.. Licensed to the Apache Software Foundation (ASF) under one .. or more contributor license agreements. See the NOTICE file .. distributed with this work for additional information .. regarding copyright ownership. The ASF licenses this file .. to you under the Apache License, Version 2.0 (the .. "License"); you may not use this file except in compliance .. with the License. You may obtain a copy of the License at .. http://www.apache.org/licenses/LICENSE-2.0 .. Unless required by applicable law or agreed to in writing, .. software distributed under the License is distributed on an .. "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY .. KIND, either express or implied. See the License for the .. specific language governing permissions and limitations .. under the License. .. _filesystem: .. currentmodule:: pyarrow.fs Filesystem Interface ==================== PyArrow comes with an abstract filesystem interface, as well as concrete implementations for various storage types. The filesystem interface provides input and output streams as well as directory operations. A simplified view of the underlying data storage is exposed. Data paths are represented as *abstract paths*, which are ``/``-separated, even on Windows, and shouldn't include special path components such as ``.`` and ``..``. Symbolic links, if supported by the underlying storage, are automatically dereferenced. Only basic :class:`metadata ` about file entries, such as the file size and modification time, is made available. The core interface is represented by the base class :class:`FileSystem`. Pyarrow implements natively the following filesystem subclasses: * :ref:`filesystem-localfs` (:class:`LocalFileSystem`) * :ref:`filesystem-s3` (:class:`S3FileSystem`) * :ref:`filesystem-hdfs` (:class:`HadoopFileSystem`) It is also possible to use your own fsspec-compliant filesystem with pyarrow functionalities as described in the section :ref:`filesystem-fsspec`. .. _filesystem-usage: Usage ----- Instantiating a filesystem ~~~~~~~~~~~~~~~~~~~~~~~~~~ A FileSystem object can be created with one of the constructors (and check the respective constructor for its options):: >>> from pyarrow import fs >>> local = fs.LocalFileSystem() or alternatively inferred from a URI:: >>> s3, path = fs.FileSystem.from_uri("s3://my-bucket") >>> s3 >>> path 'my-bucket' Reading and writing files ~~~~~~~~~~~~~~~~~~~~~~~~~ Several of the IO-related functions in PyArrow accept either a URI (and infer the filesystem) or an explicit ``filesystem`` argument to specify the filesystem to read or write from. For example, the :meth:`pyarrow.parquet.read_table` function can be used in the following ways:: import pyarrow.parquet as pq # using a URI -> filesystem is inferred pq.read_table("s3://my-bucket/data.parquet") # using a path and filesystem s3 = fs.S3FileSystem(..) pq.read_table("my-bucket/data.parquet", filesystem=s3) The filesystem interface further allows to open files for reading (input) or writing (output) directly, which can be combined with functions that work with file-like objects. For example:: import pyarrow as pa local = fs.LocalFileSystem() with local.open_output_stream("test.arrow") as file: with pa.RecordBatchFileWriter(file, table.schema) as writer: writer.write_table(table) Listing files ~~~~~~~~~~~~~ Inspecting the directories and files on a filesystem can be done with the :meth:`FileSystem.get_file_info` method. To list the contents of a directory, use the :class:`FileSelector` object to specify the selection:: >>> local.get_file_info(fs.FileSelector("dataset/", recursive=True)) [, , , ] This returns a list of :class:`FileInfo` objects, containing information about the type (file or directory), the size, the date last modified, etc. You can also get this information for a single explicit path (or list of paths):: >>> local.get_file_info('test.arrow') >>> local.get_file_info('non_existent') .. _filesystem-localfs: Local FS -------- The :class:`LocalFileSystem` allows you to access files on the local machine. Example how to write to disk and read it back:: >>> from pyarrow import fs >>> local = fs.LocalFileSystem() >>> with local.open_output_stream('/tmp/pyarrowtest.dat') as stream: stream.write(b'data') 4 >>> with local.open_input_stream('/tmp/pyarrowtest.dat') as stream: print(stream.readall()) b'data' .. _filesystem-s3: S3 -- PyArrow implements natively a S3 filesystem for S3 compatible storage. The :class:`S3FileSystem` constructor has several options to configure the S3 connection (e.g. credentials, the region, an endpoint override, etc). In addition, the constructor will also inspect configured S3 credentials as supported by AWS (for example the ``AWS_ACCESS_KEY_ID`` and ``AWS_SECRET_ACCESS_KEY`` environment variables). Example how you can read contents from a S3 bucket:: >>> from pyarrow import fs >>> s3 = fs.S3FileSystem(region='eu-west-3') # List all contents in a bucket, recursively >>> s3.get_file_info(fs.FileSelector('my-test-bucket', recursive=True)) [, , , , , , , , ] # Open a file for reading and download its contents >>> f = s3.open_input_stream('my-test-bucket/Dir1/File2') >>> f.readall() b'some data' .. seealso:: See the `AWS docs `__ for the different ways to configure the AWS credentials. .. _filesystem-hdfs: Hadoop Distributed File System (HDFS) ------------------------------------- PyArrow comes with bindings to the Hadoop File System (based on C++ bindings using ``libhdfs``, a JNI-based interface to the Java Hadoop client). You connect using the :class:`HadoopFileSystem` constructor: .. code-block:: python from pyarrow import fs hdfs = fs.HadoopFileSystem(host, port, user=user, kerb_ticket=ticket_cache_path) The ``libhdfs`` library is loaded **at runtime** (rather than at link / library load time, since the library may not be in your LD_LIBRARY_PATH), and relies on some environment variables. * ``HADOOP_HOME``: the root of your installed Hadoop distribution. Often has `lib/native/libhdfs.so`. * ``JAVA_HOME``: the location of your Java SDK installation. * ``ARROW_LIBHDFS_DIR`` (optional): explicit location of ``libhdfs.so`` if it is installed somewhere other than ``$HADOOP_HOME/lib/native``. * ``CLASSPATH``: must contain the Hadoop jars. You can set these using: .. code-block:: shell export CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath --glob` # or on Windows %HADOOP_HOME%/bin/hadoop classpath --glob > %CLASSPATH% In contrast to the legacy HDFS filesystem with ``pa.hdfs.connect``, setting ``CLASSPATH`` is not optional (pyarrow will not attempt to infer it). .. _filesystem-fsspec: Using fsspec-compatible filesystems with Arrow ---------------------------------------------- The filesystems mentioned above are natively supported by Arrow C++ / PyArrow. The Python ecosystem, however, also has several filesystem packages. Those packages following the `fsspec`_ interface can be used in PyArrow as well. Functions accepting a filesystem object will also accept an fsspec subclass. For example:: # creating an fsspec-based filesystem object for Google Cloud Storage import gcsfs fs = gcsfs.GCSFileSystem(project='my-google-project') # using this to read a partitioned dataset import pyarrow.dataset as ds ds.dataset("data/", filesystem=fs) Similarly for Azure Blob Storage:: import adlfs # ... load your credentials and configure the filesystem fs = adlfs.AzureBlobFileSystem(account_name=account_name, account_key=account_key) import pyarrow.dataset as ds ds.dataset("mycontainer/data/", filesystem=fs) Under the hood, the fsspec filesystem object is wrapped into a python-based PyArrow filesystem (:class:`PyFileSystem`) using :class:`FSSpecHandler`. You can also manually do this to get an object with the PyArrow FileSystem interface:: from pyarrow.fs import PyFileSystem, FSSpecHandler pa_fs = PyFileSystem(FSSpecHandler(fs)) Then all the functionalities of :class:`FileSystem` are accessible:: # write data with pa_fs.open_output_stream('mycontainer/pyarrowtest.dat') as stream: stream.write(b'data') # read data with pa_fs.open_input_stream('mycontainer/pyarrowtest.dat') as stream: print(stream.readall()) #b'data' # read a partitioned dataset ds.dataset("data/", filesystem=pa_fs) Using Arrow filesystems with fsspec ----------------------------------- The Arrow FileSystem interface has a limited, developer-oriented API surface. This is sufficient for basic interactions and for using this with Arrow's IO functionality. On the other hand, the `fsspec`_ interface provides a very large API with many helper methods. If you want to use those, or if you need to interact with a package that expects fsspec-compatible filesystem objects, you can wrap an Arrow FileSystem object with fsspec. Starting with ``fsspec`` version 2021.09, the ``ArrowFSWrapper`` can be used for this:: >>> from pyarrow import fs >>> local = fs.LocalFileSystem() >>> from fsspec.implementations.arrow import ArrowFSWrapper >>> local_fsspec = ArrowFSWrapper(local) The resulting object now has an fsspec-compatible interface, while being backed by the Arrow FileSystem under the hood. Example usage to create a directory and file, and list the content:: >>> local_fsspec.mkdir("./test") >>> local_fsspec.touch("./test/file.txt") >>> local_fsspec.ls("./test/") ['./test/file.txt'] For more information, see the `fsspec`_ documentation. .. _fsspec: https://filesystem-spec.readthedocs.io/en/latest/