# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from pyarrow.lib import tobytes from pyarrow.lib cimport * from pyarrow.includes.libarrow_cuda cimport * from pyarrow.lib import py_buffer, allocate_buffer, as_buffer, ArrowTypeError from pyarrow.util import get_contiguous_span cimport cpython as cp cdef class Context(_Weakrefable): """ CUDA driver context. """ def __init__(self, *args, **kwargs): """ Create a CUDA driver context for a particular device. If a CUDA context handle is passed, it is wrapped, otherwise a default CUDA context for the given device is requested. Parameters ---------- device_number : int (default 0) Specify the GPU device for which the CUDA driver context is requested. handle : int, optional Specify CUDA handle for a shared context that has been created by another library. """ # This method exposed because autodoc doesn't pick __cinit__ def __cinit__(self, int device_number=0, uintptr_t handle=0): cdef CCudaDeviceManager* manager manager = GetResultValue(CCudaDeviceManager.Instance()) cdef int n = manager.num_devices() if device_number >= n or device_number < 0: self.context.reset() raise ValueError('device_number argument must be ' 'non-negative less than %s' % (n)) if handle == 0: self.context = GetResultValue(manager.GetContext(device_number)) else: self.context = GetResultValue(manager.GetSharedContext( device_number, handle)) self.device_number = device_number @staticmethod def from_numba(context=None): """ Create a Context instance from a Numba CUDA context. Parameters ---------- context : {numba.cuda.cudadrv.driver.Context, None} A Numba CUDA context instance. If None, the current Numba context is used. Returns ------- shared_context : pyarrow.cuda.Context Context instance. """ if context is None: import numba.cuda context = numba.cuda.current_context() return Context(device_number=context.device.id, handle=context.handle.value) def to_numba(self): """ Convert Context to a Numba CUDA context. Returns ------- context : numba.cuda.cudadrv.driver.Context Numba CUDA context instance. """ import ctypes import numba.cuda device = numba.cuda.gpus[self.device_number] handle = ctypes.c_void_p(self.handle) context = numba.cuda.cudadrv.driver.Context(device, handle) class DummyPendingDeallocs(object): # Context is managed by pyarrow def add_item(self, *args, **kwargs): pass context.deallocations = DummyPendingDeallocs() return context @staticmethod def get_num_devices(): """ Return the number of GPU devices. """ cdef CCudaDeviceManager* manager manager = GetResultValue(CCudaDeviceManager.Instance()) return manager.num_devices() @property def device_number(self): """ Return context device number. """ return self.device_number @property def handle(self): """ Return pointer to context handle. """ return self.context.get().handle() cdef void init(self, const shared_ptr[CCudaContext]& ctx): self.context = ctx def synchronize(self): """Blocks until the device has completed all preceding requested tasks. """ check_status(self.context.get().Synchronize()) @property def bytes_allocated(self): """Return the number of allocated bytes. """ return self.context.get().bytes_allocated() def get_device_address(self, uintptr_t address): """Return the device address that is reachable from kernels running in the context Parameters ---------- address : int Specify memory address value Returns ------- device_address : int Device address accessible from device context Notes ----- The device address is defined as a memory address accessible by device. While it is often a device memory address but it can be also a host memory address, for instance, when the memory is allocated as host memory (using cudaMallocHost or cudaHostAlloc) or as managed memory (using cudaMallocManaged) or the host memory is page-locked (using cudaHostRegister). """ return GetResultValue(self.context.get().GetDeviceAddress(address)) def new_buffer(self, int64_t nbytes): """Return new device buffer. Parameters ---------- nbytes : int Specify the number of bytes to be allocated. Returns ------- buf : CudaBuffer Allocated buffer. """ cdef: shared_ptr[CCudaBuffer] cudabuf with nogil: cudabuf = GetResultValue(self.context.get().Allocate(nbytes)) return pyarrow_wrap_cudabuffer(cudabuf) def foreign_buffer(self, address, size, base=None): """ Create device buffer from address and size as a view. The caller is responsible for