summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme_pcie.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/spdk/lib/nvme/nvme_pcie.c')
-rw-r--r--src/spdk/lib/nvme/nvme_pcie.c2604
1 files changed, 2604 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme_pcie.c b/src/spdk/lib/nvme/nvme_pcie.c
new file mode 100644
index 000000000..132e34cdc
--- /dev/null
+++ b/src/spdk/lib/nvme/nvme_pcie.c
@@ -0,0 +1,2604 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright (c) Intel Corporation. All rights reserved.
+ * Copyright (c) 2017, IBM Corporation. All rights reserved.
+ * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * NVMe over PCIe transport
+ */
+
+#include "spdk/stdinc.h"
+#include "spdk/env.h"
+#include "spdk/likely.h"
+#include "spdk/string.h"
+#include "nvme_internal.h"
+#include "nvme_uevent.h"
+
+/*
+ * Number of completion queue entries to process before ringing the
+ * completion queue doorbell.
+ */
+#define NVME_MIN_COMPLETIONS (1)
+#define NVME_MAX_COMPLETIONS (128)
+
+/*
+ * NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
+ * segment.
+ */
+#define NVME_MAX_SGL_DESCRIPTORS (250)
+
+#define NVME_MAX_PRP_LIST_ENTRIES (503)
+
+struct nvme_pcie_enum_ctx {
+ struct spdk_nvme_probe_ctx *probe_ctx;
+ struct spdk_pci_addr pci_addr;
+ bool has_pci_addr;
+};
+
+/* PCIe transport extensions for spdk_nvme_ctrlr */
+struct nvme_pcie_ctrlr {
+ struct spdk_nvme_ctrlr ctrlr;
+
+ /** NVMe MMIO register space */
+ volatile struct spdk_nvme_registers *regs;
+
+ /** NVMe MMIO register size */
+ uint64_t regs_size;
+
+ struct {
+ /* BAR mapping address which contains controller memory buffer */
+ void *bar_va;
+
+ /* BAR physical address which contains controller memory buffer */
+ uint64_t bar_pa;
+
+ /* Controller memory buffer size in Bytes */
+ uint64_t size;
+
+ /* Current offset of controller memory buffer, relative to start of BAR virt addr */
+ uint64_t current_offset;
+
+ void *mem_register_addr;
+ size_t mem_register_size;
+ } cmb;
+
+ /** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
+ uint32_t doorbell_stride_u32;
+
+ /* Opaque handle to associated PCI device. */
+ struct spdk_pci_device *devhandle;
+
+ /* Flag to indicate the MMIO register has been remapped */
+ bool is_remapped;
+};
+
+struct nvme_tracker {
+ TAILQ_ENTRY(nvme_tracker) tq_list;
+
+ struct nvme_request *req;
+ uint16_t cid;
+
+ uint16_t rsvd0;
+ uint32_t rsvd1;
+
+ spdk_nvme_cmd_cb cb_fn;
+ void *cb_arg;
+
+ uint64_t prp_sgl_bus_addr;
+
+ /* Don't move, metadata SGL is always contiguous with Data Block SGL */
+ struct spdk_nvme_sgl_descriptor meta_sgl;
+ union {
+ uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
+ struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS];
+ } u;
+};
+/*
+ * struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
+ * and so that there is no padding required to meet alignment requirements.
+ */
+SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
+SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
+SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, meta_sgl) & 7) == 0, "SGL must be Qword aligned");
+
+struct nvme_pcie_poll_group {
+ struct spdk_nvme_transport_poll_group group;
+};
+
+/* PCIe transport extensions for spdk_nvme_qpair */
+struct nvme_pcie_qpair {
+ /* Submission queue tail doorbell */
+ volatile uint32_t *sq_tdbl;
+
+ /* Completion queue head doorbell */
+ volatile uint32_t *cq_hdbl;
+
+ /* Submission queue */
+ struct spdk_nvme_cmd *cmd;
+
+ /* Completion queue */
+ struct spdk_nvme_cpl *cpl;
+
+ TAILQ_HEAD(, nvme_tracker) free_tr;
+ TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
+
+ /* Array of trackers indexed by command ID. */
+ struct nvme_tracker *tr;
+
+ uint16_t num_entries;
+
+ uint8_t retry_count;
+
+ uint16_t max_completions_cap;
+
+ uint16_t last_sq_tail;
+ uint16_t sq_tail;
+ uint16_t cq_head;
+ uint16_t sq_head;
+
+ struct {
+ uint8_t phase : 1;
+ uint8_t delay_cmd_submit : 1;
+ uint8_t has_shadow_doorbell : 1;
+ } flags;
+
+ /*
+ * Base qpair structure.
+ * This is located after the hot data in this structure so that the important parts of
+ * nvme_pcie_qpair are in the same cache line.
+ */
+ struct spdk_nvme_qpair qpair;
+
+ struct {
+ /* Submission queue shadow tail doorbell */
+ volatile uint32_t *sq_tdbl;
+
+ /* Completion queue shadow head doorbell */
+ volatile uint32_t *cq_hdbl;
+
+ /* Submission queue event index */
+ volatile uint32_t *sq_eventidx;
+
+ /* Completion queue event index */
+ volatile uint32_t *cq_eventidx;
+ } shadow_doorbell;
+
+ /*
+ * Fields below this point should not be touched on the normal I/O path.
+ */
+
+ bool sq_in_cmb;
+
+ uint64_t cmd_bus_addr;
+ uint64_t cpl_bus_addr;
+
+ struct spdk_nvme_cmd *sq_vaddr;
+ struct spdk_nvme_cpl *cq_vaddr;
+};
+
+static int nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx,
+ struct spdk_pci_addr *pci_addr);
+static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
+ const struct spdk_nvme_io_qpair_opts *opts);
+static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
+
+__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
+static uint16_t g_signal_lock;
+static bool g_sigset = false;
+
+static void
+nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
+{
+ void *map_address;
+ uint16_t flag = 0;
+
+ if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
+ __ATOMIC_RELAXED)) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "request g_signal_lock failed\n");
+ return;
+ }
+
+ assert(g_thread_mmio_ctrlr != NULL);
+
+ if (!g_thread_mmio_ctrlr->is_remapped) {
+ map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
+ if (map_address == MAP_FAILED) {
+ SPDK_ERRLOG("mmap failed\n");
+ __atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
+ return;
+ }
+ memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
+ g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
+ g_thread_mmio_ctrlr->is_remapped = true;
+ }
+ __atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
+}
+
+static void
+nvme_pcie_ctrlr_setup_signal(void)
+{
+ struct sigaction sa;
+
+ sa.sa_sigaction = nvme_sigbus_fault_sighandler;
+ sigemptyset(&sa.sa_mask);
+ sa.sa_flags = SA_SIGINFO;
+ sigaction(SIGBUS, &sa, NULL);
+}
+
+static inline struct nvme_pcie_ctrlr *
+nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
+{
+ assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
+ return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
+}
+
+static int
+_nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
+{
+ struct spdk_nvme_ctrlr *ctrlr, *tmp;
+ struct spdk_uevent event;
+ struct spdk_pci_addr pci_addr;
+
+ if (g_spdk_nvme_driver->hotplug_fd < 0) {
+ return 0;
+ }
+
+ while (nvme_get_uevent(g_spdk_nvme_driver->hotplug_fd, &event) > 0) {
+ if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
+ event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
+ if (event.action == SPDK_NVME_UEVENT_ADD) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
+ event.traddr);
+ if (spdk_process_is_primary()) {
+ if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
+ nvme_pcie_ctrlr_attach(probe_ctx, &pci_addr);
+ }
+ }
+ } else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
+ struct spdk_nvme_transport_id trid;
+
+ memset(&trid, 0, sizeof(trid));
+ spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
+ snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
+
+ ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
+ if (ctrlr == NULL) {
+ return 0;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
+ event.traddr);
+
+ nvme_ctrlr_fail(ctrlr, true);
+
+ /* get the user app to clean up and stop I/O */
+ if (ctrlr->remove_cb) {
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ ctrlr->remove_cb(probe_ctx->cb_ctx, ctrlr);
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ }
+ }
+ }
+ }
+
+ /* Initiate removal of physically hotremoved PCI controllers. Even after
+ * they're hotremoved from the system, SPDK might still report them via RPC.
