_t g_max_completions;
+static int g_dpdk_mem;
+static bool g_warn;
+static uint32_t g_keep_alive_timeout_in_ms = 0;
+static uint8_t g_transport_retry_count = 4;
+static uint8_t g_transport_ack_timeout = 0; /* disabled */
+
+static const char *g_core_mask;
+
+struct trid_entry {
+ struct spdk_nvme_transport_id trid;
+ struct spdk_nvme_transport_id failover_trid;
+ TAILQ_ENTRY(trid_entry) tailq;
+};
+
+static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list);
+
+static inline void
+task_complete(struct perf_task *task);
+static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth);
+
+static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl);
+
+static void
+nvme_setup_payload(struct perf_task *task)
+{
+ /* maximum extended lba format size from all active namespace,
+ * it's same with g_io_size_bytes for namespace without metadata.
+ */
+ task->iov.iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL);
+ task->iov.iov_len = g_io_size_bytes;
+ if (task->iov.iov_base == NULL) {
+ fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n");
+ exit(1);
+ }
+}
+
+static int
+nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
+ struct ns_entry *entry, uint64_t offset_in_ios)
+{
+ uint64_t lba;
+ int qp_num;
+
+ lba = offset_in_ios * entry->io_size_blocks;
+
+ qp_num = ns_ctx->last_qpair;
+ ns_ctx->last_qpair++;
+ if (ns_ctx->last_qpair == ns_ctx->num_qpairs) {
+ ns_ctx->last_qpair = 0;
+ }
+
+ if (task->is_read) {
+ return spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair[qp_num],
+ task->iov.iov_base, lba,
+ entry->io_size_blocks, io_complete,
+ task, entry->io_flags);
+ }
+
+ return spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair[qp_num],
+ task->iov.iov_base, lba,
+ entry->io_size_blocks, io_complete,
+ task, entry->io_flags);
+}
+
+static void
+nvme_check_io(struct ns_worker_ctx *ns_ctx)
+{
+ int i, rc;
+
+ for (i = 0; i < ns_ctx->num_qpairs; i++) {
+ rc = spdk_nvme_qpair_process_completions(ns_ctx->qpair[i], g_max_completions);
+ /* The transport level qpair is failed and we need to reconnect it. */
+ if (spdk_unlikely(rc == -ENXIO)) {
+ rc = spdk_nvme_ctrlr_reconnect_io_qpair(ns_ctx->qpair[i]);
+ /* successful reconnect */
+ if (rc == 0) {
+ continue;
+ } else if (rc == -ENXIO) {
+ /* This means the controller is failed. Defer to it to restore the qpair. */
+ continue;
+ } else {
+ /*
+ * We were unable to restore the qpair on this attempt. We don't
+ * really know why. For naive handling, just keep trying.
+ * TODO: add a retry limit, and destroy the qpair after x iterations.
+ */
+ fprintf(stderr, "qpair failed and we were unable to recover it.\n");
+ }
+ } else if (spdk_unlikely(rc < 0)) {
+ fprintf(stderr, "Received an unknown error processing completions.\n");
+ exit(1);
+ }
+ }
+}
+
+/*
+ * TODO: If a controller has multiple namespaces, they could all use the same queue.
+ * For now, give each namespace/thread combination its own queue.
