From e6918187568dbd01842d8d1d2c808ce16a894239 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 21 Apr 2024 13:54:28 +0200 Subject: Adding upstream version 18.2.2. Signed-off-by: Daniel Baumann --- src/rocksdb/cache/lru_cache.cc | 921 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 921 insertions(+) create mode 100644 src/rocksdb/cache/lru_cache.cc (limited to 'src/rocksdb/cache/lru_cache.cc') diff --git a/src/rocksdb/cache/lru_cache.cc b/src/rocksdb/cache/lru_cache.cc new file mode 100644 index 000000000..c8e4d29ba --- /dev/null +++ b/src/rocksdb/cache/lru_cache.cc @@ -0,0 +1,921 @@ +// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Copyright (c) 2011 The LevelDB Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. See the AUTHORS file for names of contributors. + +#include "cache/lru_cache.h" + +#include +#include +#include +#include + +#include "monitoring/perf_context_imp.h" +#include "monitoring/statistics.h" +#include "port/lang.h" +#include "util/distributed_mutex.h" + +namespace ROCKSDB_NAMESPACE { +namespace lru_cache { + +// A distinct pointer value for marking "dummy" cache entries +void* const kDummyValueMarker = const_cast("kDummyValueMarker"); + +LRUHandleTable::LRUHandleTable(int max_upper_hash_bits) + : length_bits_(/* historical starting size*/ 4), + list_(new LRUHandle* [size_t{1} << length_bits_] {}), + elems_(0), + max_length_bits_(max_upper_hash_bits) {} + +LRUHandleTable::~LRUHandleTable() { + ApplyToEntriesRange( + [](LRUHandle* h) { + if (!h->HasRefs()) { + h->Free(); + } + }, + 0, size_t{1} << length_bits_); +} + +LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) { + return *FindPointer(key, hash); +} + +LRUHandle* LRUHandleTable::Insert(LRUHandle* h) { + LRUHandle** ptr = FindPointer(h->key(), h->hash); + LRUHandle* old = *ptr; + h->next_hash = (old == nullptr ? nullptr : old->next_hash); + *ptr = h; + if (old == nullptr) { + ++elems_; + if ((elems_ >> length_bits_) > 0) { // elems_ >= length + // Since each cache entry is fairly large, we aim for a small + // average linked list length (<= 1). + Resize(); + } + } + return old; +} + +LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) { + LRUHandle** ptr = FindPointer(key, hash); + LRUHandle* result = *ptr; + if (result != nullptr) { + *ptr = result->next_hash; + --elems_; + } + return result; +} + +LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) { + LRUHandle** ptr = &list_[hash >> (32 - length_bits_)]; + while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { + ptr = &(*ptr)->next_hash; + } + return ptr; +} + +void LRUHandleTable::Resize() { + if (length_bits_ >= max_length_bits_) { + // Due to reaching limit of hash information, if we made the table bigger, + // we would allocate more addresses but only the same number would be used. + return; + } + if (length_bits_ >= 31) { + // Avoid undefined behavior shifting uint32_t by 32. + return; + } + + uint32_t old_length = uint32_t{1} << length_bits_; + int new_length_bits = length_bits_ + 1; + std::unique_ptr new_list { + new LRUHandle* [size_t{1} << new_length_bits] {} + }; + uint32_t count = 0; + for (uint32_t i = 0; i < old_length; i++) { + LRUHandle* h = list_[i]; + while (h != nullptr) { + LRUHandle* next = h->next_hash; + uint32_t hash = h->hash; + LRUHandle** ptr = &new_list[hash >> (32 - new_length_bits)]; + h->next_hash = *ptr; + *ptr = h; + h = next; + count++; + } + } + assert(elems_ == count); + list_ = std::move(new_list); + length_bits_ = new_length_bits; +} + +LRUCacheShard::LRUCacheShard(size_t capacity, bool strict_capacity_limit, + double high_pri_pool_ratio, + double low_pri_pool_ratio, bool use_adaptive_mutex, + CacheMetadataChargePolicy metadata_charge_policy, + int max_upper_hash_bits, + SecondaryCache* secondary_cache) + : CacheShardBase(metadata_charge_policy), + capacity_(0), + high_pri_pool_usage_(0), + low_pri_pool_usage_(0), + strict_capacity_limit_(strict_capacity_limit), + high_pri_pool_ratio_(high_pri_pool_ratio), + high_pri_pool_capacity_(0), + low_pri_pool_ratio_(low_pri_pool_ratio), + low_pri_pool_capacity_(0), + table_(max_upper_hash_bits), + usage_(0), + lru_usage_(0), + mutex_(use_adaptive_mutex), + secondary_cache_(secondary_cache) { + // Make empty circular linked list. + lru_.next = &lru_; + lru_.prev = &lru_; + lru_low_pri_ = &lru_; + lru_bottom_pri_ = &lru_; + SetCapacity(capacity); +} + +void LRUCacheShard::EraseUnRefEntries() { + autovector last_reference_list; + { + DMutexLock l(mutex_); + while (lru_.next != &lru_) { + LRUHandle* old = lru_.next; + // LRU list contains only elements which can be evicted. + assert(old->InCache() && !old->HasRefs()); + LRU_Remove(old); + table_.Remove(old->key(), old->hash); + old->SetInCache(false); + assert(usage_ >= old->total_charge); + usage_ -= old->total_charge; + last_reference_list.push_back(old); + } + } + + for (auto entry : last_reference_list) { + entry->Free(); + } +} + +void LRUCacheShard::ApplyToSomeEntries( + const std::function& callback, + size_t average_entries_per_lock, size_t* state) { + // The state is essentially going to be the starting hash, which works + // nicely even if we resize between calls because we use upper-most + // hash bits for table indexes. + DMutexLock l(mutex_); + int length_bits = table_.GetLengthBits(); + size_t length = size_t{1} << length_bits; + + assert(average_entries_per_lock > 0); + // Assuming we are called with same average_entries_per_lock repeatedly, + // this simplifies some logic (index_end will not overflow). + assert(average_entries_per_lock < length || *state == 0); + + size_t index_begin = *state >> (sizeof(size_t) * 8u - length_bits); + size_t index_end = index_begin + average_entries_per_lock; + if (index_end >= length) { + // Going to end + index_end = length; + *state = SIZE_MAX; + } else { + *state = index_end << (sizeof(size_t) * 8u - length_bits); + } + + table_.ApplyToEntriesRange( + [callback, + metadata_charge_policy = metadata_charge_policy_](LRUHandle* h) { + DeleterFn deleter = h->IsSecondaryCacheCompatible() + ? h->info_.helper->del_cb + : h->info_.deleter; + callback(h->key(), h->value, h->GetCharge(metadata_charge_policy), + deleter); + }, + index_begin, index_end); +} + +void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri, + LRUHandle** lru_bottom_pri) { + DMutexLock l(mutex_); + *lru = &lru_; + *lru_low_pri = lru_low_pri_; + *lru_bottom_pri = lru_bottom_pri_; +} + +size_t LRUCacheShard::TEST_GetLRUSize() { + DMutexLock l(mutex_); + LRUHandle* lru_handle = lru_.next; + size_t lru_size = 0; + while (lru_handle != &lru_) { + lru_size++; + lru_handle = lru_handle->next; + } + return lru_size; +} + +double LRUCacheShard::GetHighPriPoolRatio() { + DMutexLock l(mutex_); + return high_pri_pool_ratio_; +} + +double LRUCacheShard::GetLowPriPoolRatio() { + DMutexLock l(mutex_); + return low_pri_pool_ratio_; +} + +void LRUCacheShard::LRU_Remove(LRUHandle* e) { + assert(e->next != nullptr); + assert(e->prev != nullptr); + if (lru_low_pri_ == e) { + lru_low_pri_ = e->prev; + } + if (lru_bottom_pri_ == e) { + lru_bottom_pri_ = e->prev; + } + e->next->prev = e->prev; + e->prev->next = e->next; + e->prev = e->next = nullptr; + assert(lru_usage_ >= e->total_charge); + lru_usage_ -= e->total_charge; + assert(!e->InHighPriPool() || !e->InLowPriPool()); + if (e->InHighPriPool()) { + assert(high_pri_pool_usage_ >= e->total_charge); + high_pri_pool_usage_ -= e->total_charge; + } else if (e->InLowPriPool()) { + assert(low_pri_pool_usage_ >= e->total_charge); + low_pri_pool_usage_ -= e->total_charge; + } +} + +void LRUCacheShard::LRU_Insert(LRUHandle* e) { + assert(e->next == nullptr); + assert(e->prev == nullptr); + if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) { + // Inset "e" to head of LRU list. + e->next = &lru_; + e->prev = lru_.prev; + e->prev->next = e; + e->next->prev = e; + e->SetInHighPriPool(true); + e->SetInLowPriPool(false); + high_pri_pool_usage_ += e->total_charge; + MaintainPoolSize(); + } else if (low_pri_pool_ratio_ > 0 && + (e->IsHighPri() || e->IsLowPri() || e->HasHit())) { + // Insert "e" to the head of low-pri pool. + e->next = lru_low_pri_->next; + e->prev = lru_low_pri_; + e->prev->next = e; + e->next->prev = e; + e->SetInHighPriPool(false); + e->SetInLowPriPool(true); + low_pri_pool_usage_ += e->total_charge; + MaintainPoolSize(); + lru_low_pri_ = e; + } else { + // Insert "e" to the head of bottom-pri pool. + e->next = lru_bottom_pri_->next; + e->prev = lru_bottom_pri_; + e->prev->next = e; + e->next->prev = e; + e->SetInHighPriPool(false); + e->SetInLowPriPool(false); + // if the low-pri pool is empty, lru_low_pri_ also needs to be updated. + if (lru_bottom_pri_ == lru_low_pri_) { + lru_low_pri_ = e; + } + lru_bottom_pri_ = e; + } + lru_usage_ += e->total_charge; +} + +void LRUCacheShard::MaintainPoolSize() { + while (high_pri_pool_usage_ > high_pri_pool_capacity_) { + // Overflow last entry in high-pri pool to low-pri pool. + lru_low_pri_ = lru_low_pri_->next; + assert(lru_low_pri_ != &lru_); + lru_low_pri_->SetInHighPriPool(false); + lru_low_pri_->SetInLowPriPool(true); + assert(high_pri_pool_usage_ >= lru_low_pri_->total_charge); + high_pri_pool_usage_ -= lru_low_pri_->total_charge; + low_pri_pool_usage_ += lru_low_pri_->total_charge; + } + + while (low_pri_pool_usage_ > low_pri_pool_capacity_) { + // Overflow last entry in low-pri pool to bottom-pri pool. + lru_bottom_pri_ = lru_bottom_pri_->next; + assert(lru_bottom_pri_ != &lru_); + lru_bottom_pri_->SetInHighPriPool(false); + lru_bottom_pri_->SetInLowPriPool(false); + assert(low_pri_pool_usage_ >= lru_bottom_pri_->total_charge); + low_pri_pool_usage_ -= lru_bottom_pri_->total_charge; + } +} + +void LRUCacheShard::EvictFromLRU(size_t charge, + autovector* deleted) { + while ((usage_ + charge) > capacity_ && lru_.next != &lru_) { + LRUHandle* old = lru_.next; + // LRU list contains only elements which can be evicted. + assert(old->InCache() && !old->HasRefs()); + LRU_Remove(old); + table_.Remove(old->key(), old->hash); + old->SetInCache(false); + assert(usage_ >= old->total_charge); + usage_ -= old->total_charge; + deleted->push_back(old); + } +} + +void LRUCacheShard::TryInsertIntoSecondaryCache( + autovector evicted_handles) { + for (auto entry : evicted_handles) { + if (secondary_cache_ && entry->IsSecondaryCacheCompatible() && + !entry->IsInSecondaryCache()) { + secondary_cache_->Insert(entry->key(), entry->value, entry->info_.helper) + .PermitUncheckedError(); + } + // Free the entries here outside