+ */
+ TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
+ bool do_remove = false;
+ struct nvme_pcie_ctrlr *pctrlr;
+
+ if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
+ continue;
+ }
+
+ pctrlr = nvme_pcie_ctrlr(ctrlr);
+ if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
+ do_remove = true;
+ }
+
+ if (do_remove) {
+ nvme_ctrlr_fail(ctrlr, true);
+ if (ctrlr->remove_cb) {
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ ctrlr->remove_cb(probe_ctx->cb_ctx, ctrlr);
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ }
+ }
+ }
+ return 0;
+}
+
+static inline struct nvme_pcie_qpair *
+nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
+{
+ assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
+ return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
+}
+
+static volatile void *
+nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ return (volatile void *)((uintptr_t)pctrlr->regs + offset);
+}
+
+static int
+nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
+ g_thread_mmio_ctrlr = NULL;
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
+ g_thread_mmio_ctrlr = NULL;
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
+ assert(value != NULL);
+ g_thread_mmio_ctrlr = pctrlr;
+ *value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
+ g_thread_mmio_ctrlr = NULL;
+ if (~(*value) == 0) {
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
+ assert(value != NULL);
+ g_thread_mmio_ctrlr = pctrlr;
+ *value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
+ g_thread_mmio_ctrlr = NULL;
+ if (~(*value) == 0) {
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
+{
+ return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
+ value);
+}
+
+static int
+nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
+{
+ return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
+ value);
+}
+
+static int
+nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
+{
+ return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
+ aqa->raw);
+}
+
+static int
+nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
+{
+ return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
+ &cmbloc->raw);
+}
+
+static int
+nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
+{
+ return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
+ &cmbsz->raw);
+}
+
+static uint32_t
+nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
+{
+ /*
+ * For commands requiring more than 2 PRP entries, one PRP will be
+ * embedded in the command (prp1), and the rest of the PRP entries
+ * will be in a list pointed to by the command (prp2). This means
+ * that real max number of PRP entries we support is 506+1, which
+ * results in a max xfer size of 506*ctrlr->page_size.
+ */
+ return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
+}
+
+static uint16_t
+nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
+{
+ return NVME_MAX_SGL_DESCRIPTORS;
+}
+
+static void
+nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc;
+ void *addr = NULL;
+ uint32_t bir;
+ union spdk_nvme_cmbsz_register cmbsz;
+ union spdk_nvme_cmbloc_register cmbloc;
+ uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0;
+
+ if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
+ nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
+ SPDK_ERRLOG("get registers failed\n");
+ goto exit;
+ }
+
+ if (!cmbsz.bits.sz) {
+ goto exit;
+ }
+
+ bir = cmbloc.bits.bir;
+ /* Values 0 2 3 4 5 are valid for BAR */
+ if (bir > 5 || bir == 1) {
+ goto exit;
+ }
+
+ /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
+ unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
+ /* controller memory buffer size in Bytes */
+ size = unit_size * cmbsz.bits.sz;
+ /* controller memory buffer offset from BAR in Bytes */
+ offset = unit_size * cmbloc.bits.ofst;
+
+ rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
+ &bar_phys_addr, &bar_size);
+ if ((rc != 0) || addr == NULL) {
+ goto exit;
+ }
+
+ if (offset > bar_size) {
+ goto exit;
+ }
+
+ if (size > bar_size - offset) {
+ goto exit;
+ }
+
+ pctrlr->cmb.bar_va = addr;
+ pctrlr->cmb.bar_pa = bar_phys_addr;
+ pctrlr->cmb.size = size;
+ pctrlr->cmb.current_offset = offset;
+
+ if (!cmbsz.bits.sqs) {
+ pctrlr->ctrlr.opts.use_cmb_sqs = false;
+ }
+
+ return;
+exit:
+ pctrlr->ctrlr.opts.use_cmb_sqs = false;
+ return;
+}
+
+static int
+nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc = 0;
+ union spdk_nvme_cmbloc_register cmbloc;
+ void *addr = pctrlr->cmb.bar_va;
+
+ if (addr) {
+ if (pctrlr->cmb.mem_register_addr) {
+ spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
+ }
+
+ if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
+ SPDK_ERRLOG("get_cmbloc() failed\n");
+ return -EIO;
+ }
+ rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
+ }
+ return rc;
+}
+
+static int
+nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+
+ if (pctrlr->cmb.bar_va == NULL) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
+ return -ENOTSUP;
+ }
+
+ if (ctrlr->opts.use_cmb_sqs) {
+ SPDK_ERRLOG("CMB is already in use for submission queues.\n");
+ return -ENOTSUP;
+ }
+
+ return 0;
+}
+
+static void *
+nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ union spdk_nvme_cmbsz_register cmbsz;
+ union spdk_nvme_cmbloc_register cmbloc;
+ uint64_t mem_register_start, mem_register_end;
+ int rc;
+
+ if (pctrlr->cmb.mem_register_addr != NULL) {
+ *size = pctrlr->cmb.mem_register_size;
+ return pctrlr->cmb.mem_register_addr;
+ }
+
+ *size = 0;
+
+ if (pctrlr->cmb.bar_va == NULL) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
+ return NULL;
+ }
+
+ if (ctrlr->opts.use_cmb_sqs) {
+ SPDK_ERRLOG("CMB is already in use for submission queues.\n");
+ return NULL;
+ }
+
+ if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
+ nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
+ SPDK_ERRLOG("get registers failed\n");
+ return NULL;
+ }
+
+ /* If only SQS is supported */
+ if (!(cmbsz.bits.wds || cmbsz.bits.rds)) {
+ return NULL;
+ }
+
+ /* If CMB is less than 4MiB in size then abort CMB mapping */
+ if (pctrlr->cmb.size < (1ULL << 22)) {
+ return NULL;
+ }
+
+ mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
+ VALUE_2MB - 1);
+ mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
+ pctrlr->cmb.size);
+ pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
+ pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;
+
+ rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
+ if (rc) {
+ SPDK_ERRLOG("spdk_mem_register() failed\n");
+ return NULL;
+ }
+
+ pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
+ pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;
+
+ *size = pctrlr->cmb.mem_register_size;
+ return pctrlr->cmb.mem_register_addr;
+}
+
+static int
+nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ int rc;
+
+ if (pctrlr->cmb.mem_register_addr == NULL) {
+ return 0;
+ }
+
+ rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
+
+ if (rc == 0) {
+ pctrlr->cmb.mem_register_addr = NULL;
+ pctrlr->cmb.mem_register_size = 0;
+ }
+
+ return rc;
+}
+
+static int
+nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc;
+ void *addr = NULL;
+ uint64_t phys_addr = 0, size = 0;
+
+ rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
+ &phys_addr, &size);
+
+ if ((addr == NULL) || (rc != 0)) {
+ SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
+ rc, addr);
+ return -1;
+ }
+
+ pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
+ pctrlr->regs_size = size;
+ nvme_pcie_ctrlr_map_cmb(pctrlr);
+
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
+{
+ int rc = 0;
+ void *addr = (void *)pctrlr->regs;
+
+ if (pctrlr->ctrlr.is_removed) {
+ return rc;
+ }
+
+ rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
+ if (rc != 0) {
+ SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
+ return -1;
+ }
+
+ if (addr) {
+ /* NOTE: addr may have been remapped here. We're relying on DPDK to call
+ * munmap internally.