+ */
+static int
+nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
+{
+ struct spdk_nvme_io_qpair_opts opts;
+ struct ns_entry *entry = ns_ctx->entry;
+ int i;
+
+ ns_ctx->num_qpairs = 1;
+ ns_ctx->qpair = calloc(ns_ctx->num_qpairs, sizeof(struct spdk_nvme_qpair *));
+ if (!ns_ctx->qpair) {
+ return -1;
+ }
+
+ spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->ctrlr, &opts, sizeof(opts));
+ if (opts.io_queue_requests < entry->num_io_requests) {
+ opts.io_queue_requests = entry->num_io_requests;
+ }
+
+ for (i = 0; i < ns_ctx->num_qpairs; i++) {
+ ns_ctx->qpair[i] = spdk_nvme_ctrlr_alloc_io_qpair(entry->ctrlr, &opts,
+ sizeof(opts));
+ if (!ns_ctx->qpair[i]) {
+ printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+static void
+nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
+{
+ int i;
+
+ for (i = 0; i < ns_ctx->num_qpairs; i++) {
+ spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair[i]);
+ }
+
+ free(ns_ctx->qpair);
+}
+
+static void
+build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr)
+{
+ const struct spdk_nvme_transport_id *trid;
+
+ trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
+
+ switch (trid->trtype) {
+ case SPDK_NVME_TRANSPORT_RDMA:
+ snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
+ break;
+ case SPDK_NVME_TRANSPORT_TCP:
+ snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
+ break;
+ default:
+ fprintf(stderr, "Unknown transport type %d\n", trid->trtype);
+ break;
+ }
+}
+
+static void
+register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
+{
+ struct ns_entry *entry;
+ const struct spdk_nvme_ctrlr_data *cdata;
+ uint32_t max_xfer_size, entries, sector_size;
+ uint64_t ns_size;
+ struct spdk_nvme_io_qpair_opts opts;
+
+ cdata = spdk_nvme_ctrlr_get_data(ctrlr);
+
+ if (!spdk_nvme_ns_is_active(ns)) {
+ printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
+ cdata->mn, cdata->sn,
+ spdk_nvme_ns_get_id(ns));
+ g_warn = true;
+ return;
+ }
+
+ ns_size = spdk_nvme_ns_get_size(ns);
+ sector_size = spdk_nvme_ns_get_sector_size(ns);
+
+ if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) {
+ printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
+ "ns size %" PRIu64 " / block size %u for I/O size %u\n",
+ cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
+ ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
+ g_warn = true;
+ return;
+ }
+
+ max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
+ spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
+ /* NVMe driver may add additional entries based on
+ * stripe size and maximum transfer size, we assume
+ * 1 more entry be used for stripe.
+ */
+ entries = (g_io_size_bytes - 1) / max_xfer_size + 2;
+ if ((g_queue_depth * entries) > opts.io_queue_size) {
+ printf("controller IO queue size %u less than required\n",
+ opts.io_queue_size);
+ printf("Consider using lower queue depth or small IO size because "
+ "IO requests may be queued at the NVMe driver.\n");
+ g_warn = true;
+ }
+ /* For requests which have children requests, parent request itself
+ * will also occupy 1 entry.
+ */
+ entries += 1;
+
+ entry = calloc(1, sizeof(struct ns_entry));
+ if (entry == NULL) {
+ perror("ns_entry malloc");
+ exit(1);
+ }
+
+ entry->ctrlr = ctrlr;
+ entry->ns = ns;
+ entry->num_io_requests = g_queue_depth * entries;
+
+ entry->size_in_ios = ns_size / g_io_size_bytes;
+ entry->io_size_blocks = g_io_size_bytes / sector_size;
+
+ entry->block_size = spdk_nvme_ns_get_sector_size(ns);
+
+
+ if (g_max_io_size_blocks < entry->io_size_blocks) {
+ g_max_io_size_blocks = entry->io_size_blocks;
+ }
+
+ build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
+
+ g_num_namespaces++;
+ entry->next = g_namespaces;
+ g_namespaces = entry;
+}
+
+static void
+unregister_namespaces(void)
+{
+ struct ns_entry *entry = g_namespaces;
+
+ while (entry) {
+ struct ns_entry *next = entry->next;
+ free(entry);
+ entry = next;
+ }
+}
+
+static void
+register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry)
+{
+ struct spdk_nvme_ns *ns;
+ struct ctrlr_entry *entry = calloc(1, sizeof(struct ctrlr_entry));
+ const struct spdk_nvme_transport_id *ctrlr_trid;
+ uint32_t nsid;
+
+ if (entry == NULL) {
+ perror("ctrlr_entry malloc");
+ exit(1);
+ }
+
+ ctrlr_trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
+ assert(ctrlr_trid != NULL);
+
+ /* each controller needs a unique failover trid. */
+ entry->failover_trid = trid_entry->failover_trid;
+
+ /*
+ * Users are allowed to leave the trid subnqn blank or specify a discovery controller subnqn.