of mutex for performance reasons. + entry->Free(); + } +} + +void LRUCacheShard::SetCapacity(size_t capacity) { + autovector last_reference_list; + { + DMutexLock l(mutex_); + capacity_ = capacity; + high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; + low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_; + EvictFromLRU(0, &last_reference_list); + } + + TryInsertIntoSecondaryCache(last_reference_list); +} + +void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) { + DMutexLock l(mutex_); + strict_capacity_limit_ = strict_capacity_limit; +} + +Status LRUCacheShard::InsertItem(LRUHandle* e, LRUHandle** handle, + bool free_handle_on_fail) { + Status s = Status::OK(); + autovector last_reference_list; + + { + DMutexLock l(mutex_); + + // Free the space following strict LRU policy until enough space + // is freed or the lru list is empty. + EvictFromLRU(e->total_charge, &last_reference_list); + + if ((usage_ + e->total_charge) > capacity_ && + (strict_capacity_limit_ || handle == nullptr)) { + e->SetInCache(false); + if (handle == nullptr) { + // Don't insert the entry but still return ok, as if the entry inserted + // into cache and get evicted immediately. + last_reference_list.push_back(e); + } else { + if (free_handle_on_fail) { + free(e); + *handle = nullptr; + } + s = Status::MemoryLimit("Insert failed due to LRU cache being full."); + } + } else { + // Insert into the cache. Note that the cache might get larger than its + // capacity if not enough space was freed up. + LRUHandle* old = table_.Insert(e); + usage_ += e->total_charge; + if (old != nullptr) { + s = Status::OkOverwritten(); + assert(old->InCache()); + old->SetInCache(false); + if (!old->HasRefs()) { + // old is on LRU because it's in cache and its reference count is 0. + LRU_Remove(old); + assert(usage_ >= old->total_charge); + usage_ -= old->total_charge; + last_reference_list.push_back(old); + } + } + if (handle == nullptr) { + LRU_Insert(e); + } else { + // If caller already holds a ref, no need to take one here. + if (!e->HasRefs()) { + e->Ref(); + } + *handle = e; + } + } + } + + TryInsertIntoSecondaryCache(last_reference_list); + + return s; +} + +void LRUCacheShard::Promote(LRUHandle* e) { + SecondaryCacheResultHandle* secondary_handle = e->sec_handle; + + assert(secondary_handle->IsReady()); + // e is not thread-shared here; OK to modify "immutable" fields as well as + // "mutable" (normally requiring mutex) + e->SetIsPending(false); + e->value = secondary_handle->Value(); + assert(e->total_charge == 0); + size_t value_size = secondary_handle->Size(); + delete secondary_handle; + + if (e->value) { + e->CalcTotalCharge(value_size, metadata_charge_policy_); + Status s; + if (e->IsStandalone()) { + assert(secondary_cache_ && secondary_cache_->SupportForceErase()); + + // Insert a dummy handle and return a standalone handle to caller. + // Charge the standalone handle. + autovector last_reference_list; + bool free_standalone_handle{false}; + { + DMutexLock l(mutex_); + + // Free the space following strict LRU policy until enough space + // is freed or the lru list is empty. + EvictFromLRU(e->total_charge, &last_reference_list); + + if ((usage_ + e->total_charge) > capacity_ && strict_capacity_limit_) { + free_standalone_handle = true; + } else { + usage_ += e->total_charge; + } + } + + TryInsertIntoSecondaryCache(last_reference_list); + if (free_standalone_handle) { + e->Unref(); + e->Free(); + e = nullptr; + } else { + PERF_COUNTER_ADD(block_cache_standalone_handle_count, 