+ */
+ rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
+ }
+ return rc;
+}
+
+static int
+nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t num_entries)
+{
+ struct nvme_pcie_qpair *pqpair;
+ int rc;
+
+ pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pqpair == NULL) {
+ return -ENOMEM;
+ }
+
+ pqpair->num_entries = num_entries;
+ pqpair->flags.delay_cmd_submit = 0;
+
+ ctrlr->adminq = &pqpair->qpair;
+
+ rc = nvme_qpair_init(ctrlr->adminq,
+ 0, /* qpair ID */
+ ctrlr,
+ SPDK_NVME_QPRIO_URGENT,
+ num_entries);
+ if (rc != 0) {
+ return rc;
+ }
+
+ return nvme_pcie_qpair_construct(ctrlr->adminq, NULL);
+}
+
+/* This function must only be called while holding g_spdk_nvme_driver->lock */
+static int
+pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
+{
+ struct spdk_nvme_transport_id trid = {};
+ struct nvme_pcie_enum_ctx *enum_ctx = ctx;
+ struct spdk_nvme_ctrlr *ctrlr;
+ struct spdk_pci_addr pci_addr;
+
+ pci_addr = spdk_pci_device_get_addr(pci_dev);
+
+ spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
+ spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
+
+ ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
+ if (!spdk_process_is_primary()) {
+ if (!ctrlr) {
+ SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
+ return -1;
+ }
+
+ return nvme_ctrlr_add_process(ctrlr, pci_dev);
+ }
+
+ /* check whether user passes the pci_addr */
+ if (enum_ctx->has_pci_addr &&
+ (spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
+ return 1;
+ }
+
+ return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
+}
+
+static int
+nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
+ bool direct_connect)
+{
+ struct nvme_pcie_enum_ctx enum_ctx = {};
+
+ enum_ctx.probe_ctx = probe_ctx;
+
+ if (strlen(probe_ctx->trid.traddr) != 0) {
+ if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
+ return -1;
+ }
+ enum_ctx.has_pci_addr = true;
+ }
+
+ /* Only the primary process can monitor hotplug. */
+ if (spdk_process_is_primary()) {
+ _nvme_pcie_hotplug_monitor(probe_ctx);
+ }
+
+ if (enum_ctx.has_pci_addr == false) {
+ return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
+ pcie_nvme_enum_cb, &enum_ctx);
+ } else {
+ return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
+ pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
+ }
+}
+
+static int
+nvme_pcie_ctrlr_attach(struct spdk_nvme_probe_ctx *probe_ctx, struct spdk_pci_addr *pci_addr)
+{
+ struct nvme_pcie_enum_ctx enum_ctx;
+
+ enum_ctx.probe_ctx = probe_ctx;
+ enum_ctx.has_pci_addr = true;
+ enum_ctx.pci_addr = *pci_addr;
+
+ return spdk_pci_enumerate(spdk_pci_nvme_get_driver(), pcie_nvme_enum_cb, &enum_ctx);
+}
+
+static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
+ const struct spdk_nvme_ctrlr_opts *opts,
+ void *devhandle)
+{
+ struct spdk_pci_device *pci_dev = devhandle;
+ struct nvme_pcie_ctrlr *pctrlr;
+ union spdk_nvme_cap_register cap;
+ union spdk_nvme_vs_register vs;
+ uint16_t cmd_reg;
+ int rc;
+ struct spdk_pci_id pci_id;
+
+ rc = spdk_pci_device_claim(pci_dev);
+ if (rc < 0) {
+ SPDK_ERRLOG("could not claim device %s (%s)\n",
+ trid->traddr, spdk_strerror(-rc));
+ return NULL;
+ }
+
+ pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
+ SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pctrlr == NULL) {
+ spdk_pci_device_unclaim(pci_dev);
+ SPDK_ERRLOG("could not allocate ctrlr\n");
+ return NULL;
+ }
+
+ pctrlr->is_remapped = false;
+ pctrlr->ctrlr.is_removed = false;
+ pctrlr->devhandle = devhandle;
+ pctrlr->ctrlr.opts = *opts;
+ pctrlr->ctrlr.trid = *trid;
+
+ rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
+ if (rc != 0) {
+ spdk_pci_device_unclaim(pci_dev);
+ spdk_free(pctrlr);
+ return NULL;
+ }
+
+ rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
+ if (rc != 0) {
+ spdk_pci_device_unclaim(pci_dev);
+ spdk_free(pctrlr);
+ return NULL;
+ }
+
+ /* Enable PCI busmaster and disable INTx */
+ spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4);
+ cmd_reg |= 0x404;
+ spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4);
+
+ if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
+ SPDK_ERRLOG("get_cap() failed\n");
+ spdk_pci_device_unclaim(pci_dev);
+ spdk_free(pctrlr);
+ return NULL;
+ }
+
+ if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
+ SPDK_ERRLOG("get_vs() failed\n");
+ spdk_pci_device_unclaim(pci_dev);
+ spdk_free(pctrlr);
+ return NULL;
+ }
+
+ nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
+
+ /* Doorbell stride is 2 ^ (dstrd + 2),
+ * but we want multiples of 4, so drop the + 2 */
+ pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
+
+ pci_id = spdk_pci_device_get_id(pci_dev);
+ pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
+
+ rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size);
+ if (rc != 0) {
+ nvme_ctrlr_destruct(&pctrlr->ctrlr);
+ return NULL;
+ }
+
+ /* Construct the primary process properties */
+ rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
+ if (rc != 0) {
+ nvme_ctrlr_destruct(&pctrlr->ctrlr);
+ return NULL;
+ }
+
+ if (g_sigset != true) {
+ nvme_pcie_ctrlr_setup_signal();
+ g_sigset = true;
+ }
+
+ return &pctrlr->ctrlr;
+}
+
+static int
+nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
+ union spdk_nvme_aqa_register aqa;
+
+ if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
+ SPDK_ERRLOG("set_asq() failed\n");
+ return -EIO;
+ }
+
+ if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
+ SPDK_ERRLOG("set_acq() failed\n");
+ return -EIO;
+ }
+
+ aqa.raw = 0;
+ /* acqs and asqs are 0-based. */
+ aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
+ aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
+
+ if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
+ SPDK_ERRLOG("set_aqa() failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int
+nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
+
+ if (ctrlr->adminq) {
+ nvme_pcie_qpair_destroy(ctrlr->adminq);
+ }
+
+ nvme_ctrlr_destruct_finish(ctrlr);
+
+ nvme_ctrlr_free_processes(ctrlr);
+
+ nvme_pcie_ctrlr_free_bars(pctrlr);
+
+ if (devhandle) {
+ spdk_pci_device_unclaim(devhandle);
+ spdk_pci_device_detach(devhandle);
+ }
+
+ spdk_free(pctrlr);
+
+ return 0;
+}
+
+static void
+nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
+{
+ tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
+ tr->cid = cid;
+ tr->req = NULL;
+}
+
+static int
+nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ uint32_t i;
+
+ /* all head/tail vals are set to 0 */
+ pqpair->last_sq_tail = pqpair->sq_tail = pqpair->sq_head = pqpair->cq_head = 0;
+
+ /*
+ * First time through the completion queue, HW will set phase
+ * bit on completions to 1. So set this to 1 here, indicating
+ * we're looking for a 1 to know which entries have completed.
+ * we'll toggle the bit each time when the completion queue
+ * rolls over.
+ */
+ pqpair->flags.phase = 1;
+ for (i = 0; i < pqpair->num_entries; i++) {
+ pqpair->cpl[i].status.p = 0;
+ }
+
+ return 0;
+}
+
+static void *
+nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t size, uint64_t alignment,
+ uint64_t *phys_addr)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ uintptr_t addr;
+
+ if (pctrlr->cmb.mem_register_addr != NULL) {
+ /* BAR is mapped for data */
+ return NULL;
+ }
+
+ addr = (uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset;
+ addr = (addr + (alignment - 1)) & ~(alignment - 1);
+
+ /* CMB may only consume part of the BAR, calculate accordingly */
+ if (addr + size > ((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.size)) {
+ SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
+ return NULL;
+ }
+ *phys_addr = pctrlr->cmb.bar_pa + addr - (uintptr_t)pctrlr->cmb.bar_va;
+
+ pctrlr->cmb.current_offset = (addr + size) - (uintptr_t)pctrlr->cmb.bar_va;
+
+ return (void *)addr;
+}
+
+static int
+nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair,
+ const struct spdk_nvme_io_qpair_opts *opts)
+{
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr;
+ uint16_t i;
+ volatile uint32_t *doorbell_base;
+ uint16_t num_trackers;
+ size_t page_align = sysconf(_SC_PAGESIZE);
+ size_t queue_align, queue_len;
+ uint32_t flags = SPDK_MALLOC_DMA;
+ uint64_t sq_paddr = 0;
+ uint64_t cq_paddr = 0;
+
+ if (opts) {
+ pqpair->sq_vaddr = opts->sq.vaddr;
+ pqpair->cq_vaddr = opts->cq.vaddr;
+ sq_paddr = opts->sq.paddr;
+ cq_paddr = opts->cq.paddr;
+ }
+
+ pqpair->retry_count = ctrlr->opts.transport_retry_count;
+
+ /*
+ * Limit the maximum number of completions to return per call to prevent wraparound,
+ * and calculate how many trackers can be submitted at once without overflowing the
+ * completion queue.