+ * In those cases, the controller subnqn will not equal the trid_entry subnqn and, by association,
+ * the failover_trid subnqn.
+ * When we do failover, we want to reconnect to the same nqn so explicitly set the failover nqn to
+ * the ctrlr nqn here.
+ */
+ snprintf(entry->failover_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN + 1, "%s", ctrlr_trid->subnqn);
+
+
+ build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
+
+ entry->ctrlr = ctrlr;
+ entry->trtype = trid_entry->trid.trtype;
+ entry->next = g_controllers;
+ g_controllers = entry;
+
+ for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
+ nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
+ ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
+ if (ns == NULL) {
+ continue;
+ }
+ register_ns(ctrlr, ns);
+ }
+}
+
+static __thread unsigned int seed = 0;
+
+static inline void
+submit_single_io(struct perf_task *task)
+{
+ uint64_t offset_in_ios;
+ int rc;
+ struct ns_worker_ctx *ns_ctx = task->ns_ctx;
+ struct ns_entry *entry = ns_ctx->entry;
+
+ if (g_is_random) {
+ offset_in_ios = rand_r(&seed) % entry->size_in_ios;
+ } else {
+ offset_in_ios = ns_ctx->offset_in_ios++;
+ if (ns_ctx->offset_in_ios == entry->size_in_ios) {
+ ns_ctx->offset_in_ios = 0;
+ }
+ }
+
+ if ((g_rw_percentage == 100) ||
+ (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
+ task->is_read = true;
+ } else {
+ task->is_read = false;
+ }
+
+ rc = nvme_submit_io(task, ns_ctx, entry, offset_in_ios);
+
+ if (spdk_unlikely(rc != 0)) {
+ fprintf(stderr, "starting I/O failed\n");
+ } else {
+ ns_ctx->current_queue_depth++;
+ }
+}
+
+static inline void
+task_complete(struct perf_task *task)
+{
+ struct ns_worker_ctx *ns_ctx;
+
+ ns_ctx = task->ns_ctx;
+ ns_ctx->current_queue_depth--;
+ ns_ctx->io_completed++;
+
+ /*
+ * is_draining indicates when time has expired for the test run
+ * and we are just waiting for the previously submitted I/O
+ * to complete. In this case, do not submit a new I/O to replace
+ * the one just completed.