1); + } + + // Insert a dummy handle into the primary cache. This dummy handle is + // not IsSecondaryCacheCompatible(). + // FIXME? This should not overwrite an existing non-dummy entry in the + // rare case that one exists + Cache::Priority priority = + e->IsHighPri() ? Cache::Priority::HIGH : Cache::Priority::LOW; + s = Insert(e->key(), e->hash, kDummyValueMarker, /*charge=*/0, + /*deleter=*/nullptr, /*helper=*/nullptr, /*handle=*/nullptr, + priority); + } else { + e->SetInCache(true); + LRUHandle* handle = e; + // This InsertItem() could fail if the cache is over capacity and + // strict_capacity_limit_ is true. In such a case, we don't want + // InsertItem() to free the handle, since the item is already in memory + // and the caller will most likely just read it from disk if we erase it + // here. + s = InsertItem(e, &handle, /*free_handle_on_fail=*/false); + if (s.ok()) { + PERF_COUNTER_ADD(block_cache_real_handle_count, 1); + } + } + + if (!s.ok()) { + // Item is in memory, but not accounted against the cache capacity. + // When the handle is released, the item should get deleted. + assert(!e->InCache()); + } + } else { + // Secondary cache lookup failed. The caller will take care of detecting + // this and eventually releasing e. + assert(!e->value); + assert(!e->InCache()); + } +} + +LRUHandle* LRUCacheShard::Lookup(const Slice& key, uint32_t hash, + const Cache::CacheItemHelper* helper, + const Cache::CreateCallback& create_cb, + Cache::Priority priority, bool wait, + Statistics* stats) { + LRUHandle* e = nullptr; + bool found_dummy_entry{false}; + { + DMutexLock l(mutex_); + e = table_.Lookup(key, hash); + if (e != nullptr) { + assert(e->InCache()); + if (e->value == kDummyValueMarker) { + // For a dummy handle, if it was retrieved from secondary cache, + // it may still exist in secondary cache. + // If the handle exists in secondary cache, the value should be + // erased from sec cache and be inserted into primary cache. + found_dummy_entry = true; + // Let the dummy entry be overwritten + e = nullptr; + } else { + if (!e->HasRefs()) { + // The entry is in LRU since it's in hash and has no external + // references. + LRU_Remove(e); + } + e->Ref(); + e->SetHit(); + } + } + } + + // If handle table lookup failed or the handle is a dummy one, allocate + // a handle outside the mutex if we re going to lookup in the secondary cache. + // + // When a block is firstly Lookup from CompressedSecondaryCache, we just + // insert a dummy block into the primary cache (charging the actual size of + // the block) and don't erase the block from CompressedSecondaryCache. A + // standalone handle is returned to the caller. Only if the block is hit + // again, we erase it from CompressedSecondaryCache and add it into the + // primary cache. + if (!e && secondary_cache_ && helper && helper->saveto_cb) { + // For objects from the secondary cache, we expect the caller to provide + // a way to create/delete the primary cache object. The only case where + // a deleter would not be required is for dummy entries inserted for + // accounting purposes, which we won't demote to the secondary cache + // anyway. + assert(create_cb && helper->del_cb); + bool is_in_sec_cache{false}; + std::unique_ptr secondary_handle = + secondary_cache_->Lookup(key, create_cb, wait, found_dummy_entry, + is_in_sec_cache); + if (secondary_handle != nullptr) { + e = static_cast(malloc(sizeof(LRUHandle) - 1 + key.size())); + + e->m_flags = 