+ */
+ pqpair->max_completions_cap = pqpair->num_entries / 4;
+ pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
+ pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
+ num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
+
+ SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
+ pqpair->max_completions_cap, num_trackers);
+
+ assert(num_trackers != 0);
+
+ pqpair->sq_in_cmb = false;
+
+ if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
+ flags |= SPDK_MALLOC_SHARE;
+ }
+
+ /* cmd and cpl rings must be aligned on page size boundaries. */
+ if (ctrlr->opts.use_cmb_sqs) {
+ pqpair->cmd = nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
+ page_align, &pqpair->cmd_bus_addr);
+ if (pqpair->cmd != NULL) {
+ pqpair->sq_in_cmb = true;
+ }
+ }
+
+ if (pqpair->sq_in_cmb == false) {
+ if (pqpair->sq_vaddr) {
+ pqpair->cmd = pqpair->sq_vaddr;
+ } else {
+ /* To ensure physical address contiguity we make each ring occupy
+ * a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
+ */
+ queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cmd);
+ queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
+ pqpair->cmd = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
+ if (pqpair->cmd == NULL) {
+ SPDK_ERRLOG("alloc qpair_cmd failed\n");
+ return -ENOMEM;
+ }
+ }
+ if (sq_paddr) {
+ assert(pqpair->sq_vaddr != NULL);
+ pqpair->cmd_bus_addr = sq_paddr;
+ } else {
+ pqpair->cmd_bus_addr = spdk_vtophys(pqpair->cmd, NULL);
+ if (pqpair->cmd_bus_addr == SPDK_VTOPHYS_ERROR) {
+ SPDK_ERRLOG("spdk_vtophys(pqpair->cmd) failed\n");
+ return -EFAULT;
+ }
+ }
+ }
+
+ if (pqpair->cq_vaddr) {
+ pqpair->cpl = pqpair->cq_vaddr;
+ } else {
+ queue_len = pqpair->num_entries * sizeof(struct spdk_nvme_cpl);
+ queue_align = spdk_max(spdk_align32pow2(queue_len), page_align);
+ pqpair->cpl = spdk_zmalloc(queue_len, queue_align, NULL, SPDK_ENV_SOCKET_ID_ANY, flags);
+ if (pqpair->cpl == NULL) {
+ SPDK_ERRLOG("alloc qpair_cpl failed\n");
+ return -ENOMEM;
+ }
+ }
+ if (cq_paddr) {
+ assert(pqpair->cq_vaddr != NULL);
+ pqpair->cpl_bus_addr = cq_paddr;
+ } else {
+ pqpair->cpl_bus_addr = spdk_vtophys(pqpair->cpl, NULL);
+ if (pqpair->cpl_bus_addr == SPDK_VTOPHYS_ERROR) {
+ SPDK_ERRLOG("spdk_vtophys(pqpair->cpl) failed\n");
+ return -EFAULT;
+ }
+ }
+
+ doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
+ pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
+ pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
+
+ /*
+ * Reserve space for all of the trackers in a single allocation.
+ * struct nvme_tracker must be padded so that its size is already a power of 2.
+ * This ensures the PRP list embedded in the nvme_tracker object will not span a
+ * 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
+ */
+ pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
+ SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pqpair->tr == NULL) {
+ SPDK_ERRLOG("nvme_tr failed\n");
+ return -ENOMEM;
+ }
+
+ TAILQ_INIT(&pqpair->free_tr);
+ TAILQ_INIT(&pqpair->outstanding_tr);
+
+ for (i = 0; i < num_trackers; i++) {
+ tr = &pqpair->tr[i];
+ nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr, NULL));
+ TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
+ }
+
+ nvme_pcie_qpair_reset(qpair);
+
+ return 0;
+}
+
+/* Used when dst points to MMIO (i.e. CMB) in a virtual machine - in these cases we must
+ * not use wide instructions because QEMU will not emulate such instructions to MMIO space.
+ * So this function ensures we only copy 8 bytes at a time.
+ */
+static inline void
+nvme_pcie_copy_command_mmio(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
+{
+ uint64_t *dst64 = (uint64_t *)dst;
+ const uint64_t *src64 = (const uint64_t *)src;
+ uint32_t i;
+
+ for (i = 0; i < sizeof(*dst) / 8; i++) {
+ dst64[i] = src64[i];
+ }
+}
+
+static inline void
+nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
+{
+ /* dst and src are known to be non-overlapping and 64-byte aligned. */
+#if defined(__SSE2__)
+ __m128i *d128 = (__m128i *)dst;
+ const __m128i *s128 = (const __m128i *)src;
+
+ _mm_stream_si128(&d128[0], _mm_load_si128(&s128[0]));
+ _mm_stream_si128(&d128[1], _mm_load_si128(&s128[1]));
+ _mm_stream_si128(&d128[2], _mm_load_si128(&s128[2]));
+ _mm_stream_si128(&d128[3], _mm_load_si128(&s128[3]));
+#else
+ *dst = *src;
+#endif
+}
+
+/**
+ * Note: the ctrlr_lock must be held when calling this function.
+ */
+static void
+nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
+ struct nvme_request *req, struct spdk_nvme_cpl *cpl)
+{
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_request *active_req = req;
+ struct spdk_nvme_ctrlr_process *active_proc;
+
+ /*
+ * The admin request is from another process. Move to the per
+ * process list for that process to handle it later.
+ */
+ assert(nvme_qpair_is_admin_queue(qpair));
+ assert(active_req->pid != getpid());
+
+ active_proc = nvme_ctrlr_get_process(ctrlr, active_req->pid);
+ if (active_proc) {
+ /* Save the original completion information */
+ memcpy(&active_req->cpl, cpl, sizeof(*cpl));
+ STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
+ } else {
+ SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
+ active_req->pid);
+
+ nvme_free_request(active_req);
+ }
+}
+
+/**
+ * Note: the ctrlr_lock must be held when calling this function.
+ */
+static void
+nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
+{
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_request *req, *tmp_req;
+ pid_t pid = getpid();
+ struct spdk_nvme_ctrlr_process *proc;
+
+ /*
+ * Check whether there is any pending admin request from
+ * other active processes.
+ */
+ assert(nvme_qpair_is_admin_queue(qpair));
+
+ proc = nvme_ctrlr_get_current_process(ctrlr);
+ if (!proc) {
+ SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
+ assert(proc);
+ return;
+ }
+
+ STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
+ STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
+
+ assert(req->pid == pid);
+
+ nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &req->cpl);
+ nvme_free_request(req);
+ }
+}
+
+static inline int
+nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
+{
+ return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
+}
+
+static bool
+nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
+ volatile uint32_t *shadow_db,
+ volatile uint32_t *eventidx)
+{
+ uint16_t old;
+
+ if (!shadow_db) {
+ return true;
+ }
+
+ old = *shadow_db;
+ *shadow_db = value;
+
+ /*
+ * Ensure that the doorbell is updated before reading the EventIdx from
+ * memory
+ */
+ spdk_mb();
+
+ if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
+ return false;
+ }
+
+ return true;
+}
+
+static inline void
+nvme_pcie_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
+ bool need_mmio = true;
+
+ if (qpair->first_fused_submitted) {
+ /* This is first cmd of two fused commands - don't ring doorbell */
+ qpair->first_fused_submitted = 0;
+ return;
+ }
+
+ if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
+ need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
+ pqpair->sq_tail,
+ pqpair->shadow_doorbell.sq_tdbl,
+ pqpair->shadow_doorbell.sq_eventidx);
+ }
+
+ if (spdk_likely(need_mmio)) {
+ spdk_wmb();
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
+ g_thread_mmio_ctrlr = NULL;
+ }
+}
+
+static inline void
+nvme_pcie_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
+ bool need_mmio = true;
+
+ if (spdk_unlikely(pqpair->flags.has_shadow_doorbell)) {
+ need_mmio = nvme_pcie_qpair_update_mmio_required(qpair,
+ pqpair->cq_head,
+ pqpair->shadow_doorbell.cq_hdbl,
+ pqpair->shadow_doorbell.cq_eventidx);
+ }
+
+ if (spdk_likely(need_mmio)) {
+ g_thread_mmio_ctrlr = pctrlr;
+ spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
+ g_thread_mmio_ctrlr = NULL;
+ }
+}
+
+static void
+nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
+{
+ struct nvme_request *req;
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+
+ req = tr->req;
+ assert(req != NULL);
+
+ if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) {
+ /* This is first cmd of two fused commands - don't ring doorbell */
+ qpair->first_fused_submitted = 1;
+ }
+
+ /* Don't use wide instructions to copy NVMe command, this is limited by QEMU
+ * virtual NVMe controller, the maximum access width is 8 Bytes for one time.