+ */
+ if (spdk_unlikely(ns_ctx->is_draining)) {
+ spdk_dma_free(task->iov.iov_base);
+ free(task);
+ } else {
+ submit_single_io(task);
+ }
+}
+
+static void
+io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
+{
+ struct perf_task *task = ctx;
+
+ if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) {
+ fprintf(stderr, "%s completed with error (sct=%d, sc=%d)\n",
+ task->is_read ? "Read" : "Write",
+ cpl->status.sct, cpl->status.sc);
+ }
+
+ task_complete(task);
+}
+
+static void
+check_io(struct ns_worker_ctx *ns_ctx)
+{
+ nvme_check_io(ns_ctx);
+}
+
+static struct perf_task *
+allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth)
+{
+ struct perf_task *task;
+
+ task = calloc(1, sizeof(*task));
+ if (task == NULL) {
+ fprintf(stderr, "Out of memory allocating tasks\n");
+ exit(1);
+ }
+
+ nvme_setup_payload(task);
+
+ task->ns_ctx = ns_ctx;
+
+ return task;
+}
+
+static void
+submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
+{
+ struct perf_task *task;
+
+ while (queue_depth-- > 0) {
+ task = allocate_task(ns_ctx, queue_depth);
+ submit_single_io(task);
+ }
+}
+
+static int
+work_fn(void *arg)
+{
+ uint64_t tsc_end;
+ struct worker_thread *worker = (struct worker_thread *)arg;
+ struct ns_worker_ctx *ns_ctx = NULL;
+ uint32_t unfinished_ns_ctx;
+
+ printf("Starting thread on core %u\n", worker->lcore);
+
+ /* Allocate queue pairs for each namespace. */
+ ns_ctx = worker->ns_ctx;
+ while (ns_ctx != NULL) {
+ if (nvme_init_ns_worker_ctx(ns_ctx) != 0) {
+ printf("ERROR: init_ns_worker_ctx() failed\n");
+ return 1;
+ }
+ ns_ctx = ns_ctx->next;
+ }
+
+ tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
+
+ /* Submit initial I/O for each namespace. */
+ ns_ctx = worker->ns_ctx;
+ while (ns_ctx != NULL) {
+ submit_io(ns_ctx, g_queue_depth);
+ ns_ctx = ns_ctx->next;
+ }
+
+ while (1) {
+ /*
+ * Check for completed I/O for each controller. A new
+ * I/O will be submitted in the io_complete callback
+ * to replace each I/O that is completed.
+ */
+ ns_ctx = worker->ns_ctx;
+ while (ns_ctx != NULL) {
+ check_io(ns_ctx);
+ ns_ctx = ns_ctx->next;
+ }
+
+ if (spdk_get_ticks() > tsc_end) {
+ break;
+ }
+ }
+
+ /* drain the io of each ns_ctx in round robin to make the fairness */
+ do {
+ unfinished_ns_ctx = 0;
+ ns_ctx = worker->ns_ctx;
+ while (ns_ctx != NULL) {
+ /* first time will enter into this if case */
+ if (!ns_ctx->is_draining) {
+ ns_ctx->is_draining = true;
+ }
+
+ if (ns_ctx->current_queue_depth > 0) {
+ check_io(ns_ctx);
+ if (ns_ctx->current_queue_depth == 0) {
+ nvme_cleanup_ns_worker_ctx(ns_ctx);
+ } else {
+ unfinished_ns_ctx++;
+ }
+ }
+ ns_ctx = ns_ctx->next;
+ }
+ } while (unfinished_ns_ctx > 0);
+
+ return 0;
+}
+
+static void usage(char *program_name)
+{
+ printf("%s options", program_name);
+ printf("\n");
+ printf("\t[-q io depth]\n");
+ printf("\t[-o io size in bytes]\n");
+ printf("\t[-w io pattern type, must be one of\n");
+ printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
+ printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
+ printf("\t[-t time in seconds]\n");
+ printf("\t[-c core mask for I/O submission/completion.]\n");
+ printf("\t\t(default: 1)\n");
+ printf("\t[-r Transport ID for NVMeoF]\n");
+ printf("\t Format: 'key:value [key:value] ...'\n");
+ printf("\t Keys:\n");
+ printf("\t trtype Transport type (e.g. RDMA)\n");
+ printf("\t adrfam Address family (e.g. IPv4, IPv6)\n");
+ printf("\t traddr Transport address (e.g. 192.168.100.8 for RDMA)\n");
+ printf("\t trsvcid Transport service identifier (e.g. 4420)\n");
+ printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