allocating and freeing the memory. When `address==size==0` then a new zero-sized buffer is returned. Parameters ---------- address : int Specify the starting address of the buffer. The address can refer to both device or host memory but it must be accessible from device after mapping it with `get_device_address` method. size : int Specify the size of device buffer in bytes. base : {None, object} Specify object that owns the referenced memory. Returns ------- cbuf : CudaBuffer Device buffer as a view of device reachable memory. """ if not address and size == 0: return self.new_buffer(0) cdef: uintptr_t c_addr = self.get_device_address(address) int64_t c_size = size shared_ptr[CCudaBuffer] cudabuf cudabuf = GetResultValue(self.context.get().View( c_addr, c_size)) return pyarrow_wrap_cudabuffer_base(cudabuf, base) def open_ipc_buffer(self, ipc_handle): """ Open existing CUDA IPC memory handle Parameters ---------- ipc_handle : IpcMemHandle Specify opaque pointer to CUipcMemHandle (driver API). Returns ------- buf : CudaBuffer referencing device buffer """ handle = pyarrow_unwrap_cudaipcmemhandle(ipc_handle) cdef shared_ptr[CCudaBuffer] cudabuf with nogil: cudabuf = GetResultValue( self.context.get().OpenIpcBuffer(handle.get()[0])) return pyarrow_wrap_cudabuffer(cudabuf) def buffer_from_data(self, object data, int64_t offset=0, int64_t size=-1): """Create device buffer and initialize with data. Parameters ---------- data : {CudaBuffer, HostBuffer, Buffer, array-like} Specify data to be copied to device buffer. offset : int Specify the offset of input buffer for device data buffering. Default: 0. size : int Specify the size of device buffer in bytes. Default: all (starting from input offset) Returns ------- cbuf : CudaBuffer Device buffer with copied data. """ is_host_data = not pyarrow_is_cudabuffer(data) buf = as_buffer(data) if is_host_data else data bsize = buf.size if offset < 0 or (bsize and offset >= bsize): raise ValueError('offset argument is out-of-range') if size < 0: size = bsize - offset elif offset + size > bsize: raise ValueError( 'requested larger slice than available in device buffer') if offset != 0 or size != bsize: buf = buf.slice(offset, size) result = self.new_buffer(size) if is_host_data: result.copy_from_host(buf, position=0, nbytes=size) else: result.copy_from_device(buf, position=0, nbytes=size) return result def buffer_from_object(self, obj): """Create device buffer view of arbitrary object that references device accessible memory. When the object contains a non-contiguous view of device accessible memory then the returned device buffer will contain contiguous view of the memory, that is, including the intermediate data that is otherwise invisible to the input object. Parameters ---------- obj : {object, Buffer, HostBuffer, CudaBuffer, ...} Specify an object that holds (device or host) address that can be accessed from device. This includes objects with types defined in pyarrow.cuda as well as arbitrary objects that implement the CUDA array interface as defined by numba. Returns ------- cbuf : CudaBuffer Device buffer as a view of device accessible memory. """ if isinstance(obj, HostBuffer): return self.foreign_buffer(obj.address, obj.size, base=obj) elif isinstance(obj, Buffer): return CudaBuffer.from_buffer(obj) elif isinstance(obj, CudaBuffer): return obj elif hasattr(obj, '__cuda_array_interface__'): desc = obj.__cuda_array_interface__ addr = desc['data'][0] if addr is None: return self.new_buffer(0) import numpy as np start, end = get_contiguous_span( desc['shape'], desc.get('strides'), np.dtype(desc['typestr']).itemsize) return self.foreign_buffer(addr + start, end - start, base=obj) raise ArrowTypeError('cannot create device buffer view from' ' `%s` object' % (type(obj))) cdef class IpcMemHandle(_Weakrefable): """A serializable container for a CUDA IPC handle. """ cdef void init(self, shared_ptr[CCudaIpcMemHandle]& h): self.handle = h @staticmethod def from_buffer(Buffer opaque_handle): """Create IpcMemHandle from opaque buffer (e.g. from another process) Parameters ---------- opaque_handle : a CUipcMemHandle as a const void* Results ------- ipc_handle : IpcMemHandle """ c_buf = pyarrow_unwrap_buffer(opaque_handle) cdef: shared_ptr[CCudaIpcMemHandle] handle handle = GetResultValue( CCudaIpcMemHandle.FromBuffer(c_buf.get().data())) return pyarrow_wrap_cudaipcmemhandle(handle) def