+ */
+ if (spdk_unlikely((ctrlr->quirks & NVME_QUIRK_MAXIMUM_PCI_ACCESS_WIDTH) && pqpair->sq_in_cmb)) {
+ nvme_pcie_copy_command_mmio(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
+ } else {
+ /* Copy the command from the tracker to the submission queue. */
+ nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
+ }
+
+ if (spdk_unlikely(++pqpair->sq_tail == pqpair->num_entries)) {
+ pqpair->sq_tail = 0;
+ }
+
+ if (spdk_unlikely(pqpair->sq_tail == pqpair->sq_head)) {
+ SPDK_ERRLOG("sq_tail is passing sq_head!\n");
+ }
+
+ if (!pqpair->flags.delay_cmd_submit) {
+ nvme_pcie_qpair_ring_sq_doorbell(qpair);
+ }
+}
+
+static void
+nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
+ struct spdk_nvme_cpl *cpl, bool print_on_error)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_request *req;
+ bool retry, error;
+ bool req_from_current_proc = true;
+
+ req = tr->req;
+
+ assert(req != NULL);
+
+ error = spdk_nvme_cpl_is_error(cpl);
+ retry = error && nvme_completion_is_retry(cpl) &&
+ req->retries < pqpair->retry_count;
+
+ if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
+ spdk_nvme_qpair_print_command(qpair, &req->cmd);
+ spdk_nvme_qpair_print_completion(qpair, cpl);
+ }
+
+ assert(cpl->cid == req->cmd.cid);
+
+ if (retry) {
+ req->retries++;
+ nvme_pcie_qpair_submit_tracker(qpair, tr);
+ } else {
+ TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
+
+ /* Only check admin requests from different processes. */
+ if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
+ req_from_current_proc = false;
+ nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
+ } else {
+ nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
+ }
+
+ if (req_from_current_proc == true) {
+ nvme_qpair_free_request(qpair, req);
+ }
+
+ tr->req = NULL;
+
+ TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
+ }
+}
+
+static void
+nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
+ struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
+ bool print_on_error)
+{
+ struct spdk_nvme_cpl cpl;
+
+ memset(&cpl, 0, sizeof(cpl));
+ cpl.sqid = qpair->id;
+ cpl.cid = tr->cid;
+ cpl.status.sct = sct;
+ cpl.status.sc = sc;
+ cpl.status.dnr = dnr;
+ nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
+}
+
+static void
+nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr, *temp, *last;
+
+ last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
+
+ /* Abort previously submitted (outstanding) trs */
+ TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
+ if (!qpair->ctrlr->opts.disable_error_logging) {
+ SPDK_ERRLOG("aborting outstanding command\n");
+ }
+ nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
+ SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
+
+ if (tr == last) {
+ break;
+ }
+ }
+}
+
+static int
+nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
+ int (*iter_fn)(struct nvme_request *req, void *arg),
+ void *arg)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr, *tmp;
+ int rc;
+
+ assert(iter_fn != NULL);
+
+ TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
+ assert(tr->req != NULL);
+
+ rc = iter_fn(tr->req, arg);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+static void
+nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr;
+
+ tr = TAILQ_FIRST(&pqpair->outstanding_tr);
+ while (tr != NULL) {
+ assert(tr->req != NULL);
+ if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
+ nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
+ SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
+ false);
+ tr = TAILQ_FIRST(&pqpair->outstanding_tr);
+ } else {
+ tr = TAILQ_NEXT(tr, tq_list);
+ }
+ }
+}
+
+static void
+nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
+{
+ nvme_pcie_admin_qpair_abort_aers(qpair);
+}
+
+static int
+nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ nvme_pcie_admin_qpair_destroy(qpair);
+ }
+ /*
+ * We check sq_vaddr and cq_vaddr to see if the user specified the memory
+ * buffers when creating the I/O queue.
+ * If the user specified them, we cannot free that memory.
+ * Nor do we free it if it's in the CMB.
+ */
+ if (!pqpair->sq_vaddr && pqpair->cmd && !pqpair->sq_in_cmb) {
+ spdk_free(pqpair->cmd);
+ }
+ if (!pqpair->cq_vaddr && pqpair->cpl) {
+ spdk_free(pqpair->cpl);
+ }
+ if (pqpair->tr) {
+ spdk_free(pqpair->tr);
+ }
+
+ nvme_qpair_deinit(qpair);
+
+ spdk_free(pqpair);
+
+ return 0;
+}
+
+static void
+nvme_pcie_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
+{
+ nvme_pcie_qpair_abort_trackers(qpair, dnr);
+}
+
+static int
+nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
+ struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
+ void *cb_arg)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
+
+ cmd->cdw10_bits.create_io_q.qid = io_que->id;
+ cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
+
+ cmd->cdw11_bits.create_io_cq.pc = 1;
+ cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
+ struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
+
+ cmd->cdw10_bits.create_io_q.qid = io_que->id;
+ cmd->cdw10_bits.create_io_q.qsize = pqpair->num_entries - 1;
+ cmd->cdw11_bits.create_io_sq.pc = 1;
+ cmd->cdw11_bits.create_io_sq.qprio = io_que->qprio;
+ cmd->cdw11_bits.create_io_sq.cqid = io_que->id;
+ cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
+ spdk_nvme_cmd_cb cb_fn, void *cb_arg)
+{
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
+ cmd->cdw10_bits.delete_io_q.qid = qpair->id;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
+ spdk_nvme_cmd_cb cb_fn, void *cb_arg)
+{
+ struct nvme_request *req;
+ struct spdk_nvme_cmd *cmd;
+
+ req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
+ if (req == NULL) {
+ return -ENOMEM;
+ }
+
+ cmd = &req->cmd;
+ cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
+ cmd->cdw10_bits.delete_io_q.qid = qpair->id;
+
+ return nvme_ctrlr_submit_admin_request(ctrlr, req);
+}
+
+static int
+_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
+ uint16_t qid)
+{
+ struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_completion_poll_status *status;
+ int rc;
+
+ status = calloc(1, sizeof(*status));
+ if (!status) {
+ SPDK_ERRLOG("Failed to allocate status tracker\n");
+ return -ENOMEM;
+ }
+
+ rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
+ if (rc != 0) {
+ free(status);
+ return rc;
+ }
+
+ if (nvme_wait_for_completion(ctrlr->adminq, status)) {
+ SPDK_ERRLOG("nvme_create_io_cq failed!\n");
+ if (!status->timed_out) {
+ free(status);
+ }
+ return -1;
+ }
+
+ memset(status, 0, sizeof(*status));
+ rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
+ if (rc != 0) {
+ free(status);
+ return rc;
+ }
+
+ if (nvme_wait_for_completion(ctrlr->adminq, status)) {
+ SPDK_ERRLOG("nvme_create_io_sq failed!\n");
+ if (status->timed_out) {
+ /* Request is still queued, the memory will be freed in a completion callback.