0; + e->im_flags = 0; + e->SetSecondaryCacheCompatible(true); + e->info_.helper = helper; + e->key_length = key.size(); + e->hash = hash; + e->refs = 0; + e->next = e->prev = nullptr; + e->SetPriority(priority); + memcpy(e->key_data, key.data(), key.size()); + e->value = nullptr; + e->sec_handle = secondary_handle.release(); + e->total_charge = 0; + e->Ref(); + e->SetIsInSecondaryCache(is_in_sec_cache); + e->SetIsStandalone(secondary_cache_->SupportForceErase() && + !found_dummy_entry); + + if (wait) { + Promote(e); + if (e) { + if (!e->value) { + // The secondary cache returned a handle, but the lookup failed. + e->Unref(); + e->Free(); + e = nullptr; + } else { + PERF_COUNTER_ADD(secondary_cache_hit_count, 1); + RecordTick(stats, SECONDARY_CACHE_HITS); + } + } + } else { + // If wait is false, we always return a handle and let the caller + // release the handle after checking for success or failure. + e->SetIsPending(true); + // This may be slightly inaccurate, if the lookup eventually fails. + // But the probability is very low. + PERF_COUNTER_ADD(secondary_cache_hit_count, 1); + RecordTick(stats, SECONDARY_CACHE_HITS); + } + } else { + // Caller will most likely overwrite the dummy entry with an Insert + // after this Lookup fails + assert(e == nullptr); + } + } + return e; +} + +bool LRUCacheShard::Ref(LRUHandle* e) { + DMutexLock l(mutex_); + // To create another reference - entry must be already externally referenced. + assert(e->HasRefs()); + // Pending handles are not for sharing + assert(!e->IsPending()); + e->Ref(); + return true; +} + +void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) { + DMutexLock l(mutex_); + high_pri_pool_ratio_ = high_pri_pool_ratio; + high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; + MaintainPoolSize(); +} + +void LRUCacheShard::SetLowPriorityPoolRatio(double low_pri_pool_ratio) { + DMutexLock l(mutex_); + low_pri_pool_ratio_ = low_pri_pool_ratio; + low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_; + MaintainPoolSize(); +} + +bool LRUCacheShard::Release(LRUHandle* e, bool /*useful*/, + bool erase_if_last_ref) { + if (e == nullptr) { + return false; + } + bool last_reference = false; + // Must Wait or WaitAll first on pending handles. Otherwise, would leak + // a secondary cache handle. + assert(!e->IsPending()); + { + DMutexLock l(mutex_); + last_reference = e->Unref(); + if (last_reference && e->InCache()) { + // The item is still in cache, and nobody else holds a reference to it. + if (usage_ > capacity_ || erase_if_last_ref) { + // The LRU list must be empty since the cache is full. + assert(lru_.next == &lru_ || erase_if_last_ref); + // Take this opportunity and remove the item. + table_.Remove(e->key(), e->hash); + e->SetInCache(false); + } else { + // Put the item back on the LRU list, and don't free it. + LRU_Insert(e); + last_reference = false; + } + } + // If it was the last reference, then decrement the cache usage. + if (last_reference) { + assert(usage_ >= e->total_charge); + usage_ -= e->total_charge; + } + } + + // Free the entry here outside of mutex for performance reasons. + if (last_reference) { + e->Free(); + } + return last_reference; +} + +Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value, + size_t charge, + void (*deleter)(const Slice& key, void* value), + const Cache::CacheItemHelper* helper, + LRUHandle** handle, Cache::Priority priority) { + // Allocate the memory here outside of the mutex. + // If the cache is full, we'll have to release