serialize(self, pool=None): """Write IpcMemHandle to a Buffer Parameters ---------- pool : {MemoryPool, None} Specify a pool to allocate memory from Returns ------- buf : Buffer The serialized buffer. """ cdef CMemoryPool* pool_ = maybe_unbox_memory_pool(pool) cdef shared_ptr[CBuffer] buf cdef CCudaIpcMemHandle* h = self.handle.get() with nogil: buf = GetResultValue(h.Serialize(pool_)) return pyarrow_wrap_buffer(buf) cdef class CudaBuffer(Buffer): """An Arrow buffer with data located in a GPU device. To create a CudaBuffer instance, use Context.device_buffer(). The memory allocated in a CudaBuffer is freed when the buffer object is deleted. """ def __init__(self): raise TypeError("Do not call CudaBuffer's constructor directly, use " "`.device_buffer`" " method instead.") cdef void init_cuda(self, const shared_ptr[CCudaBuffer]& buffer, object base): self.cuda_buffer = buffer self.init( buffer) self.base = base @staticmethod def from_buffer(buf): """ Convert back generic buffer into CudaBuffer Parameters ---------- buf : Buffer Specify buffer containing CudaBuffer Returns ------- dbuf : CudaBuffer Resulting device buffer. """ c_buf = pyarrow_unwrap_buffer(buf) cuda_buffer = GetResultValue(CCudaBuffer.FromBuffer(c_buf)) return pyarrow_wrap_cudabuffer(cuda_buffer) @staticmethod def from_numba(mem): """Create a CudaBuffer view from numba MemoryPointer instance. Parameters ---------- mem : numba.cuda.cudadrv.driver.MemoryPointer Returns ------- cbuf : CudaBuffer Device buffer as a view of numba MemoryPointer. """ ctx = Context.from_numba(mem.context) if mem.device_pointer.value is None and mem.size==0: return ctx.new_buffer(0) return ctx.foreign_buffer(mem.device_pointer.value, mem.size, base=mem) def to_numba(self): """Return numba memory pointer of CudaBuffer instance. """ import ctypes from numba.cuda.cudadrv.driver import MemoryPointer return MemoryPointer(self.context.to_numba(), pointer=ctypes.c_void_p(self.address), size=self.size) cdef getitem(self, int64_t i): return self.copy_to_host(position=i, nbytes=1)[0] def copy_to_host(self, int64_t position=0, int64_t nbytes=-1, Buffer buf=None, MemoryPool memory_pool=None, c_bool resizable=False): """Copy memory from GPU device to CPU host Caller is responsible for ensuring that all tasks affecting the memory are finished. Use `.context.synchronize()` when needed. Parameters ---------- position : int Specify the starting position of the source data in GPU device buffer. Default: 0. nbytes : int Specify the number of bytes to copy. Default: -1 (all from the position until host buffer is full). buf : Buffer Specify a pre-allocated output buffer in host. Default: None (allocate new output buffer). memory_pool : MemoryPool resizable : bool Specify extra arguments to allocate_buffer. Used only when buf is None. Returns ------- buf : Buffer Output buffer in host. """ if position < 0 or (self.size and position > self.size) \ or (self.size == 0 and position != 0): raise ValueError('position argument is out-of-range') cdef: int64_t c_nbytes if buf is None: if nbytes < 0: # copy all starting from position to new host buffer c_nbytes = self.size - position else: if nbytes > self.size - position: raise ValueError( 'requested more to copy than available from ' 'device buffer') # copy nbytes starting from position to new host buffeer c_nbytes = nbytes buf = allocate_buffer(c_nbytes, memory_pool=memory_pool, resizable=resizable) else: if nbytes < 0: # copy all from position until given host buffer is full c_nbytes = min(self.size - position, buf.size) else: if nbytes > buf.size: raise ValueError( 'requested copy does not fit into host buffer') # copy nbytes from position to given host buffer c_nbytes = nbytes cdef: shared_ptr[CBuffer] c_buf = pyarrow_unwrap_buffer(buf) int64_t c_position = position with nogil: check_status(self.cuda_buffer.get() .CopyToHost(c_position, c_nbytes, c_buf.get().mutable_data())) return buf def copy_from_host(self, data, int64_t position=0, int64_t nbytes=-1): """Copy data from host to device. The device buffer must be pre-allocated. Parameters ---------- data : {Buffer, array-like} Specify data in host. It can be array-like that is valid argument to py_buffer position : int Specify the starting position of the copy in device buffer. Default: 0. nbytes : int Specify the number of bytes to copy. Default: -1 (all from source until