+ allocate a new request */
+ status = calloc(1, sizeof(*status));
+ if (!status) {
+ SPDK_ERRLOG("Failed to allocate status tracker\n");
+ return -ENOMEM;
+ }
+ }
+
+ memset(status, 0, sizeof(*status));
+ /* Attempt to delete the completion queue */
+ rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, status);
+ if (rc != 0) {
+ /* The originall or newly allocated status structure can be freed since
+ * the corresponding request has been completed of failed to submit */
+ free(status);
+ return -1;
+ }
+ nvme_wait_for_completion(ctrlr->adminq, status);
+ if (!status->timed_out) {
+ /* status can be freed regardless of nvme_wait_for_completion return value */
+ free(status);
+ }
+ return -1;
+ }
+
+ if (ctrlr->shadow_doorbell) {
+ pqpair->shadow_doorbell.sq_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) *
+ pctrlr->doorbell_stride_u32;
+ pqpair->shadow_doorbell.cq_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) *
+ pctrlr->doorbell_stride_u32;
+ pqpair->shadow_doorbell.sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) *
+ pctrlr->doorbell_stride_u32;
+ pqpair->shadow_doorbell.cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) *
+ pctrlr->doorbell_stride_u32;
+ pqpair->flags.has_shadow_doorbell = 1;
+ } else {
+ pqpair->flags.has_shadow_doorbell = 0;
+ }
+ nvme_pcie_qpair_reset(qpair);
+ free(status);
+
+ return 0;
+}
+
+static struct spdk_nvme_qpair *
+nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
+ const struct spdk_nvme_io_qpair_opts *opts)
+{
+ struct nvme_pcie_qpair *pqpair;
+ struct spdk_nvme_qpair *qpair;
+ int rc;
+
+ assert(ctrlr != NULL);
+
+ pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
+ SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
+ if (pqpair == NULL) {
+ return NULL;
+ }
+
+ pqpair->num_entries = opts->io_queue_size;
+ pqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;
+
+ qpair = &pqpair->qpair;
+
+ rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
+ if (rc != 0) {
+ nvme_pcie_qpair_destroy(qpair);
+ return NULL;
+ }
+
+ rc = nvme_pcie_qpair_construct(qpair, opts);
+
+ if (rc != 0) {
+ nvme_pcie_qpair_destroy(qpair);
+ return NULL;
+ }
+
+ return qpair;
+}
+
+static int
+nvme_pcie_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ return 0;
+ } else {
+ return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
+ }
+}
+
+static void
+nvme_pcie_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+}
+
+static int
+nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_completion_poll_status *status;
+ int rc;
+
+ assert(ctrlr != NULL);
+
+ if (ctrlr->is_removed) {
+ goto free;
+ }
+
+ status = calloc(1, sizeof(*status));
+ if (!status) {
+ SPDK_ERRLOG("Failed to allocate status tracker\n");
+ return -ENOMEM;
+ }
+
+ /* Delete the I/O submission queue */
+ rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
+ if (rc != 0) {
+ SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
+ free(status);
+ return rc;
+ }
+ if (nvme_wait_for_completion(ctrlr->adminq, status)) {
+ if (!status->timed_out) {
+ free(status);
+ }
+ return -1;
+ }
+
+ memset(status, 0, sizeof(*status));
+ /* Delete the completion queue */
+ rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
+ if (rc != 0) {
+ SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
+ free(status);
+ return rc;
+ }
+ if (nvme_wait_for_completion(ctrlr->adminq, status)) {
+ if (!status->timed_out) {
+ free(status);
+ }
+ return -1;
+ }
+ free(status);
+
+free:
+ if (qpair->no_deletion_notification_needed == 0) {
+ /* Abort the rest of the I/O */
+ nvme_pcie_qpair_abort_trackers(qpair, 1);
+ }
+
+ nvme_pcie_qpair_destroy(qpair);
+ return 0;
+}
+
+static void
+nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
+{
+ /*
+ * Bad vtophys translation, so abort this request and return
+ * immediately.
+ */
+ nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
+ SPDK_NVME_SC_INVALID_FIELD,
+ 1 /* do not retry */, true);
+}
+
+/*
+ * Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
+ *
+ * *prp_index will be updated to account for the number of PRP entries used.
+ */
+static inline int
+nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
+ uint32_t page_size)
+{
+ struct spdk_nvme_cmd *cmd = &tr->req->cmd;
+ uintptr_t page_mask = page_size - 1;
+ uint64_t phys_addr;
+ uint32_t i;
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
+ *prp_index, virt_addr, (uint32_t)len);
+
+ if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
+ SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
+ return -EFAULT;
+ }
+
+ i = *prp_index;
+ while (len) {
+ uint32_t seg_len;
+
+ /*
+ * prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
+ * so prp_index == count is valid.
+ */
+ if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
+ SPDK_ERRLOG("out of PRP entries\n");
+ return -EFAULT;
+ }
+
+ phys_addr = spdk_vtophys(virt_addr, NULL);
+ if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
+ SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
+ return -EFAULT;
+ }
+
+ if (i == 0) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
+ cmd->dptr.prp.prp1 = phys_addr;
+ seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
+ } else {
+ if ((phys_addr & page_mask) != 0) {
+ SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
+ return -EFAULT;
+ }
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
+ tr->u.prp[i - 1] = phys_addr;
+ seg_len = page_size;
+ }
+
+ seg_len = spdk_min(seg_len, len);
+ virt_addr += seg_len;
+ len -= seg_len;
+ i++;
+ }
+
+ cmd->psdt = SPDK_NVME_PSDT_PRP;
+ if (i <= 1) {
+ cmd->dptr.prp.prp2 = 0;
+ } else if (i == 2) {
+ cmd->dptr.prp.prp2 = tr->u.prp[0];
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
+ } else {
+ cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
+ }
+
+ *prp_index = i;
+ return 0;
+}
+
+static int
+nvme_pcie_qpair_build_request_invalid(struct spdk_nvme_qpair *qpair,
+ struct nvme_request *req, struct nvme_tracker *tr, bool dword_aligned)
+{
+ assert(0);
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EINVAL;
+}
+
+/**
+ * Build PRP list describing physically contiguous payload buffer.
+ */
+static int
+nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
+ struct nvme_tracker *tr, bool dword_aligned)
+{
+ uint32_t prp_index = 0;
+ int rc;
+
+ rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
+ req->payload_size, qpair->ctrlr->page_size);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ }
+
+ return rc;
+}
+
+/**
+ * Build an SGL describing a physically contiguous payload buffer.
+ *
+ * This is more efficient than using PRP because large buffers can be
+ * described this way.
+ */
+static int
+nvme_pcie_qpair_build_contig_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
+ struct nvme_tracker *tr, bool dword_aligned)
+{
+ void *virt_addr;
+ uint64_t phys_addr, mapping_length;
+ uint32_t length;
+ struct spdk_nvme_sgl_descriptor *sgl;
+ uint32_t nseg = 0;
+
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
+
+ sgl = tr->u.sgl;
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.unkeyed.subtype = 0;
+
+ length = req->payload_size;
+ virt_addr = req->payload.contig_or_cb_arg + req->payload_offset;
+ mapping_length = length;
+
+ while (length > 0) {
+ if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EFAULT;
+ }
+
+ if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
+ SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EFAULT;
+ }
+
+ phys_addr = spdk_vtophys(virt_addr, &mapping_length);
+ if (phys_addr == SPDK_VTOPHYS_ERROR) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EFAULT;
+ }
+
+ mapping_length = spdk_min(length, mapping_length);
+
+ length -= mapping_length;
+ virt_addr += mapping_length;
+
+ sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ sgl->unkeyed.length = mapping_length;
+ sgl->address = phys_addr;
+ sgl->unkeyed.subtype = 0;
+
+ sgl++;
+ nseg++;
+ }
+
+ if (nseg == 1) {
+ /*
+ * The whole transfer can be described by a single SGL descriptor.
+ * Use the special case described by the spec where SGL1's type is Data Block.
+ * This means the SGL in the tracker is not used at all, so copy the first (and only)
+ * SGL element into SGL1.
+ */
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
+ req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
+ } else {
+ /* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
+ * NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
+ */
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
+ req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
+ req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
+ }
+
+ return 0;
+}
+
+/**
+ * Build SGL list describing scattered payload buffer.