it. + // It shouldn't happen very often though. + LRUHandle* e = + static_cast(malloc(sizeof(LRUHandle) - 1 + key.size())); + + e->value = value; + e->m_flags = 0; + e->im_flags = 0; + if (helper) { + // Use only one of the two parameters + assert(deleter == nullptr); + // value == nullptr is reserved for indicating failure for when secondary + // cache compatible + assert(value != nullptr); + e->SetSecondaryCacheCompatible(true); + e->info_.helper = helper; + } else { + e->info_.deleter = deleter; + } + e->key_length = key.size(); + e->hash = hash; + e->refs = 0; + e->next = e->prev = nullptr; + e->SetInCache(true); + e->SetPriority(priority); + memcpy(e->key_data, key.data(), key.size()); + e->CalcTotalCharge(charge, metadata_charge_policy_); + + return InsertItem(e, handle, /* free_handle_on_fail */ true); +} + +void LRUCacheShard::Erase(const Slice& key, uint32_t hash) { + LRUHandle* e; + bool last_reference = false; + { + DMutexLock l(mutex_); + e = table_.Remove(key, hash); + if (e != nullptr) { + assert(e->InCache()); + e->SetInCache(false); + if (!e->HasRefs()) { + // The entry is in LRU since it's in hash and has no external references + LRU_Remove(e); + assert(usage_ >= e->total_charge); + usage_ -= e->total_charge; + last_reference = true; + } + } + } + + // Free the entry here outside of mutex for performance reasons. + // last_reference will only be true if e != nullptr. + if (last_reference) { + e->Free(); + } +} + +bool LRUCacheShard::IsReady(LRUHandle* e) { + bool ready = true; + if (e->IsPending()) { + assert(secondary_cache_); + assert(e->sec_handle); + ready = e->sec_handle->IsReady(); + } + return ready; +} + +size_t LRUCacheShard::GetUsage() const { + DMutexLock l(mutex_); + return usage_; +} + +size_t LRUCacheShard::GetPinnedUsage() const { + DMutexLock l(mutex_); + assert(usage_ >= lru_usage_); + return usage_ - lru_usage_; +} + +size_t LRUCacheShard::GetOccupancyCount() const { + DMutexLock l(mutex_); + return table_.GetOccupancyCount(); +} + +size_t LRUCacheShard::GetTableAddressCount() const { + DMutexLock l(mutex_); + return size_t{1} << table_.GetLengthBits(); +} + +void LRUCacheShard::AppendPrintableOptions(std::string& str) const { + const int kBufferSize = 200; + char buffer[kBufferSize]; + { + DMutexLock l(mutex_); + snprintf(buffer, kBufferSize, " high_pri_pool_ratio: %.3lf\n", + high_pri_pool_ratio_); + snprintf(buffer + strlen(buffer), kBufferSize - strlen(buffer), + " low_pri_pool_ratio: %.3lf\n", low_pri_pool_ratio_); + } + str.append(buffer); +} + +LRUCache::LRUCache(size_t capacity, int num_shard_bits, + bool strict_capacity_limit, double high_pri_pool_ratio, + double low_pri_pool_ratio, + std::shared_ptr allocator, + bool use_adaptive_mutex, + CacheMetadataChargePolicy metadata_charge_policy, + std::shared_ptr _secondary_cache) + : ShardedCache(capacity, num_shard_bits, strict_capacity_limit, + std::move(allocator)), + secondary_cache_(std::move(_secondary_cache)) { + size_t per_shard = GetPerShardCapacity(); + SecondaryCache* secondary_cache = secondary_cache_.get(); + InitShards([=](LRUCacheShard* cs) { + new (cs) LRUCacheShard( + per_shard, strict_capacity_limit, high_pri_pool_ratio, + low_pri_pool_ratio, use_adaptive_mutex, metadata_charge_policy, + /* max_upper_hash_bits */ 32 - num_shard_bits, secondary_cache); + }); +} + +void* LRUCache::Value(Handle* handle) { + auto h = reinterpret_cast(handle); + assert(!h->IsPending() || h->value == nullptr); + assert(h->value != kDummyValueMarker); + return