+ printf("\t alt_traddr (Optional) Alternative Transport address for failover.\n");
+ printf("\t Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n");
+ printf("\t[-k keep alive timeout period in millisecond]\n");
+ printf("\t[-s DPDK huge memory size in MB.]\n");
+ printf("\t[-m max completions per poll]\n");
+ printf("\t\t(default: 0 - unlimited)\n");
+ printf("\t[-i shared memory group ID]\n");
+ printf("\t[-A transport ACK timeout]\n");
+ printf("\t[-R transport retry count]\n");
+ printf("\t");
+ spdk_log_usage(stdout, "-T");
+#ifdef DEBUG
+ printf("\t[-G enable debug logging]\n");
+#else
+ printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)\n");
+#endif
+}
+
+static void
+unregister_trids(void)
+{
+ struct trid_entry *trid_entry, *tmp;
+
+ TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) {
+ TAILQ_REMOVE(&g_trid_list, trid_entry, tailq);
+ free(trid_entry);
+ }
+}
+
+static int
+add_trid(const char *trid_str)
+{
+ struct trid_entry *trid_entry;
+ struct spdk_nvme_transport_id *trid;
+ char *alt_traddr;
+ int len;
+
+ trid_entry = calloc(1, sizeof(*trid_entry));
+ if (trid_entry == NULL) {
+ return -1;
+ }
+
+ trid = &trid_entry->trid;
+ snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
+
+ if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) {
+ fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str);
+ free(trid_entry);
+ return 1;
+ }
+
+ trid_entry->failover_trid = trid_entry->trid;
+
+ alt_traddr = strcasestr(trid_str, "alt_traddr:");
+ if (alt_traddr) {
+ alt_traddr += strlen("alt_traddr:");
+ len = strcspn(alt_traddr, " \t\n");
+ if (len > SPDK_NVMF_TRADDR_MAX_LEN) {
+ fprintf(stderr, "The failover traddr %s is too long.\n", alt_traddr);
+ free(trid_entry);
+ return -1;
+ }
+ snprintf(trid_entry->failover_trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN + 1, "%s", alt_traddr);
+ }
+
+ TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq);
+ return 0;
+}
+
+static int
+parse_args(int argc, char **argv)
+{
+ struct trid_entry *trid_entry, *trid_entry_tmp;
+ const char *workload_type;
+ int op;
+ bool mix_specified = false;
+ long int val;
+ int rc;
+
+ /* default value */
+ g_queue_depth = 0;
+ g_io_size_bytes = 0;
+ workload_type = NULL;
+ g_time_in_sec = 0;
+ g_rw_percentage = -1;
+ g_core_mask = NULL;
+ g_max_completions = 0;
+
+ while ((op = getopt(argc, argv, "c:m:o:q:r:k:s:t:w:A:GM:R:T:")) != -1) {
+ switch (op) {
+ case 'm':
+ case 'o':
+ case 'q':
+ case 'k':
+ case 's':
+ case 't':
+ case 'A':
+ case 'M':
+ case 'R':
+ val = spdk_strtol(optarg, 10);
+ if (val < 0) {
+ fprintf(stderr, "Converting a string to integer failed\n");
+ return val;
+ }
+ switch (op) {
+ case 'm':
+ g_max_completions = val;
+ break;
+ case 'o':
+ g_io_size_bytes = val;
+ break;
+ case 'q':
+ g_queue_depth = val;
+ break;
+ case 'k':
+ g_keep_alive_timeout_in_ms = val;
+ break;
+ case 's':
+ g_dpdk_mem = val;
+ break;
+ case 't':
+ g_time_in_sec = val;
+ break;
+ case 'A':
+ g_transport_ack_timeout = val;
+ break;
+ case 'M':
+ g_rw_percentage = val;
+ mix_specified = true;
+ break;
+ case 'R':
+ g_transport_retry_count = val;
+ break;
+ }
+ break;
+ case 'c':
+ g_core_mask = optarg;
+ break;
+ case 'r':
+ if (add_trid(optarg)) {
+ usage(argv[0]);
+ return 1;
+ }
+ break;
+ case 'w':
+ workload_type = optarg;
+ break;
+ case 'G':
+#ifndef DEBUG
+ fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n",
+ argv[0]);
+ usage(argv[0]);
+ return 1;
+#else
+ spdk_log_set_flag("nvme");
+ spdk_log_set_print_level(SPDK_LOG_DEBUG);
+ break;
+#endif
+ case 'T':
+ rc = spdk_log_set_flag(optarg);
+ if (rc < 0) {
+ fprintf(stderr, "unknown flag\n");
+ usage(argv[0]);
+ exit(EXIT_FAILURE);
+ }
+ spdk_log_set_print_level(SPDK_LOG_DEBUG);
+#ifndef DEBUG
+ fprintf(stderr, "%s must be rebuilt with CONFIG_DEBUG=y for -T flag.\n",
+ argv[0]);
+ usage(argv[0]);
+ return 0;
+#endif
+ break;
+ default:
+ usage(argv[0]);
+ return 1;
+ }
+ }
+
+ if (!g_queue_depth) {
+ usage(argv[0]);
+ return 1;
+ }
+ if (!g_io_size_bytes) {
+ usage(argv[0]);
+ return 1;
+ }
+ if (!workload_type) {
+ usage(argv[0]);
+ return 1;
+ }
+ if (!g_time_in_sec) {
+ usage(argv[0]);
+ return 1;
+ }
+
+ if (strcmp(workload_type, "read") &&
+ strcmp(workload_type, "write") &&
+ strcmp(workload_type, "randread") &&
+ strcmp(workload_type, "randwrite") &&
+ strcmp(workload_type, "rw") &&
+ strcmp(workload_type, "randrw")) {
+ fprintf(stderr,
+ "io pattern type must be one of\n"
+ "(read, write, randread, randwrite, rw, randrw)\n");
+ return 1;
+ }
+
+ if (!strcmp(workload_type, "read") ||
+ !strcmp(workload_type, "randread")) {
+ g_rw_percentage = 100;
+ }
+
+ if (!strcmp(workload_type, "write") ||
+ !strcmp(workload_type, "randwrite")) {
+ g_rw_percentage = 0;
+ }
+
+ if (!strcmp(workload_type, "read") ||
+ !strcmp(workload_type, "randread") ||
+ !strcmp(workload_type, "write") ||
+ !strcmp(workload_type, "randwrite")) {
+ if (mix_specified) {
+ fprintf(stderr, "Ignoring -M option... Please use -M option"
+ " only when using rw or randrw.\n");
+ }
+ }
+
+ if (!strcmp(workload_type, "rw") ||
+ !strcmp(workload_type, "randrw")) {
+ if (g_rw_percentage < 0 || g_rw_percentage > 100) {
+ fprintf(stderr,
+ "-M must be specified to value from 0 to 100 "
+ "for rw or randrw.\n");
+ return 1;
+ }
+ }
+
+ if (!strcmp(workload_type, "read") ||
+ !strcmp(workload_type, "write") ||
+ !strcmp(workload_type, "rw")) {
+ g_is_random = 0;
+ } else {
+ g_is_random = 1;
+ }
+
+ if (TAILQ_EMPTY(&g_trid_list)) {
+ fprintf(stderr, "You must specify at least one fabrics TRID.\n");
+ return -1;
+ }
+
+ /* check whether there is local PCIe type and fail. */
+ TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) {
+ if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
+ fprintf(stderr, "This application was not intended to be run on PCIe controllers.\n");
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+static int
+register_workers(void)
+{
+ uint32_t i;
+ struct worker_thread *worker;
+
+ g_workers = NULL;
+ g_num_workers = 0;
+
+ SPDK_ENV_FOREACH_CORE(i) {
+ worker = calloc(1, sizeof(*worker));
+ if (worker == NULL) {
+ fprintf(stderr, "Unable to allocate worker\n");
+ return -1;
+ }
+
+ worker->lcore = i;
+ worker->next = g_workers;
+ g_workers = worker;
+ g_num_workers++;
+ }
+
+ return 0;
+}
+
+static void
+unregister_workers(void)
+{
+ struct worker_thread *worker = g_workers;
+
+ /* Free namespace context and worker thread */
+ while (worker) {
+ struct worker_thread *next_worker = worker->next;
+ struct ns_worker_ctx *ns_ctx = worker->ns_ctx;
+
+ while (ns_ctx) {
+ struct ns_worker_ctx *next_ns_ctx = ns_ctx->next;
+ free(ns_ctx);
+ ns_ctx = next_ns_ctx;
+ }
+
+ free(worker);
+ worker = next_worker;
+ }
+}
+
+static bool
+probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
+ struct spdk_nvme_ctrlr_opts *opts)
+{
+ /* These should have been weeded out earlier. */
+ assert(trid->trtype != SPDK_NVME_TRANSPORT_PCIE);
+
+ printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n",
+ trid->traddr, trid->trsvcid,
+ trid->subnqn);
+
+ /* Set io_queue_size to UINT16_MAX, NVMe driver
+ * will then reduce this to MQES to maximize
+ * the io_queue_size as much as possible.