+ */
+static int
+nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
+ struct nvme_tracker *tr, bool dword_aligned)
+{
+ int rc;
+ void *virt_addr;
+ uint64_t phys_addr;
+ uint32_t remaining_transfer_len, remaining_user_sge_len, length;
+ struct spdk_nvme_sgl_descriptor *sgl;
+ uint32_t nseg = 0;
+
+ /*
+ * Build scattered payloads.
+ */
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ assert(req->payload.next_sge_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ sgl = tr->u.sgl;
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.unkeyed.subtype = 0;
+
+ remaining_transfer_len = req->payload_size;
+
+ while (remaining_transfer_len > 0) {
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
+ &virt_addr, &remaining_user_sge_len);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EFAULT;
+ }
+
+ /* Bit Bucket SGL descriptor */
+ if ((uint64_t)virt_addr == UINT64_MAX) {
+ /* TODO: enable WRITE and COMPARE when necessary */
+ if (req->cmd.opc != SPDK_NVME_OPC_READ) {
+ SPDK_ERRLOG("Only READ command can be supported\n");
+ goto exit;
+ }
+ if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
+ SPDK_ERRLOG("Too many SGL entries\n");
+ goto exit;
+ }
+
+ sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_BIT_BUCKET;
+ /* If the SGL describes a destination data buffer, the length of data
+ * buffer shall be discarded by controller, and the length is included
+ * in Number of Logical Blocks (NLB) parameter. Otherwise, the length
+ * is not included in the NLB parameter.
+ */
+ remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
+ remaining_transfer_len -= remaining_user_sge_len;
+
+ sgl->unkeyed.length = remaining_user_sge_len;
+ sgl->address = 0;
+ sgl->unkeyed.subtype = 0;
+
+ sgl++;
+ nseg++;
+
+ continue;
+ }
+
+ remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
+ remaining_transfer_len -= remaining_user_sge_len;
+ while (remaining_user_sge_len > 0) {
+ if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
+ SPDK_ERRLOG("Too many SGL entries\n");
+ goto exit;
+ }
+
+ if (dword_aligned && ((uintptr_t)virt_addr & 3)) {
+ SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
+ goto exit;
+ }
+
+ phys_addr = spdk_vtophys(virt_addr, NULL);
+ if (phys_addr == SPDK_VTOPHYS_ERROR) {
+ goto exit;
+ }
+
+ length = spdk_min(remaining_user_sge_len, VALUE_2MB - _2MB_OFFSET(virt_addr));
+ remaining_user_sge_len -= length;
+ virt_addr += length;
+
+ if (nseg > 0 && phys_addr ==
+ (*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
+ /* extend previous entry */
+ (*(sgl - 1)).unkeyed.length += length;
+ continue;
+ }
+
+ sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ sgl->unkeyed.length = length;
+ sgl->address = phys_addr;
+ sgl->unkeyed.subtype = 0;
+
+ sgl++;
+ nseg++;
+ }
+ }
+
+ if (nseg == 1) {
+ /*
+ * The whole transfer can be described by a single SGL descriptor.
+ * Use the special case described by the spec where SGL1's type is Data Block.
+ * This means the SGL in the tracker is not used at all, so copy the first (and only)
+ * SGL element into SGL1.
+ */
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
+ req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
+ } else {
+ /* SPDK NVMe driver supports only 1 SGL segment for now, it is enough because
+ * NVME_MAX_SGL_DESCRIPTORS * 16 is less than one page.
+ */
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
+ req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
+ req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
+ }
+
+ return 0;
+
+exit:
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EFAULT;
+}
+
+/**
+ * Build PRP list describing scattered payload buffer.
+ */
+static int
+nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
+ struct nvme_tracker *tr, bool dword_aligned)
+{
+ int rc;
+ void *virt_addr;
+ uint32_t remaining_transfer_len, length;
+ uint32_t prp_index = 0;
+ uint32_t page_size = qpair->ctrlr->page_size;
+
+ /*
+ * Build scattered payloads.
+ */
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ remaining_transfer_len = req->payload_size;
+ while (remaining_transfer_len > 0) {
+ assert(req->payload.next_sge_fn != NULL);
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EFAULT;
+ }
+
+ length = spdk_min(remaining_transfer_len, length);
+
+ /*
+ * Any incompatible sges should have been handled up in the splitting routine,
+ * but assert here as an additional check.
+ *
+ * All SGEs except last must end on a page boundary.
+ */
+ assert((length == remaining_transfer_len) ||
+ _is_page_aligned((uintptr_t)virt_addr + length, page_size));
+
+ rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
+ if (rc) {
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return rc;
+ }
+
+ remaining_transfer_len -= length;
+ }
+
+ return 0;
+}
+
+typedef int(*build_req_fn)(struct spdk_nvme_qpair *, struct nvme_request *, struct nvme_tracker *,
+ bool);
+
+static build_req_fn const g_nvme_pcie_build_req_table[][2] = {
+ [NVME_PAYLOAD_TYPE_INVALID] = {
+ nvme_pcie_qpair_build_request_invalid, /* PRP */
+ nvme_pcie_qpair_build_request_invalid /* SGL */
+ },
+ [NVME_PAYLOAD_TYPE_CONTIG] = {
+ nvme_pcie_qpair_build_contig_request, /* PRP */
+ nvme_pcie_qpair_build_contig_hw_sgl_request /* SGL */
+ },
+ [NVME_PAYLOAD_TYPE_SGL] = {
+ nvme_pcie_qpair_build_prps_sgl_request, /* PRP */
+ nvme_pcie_qpair_build_hw_sgl_request /* SGL */
+ }
+};
+
+static int
+nvme_pcie_qpair_build_metadata(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
+ bool sgl_supported, bool dword_aligned)
+{
+ void *md_payload;
+ struct nvme_request *req = tr->req;
+
+ if (req->payload.md) {
+ md_payload = req->payload.md + req->md_offset;
+ if (dword_aligned && ((uintptr_t)md_payload & 3)) {
+ SPDK_ERRLOG("virt_addr %p not dword aligned\n", md_payload);
+ goto exit;
+ }
+
+ if (sgl_supported && dword_aligned) {
+ assert(req->cmd.psdt == SPDK_NVME_PSDT_SGL_MPTR_CONTIG);
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
+ tr->meta_sgl.address = spdk_vtophys(md_payload, NULL);
+ if (tr->meta_sgl.address == SPDK_VTOPHYS_ERROR) {
+ goto exit;
+ }
+ tr->meta_sgl.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ tr->meta_sgl.unkeyed.length = req->md_size;
+ tr->meta_sgl.unkeyed.subtype = 0;
+ req->cmd.mptr = tr->prp_sgl_bus_addr - sizeof(struct spdk_nvme_sgl_descriptor);
+ } else {
+ req->cmd.mptr = spdk_vtophys(md_payload, NULL);
+ if (req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
+ goto exit;
+ }
+ }
+ }
+
+ return 0;
+
+exit:
+ nvme_pcie_fail_request_bad_vtophys(qpair, tr);
+ return -EINVAL;
+}
+
+static int
+nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
+{
+ struct nvme_tracker *tr;
+ int rc = 0;
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ enum nvme_payload_type payload_type;
+ bool sgl_supported;
+ bool dword_aligned = true;
+
+ if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
+ nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
+ }
+
+ tr = TAILQ_FIRST(&pqpair->free_tr);
+
+ if (tr == NULL) {
+ /* Inform the upper layer to try again later. */
+ rc = -EAGAIN;
+ goto exit;
+ }
+
+ TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
+ TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
+ tr->req = req;
+ tr->cb_fn = req->cb_fn;
+ tr->cb_arg = req->cb_arg;
+ req->cmd.cid = tr->cid;
+
+ if (req->payload_size != 0) {
+ payload_type = nvme_payload_type(&req->payload);
+ /* According to the specification, PRPs shall be used for all
+ * Admin commands for NVMe over PCIe implementations.