h->value; +} + +size_t LRUCache::GetCharge(Handle* handle) const { + return reinterpret_cast(handle)->GetCharge( + GetShard(0).metadata_charge_policy_); +} + +Cache::DeleterFn LRUCache::GetDeleter(Handle* handle) const { + auto h = reinterpret_cast(handle); + if (h->IsSecondaryCacheCompatible()) { + return h->info_.helper->del_cb; + } else { + return h->info_.deleter; + } +} + +size_t LRUCache::TEST_GetLRUSize() { + return SumOverShards([](LRUCacheShard& cs) { return cs.TEST_GetLRUSize(); }); +} + +double LRUCache::GetHighPriPoolRatio() { + return GetShard(0).GetHighPriPoolRatio(); +} + +void LRUCache::WaitAll(std::vector& handles) { + if (secondary_cache_) { + std::vector sec_handles; + sec_handles.reserve(handles.size()); + for (Handle* handle : handles) { + if (!handle) { + continue; + } + LRUHandle* lru_handle = reinterpret_cast(handle); + if (!lru_handle->IsPending()) { + continue; + } + sec_handles.emplace_back(lru_handle->sec_handle); + } + secondary_cache_->WaitAll(sec_handles); + for (Handle* handle : handles) { + if (!handle) { + continue; + } + LRUHandle* lru_handle = reinterpret_cast(handle); + if (!lru_handle->IsPending()) { + continue; + } + GetShard(lru_handle->hash).Promote(lru_handle); + } + } +} + +void LRUCache::AppendPrintableOptions(std::string& str) const { + ShardedCache::AppendPrintableOptions(str); // options from shard + if (secondary_cache_) { + str.append(" secondary_cache:\n"); + str.append(secondary_cache_->GetPrintableOptions()); + } +} + +} // namespace lru_cache + +std::shared_ptr NewLRUCache( + size_t capacity, int num_shard_bits, bool strict_capacity_limit, + double high_pri_pool_ratio, + std::shared_ptr memory_allocator, bool use_adaptive_mutex, + CacheMetadataChargePolicy metadata_charge_policy, + const std::shared_ptr& secondary_cache, + double low_pri_pool_ratio) { + if (num_shard_bits >= 20) { + return nullptr; // The cache cannot be sharded into too many fine pieces. + } + if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) { + // Invalid high_pri_pool_ratio + return nullptr; + } + if (low_pri_pool_ratio < 0.0 || low_pri_pool_ratio > 1.0) { + // Invalid low_pri_pool_ratio + return nullptr; + } + if (low_pri_pool_ratio + high_pri_pool_ratio > 1.0) { + // Invalid high_pri_pool_ratio and low_pri_pool_ratio combination + return nullptr; + } + if (num_shard_bits < 0) { + num_shard_bits = GetDefaultCacheShardBits(capacity); + } + return std::make_shared( + capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio, + low_pri_pool_ratio, std::move(memory_allocator), use_adaptive_mutex, + metadata_charge_policy, secondary_cache); +} + +std::shared_ptr NewLRUCache(const LRUCacheOptions& cache_opts) { + return NewLRUCache(cache_opts.capacity, cache_opts.num_shard_bits, + cache_opts.strict_capacity_limit, + cache_opts.high_pri_pool_ratio, + cache_opts.memory_allocator, cache_opts.use_adaptive_mutex, + cache_opts.metadata_charge_policy, + cache_opts.secondary_cache, cache_opts.low_pri_pool_ratio); +} + +std::shared_ptr NewLRUCache( + size_t capacity, int num_shard_bits, bool strict_capacity_limit, + double high_pri_pool_ratio, + std::shared_ptr memory_allocator, bool use_adaptive_mutex, + CacheMetadataChargePolicy metadata_charge_policy, + double low_pri_pool_ratio) { + return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit, + high_pri_pool_ratio, memory_allocator, use_adaptive_mutex, + metadata_charge_policy, nullptr, low_pri_pool_ratio); +} +} // namespace ROCKSDB_NAMESPACE -- cgit v1.2.3