+ */
+ opts->io_queue_size = UINT16_MAX;
+
+ opts->keep_alive_timeout_ms = spdk_max(opts->keep_alive_timeout_ms,
+ g_keep_alive_timeout_in_ms);
+
+ opts->transport_retry_count = g_transport_retry_count;
+ opts->transport_ack_timeout = g_transport_ack_timeout;
+
+ return true;
+}
+
+static void
+attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
+ struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
+{
+ struct trid_entry *trid_entry = cb_ctx;
+
+ printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
+ trid->traddr, trid->trsvcid,
+ trid->subnqn);
+
+ register_ctrlr(ctrlr, trid_entry);
+}
+
+static int
+register_controllers(void)
+{
+ struct trid_entry *trid_entry;
+
+ printf("Initializing NVMe Controllers\n");
+
+ TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) {
+ if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) {
+ fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n",
+ trid_entry->trid.traddr);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+static void
+unregister_controllers(void)
+{
+ struct ctrlr_entry *entry = g_controllers;
+
+ while (entry) {
+ struct ctrlr_entry *next = entry->next;
+
+ spdk_nvme_detach(entry->ctrlr);
+ free(entry);
+ entry = next;
+ }
+}
+
+static int
+associate_workers_with_ns(void)
+{
+ struct ns_entry *entry = g_namespaces;
+ struct worker_thread *worker = g_workers;
+ struct ns_worker_ctx *ns_ctx;
+ int i, count;
+
+ count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
+
+ for (i = 0; i < count; i++) {
+ if (entry == NULL) {
+ break;
+ }
+
+ ns_ctx = calloc(1, sizeof(struct ns_worker_ctx));
+ if (!ns_ctx) {
+ return -1;
+ }
+
+ printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
+ ns_ctx->entry = entry;
+ ns_ctx->next = worker->ns_ctx;
+ worker->ns_ctx = ns_ctx;
+
+ worker = worker->next;
+ if (worker == NULL) {
+ worker = g_workers;
+ }
+
+ entry = entry->next;
+ if (entry == NULL) {
+ entry = g_namespaces;
+ }
+
+ }
+
+ return 0;
+}
+
+static void *
+nvme_poll_ctrlrs(void *arg)
+{
+ struct ctrlr_entry *entry;
+ const struct spdk_nvme_transport_id *old_trid;
+ int oldstate;
+ int rc;
+
+
+ spdk_unaffinitize_thread();
+
+ while (true) {
+ pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);
+
+ entry = g_controllers;
+ while (entry) {
+ rc = spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr);
+ /* This controller has encountered a failure at the transport level. reset it. */
+ if (rc == -ENXIO) {
+ if (entry->num_resets == 0) {
+ old_trid = spdk_nvme_ctrlr_get_transport_id(entry->ctrlr);
+ fprintf(stderr, "A controller has encountered a failure and is being reset.\n");
+ if (spdk_nvme_transport_id_compare(old_trid, &entry->failover_trid)) {
+ fprintf(stderr, "Resorting to new failover address %s\n", entry->failover_trid.traddr);
+ spdk_nvme_ctrlr_fail(entry->ctrlr);
+ rc = spdk_nvme_ctrlr_set_trid(entry->ctrlr, &entry->failover_trid);
+ if (rc != 0) {
+ fprintf(stderr, "Unable to fail over to back up trid.\n");
+ }
+ }
+ }
+
+ rc = spdk_nvme_ctrlr_reset(entry->ctrlr);
+ if (rc != 0) {
+ entry->num_resets++;
+ fprintf(stderr, "Unable to reset the controller.\n");
+
+ if (entry->num_resets > g_max_ctrlr_resets) {
+ fprintf(stderr, "Controller cannot be recovered. Exiting.\n");
+ exit(1);
+ }
+ } else {
+ fprintf(stderr, "Controller properly reset.\n");
+ }
+ }
+ entry = entry->next;
+ }
+
+ pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
+
+ /* This is a pthread cancellation point and cannot be removed. */
+ sleep(1);
+ }
+
+ return NULL;
+}
+
+int main(int argc, char **argv)
+{
+ int rc;
+ struct worker_thread *worker, *master_worker;
+ unsigned master_core;
+ struct spdk_env_opts opts;
+ pthread_t thread_id = 0;
+
+ rc = parse_args(argc, argv);
+ if (rc != 0) {
+ return rc;
+ }
+
+ spdk_env_opts_init(&opts);
+ opts.name = "reconnect";
+ if (g_core_mask) {
+ opts.core_mask = g_core_mask;
+ }
+
+ if (g_dpdk_mem) {
+ opts.mem_size = g_dpdk_mem;
+ }
+ if (spdk_env_init(&opts) < 0) {
+ fprintf(stderr, "Unable to initialize SPDK env\n");
+ rc = 1;
+ goto cleanup;
+ }
+
+ g_tsc_rate = spdk_get_ticks_hz();
+
+ if (register_workers() != 0) {
+ rc = 1;
+ goto cleanup;
+ }
+
+ if (register_controllers() != 0) {
+ rc = 1;
+ goto cleanup;
+ }
+
+ if (g_warn) {
+ printf("WARNING: Some requested NVMe devices were skipped\n");
+ }
+
+ if (g_num_namespaces == 0) {
+ fprintf(stderr, "No valid NVMe controllers found\n");
+ goto cleanup;
+ }
+
+ rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL);
+ if (rc != 0) {
+ fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n");
+ goto cleanup;
+ }
+
+ if (associate_workers_with_ns() != 0) {
+ rc = 1;
+ goto cleanup;
+ }
+
+ printf("Initialization complete. Launching workers.\n");
+
+ /* Launch all of the slave workers */
+ master_core = spdk_env_get_current_core();
+ master_worker = NULL;
+ worker = g_workers;
+ while (worker != NULL) {
+ if (worker->lcore != master_core) {
+ spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker);
+ } else {
+ assert(master_worker == NULL);
+ master_worker = worker;
+ }
+ worker = worker->next;
+ }
+
+ assert(master_worker != NULL);
+ rc = work_fn(master_worker);
+
+ spdk_env_thread_wait_all();
+
+cleanup:
+ if (thread_id && pthread_cancel(thread_id) == 0) {
+ pthread_join(thread_id, NULL);
+ }
+ unregister_trids();
+ unregister_namespaces();
+ unregister_controllers();
+ unregister_workers();
+
+ if (rc != 0) {
+ fprintf(stderr, "%s: errors occured\n", argv[0]);
+ /*
+ * return a generic error to the caller. This allows us to
+ * distinguish between a failure in the script and something
+ * like a segfault or an invalid access which causes the program
+ * to crash.
+ */
+ rc = 1;
+ }
+
+ return rc;
+}