device buffer, starting from position, is full) Returns ------- nbytes : int Number of bytes copied. """ if position < 0 or position > self.size: raise ValueError('position argument is out-of-range') cdef: int64_t c_nbytes buf = as_buffer(data) if nbytes < 0: # copy from host buffer to device buffer starting from # position until device buffer is full c_nbytes = min(self.size - position, buf.size) else: if nbytes > buf.size: raise ValueError( 'requested more to copy than available from host buffer') if nbytes > self.size - position: raise ValueError( 'requested more to copy than available in device buffer') # copy nbytes from host buffer to device buffer starting # from position c_nbytes = nbytes cdef: shared_ptr[CBuffer] c_buf = pyarrow_unwrap_buffer(buf) int64_t c_position = position with nogil: check_status(self.cuda_buffer.get(). CopyFromHost(c_position, c_buf.get().data(), c_nbytes)) return c_nbytes def copy_from_device(self, buf, int64_t position=0, int64_t nbytes=-1): """Copy data from device to device. Parameters ---------- buf : CudaBuffer Specify source device buffer. position : int Specify the starting position of the copy in device buffer. Default: 0. nbytes : int Specify the number of bytes to copy. Default: -1 (all from source until device buffer, starting from position, is full) Returns ------- nbytes : int Number of bytes copied. """ if position < 0 or position > self.size: raise ValueError('position argument is out-of-range') cdef: int64_t c_nbytes if nbytes < 0: # copy from source device buffer to device buffer starting # from position until device buffer is full c_nbytes = min(self.size - position, buf.size) else: if nbytes > buf.size: raise ValueError( 'requested more to copy than available from device buffer') if nbytes > self.size - position: raise ValueError( 'requested more to copy than available in device buffer') # copy nbytes from source device buffer to device buffer # starting from position c_nbytes = nbytes cdef: shared_ptr[CCudaBuffer] c_buf = pyarrow_unwrap_cudabuffer(buf) int64_t c_position = position shared_ptr[CCudaContext] c_src_ctx = pyarrow_unwrap_cudacontext( buf.context) void* c_source_data = (c_buf.get().address()) if self.context.handle != buf.context.handle: with nogil: check_status(self.cuda_buffer.get(). CopyFromAnotherDevice(c_src_ctx, c_position, c_source_data, c_nbytes)) else: with nogil: check_status(self.cuda_buffer.get(). CopyFromDevice(c_position, c_source_data, c_nbytes)) return c_nbytes def export_for_ipc(self): """ Expose this device buffer as IPC memory which can be used in other processes. After calling this function, this device memory will not be freed when the CudaBuffer is destructed. Returns ------- ipc_handle : IpcMemHandle The exported IPC handle """ cdef shared_ptr[CCudaIpcMemHandle] handle with nogil: handle = GetResultValue(self.cuda_buffer.get().ExportForIpc()) return pyarrow_wrap_cudaipcmemhandle(handle) @property def context(self): """Returns the CUDA driver context of this buffer. """ return pyarrow_wrap_cudacontext(self.cuda_buffer.get().context()) def slice(self, offset=0, length=None): """Return slice of device buffer Parameters ---------- offset : int, default 0 Specify offset from the start of device buffer to slice length : int, default None Specify the length of slice (default is until end of device buffer starting from offset). If the length is larger than the data available, the returned slice will have a size of the available data starting from the offset. Returns ------- sliced : CudaBuffer Zero-copy slice of device buffer. """ if offset < 0 or (self.size and offset >= self.size): raise ValueError('offset argument is out-of-range') cdef int64_t offset_ = offset cdef int64_t size if length is None: size = self.size - offset_ elif offset + length <= self.size: size = length else: size = self.size - offset parent = pyarrow_unwrap_cudabuffer(self) return pyarrow_wrap_cudabuffer(make_shared[CCudaBuffer](parent, offset_, size)) def to_pybytes(self): """Return device buffer content as Python bytes. """ return self.copy_to_host().to_pybytes() def __getbuffer__(self, cp.Py_buffer* buffer, int flags): # Device buffer contains data pointers on the device. Hence, # cannot support buffer protocol PEP-3118 for CudaBuffer. raise BufferError('buffer protocol for device buffer not supported') cdef class HostBuffer(Buffer): """Device-accessible CPU memory created using cudaHostAlloc. To create a HostBuffer instance, use cuda.new_host_buffer() """ def __init__(self): raise TypeError("Do not call HostBuffer's constructor directly," " use `cuda.new_host_buffer` function instead.") cdef void init_host(self, const shared_ptr[CCudaHostBuffer]& buffer): self.host_buffer = buffer self.init( buffer) @property def size(self): return self.host_buffer.get().size() cdef class BufferReader(NativeFile): """File interface for zero-copy read from CUDA buffers. Note: Read methods return pointers to device memory. This means you must be careful using this interface with any Arrow code which may expect to be able to do anything other than pointer arithmetic on the returned buffers. """ def __cinit__(self, CudaBuffer obj): self.buffer = obj self.reader = new CCudaBufferReader(self.buffer.buffer) self.set_random_access_file( shared_ptr[CRandomAccessFile](self.reader)) self.is_readable = True def read_buffer(self, nbytes=None): """Return a slice view of the underlying device buffer. The slice will start at the current reader position and will have specified size in bytes. Parameters ---------- nbytes : int, default None Specify the number of bytes to read. Default: None (read all remaining bytes). Returns ------- cbuf : CudaBuffer New device buffer. """ cdef: int64_t c_nbytes int64_t bytes_read = 0 shared_ptr[CCudaBuffer] output if nbytes is None: c_nbytes = self.size() - self.tell() else: c_nbytes = nbytes with nogil: output = static_pointer_cast[CCudaBuffer, CBuffer]( GetResultValue(self.reader.Read(c_nbytes))) return pyarrow_wrap_cudabuffer(output) cdef class BufferWriter(NativeFile): """File interface for writing to CUDA buffers. By default writes are unbuffered. Use set_buffer_size to enable buffering. """ def __cinit__(self, CudaBuffer buffer): self.buffer = buffer self.writer = new CCudaBufferWriter(self.buffer.cuda_buffer) self.set_output_stream(shared_ptr[COutputStream](self.writer)) self.is_writable = True def writeat(self, int64_t position, object data): """Write data to buffer starting from position. Parameters ---------- position : int Specify device buffer position where the data will be written. data : array-like Specify data, the data instance must implement buffer protocol. """ cdef: Buffer buf = as_buffer(data) const uint8_t* c_data = buf.buffer.get().data() int64_t c_size = buf.buffer.get().size() with nogil: check_status(self.writer.WriteAt(position, c_data, c_size)) def flush(self): """ Flush the buffer stream """ with nogil: check_status(self.writer.Flush()) def seek(self, int64_t position, int whence=0): # TODO: remove this method after NativeFile.seek supports # writable files. cdef int64_t offset with nogil: if whence == 0: offset = position elif whence == 1: offset = GetResultValue(self.writer.Tell()) offset = offset + position else: with gil: raise ValueError("Invalid value of whence: {0}" .format(whence)) check_status(self.writer.Seek(offset)) return self.tell() @property def buffer_size(self): """Returns size of host (CPU) buffer, 0 for unbuffered """ return self.writer.buffer_size() @buffer_size.setter def buffer_size(self, int64_t buffer_size): """Set CPU buffer size to limit calls to cudaMemcpy Parameters ---------- buffer_size : int Specify the size of CPU buffer to allocate in bytes. """ with nogil: check_status(self.writer.SetBufferSize(buffer_size)) @property def num_bytes_buffered(self): """Returns number of bytes buffered on host """ return self.writer.num_bytes_buffered() # Functions def new_host_buffer(const int64_t size, int device=0): """Return buffer with CUDA-accessible memory on CPU host Parameters ---------- size : int Specify the number of bytes to be allocated. device : int Specify GPU device number. Returns ------- dbuf : HostBuffer Allocated host buffer """ cdef shared_ptr[CCudaHostBuffer] buffer with nogil: buffer = GetResultValue(AllocateCudaHostBuffer(device, size)) return pyarrow_wrap_cudahostbuffer(buffer) def serialize_record_batch(object batch, object ctx): """ Write record batch message to GPU device memory Parameters ---------- batch : RecordBatch Record batch to write ctx : Context CUDA Context to allocate device memory from Returns ------- dbuf : CudaBuffer device buffer which contains the record batch message """ cdef shared_ptr[CCudaBuffer] buffer cdef CRecordBatch* batch_ = pyarrow_unwrap_batch(batch).get() cdef CCudaContext* ctx_ = pyarrow_unwrap_cudacontext(ctx).get() with nogil: buffer = GetResultValue(CudaSerializeRecordBatch(batch_[0], ctx_)) return pyarrow_wrap_cudabuffer(buffer) def read_message(object source, pool=None): """ Read Arrow IPC message located on GPU device Parameters ---------- source : {CudaBuffer, cuda.BufferReader} Device buffer or reader of device buffer. pool : MemoryPool (optional) Pool to allocate CPU memory for the metadata Returns ------- message : Message The deserialized message, body still on device """ cdef: Message result = Message.__new__(Message) cdef CMemoryPool* pool_ = maybe_unbox_memory_pool(pool) if not isinstance(source, BufferReader): reader = BufferReader(source) with nogil: result.message = move( GetResultValue(ReadMessage(reader.reader, pool_))) return result def read_record_batch(object buffer, object schema, *, DictionaryMemo dictionary_memo=None, pool=None): """Construct RecordBatch referencing IPC message located on CUDA device. While the metadata is copied to host memory for deserialization, the record batch data remains on the device. Parameters ---------- buffer : Device buffer containing the complete IPC message schema : Schema The schema for the record batch dictionary_memo : DictionaryMemo, optional If message contains dictionaries, must pass a populated DictionaryMemo pool : MemoryPool (optional) Pool to allocate metadata from Returns ------- batch : RecordBatch Reconstructed record batch, with device pointers """ cdef: shared_ptr[CSchema] schema_ = pyarrow_unwrap_schema(schema) shared_ptr[CCudaBuffer] buffer_ = pyarrow_unwrap_cudabuffer(buffer) CDictionaryMemo temp_memo CDictionaryMemo* arg_dict_memo CMemoryPool* pool_ = maybe_unbox_memory_pool(pool) shared_ptr[CRecordBatch] batch if dictionary_memo is not None: arg_dict_memo = dictionary_memo.memo else: arg_dict_memo = &temp_memo with nogil: batch = GetResultValue(CudaReadRecordBatch( schema_, arg_dict_memo, buffer_, pool_)) return pyarrow_wrap_batch(batch) # Public API cdef public api bint pyarrow_is_buffer(object buffer): return isinstance(buffer, Buffer) # cudabuffer cdef public api bint pyarrow_is_cudabuffer(object buffer): return isinstance(buffer, CudaBuffer) cdef public api object \ pyarrow_wrap_cudabuffer_base(const shared_ptr[CCudaBuffer]& buf, base): cdef CudaBuffer result = CudaBuffer.__new__(CudaBuffer) result.init_cuda(buf, base) return result cdef public api object \ pyarrow_wrap_cudabuffer(const shared_ptr[CCudaBuffer]& buf): cdef CudaBuffer result = CudaBuffer.__new__(CudaBuffer) result.init_cuda(buf, None) return result cdef public api shared_ptr[CCudaBuffer] pyarrow_unwrap_cudabuffer(object obj): if pyarrow_is_cudabuffer(obj): return (obj).cuda_buffer raise TypeError('expected CudaBuffer instance, got %s' % (type(obj).__name__)) # cudahostbuffer cdef public api bint pyarrow_is_cudahostbuffer(object buffer): return isinstance(buffer, HostBuffer) cdef public api object \ pyarrow_wrap_cudahostbuffer(const shared_ptr[CCudaHostBuffer]& buf): cdef HostBuffer result = HostBuffer.__new__(HostBuffer) result.init_host(buf) return result cdef public api shared_ptr[CCudaHostBuffer] \ pyarrow_unwrap_cudahostbuffer(object obj): if pyarrow_is_cudahostbuffer(obj): return (obj).host_buffer raise TypeError('expected HostBuffer instance, got %s' % (type(obj).__name__)) # cudacontext cdef public api bint pyarrow_is_cudacontext(object ctx): return isinstance(ctx, Context) cdef public api object \ pyarrow_wrap_cudacontext(const shared_ptr[CCudaContext]& ctx): cdef Context result = Context.__new__(Context) result.init(ctx) return result cdef public api shared_ptr[CCudaContext] \ pyarrow_unwrap_cudacontext(object obj): if pyarrow_is_cudacontext(obj): return (obj).context raise TypeError('expected Context instance, got %s' % (type(obj).__name__)) # cudaipcmemhandle cdef public api bint pyarrow_is_cudaipcmemhandle(object handle): return isinstance(handle, IpcMemHandle) cdef public api object \ pyarrow_wrap_cudaipcmemhandle(shared_ptr[CCudaIpcMemHandle]& h): cdef IpcMemHandle result = IpcMemHandle.__new__(IpcMemHandle) result.init(h) return result cdef public api shared_ptr[CCudaIpcMemHandle] \ pyarrow_unwrap_cudaipcmemhandle(object obj): if pyarrow_is_cudaipcmemhandle(obj): return (obj).handle raise TypeError('expected IpcMemHandle instance, got %s' % (type(obj).__name__))