+ */
+ sgl_supported = (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) != 0 &&
+ !nvme_qpair_is_admin_queue(qpair);
+
+ if (sgl_supported && !(ctrlr->flags & SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT)) {
+ dword_aligned = false;
+ }
+ rc = g_nvme_pcie_build_req_table[payload_type][sgl_supported](qpair, req, tr, dword_aligned);
+ if (rc < 0) {
+ goto exit;
+ }
+
+ rc = nvme_pcie_qpair_build_metadata(qpair, tr, sgl_supported, dword_aligned);
+ if (rc < 0) {
+ goto exit;
+ }
+ }
+
+ nvme_pcie_qpair_submit_tracker(qpair, tr);
+
+exit:
+ if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
+ nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
+ }
+
+ return rc;
+}
+
+static void
+nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
+{
+ uint64_t t02;
+ struct nvme_tracker *tr, *tmp;
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct spdk_nvme_ctrlr_process *active_proc;
+
+ /* Don't check timeouts during controller initialization. */
+ if (ctrlr->state != NVME_CTRLR_STATE_READY) {
+ return;
+ }
+
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ active_proc = nvme_ctrlr_get_current_process(ctrlr);
+ } else {
+ active_proc = qpair->active_proc;
+ }
+
+ /* Only check timeouts if the current process has a timeout callback. */
+ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
+ return;
+ }
+
+ t02 = spdk_get_ticks();
+ TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
+ assert(tr->req != NULL);
+
+ if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
+ /*
+ * The requests are in order, so as soon as one has not timed out,
+ * stop iterating.
+ */
+ break;
+ }
+ }
+}
+
+static int32_t
+nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
+{
+ struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
+ struct nvme_tracker *tr;
+ struct spdk_nvme_cpl *cpl, *next_cpl;
+ uint32_t num_completions = 0;
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ uint16_t next_cq_head;
+ uint8_t next_phase;
+ bool next_is_valid = false;
+
+ if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
+ nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
+ }
+
+ if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
+ /*
+ * max_completions == 0 means unlimited, but complete at most
+ * max_completions_cap batch of I/O at a time so that the completion
+ * queue doorbells don't wrap around.
+ */
+ max_completions = pqpair->max_completions_cap;
+ }
+
+ while (1) {
+ cpl = &pqpair->cpl[pqpair->cq_head];
+
+ if (!next_is_valid && cpl->status.p != pqpair->flags.phase) {
+ break;
+ }
+
+ if (spdk_likely(pqpair->cq_head + 1 != pqpair->num_entries)) {
+ next_cq_head = pqpair->cq_head + 1;
+ next_phase = pqpair->flags.phase;
+ } else {
+ next_cq_head = 0;
+ next_phase = !pqpair->flags.phase;
+ }
+ next_cpl = &pqpair->cpl[next_cq_head];
+ next_is_valid = (next_cpl->status.p == next_phase);
+ if (next_is_valid) {
+ __builtin_prefetch(&pqpair->tr[next_cpl->cid]);
+ }
+
+#ifdef __PPC64__
+ /*
+ * This memory barrier prevents reordering of:
+ * - load after store from/to tr
+ * - load after load cpl phase and cpl cid
+ */
+ spdk_mb();
+#elif defined(__aarch64__)
+ __asm volatile("dmb oshld" ::: "memory");
+#endif
+
+ if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
+ pqpair->cq_head = 0;
+ pqpair->flags.phase = !pqpair->flags.phase;
+ }
+
+ tr = &pqpair->tr[cpl->cid];
+ /* Prefetch the req's STAILQ_ENTRY since we'll need to access it
+ * as part of putting the req back on the qpair's free list.
+ */
+ __builtin_prefetch(&tr->req->stailq);
+ pqpair->sq_head = cpl->sqhd;
+
+ if (tr->req) {
+ nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
+ } else {
+ SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
+ spdk_nvme_qpair_print_completion(qpair, cpl);
+ assert(0);
+ }
+
+ if (++num_completions == max_completions) {
+ break;
+ }
+ }
+
+ if (num_completions > 0) {
+ nvme_pcie_qpair_ring_cq_doorbell(qpair);
+ }
+
+ if (pqpair->flags.delay_cmd_submit) {
+ if (pqpair->last_sq_tail != pqpair->sq_tail) {
+ nvme_pcie_qpair_ring_sq_doorbell(qpair);
+ pqpair->last_sq_tail = pqpair->sq_tail;
+ }
+ }
+
+ if (spdk_unlikely(ctrlr->timeout_enabled)) {
+ /*
+ * User registered for timeout callback
+ */
+ nvme_pcie_qpair_check_timeout(qpair);
+ }
+
+ /* Before returning, complete any pending admin request. */
+ if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
+ nvme_pcie_qpair_complete_pending_admin_request(qpair);
+
+ nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
+ }
+
+ return num_completions;
+}
+
+static struct spdk_nvme_transport_poll_group *
+nvme_pcie_poll_group_create(void)
+{
+ struct nvme_pcie_poll_group *group = calloc(1, sizeof(*group));
+
+ if (group == NULL) {
+ SPDK_ERRLOG("Unable to allocate poll group.\n");
+ return NULL;
+ }
+
+ return &group->group;
+}
+
+static int
+nvme_pcie_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
+{
+ return 0;
+}
+
+static int
+nvme_pcie_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
+{
+ return 0;
+}
+
+static int
+nvme_pcie_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
+ struct spdk_nvme_qpair *qpair)
+{
+ return 0;
+}
+
+static int
+nvme_pcie_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
+ struct spdk_nvme_qpair *qpair)
+{
+ return 0;
+}
+
+static int64_t
+nvme_pcie_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
+ uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
+{
+ struct spdk_nvme_qpair *qpair, *tmp_qpair;
+ int32_t local_completions = 0;
+ int64_t total_completions = 0;
+
+ STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
+ disconnected_qpair_cb(qpair, tgroup->group->ctx);
+ }
+
+ STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
+ local_completions = spdk_nvme_qpair_process_completions(qpair, completions_per_qpair);
+ if (local_completions < 0) {
+ disconnected_qpair_cb(qpair, tgroup->group->ctx);
+ local_completions = 0;
+ }
+ total_completions += local_completions;
+ }
+
+ return total_completions;
+}
+
+static int
+nvme_pcie_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
+{
+ if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
+ return -EBUSY;
+ }
+
+ free(tgroup);
+
+ return 0;
+}
+
+static struct spdk_pci_id nvme_pci_driver_id[] = {
+ {
+ .class_id = SPDK_PCI_CLASS_NVME,
+ .vendor_id = SPDK_PCI_ANY_ID,
+ .device_id = SPDK_PCI_ANY_ID,
+ .subvendor_id = SPDK_PCI_ANY_ID,
+ .subdevice_id = SPDK_PCI_ANY_ID,
+ },
+ { .vendor_id = 0, /* sentinel */ },
+};
+
+SPDK_PCI_DRIVER_REGISTER("nvme", nvme_pci_driver_id,
+ SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE);
+
+const struct spdk_nvme_transport_ops pcie_ops = {
+ .name = "PCIE",
+ .type = SPDK_NVME_TRANSPORT_PCIE,
+ .ctrlr_construct = nvme_pcie_ctrlr_construct,
+ .ctrlr_scan = nvme_pcie_ctrlr_scan,
+ .ctrlr_destruct = nvme_pcie_ctrlr_destruct,
+ .ctrlr_enable = nvme_pcie_ctrlr_enable,
+
+ .ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4,
+ .ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8,
+ .ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4,
+ .ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8,
+
+ .ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size,
+ .ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges,
+
+ .ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb,
+ .ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb,
+ .ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb,
+
+ .ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair,
+ .ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair,
+ .ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair,
+ .ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair,
+
+ .qpair_abort_reqs = nvme_pcie_qpair_abort_reqs,
+ .qpair_reset = nvme_pcie_qpair_reset,
+ .qpair_submit_request = nvme_pcie_qpair_submit_request,
+ .qpair_process_completions = nvme_pcie_qpair_process_completions,
+ .qpair_iterate_requests = nvme_pcie_qpair_iterate_requests,
+ .admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers,
+
+ .poll_group_create = nvme_pcie_poll_group_create,
+ .poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair,
+ .poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair,
+ .poll_group_add = nvme_pcie_poll_group_add,
+ .poll_group_remove = nvme_pcie_poll_group_remove,
+ .poll_group_process_completions = nvme_pcie_poll_group_process_completions,
+ .poll_group_destroy = nvme_pcie_poll_group_destroy,
+};
+
+SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops);