# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # cython: language_level = 3 """Dataset is currently unstable. APIs subject to change without notice.""" from cpython.object cimport Py_LT, Py_EQ, Py_GT, Py_LE, Py_NE, Py_GE from cython.operator cimport dereference as deref import collections import os import warnings import pyarrow as pa from pyarrow.lib cimport * from pyarrow.lib import ArrowTypeError, frombytes, tobytes from pyarrow.includes.libarrow_dataset cimport * from pyarrow._fs cimport FileSystem, FileInfo, FileSelector from pyarrow._csv cimport ( ConvertOptions, ParseOptions, ReadOptions, WriteOptions) from pyarrow.util import _is_iterable, _is_path_like, _stringify_path from pyarrow._parquet cimport ( _create_writer_properties, _create_arrow_writer_properties, FileMetaData, RowGroupMetaData, ColumnChunkMetaData ) def _forbid_instantiation(klass, subclasses_instead=True): msg = '{} is an abstract class thus cannot be initialized.'.format( klass.__name__ ) if subclasses_instead: subclasses = [cls.__name__ for cls in klass.__subclasses__] msg += ' Use one of the subclasses instead: {}'.format( ', '.join(subclasses) ) raise TypeError(msg) _orc_fileformat = None _orc_imported = False def _get_orc_fileformat(): """ Import OrcFileFormat on first usage (to avoid circular import issue when `pyarrow._dataset_orc` would be imported first) """ global _orc_fileformat global _orc_imported if not _orc_imported: try: from pyarrow._dataset_orc import OrcFileFormat _orc_fileformat = OrcFileFormat except ImportError as e: _orc_fileformat = None finally: _orc_imported = True return _orc_fileformat cdef CFileSource _make_file_source(object file, FileSystem filesystem=None): cdef: CFileSource c_source shared_ptr[CFileSystem] c_filesystem c_string c_path shared_ptr[CRandomAccessFile] c_file shared_ptr[CBuffer] c_buffer if isinstance(file, Buffer): c_buffer = pyarrow_unwrap_buffer(file) c_source = CFileSource(move(c_buffer)) elif _is_path_like(file): if filesystem is None: raise ValueError("cannot construct a FileSource from " "a path without a FileSystem") c_filesystem = filesystem.unwrap() c_path = tobytes(_stringify_path(file)) c_source = CFileSource(move(c_path), move(c_filesystem)) elif hasattr(file, 'read'): # Optimistically hope this is file-like c_file = get_native_file(file, False).get_random_access_file() c_source = CFileSource(move(c_file)) else: raise TypeError("cannot construct a FileSource " "from " + str(file)) return c_source cdef CSegmentEncoding _get_segment_encoding(str segment_encoding): if segment_encoding == "none": return CSegmentEncodingNone elif segment_encoding == "uri": return CSegmentEncodingUri raise ValueError(f"Unknown segment encoding: {segment_encoding}") cdef class Expression(_Weakrefable): """ A logical expression to be evaluated against some input. To create an expression: - Use the factory function ``pyarrow.dataset.scalar()`` to create a scalar (not necessary when combined, see example below). - Use the factory function ``pyarrow.dataset.field()`` to reference a field (column in table). - Compare fields and scalars with ``<``, ``<=``, ``==``, ``>=``, ``>``. - Combine expressions using python operators ``&`` (logical and), ``|`` (logical or) and ``~`` (logical not). Note: python keywords ``and``, ``or`` and ``not`` cannot be used to combine expressions. - Check whether the expression is contained in a list of values with the ``pyarrow.dataset.Expression.isin()`` member function. Examples -------- >>> import pyarrow.dataset as ds >>> (ds.field("a") < ds.scalar(3)) | (ds.field("b") > 7) 7:int64))> >>> ds.field('a') != 3 >>> ds.field('a').isin([1, 2, 3]) """ cdef: CExpression expr def __init__(self): _forbid_instantiation(self.__class__) cdef void init(self, const CExpression& sp): self.expr = sp @staticmethod cdef wrap(const CExpression& sp): cdef Expression self = Expression.__new__(Expression) self.init(sp) return self cdef inline CExpression unwrap(self): return self.expr def equals(self, Expression other): return self.expr.Equals(other.unwrap()) def __str__(self): return frombytes(self.expr.ToString()) def __repr__(self): return "".format( self.__class__.__name__, str(self) ) @staticmethod def _deserialize(Buffer buffer not None): return Expression.wrap(GetResultValue(CDeserializeExpression( pyarrow_unwrap_buffer(buffer)))) def __reduce__(self): buffer = pyarrow_wrap_buffer(GetResultValue( CSerializeExpression(self.expr))) return Expression._deserialize, (buffer,) @staticmethod cdef Expression _expr_or_scalar(object expr): if isinstance(expr, Expression): return ( expr) return ( Expression._scalar(expr)) @staticmethod cdef Expression _call(str function_name, list arguments, shared_ptr[CFunctionOptions] options=( nullptr)): cdef: vector[CExpression] c_arguments for argument in arguments: c_arguments.push_back(( argument).expr) return Expression.wrap(CMakeCallExpression(tobytes(function_name), move(c_arguments), options)) def __richcmp__(self, other, int op): other = Expression._expr_or_scalar(other) return Expression._call({ Py_EQ: "equal", Py_NE: "not_equal", Py_GT: "greater", Py_GE: "greater_equal", Py_LT: "less", Py_LE: "less_equal", }[op], [self, other]) def __bool__(self): raise ValueError( "An Expression cannot be evaluated to python True or False. " "If you are using the 'and', 'or' or 'not' operators, use '&', " "'|' or '~' instead." ) def __invert__(self): return Expression._call("invert", [self]) def __and__(Expression self, other): other = Expression._expr_or_scalar(other) return Expression._call("and_kleene", [self, other]) def __or__(Expression self, other): other = Expression._expr_or_scalar(other) return Expression._call("or_kleene", [self, other]) def __add__(Expression self, other): other = Expression._expr_or_scalar(other) return Expression._call("add_checked", [self, other]) def __mul__(Expression self, other): other = Expression._expr_or_scalar(other) return Expression._call("multiply_checked", [self, other]) def __sub__(Expression self, other): other = Expression._expr_or_scalar(other) return Expression._call("subtract_checked", [self, other]) def __truediv__(Expression self, other): other = Expression._expr_or_scalar(other) return Expression._call("divide_checked", [self, other]) def is_valid(self): """Checks whether the expression is not-null (valid)""" return Expression._call("is_valid", [self]) def is_null(self, bint nan_is_null=False): """Checks whether the expression is null""" cdef: shared_ptr[CFunctionOptions] c_options c_options.reset(new CNullOptions(nan_is_null)) return Expression._call("is_null", [self], c_options) def cast(self, type, bint safe=True): """Explicitly change the expression's data type""" cdef shared_ptr[CCastOptions] c_options c_options.reset(new CCastOptions(safe)) c_options.get().to_type = pyarrow_unwrap_data_type(ensure_type(type)) return Expression._call("cast", [self], c_options) def isin(self, values): """Checks whether the expression is contained in values""" cdef: shared_ptr[CFunctionOptions] c_options CDatum c_values if not isinstance(values, pa.Array): values = pa.array(values) c_values = CDatum(pyarrow_unwrap_array(values)) c_options.reset(new CSetLookupOptions(c_values, True)) return Expression._call("is_in", [self], c_options) @staticmethod def _field(str name not None): return Expression.wrap(CMakeFieldExpression(tobytes(name))) @staticmethod def _scalar(value): cdef: Scalar scalar if isinstance(value, Scalar): scalar = value else: scalar = pa.scalar(value) return Expression.wrap(CMakeScalarExpression(scalar.unwrap())) _deserialize = Expression._deserialize cdef Expression _true = Expression._scalar(True) cdef class Dataset(_Weakrefable): """ Collection of data fragments and potentially child datasets. Arrow Datasets allow you to query against data that has been split across multiple files. This sharding of data may indicate partitioning, which can accelerate queries that only touch some partitions (files). """ cdef: shared_ptr[CDataset] wrapped CDataset* dataset def __init__(self): _forbid_instantiation(self.__class__) cdef void init(self, const shared_ptr[CDataset]& sp): self.wrapped = sp self.dataset = sp.get() @staticmethod cdef wrap(const shared_ptr[CDataset]& sp): type_name = frombytes(sp.get().type_name()) classes = { 'union': UnionDataset, 'filesystem': FileSystemDataset, 'in-memory': InMemoryDataset, } class_ = classes.get(type_name, None) if class_ is None: raise TypeError(type_name) cdef Dataset self = class_.__new__(class_) self.init(sp) return self cdef shared_ptr[CDataset] unwrap(self) nogil: return self.wrapped @property def partition_expression(self): """ An Expression which evaluates to true for all data viewed by this Dataset. """ return Expression.wrap(self.dataset.partition_expression()) def replace_schema(self, Schema schema not None): """ Return a copy of this Dataset with a different schema. The copy will view the same Fragments. If the new schema is not compatible with the original dataset's schema then an error will be raised. """ cdef shared_ptr[CDataset] copy = GetResultValue( self.dataset.ReplaceSchema(pyarrow_unwrap_schema(schema))) return Dataset.wrap(move(copy)) def get_fragments(self, Expression filter=None): """Returns an iterator over the fragments in this dataset. Parameters ---------- filter : Expression, default None Return fragments matching the optional filter, either using the partition_expression or internal information like Parquet's statistics. Returns ------- fragments : iterator of Fragment """ cdef: CExpression c_filter CFragmentIterator c_iterator if filter is None: c_fragments = move(GetResultValue(self.dataset.GetFragments())) else: c_filter = _bind(filter, self.schema) c_fragments = move(GetResultValue( self.dataset.GetFragments(c_filter))) for maybe_fragment in c_fragments: yield Fragment.wrap(GetResultValue(move(maybe_fragment))) def scanner(self, **kwargs): """Builds a scan operation against the dataset. Data is not loaded immediately. Instead, this produces a Scanner, which exposes further operations (e.g. loading all data as a table, counting rows). Parameters ---------- columns : list of str, default None The columns to project. This can be a list of column names to include (order and duplicates will be preserved), or a dictionary with {new_column_name: expression} values for more advanced projections. The columns will be passed down to Datasets and corresponding data fragments to avoid loading, copying, and deserializing columns that will not be required further down the compute chain. By default all of the available columns are projected. Raises an exception if any of the referenced column names does not exist in the dataset's Schema. filter : Expression, default None Scan will return only the rows matching the filter. If possible the predicate will be pushed down to exploit the partition information or internal metadata found in the data source, e.g. Parquet statistics. Otherwise filters the loaded RecordBatches before yielding them. batch_size : int, default 1M The maximum row count for scanned record batches. If scanned record batches are overflowing memory then this method can be called to reduce their size. use_threads : bool, default True If enabled, then maximum parallelism will be used determined by the number of available CPU cores. use_async : bool, default False If enabled, an async scanner will be used that should offer better performance with high-latency/highly-parallel filesystems (e.g. S3) memory_pool : MemoryPool, default None For memory allocations, if required. If not specified, uses the default pool. fragment_scan_options : FragmentScanOptions, default None Options specific to a particular scan and fragment type, which can change between different scans of the same dataset. Returns ------- scanner : Scanner Examples -------- >>> import pyarrow.dataset as ds >>> dataset = ds.dataset("path/to/dataset") Selecting a subset of the columns: >>> dataset.scanner(columns=["A", "B"]).to_table() Projecting selected columns using an expression: >>> dataset.scanner(columns={ ... "A_int": ds.field("A").cast("int64"), ... }).to_table() Filtering rows while scanning: >>> dataset.scanner(filter=ds.field("A") > 0).to_table() """ return Scanner.from_dataset(self, **kwargs) def to_batches(self, **kwargs): """Read the dataset as materialized record batches. See scanner method parameters documentation. Returns ------- record_batches : iterator of RecordBatch """ return self.scanner(**kwargs).to_batches() def to_table(self, **kwargs): """Read the dataset to an arrow table. Note that this method reads all the selected data from the dataset into memory. See scanner method parameters documentation. Returns ------- table : Table instance """ return self.scanner(**kwargs).to_table() def take(self, object indices, **kwargs): """Select rows of data by index. See scanner method parameters documentation. Returns ------- table : Table instance """ return self.scanner(**kwargs).take(indices) def head(self, int num_rows, **kwargs): """Load the first N rows of the dataset. See scanner method parameters documentation. Returns ------- table : Table instance """ return self.scanner(**kwargs).head(num_rows) def count_rows(self, **kwargs): """Count rows matching the scanner filter. See scanner method parameters documentation. Returns ------- count : int """ return self.scanner(**kwargs).count_rows() @property def schema(self): """The common schema of the full Dataset""" return pyarrow_wrap_schema(self.dataset.schema()) cdef class InMemoryDataset(Dataset): """ A Dataset wrapping in-memory data. Parameters ---------- source : The data for this dataset. Can be a RecordBatch, Table, list of RecordBatch/Table, iterable of RecordBatch, or a RecordBatchReader. If an iterable is provided, the schema must also be provided. schema : Schema, optional Only required if passing an iterable as the source. """ cdef: CInMemoryDataset* in_memory_dataset def __init__(self, source, Schema schema=None): cdef: RecordBatchReader reader shared_ptr[CInMemoryDataset] in_memory_dataset if isinstance(source, (pa.RecordBatch, pa.Table)): source = [source] if isinstance(source, (list, tuple)): batches = [] for item in source: if isinstance(item, pa.RecordBatch): batches.append(item) elif isinstance(item, pa.Table): batches.extend(item.to_batches()) else: raise TypeError( 'Expected a list of tables or batches. The given list ' 'contains a ' + type(item).__name__) if schema is None: schema = item.schema elif not schema.equals(item.schema): raise ArrowTypeError( f'Item has schema\n{item.schema}\nwhich does not ' f'match expected schema\n{schema}') if not batches and schema is None: raise ValueError('Must provide schema to construct in-memory ' 'dataset from an empty list') table = pa.Table.from_batches(batches, schema=schema) in_memory_dataset = make_shared[CInMemoryDataset]( pyarrow_unwrap_table(table)) else: raise TypeError( 'Expected a table, batch, or list of tables/batches ' 'instead of the given type: ' + type(source).__name__ ) self.init( in_memory_dataset) cdef void init(self, const shared_ptr[CDataset]& sp): Dataset.init(self, sp) self.in_memory_dataset = sp.get() cdef class UnionDataset(Dataset): """ A Dataset wrapping child datasets. Children's schemas must agree with the provided schema. Parameters ---------- schema : Schema A known schema to conform to. children : list of Dataset One or more input children """ cdef: CUnionDataset* union_dataset def __init__(self, Schema schema not None, children): cdef: Dataset child CDatasetVector c_children shared_ptr[CUnionDataset] union_dataset for child in children: c_children.push_back(child.wrapped) union_dataset = GetResultValue(CUnionDataset.Make( pyarrow_unwrap_schema(schema), move(c_children))) self.init( union_dataset) cdef void init(self, const shared_ptr[CDataset]& sp): Dataset.init(self, sp) self.union_dataset = sp.get() def __reduce__(self): return UnionDataset, (self.schema, self.children) @property def children(self): cdef CDatasetVector children = self.union_dataset.children() return [Dataset.wrap(children[i]) for i in range(children.size())] cdef class FileSystemDataset(Dataset): """ A Dataset of file fragments. A FileSystemDataset is composed of one or more FileFragment. Parameters ---------- fragments : list[Fragments] List of fragments to consume. schema : Schema The top-level schema of the Dataset. format : FileFormat File format of the fragments, currently only ParquetFileFormat, IpcFileFormat, and CsvFileFormat are supported. filesystem : FileSystem FileSystem of the fragments. root_partition : Expression, optional The top-level partition of the DataDataset. """ cdef: CFileSystemDataset* filesystem_dataset def __init__(self, fragments, Schema schema, FileFormat format, FileSystem filesystem=None, root_partition=None): cdef: FileFragment fragment=None vector[shared_ptr[CFileFragment]] c_fragments CResult[shared_ptr[CDataset]] result shared_ptr[CFileSystem] c_filesystem if root_partition is None: root_partition = _true elif not isinstance(root_partition, Expression): raise TypeError( "Argument 'root_partition' has incorrect type (expected " "Epression, got {0})".format(type(root_partition)) ) for fragment in fragments: c_fragments.push_back( static_pointer_cast[CFileFragment, CFragment]( fragment.unwrap())) if filesystem is None: filesystem = fragment.filesystem if filesystem is not None: c_filesystem = filesystem.unwrap() result = CFileSystemDataset.Make( pyarrow_unwrap_schema(schema), ( root_partition).unwrap(), format.unwrap(), c_filesystem, c_fragments ) self.init(GetResultValue(result)) @property def filesystem(self): return FileSystem.wrap(self.filesystem_dataset.filesystem()) @property def partitioning(self): """ The partitioning of the Dataset source, if discovered. If the FileSystemDataset is created using the ``dataset()`` factory function with a partitioning specified, this will return the finalized Partitioning object from the dataset discovery. In all other cases, this returns None. """ c_partitioning = self.filesystem_dataset.partitioning() if c_partitioning.get() == nullptr: return None try: return Partitioning.wrap(c_partitioning) except TypeError: # e.g. type_name "default" return None cdef void init(self, const shared_ptr[CDataset]& sp): Dataset.init(self, sp) self.filesystem_dataset = sp.get() def __reduce__(self): return FileSystemDataset, ( list(self.get_fragments()), self.schema, self.format, self.filesystem, self.partition_expression ) @classmethod def from_paths(cls, paths, schema=None, format=None, filesystem=None, partitions=None, root_partition=None): """A Dataset created from a list of paths on a particular filesystem. Parameters ---------- paths : list of str List of file paths to create the fragments from. schema : Schema The top-level schema of the DataDataset. format : FileFormat File format to create fragments from, currently only ParquetFileFormat, IpcFileFormat, and CsvFileFormat are supported. filesystem : FileSystem The filesystem which files are from. partitions : List[Expression], optional Attach additional partition information for the file paths. root_partition : Expression, optional The top-level partition of the DataDataset. """ cdef: FileFragment fragment if root_partition is None: root_partition = _true for arg, class_, name in [ (schema, Schema, 'schema'), (format, FileFormat, 'format'), (filesystem, FileSystem, 'filesystem'), (root_partition, Expression, 'root_partition') ]: if not isinstance(arg, class_): raise TypeError( "Argument '{0}' has incorrect type (expected {1}, " "got {2})".format(name, class_.__name__, type(arg)) ) partitions = partitions or [_true] * len(paths) if len(paths) != len(partitions): raise ValueError( 'The number of files resulting from paths_or_selector ' 'must be equal to the number of partitions.' ) fragments = [ format.make_fragment(path, filesystem, partitions[i]) for i, path in enumerate(paths) ] return FileSystemDataset(fragments, schema, format, filesystem, root_partition) @property def files(self): """List of the files""" cdef vector[c_string] files = self.filesystem_dataset.files() return [frombytes(f) for f in files] @property def format(self): """The FileFormat of this source.""" return FileFormat.wrap(self.filesystem_dataset.format()) cdef CExpression _bind(Expression filter, Schema schema) except *: assert schema is not None if filter is None: return _true.unwrap() return GetResultValue(filter.unwrap().Bind( deref(pyarrow_unwrap_schema(schema).get()))) cdef class FileWriteOptions(_Weakrefable): cdef: shared_ptr[CFileWriteOptions] wrapped CFileWriteOptions* c_options def __init__(self): _forbid_instantiation(self.__class__) cdef void init(self, const shared_ptr[CFileWriteOptions]& sp): self.wrapped = sp self.c_options = sp.get() @staticmethod cdef wrap(const shared_ptr[CFileWriteOptions]& sp): type_name = frombytes(sp.get().type_name()) classes = { 'csv': CsvFileWriteOptions, 'ipc': IpcFileWriteOptions, 'parquet': ParquetFileWriteOptions, } class_ = classes.get(type_name, None) if class_ is None: raise TypeError(type_name) cdef FileWriteOptions self = class_.__new__(class_) self.init(sp) return self @property def format(self): return FileFormat.wrap(self.c_options.format()) cdef inline shared_ptr[CFileWriteOptions] unwrap(self): return self.wrapped cdef class FileFormat(_Weakrefable): def __init__(self): _forbid_instantiation(self.__class__) cdef void init(self, const shared_ptr[CFileFormat]& sp): self.wrapped = sp self.format = sp.get() @staticmethod cdef wrap(const shared_ptr[CFileFormat]& sp): type_name = frombytes(sp.get().type_name()) classes = { 'ipc': IpcFileFormat, 'csv': CsvFileFormat, 'parquet': ParquetFileFormat, 'orc': _get_orc_fileformat(), } class_ = classes.get(type_name, None) if class_ is None: raise TypeError(type_name) cdef FileFormat self = class_.__new__(class_) self.init(sp) return self cdef inline shared_ptr[CFileFormat] unwrap(self): return self.wrapped def inspect(self, file, filesystem=None): """Infer the schema of a file.""" c_source = _make_file_source(file, filesystem) c_schema = GetResultValue(self.format.Inspect(c_source)) return pyarrow_wrap_schema(move(c_schema)) def make_fragment(self, file, filesystem=None, Expression partition_expression=None): """ Make a FileFragment of this FileFormat. The filter may not reference fields absent from the provided schema. If no schema is provided then one will be inferred. """ if partition_expression is None: partition_expression = _true c_source = _make_file_source(file, filesystem) c_fragment = GetResultValue( self.format.MakeFragment(move(c_source), partition_expression.unwrap(), nullptr)) return Fragment.wrap(move(c_fragment)) def make_write_options(self): return FileWriteOptions.wrap(self.format.DefaultWriteOptions()) @property def default_extname(self): return frombytes(self.format.type_name()) @property def default_fragment_scan_options(self): return FragmentScanOptions.wrap( self.wrapped.get().default_fragment_scan_options) @default_fragment_scan_options.setter def default_fragment_scan_options(self, FragmentScanOptions options): if options is None: self.wrapped.get().default_fragment_scan_options =\ nullptr else: self._set_default_fragment_scan_options(options) cdef _set_default_fragment_scan_options(self, FragmentScanOptions options): raise ValueError(f"Cannot set fragment scan options for " f"'{options.type_name}' on {self.__class__.__name__}") def __eq__(self, other): try: return self.equals(other) except TypeError: return False cdef class Fragment(_Weakrefable): """Fragment of data from a Dataset.""" cdef: shared_ptr[CFragment] wrapped CFragment* fragment def __init__(self): _forbid_instantiation(self.__class__) cdef void init(self, const shared_ptr[CFragment]& sp): self.wrapped = sp self.fragment = sp.get() @staticmethod cdef wrap(const shared_ptr[CFragment]& sp): type_name = frombytes(sp.get().type_name()) classes = { # IpcFileFormat and CsvFileFormat do not have corresponding # subclasses of FileFragment 'ipc': FileFragment, 'csv': FileFragment, 'parquet': ParquetFileFragment, } class_ = classes.get(type_name, None) if class_ is None: class_ = Fragment cdef Fragment self = class_.__new__(class_) self.init(sp) return self cdef inline shared_ptr[CFragment] unwrap(self): return self.wrapped @property def physical_schema(self): """Return the physical schema of this Fragment. This schema can be different from the dataset read schema.""" cdef: CResult[shared_ptr[CSchema]] maybe_schema with nogil: maybe_schema = self.fragment.ReadPhysicalSchema() return pyarrow_wrap_schema(GetResultValue(maybe_schema)) @property def partition_expression(self): """An Expression which evaluates to true for all data viewed by this Fragment. """ return Expression.wrap(self.fragment.partition_expression()) def scanner(self, Schema schema=None, **kwargs): """Builds a scan operation against the dataset. Data is not loaded immediately. Instead, this produces a Scanner, which exposes further operations (e.g. loading all data as a table, counting rows). Parameters ---------- schema : Schema Schema to use for scanning. This is used to unify a Fragment to it's Dataset's schema. If not specified this will use the Fragment's physical schema which might differ for each Fragment. columns : list of str, default None The columns to project. This can be a list of column names to include (order and duplicates will be preserved), or a dictionary with {new_column_name: expression} values for more advanced projections. The columns will be passed down to Datasets and corresponding data fragments to avoid loading, copying, and deserializing columns that will not be required further down the compute chain. By default all of the available columns are projected. Raises an exception if any of the referenced column names does not exist in the dataset's Schema. filter : Expression, default None Scan will return only the rows matching the filter. If possible the predicate will be pushed down to exploit the partition information or internal metadata found in the data source, e.g. Parquet statistics. Otherwise filters the loaded RecordBatches before yielding them. batch_size : int, default 1M The maximum row count for scanned record batches. If scanned record batches are overflowing memory then this method can be called to reduce their size. use_threads : bool, default True If enabled, then maximum parallelism will be used determined by the number of available CPU cores. memory_pool : MemoryPool, default None For memory allocations, if required. If not specified, uses the default pool. fragment_scan_options : FragmentScanOptions, default None Options specific to a particular scan and fragment type, which can change between different scans of the same dataset. Returns ------- scanner : Scanner """ return Scanner.from_fragment(self, schema=schema, **kwargs) def to_batches(self, Schema schema=None, **kwargs): """Read the fragment as materialized record batches. See scanner method parameters documentation. Returns ------- record_batches : iterator of RecordBatch """ return self.scanner(schema=schema, **kwargs).to_batches() def to_table(self, Schema schema=None, **kwargs): """Convert this Fragment into a Table. Use this convenience utility with care. This will serially materialize the Scan result in memory before creating the Table. See scanner method parameters documentation. Returns ------- table : Table """ return self.scanner(schema=schema, **kwargs).to_table() def take(self, object indices, **kwargs): """Select rows of data by index. See scanner method parameters documentation. Returns ------- table : Table instance """ return self.scanner(**kwargs).take(indices) def head(self, int num_rows, **kwargs): """Load the first N rows of the fragment. See scanner method parameters documentation. Returns ------- table : Table instance """ return self.scanner(**kwargs).head(num_rows) def count_rows(self, **kwargs): """Count rows matching the scanner filter. See scanner method parameters documentation. Returns ------- count : int """ return self.scanner(**kwargs).count_rows() cdef class FileFragment(Fragment): """A Fragment representing a data file.""" cdef: CFileFragment* file_fragment cdef void init(self, const shared_ptr[CFragment]& sp): Fragment.init(self, sp) self.file_fragment = sp.get() def __repr__(self): type_name = frombytes(self.fragment.type_name()) if type_name != "parquet": typ = f" type={type_name}" else: # parquet has a subclass -> type embedded in class name typ = "" partition_dict = _get_partition_keys(self.partition_expression) partition = ", ".join( [f"{key}={val}" for key, val in partition_dict.items()] ) if partition: partition = f" partition=[{partition}]" return "".format( self.__class__.__name__, typ, self.path, partition ) def __reduce__(self): buffer = self.buffer return self.format.make_fragment, ( self.path if buffer is None else buffer, self.filesystem, self.partition_expression ) @property def path(self): """ The path of the data file viewed by this fragment, if it views a file. If instead it views a buffer, this will be "". """ return frombytes(self.file_fragment.source().path()) @property def filesystem(self): """ The FileSystem containing the data file viewed by this fragment, if it views a file. If instead it views a buffer, this will be None. """ cdef: shared_ptr[CFileSystem] c_fs c_fs = self.file_fragment.source().filesystem() if c_fs.get() == nullptr: return None return FileSystem.wrap(c_fs) @property def buffer(self): """ The buffer viewed by this fragment, if it views a buffer. If instead it views a file, this will be None. """ cdef: shared_ptr[CBuffer] c_buffer c_buffer = self.file_fragment.source().buffer() if c_buffer.get() == nullptr: return None return pyarrow_wrap_buffer(c_buffer) @property def format(self): """ The format of the data file viewed by this fragment. """ return FileFormat.wrap(self.file_fragment.format()) class RowGroupInfo: """ A wrapper class for RowGroup information Parameters ---------- id : the group id. metadata : the rowgroup metadata. schema : schema of the rows. """ def __init__(self, id, metadata, schema): self.id = id self.metadata = metadata self.schema = schema @property def num_rows(self): return self.metadata.num_rows @property def total_byte_size(self): return self.metadata.total_byte_size @property def statistics(self): def name_stats(i): col = self.metadata.column(i) stats = col.statistics if stats is None or not stats.has_min_max: return None, None name = col.path_in_schema field_index = self.schema.get_field_index(name) if field_index < 0: return None, None typ = self.schema.field(field_index).type return col.path_in_schema, { 'min': pa.scalar(stats.min, type=typ).as_py(), 'max': pa.scalar(stats.max, type=typ).as_py() } return { name: stats for name, stats in map(name_stats, range(self.metadata.num_columns)) if stats is not None } def __repr__(self): return "RowGroupInfo({})".format(self.id) def __eq__(self, other): if isinstance(other, int): return self.id == other if not isinstance(other, RowGroupInfo): return False return self.id == other.id cdef class FragmentScanOptions(_Weakrefable): """Scan options specific to a particular fragment and scan operation.""" def __init__(self): _forbid_instantiation(self.__class__) cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp): self.wrapped = sp @staticmethod cdef wrap(const shared_ptr[CFragmentScanOptions]& sp): if not sp: return None type_name = frombytes(sp.get().type_name()) classes = { 'csv': CsvFragmentScanOptions, 'parquet': ParquetFragmentScanOptions, } class_ = classes.get(type_name, None) if class_ is None: raise TypeError(type_name) cdef FragmentScanOptions self = class_.__new__(class_) self.init(sp) return self @property def type_name(self): return frombytes(self.wrapped.get().type_name()) def __eq__(self, other): try: return self.equals(other) except TypeError: return False cdef class ParquetFileFragment(FileFragment): """A Fragment representing a parquet file.""" cdef: CParquetFileFragment* parquet_file_fragment cdef void init(self, const shared_ptr[CFragment]& sp): FileFragment.init(self, sp) self.parquet_file_fragment = sp.get() def __reduce__(self): buffer = self.buffer row_groups = [row_group.id for row_group in self.row_groups] return self.format.make_fragment, ( self.path if buffer is None else buffer, self.filesystem, self.partition_expression, row_groups ) def ensure_complete_metadata(self): """ Ensure that all metadata (statistics, physical schema, ...) have been read and cached in this fragment. """ check_status(self.parquet_file_fragment.EnsureCompleteMetadata()) @property def row_groups(self): metadata = self.metadata cdef vector[int] row_groups = self.parquet_file_fragment.row_groups() return [RowGroupInfo(i, metadata.row_group(i), self.physical_schema) for i in row_groups] @property def metadata(self): self.ensure_complete_metadata() cdef FileMetaData metadata = FileMetaData() metadata.init(self.parquet_file_fragment.metadata()) return metadata @property def num_row_groups(self): """ Return the number of row groups viewed by this fragment (not the number of row groups in the origin file). """ self.ensure_complete_metadata() return self.parquet_file_fragment.row_groups().size() def split_by_row_group(self, Expression filter=None, Schema schema=None): """ Split the fragment into multiple fragments. Yield a Fragment wrapping each row group in this ParquetFileFragment. Row groups will be excluded whose metadata contradicts the optional filter. Parameters ---------- filter : Expression, default None Only include the row groups which satisfy this predicate (using the Parquet RowGroup statistics). schema : Schema, default None Schema to use when filtering row groups. Defaults to the Fragment's phsyical schema Returns ------- A list of Fragments """ cdef: vector[shared_ptr[CFragment]] c_fragments CExpression c_filter shared_ptr[CFragment] c_fragment schema = schema or self.physical_schema c_filter = _bind(filter, schema) with nogil: c_fragments = move(GetResultValue( self.parquet_file_fragment.SplitByRowGroup(move(c_filter)))) return [Fragment.wrap(c_fragment) for c_fragment in c_fragments] def subset(self, Expression filter=None, Schema schema=None, object row_group_ids=None): """ Create a subset of the fragment (viewing a subset of the row groups). Subset can be specified by either a filter predicate (with optional schema) or by a list of row group IDs. Note that when using a filter, the resulting fragment can be empty (viewing no row groups). Parameters ---------- filter : Expression, default None Only include the row groups which satisfy this predicate (using the Parquet RowGroup statistics). schema : Schema, default None Schema to use when filtering row groups. Defaults to the Fragment's phsyical schema row_group_ids : list of ints The row group IDs to include in the subset. Can only be specified if `filter` is None. Returns ------- ParquetFileFragment """ cdef: CExpression c_filter vector[int] c_row_group_ids shared_ptr[CFragment] c_fragment if filter is not None and row_group_ids is not None: raise ValueError( "Cannot specify both 'filter' and 'row_group_ids'." ) if filter is not None: schema = schema or self.physical_schema c_filter = _bind(filter, schema) with nogil: c_fragment = move(GetResultValue( self.parquet_file_fragment.SubsetWithFilter( move(c_filter)))) elif row_group_ids is not None: c_row_group_ids = [ row_group for row_group in sorted(set(row_group_ids)) ] with nogil: c_fragment = move(GetResultValue( self.parquet_file_fragment.SubsetWithIds( move(c_row_group_ids)))) else: raise ValueError( "Need to specify one of 'filter' or 'row_group_ids'" ) return Fragment.wrap(c_fragment) cdef class ParquetReadOptions(_Weakrefable): """ Parquet format specific options for reading. Parameters ---------- dictionary_columns : list of string, default None Names of columns which should be dictionary encoded as they are read. coerce_int96_timestamp_unit : str, default None. Cast timestamps that are stored in INT96 format to a particular resolution (e.g. 'ms'). Setting to None is equivalent to 'ns' and therefore INT96 timestamps will be infered as timestamps in nanoseconds. """ cdef public: set dictionary_columns TimeUnit _coerce_int96_timestamp_unit # Also see _PARQUET_READ_OPTIONS def __init__(self, dictionary_columns=None, coerce_int96_timestamp_unit=None): self.dictionary_columns = set(dictionary_columns or set()) self.coerce_int96_timestamp_unit = coerce_int96_timestamp_unit @property def coerce_int96_timestamp_unit(self): return timeunit_to_string(self._coerce_int96_timestamp_unit) @coerce_int96_timestamp_unit.setter def coerce_int96_timestamp_unit(self, unit): if unit is not None: self._coerce_int96_timestamp_unit = string_to_timeunit(unit) else: self._coerce_int96_timestamp_unit = TimeUnit_NANO def equals(self, ParquetReadOptions other): return (self.dictionary_columns == other.dictionary_columns and self.coerce_int96_timestamp_unit == other.coerce_int96_timestamp_unit) def __eq__(self, other): try: return self.equals(other) except TypeError: return False def __repr__(self): return ( f"" ) cdef class ParquetFileWriteOptions(FileWriteOptions): cdef: CParquetFileWriteOptions* parquet_options object _properties def update(self, **kwargs): arrow_fields = { "use_deprecated_int96_timestamps", "coerce_timestamps", "allow_truncated_timestamps", } setters = set() for name, value in kwargs.items(): if name not in self._properties: raise TypeError("unexpected parquet write option: " + name) self._properties[name] = value if name in arrow_fields: setters.add(self._set_arrow_properties) else: setters.add(self._set_properties) for setter in setters: setter() def _set_properties(self): cdef CParquetFileWriteOptions* opts = self.parquet_options opts.writer_properties = _create_writer_properties( use_dictionary=self._properties["use_dictionary"], compression=self._properties["compression"], version=self._properties["version"], write_statistics=self._properties["write_statistics"], data_page_size=self._properties["data_page_size"], compression_level=self._properties["compression_level"], use_byte_stream_split=( self._properties["use_byte_stream_split"] ), data_page_version=self._properties["data_page_version"], ) def _set_arrow_properties(self): cdef CParquetFileWriteOptions* opts = self.parquet_options opts.arrow_writer_properties = _create_arrow_writer_properties( use_deprecated_int96_timestamps=( self._properties["use_deprecated_int96_timestamps"] ), coerce_timestamps=self._properties["coerce_timestamps"], allow_truncated_timestamps=( self._properties["allow_truncated_timestamps"] ), writer_engine_version="V2", use_compliant_nested_type=( self._properties["use_compliant_nested_type"] ) ) cdef void init(self, const shared_ptr[CFileWriteOptions]& sp): FileWriteOptions.init(self, sp) self.parquet_options = sp.get() self._properties = dict( use_dictionary=True, compression="snappy", version="1.0", write_statistics=None, data_page_size=None, compression_level=None, use_byte_stream_split=False, data_page_version="1.0", use_deprecated_int96_timestamps=False, coerce_timestamps=None, allow_truncated_timestamps=False, use_compliant_nested_type=False, ) self._set_properties() self._set_arrow_properties() cdef set _PARQUET_READ_OPTIONS = { 'dictionary_columns', 'coerce_int96_timestamp_unit' } cdef class ParquetFileFormat(FileFormat): """ FileFormat for Parquet Parameters ---------- read_options : ParquetReadOptions Read options for the file. default_fragment_scan_options : ParquetFragmentScanOptions Scan Options for the file. **kwargs : dict Additional options for read option or scan option. """ cdef: CParquetFileFormat* parquet_format def __init__(self, read_options=None, default_fragment_scan_options=None, **kwargs): cdef: shared_ptr[CParquetFileFormat] wrapped CParquetFileFormatReaderOptions* options # Read/scan options read_options_args = {option: kwargs[option] for option in kwargs if option in _PARQUET_READ_OPTIONS} scan_args = {option: kwargs[option] for option in kwargs if option not in _PARQUET_READ_OPTIONS} if read_options and read_options_args: duplicates = ', '.join(sorted(read_options_args)) raise ValueError(f'If `read_options` is given, ' f'cannot specify {duplicates}') if default_fragment_scan_options and scan_args: duplicates = ', '.join(sorted(scan_args)) raise ValueError(f'If `default_fragment_scan_options` is given, ' f'cannot specify {duplicates}') if read_options is None: read_options = ParquetReadOptions(**read_options_args) elif isinstance(read_options, dict): # For backwards compatibility duplicates = [] for option, value in read_options.items(): if option in _PARQUET_READ_OPTIONS: read_options_args[option] = value else: duplicates.append(option) scan_args[option] = value if duplicates: duplicates = ", ".join(duplicates) warnings.warn(f'The scan options {duplicates} should be ' 'specified directly as keyword arguments') read_options = ParquetReadOptions(**read_options_args) elif not isinstance(read_options, ParquetReadOptions): raise TypeError('`read_options` must be either a dictionary or an ' 'instance of ParquetReadOptions') if default_fragment_scan_options is None: default_fragment_scan_options = ParquetFragmentScanOptions( **scan_args) elif isinstance(default_fragment_scan_options, dict): default_fragment_scan_options = ParquetFragmentScanOptions( **default_fragment_scan_options) elif not isinstance(default_fragment_scan_options, ParquetFragmentScanOptions): raise TypeError('`default_fragment_scan_options` must be either a ' 'dictionary or an instance of ' 'ParquetFragmentScanOptions') wrapped = make_shared[CParquetFileFormat]() options = &(wrapped.get().reader_options) if read_options.dictionary_columns is not None: for column in read_options.dictionary_columns: options.dict_columns.insert(tobytes(column)) options.coerce_int96_timestamp_unit = \ read_options._coerce_int96_timestamp_unit self.init( wrapped) self.default_fragment_scan_options = default_fragment_scan_options cdef void init(self, const shared_ptr[CFileFormat]& sp): FileFormat.init(self, sp) self.parquet_format = sp.get() @property def read_options(self): cdef CParquetFileFormatReaderOptions* options options = &self.parquet_format.reader_options parquet_read_options = ParquetReadOptions( dictionary_columns={frombytes(col) for col in options.dict_columns}, ) # Read options getter/setter works with strings so setting # the private property which uses the C Type parquet_read_options._coerce_int96_timestamp_unit = \ options.coerce_int96_timestamp_unit return parquet_read_options def make_write_options(self, **kwargs): opts = FileFormat.make_write_options(self) ( opts).update(**kwargs) return opts cdef _set_default_fragment_scan_options(self, FragmentScanOptions options): if options.type_name == 'parquet': self.parquet_format.default_fragment_scan_options = options.wrapped else: super()._set_default_fragment_scan_options(options) def equals(self, ParquetFileFormat other): return ( self.read_options.equals(other.read_options) and self.default_fragment_scan_options == other.default_fragment_scan_options ) def __reduce__(self): return ParquetFileFormat, (self.read_options, self.default_fragment_scan_options) def __repr__(self): return f"" def make_fragment(self, file, filesystem=None, Expression partition_expression=None, row_groups=None): cdef: vector[int] c_row_groups if partition_expression is None: partition_expression = _true if row_groups is None: return super().make_fragment(file, filesystem, partition_expression) c_source = _make_file_source(file, filesystem) c_row_groups = [ row_group for row_group in set(row_groups)] c_fragment = GetResultValue( self.parquet_format.MakeFragment(move(c_source), partition_expression.unwrap(), nullptr, move(c_row_groups))) return Fragment.wrap(move(c_fragment)) cdef class ParquetFragmentScanOptions(FragmentScanOptions): """ Scan-specific options for Parquet fragments. Parameters ---------- use_buffered_stream : bool, default False Read files through buffered input streams rather than loading entire row groups at once. This may be enabled to reduce memory overhead. Disabled by default. buffer_size : int, default 8192 Size of buffered stream, if enabled. Default is 8KB. pre_buffer : bool, default False If enabled, pre-buffer the raw Parquet data instead of issuing one read per column chunk. This can improve performance on high-latency filesystems. enable_parallel_column_conversion : bool, default False EXPERIMENTAL: Parallelize conversion across columns. This option is ignored if a scan is already parallelized across input files to avoid thread contention. This option will be removed after support is added for simultaneous parallelization across files and columns. """ cdef: CParquetFragmentScanOptions* parquet_options # Avoid mistakingly creating attributes __slots__ = () def __init__(self, bint use_buffered_stream=False, buffer_size=8192, bint pre_buffer=False, bint enable_parallel_column_conversion=False): self.init(shared_ptr[CFragmentScanOptions]( new CParquetFragmentScanOptions())) self.use_buffered_stream = use_buffered_stream self.buffer_size = buffer_size self.pre_buffer = pre_buffer self.enable_parallel_column_conversion = \ enable_parallel_column_conversion cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp): FragmentScanOptions.init(self, sp) self.parquet_options = sp.get() cdef CReaderProperties* reader_properties(self): return self.parquet_options.reader_properties.get() cdef ArrowReaderProperties* arrow_reader_properties(self): return self.parquet_options.arrow_reader_properties.get() @property def use_buffered_stream(self): return self.reader_properties().is_buffered_stream_enabled() @use_buffered_stream.setter def use_buffered_stream(self, bint use_buffered_stream): if use_buffered_stream: self.reader_properties().enable_buffered_stream() else: self.reader_properties().disable_buffered_stream() @property def buffer_size(self): return self.reader_properties().buffer_size() @buffer_size.setter def buffer_size(self, buffer_size): if buffer_size <= 0: raise ValueError("Buffer size must be larger than zero") self.reader_properties().set_buffer_size(buffer_size) @property def pre_buffer(self): return self.arrow_reader_properties().pre_buffer() @pre_buffer.setter def pre_buffer(self, bint pre_buffer): self.arrow_reader_properties().set_pre_buffer(pre_buffer) @property def enable_parallel_column_conversion(self): return self.parquet_options.enable_parallel_column_conversion @enable_parallel_column_conversion.setter def enable_parallel_column_conversion( self, bint enable_parallel_column_conversion): self.parquet_options.enable_parallel_column_conversion = \ enable_parallel_column_conversion def equals(self, ParquetFragmentScanOptions other): return ( self.use_buffered_stream == other.use_buffered_stream and self.buffer_size == other.buffer_size and self.pre_buffer == other.pre_buffer and self.enable_parallel_column_conversion == other.enable_parallel_column_conversion ) def __reduce__(self): return ParquetFragmentScanOptions, ( self.use_buffered_stream, self.buffer_size, self.pre_buffer, self.enable_parallel_column_conversion ) cdef class IpcFileWriteOptions(FileWriteOptions): def __init__(self): _forbid_instantiation(self.__class__) cdef class IpcFileFormat(FileFormat): def __init__(self): self.init(shared_ptr[CFileFormat](new CIpcFileFormat())) def equals(self, IpcFileFormat other): return True @property def default_extname(self): return "feather" def __reduce__(self): return IpcFileFormat, tuple() cdef class CsvFileFormat(FileFormat): """ FileFormat for CSV files. Parameters ---------- parse_options : ParseOptions Options regarding CSV parsing. convert_options : ConvertOptions Options regarding value conversion. read_options : ReadOptions General read options. default_fragment_scan_options : CsvFragmentScanOptions Default options for fragments scan. """ cdef: CCsvFileFormat* csv_format # Avoid mistakingly creating attributes __slots__ = () def __init__(self, ParseOptions parse_options=None, default_fragment_scan_options=None, ConvertOptions convert_options=None, ReadOptions read_options=None): self.init(shared_ptr[CFileFormat](new CCsvFileFormat())) if parse_options is not None: self.parse_options = parse_options if convert_options is not None or read_options is not None: if default_fragment_scan_options: raise ValueError('If `default_fragment_scan_options` is ' 'given, cannot specify convert_options ' 'or read_options') self.default_fragment_scan_options = CsvFragmentScanOptions( convert_options=convert_options, read_options=read_options) elif isinstance(default_fragment_scan_options, dict): self.default_fragment_scan_options = CsvFragmentScanOptions( **default_fragment_scan_options) elif isinstance(default_fragment_scan_options, CsvFragmentScanOptions): self.default_fragment_scan_options = default_fragment_scan_options elif default_fragment_scan_options is not None: raise TypeError('`default_fragment_scan_options` must be either ' 'a dictionary or an instance of ' 'CsvFragmentScanOptions') cdef void init(self, const shared_ptr[CFileFormat]& sp): FileFormat.init(self, sp) self.csv_format = sp.get() def make_write_options(self, **kwargs): cdef CsvFileWriteOptions opts = \ FileFormat.make_write_options(self) opts.write_options = WriteOptions(**kwargs) return opts @property def parse_options(self): return ParseOptions.wrap(self.csv_format.parse_options) @parse_options.setter def parse_options(self, ParseOptions parse_options not None): self.csv_format.parse_options = deref(parse_options.options) cdef _set_default_fragment_scan_options(self, FragmentScanOptions options): if options.type_name == 'csv': self.csv_format.default_fragment_scan_options = options.wrapped else: super()._set_default_fragment_scan_options(options) def equals(self, CsvFileFormat other): return ( self.parse_options.equals(other.parse_options) and self.default_fragment_scan_options == other.default_fragment_scan_options) def __reduce__(self): return CsvFileFormat, (self.parse_options, self.default_fragment_scan_options) def __repr__(self): return f"" cdef class CsvFragmentScanOptions(FragmentScanOptions): """ Scan-specific options for CSV fragments. Parameters ---------- convert_options : ConvertOptions Options regarding value conversion. read_options : ReadOptions General read options. """ cdef: CCsvFragmentScanOptions* csv_options # Avoid mistakingly creating attributes __slots__ = () def __init__(self, ConvertOptions convert_options=None, ReadOptions read_options=None): self.init(shared_ptr[CFragmentScanOptions]( new CCsvFragmentScanOptions())) if convert_options is not None: self.convert_options = convert_options if read_options is not None: self.read_options = read_options cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp): FragmentScanOptions.init(self, sp) self.csv_options = sp.get() @property def convert_options(self): return ConvertOptions.wrap(self.csv_options.convert_options) @convert_options.setter def convert_options(self, ConvertOptions convert_options not None): self.csv_options.convert_options = deref(convert_options.options) @property def read_options(self): return ReadOptions.wrap(self.csv_options.read_options) @read_options.setter def read_options(self, ReadOptions read_options not None): self.csv_options.read_options = deref(read_options.options) def equals(self, CsvFragmentScanOptions other): return ( other and self.convert_options.equals(other.convert_options) and self.read_options.equals(other.read_options)) def __reduce__(self): return CsvFragmentScanOptions, (self.convert_options, self.read_options) cdef class CsvFileWriteOptions(FileWriteOptions): cdef: CCsvFileWriteOptions* csv_options object _properties def __init__(self): _forbid_instantiation(self.__class__) @property def write_options(self): return WriteOptions.wrap(deref(self.csv_options.write_options)) @write_options.setter def write_options(self, WriteOptions write_options not None): self.csv_options.write_options.reset( new CCSVWriteOptions(deref(write_options.options))) cdef void init(self, const shared_ptr[CFileWriteOptions]& sp): FileWriteOptions.init(self, sp) self.csv_options = sp.get() cdef class Partitioning(_Weakrefable): cdef: shared_ptr[CPartitioning] wrapped CPartitioning* partitioning def __init__(self): _forbid_instantiation(self.__class__) cdef init(self, const shared_ptr[CPartitioning]& sp): self.wrapped = sp self.partitioning = sp.get() @staticmethod cdef wrap(const shared_ptr[CPartitioning]& sp): type_name = frombytes(sp.get().type_name()) classes = { 'directory': DirectoryPartitioning, 'hive': HivePartitioning, } class_ = classes.get(type_name, None) if class_ is None: raise TypeError(type_name) cdef Partitioning self = class_.__new__(class_) self.init(sp) return self cdef inline shared_ptr[CPartitioning] unwrap(self): return self.wrapped def parse(self, path): cdef CResult[CExpression] result result = self.partitioning.Parse(tobytes(path)) return Expression.wrap(GetResultValue(result)) @property def schema(self): """The arrow Schema attached to the partitioning.""" return pyarrow_wrap_schema(self.partitioning.schema()) cdef class PartitioningFactory(_Weakrefable): cdef: shared_ptr[CPartitioningFactory] wrapped CPartitioningFactory* factory def __init__(self): _forbid_instantiation(self.__class__) cdef init(self, const shared_ptr[CPartitioningFactory]& sp): self.wrapped = sp self.factory = sp.get() @staticmethod cdef wrap(const shared_ptr[CPartitioningFactory]& sp): cdef PartitioningFactory self = PartitioningFactory.__new__( PartitioningFactory ) self.init(sp) return self cdef inline shared_ptr[CPartitioningFactory] unwrap(self): return self.wrapped @property def type_name(self): return frombytes(self.factory.type_name()) cdef vector[shared_ptr[CArray]] _partitioning_dictionaries( Schema schema, dictionaries) except *: cdef: vector[shared_ptr[CArray]] c_dictionaries dictionaries = dictionaries or {} for field in schema: dictionary = dictionaries.get(field.name) if (isinstance(field.type, pa.DictionaryType) and dictionary is not None): c_dictionaries.push_back(pyarrow_unwrap_array(dictionary)) else: c_dictionaries.push_back( nullptr) return c_dictionaries cdef class DirectoryPartitioning(Partitioning): """ A Partitioning based on a specified Schema. The DirectoryPartitioning expects one segment in the file path for each field in the schema (all fields are required to be present). For example given schema the path "/2009/11" would be parsed to ("year"_ == 2009 and "month"_ == 11). Parameters ---------- schema : Schema The schema that describes the partitions present in the file path. dictionaries : Dict[str, Array] If the type of any field of `schema` is a dictionary type, the corresponding entry of `dictionaries` must be an array containing every value which may be taken by the corresponding column or an error will be raised in parsing. segment_encoding : str, default "uri" After splitting paths into segments, decode the segments. Valid values are "uri" (URI-decode segments) and "none" (leave as-is). Returns ------- DirectoryPartitioning Examples -------- >>> from pyarrow.dataset import DirectoryPartitioning >>> partition = DirectoryPartitioning( ... pa.schema([("year", pa.int16()), ("month", pa.int8())])) >>> print(partitioning.parse("/2009/11")) ((year == 2009:int16) and (month == 11:int8)) """ cdef: CDirectoryPartitioning* directory_partitioning def __init__(self, Schema schema not None, dictionaries=None, segment_encoding="uri"): cdef: shared_ptr[CDirectoryPartitioning] c_partitioning CKeyValuePartitioningOptions c_options c_options.segment_encoding = _get_segment_encoding(segment_encoding) c_partitioning = make_shared[CDirectoryPartitioning]( pyarrow_unwrap_schema(schema), _partitioning_dictionaries(schema, dictionaries), c_options, ) self.init( c_partitioning) cdef init(self, const shared_ptr[CPartitioning]& sp): Partitioning.init(self, sp) self.directory_partitioning = sp.get() @staticmethod def discover(field_names=None, infer_dictionary=False, max_partition_dictionary_size=0, schema=None, segment_encoding="uri"): """ Discover a DirectoryPartitioning. Parameters ---------- field_names : list of str The names to associate with the values from the subdirectory names. If schema is given, will be populated from the schema. infer_dictionary : bool, default False When inferring a schema for partition fields, yield dictionary encoded types instead of plain types. This can be more efficient when materializing virtual columns, and Expressions parsed by the finished Partitioning will include dictionaries of all unique inspected values for each field. max_partition_dictionary_size : int, default 0 Synonymous with infer_dictionary for backwards compatibility with 1.0: setting this to -1 or None is equivalent to passing infer_dictionary=True. schema : Schema, default None Use this schema instead of inferring a schema from partition values. Partition values will be validated against this schema before accumulation into the Partitioning's dictionary. segment_encoding : str, default "uri" After splitting paths into segments, decode the segments. Valid values are "uri" (URI-decode segments) and "none" (leave as-is). Returns ------- PartitioningFactory To be used in the FileSystemFactoryOptions. """ cdef: CPartitioningFactoryOptions c_options vector[c_string] c_field_names if max_partition_dictionary_size in {-1, None}: infer_dictionary = True elif max_partition_dictionary_size != 0: raise NotImplementedError("max_partition_dictionary_size must be " "0, -1, or None") if infer_dictionary: c_options.infer_dictionary = True if schema: c_options.schema = pyarrow_unwrap_schema(schema) c_field_names = [tobytes(f.name) for f in schema] elif not field_names: raise ValueError( "Neither field_names nor schema was passed; " "cannot infer field_names") else: c_field_names = [tobytes(s) for s in field_names] c_options.segment_encoding = _get_segment_encoding(segment_encoding) return PartitioningFactory.wrap( CDirectoryPartitioning.MakeFactory(c_field_names, c_options)) @property def dictionaries(self): """ The unique values for each partition field, if available. Those values are only available if the Partitioning object was created through dataset discovery from a PartitioningFactory, or if the dictionaries were manually specified in the constructor. If not available, this returns None. """ cdef vector[shared_ptr[CArray]] c_arrays c_arrays = self.directory_partitioning.dictionaries() res = [] for arr in c_arrays: if arr.get() == nullptr: # Partitioning object has not been created through # inspected Factory return None res.append(pyarrow_wrap_array(arr)) return res cdef class HivePartitioning(Partitioning): """ A Partitioning for "/$key=$value/" nested directories as found in Apache Hive. Multi-level, directory based partitioning scheme originating from Apache Hive with all data files stored in the leaf directories. Data is partitioned by static values of a particular column in the schema. Partition keys are represented in the form $key=$value in directory names. Field order is ignored, as are missing or unrecognized field names. For example, given schema, a possible path would be "/year=2009/month=11/day=15". Parameters ---------- schema : Schema The schema that describes the partitions present in the file path. dictionaries : Dict[str, Array] If the type of any field of `schema` is a dictionary type, the corresponding entry of `dictionaries` must be an array containing every value which may be taken by the corresponding column or an error will be raised in parsing. null_fallback : str, default "__HIVE_DEFAULT_PARTITION__" If any field is None then this fallback will be used as a label segment_encoding : str, default "uri" After splitting paths into segments, decode the segments. Valid values are "uri" (URI-decode segments) and "none" (leave as-is). Returns ------- HivePartitioning Examples -------- >>> from pyarrow.dataset import HivePartitioning >>> partitioning = HivePartitioning( ... pa.schema([("year", pa.int16()), ("month", pa.int8())])) >>> print(partitioning.parse("/year=2009/month=11")) ((year == 2009:int16) and (month == 11:int8)) """ cdef: CHivePartitioning* hive_partitioning def __init__(self, Schema schema not None, dictionaries=None, null_fallback="__HIVE_DEFAULT_PARTITION__", segment_encoding="uri"): cdef: shared_ptr[CHivePartitioning] c_partitioning CHivePartitioningOptions c_options c_options.null_fallback = tobytes(null_fallback) c_options.segment_encoding = _get_segment_encoding(segment_encoding) c_partitioning = make_shared[CHivePartitioning]( pyarrow_unwrap_schema(schema), _partitioning_dictionaries(schema, dictionaries), c_options, ) self.init( c_partitioning) cdef init(self, const shared_ptr[CPartitioning]& sp): Partitioning.init(self, sp) self.hive_partitioning = sp.get() @staticmethod def discover(infer_dictionary=False, max_partition_dictionary_size=0, null_fallback="__HIVE_DEFAULT_PARTITION__", schema=None, segment_encoding="uri"): """ Discover a HivePartitioning. Parameters ---------- infer_dictionary : bool, default False When inferring a schema for partition fields, yield dictionary encoded types instead of plain. This can be more efficient when materializing virtual columns, and Expressions parsed by the finished Partitioning will include dictionaries of all unique inspected values for each field. max_partition_dictionary_size : int, default 0 Synonymous with infer_dictionary for backwards compatibility with 1.0: setting this to -1 or None is equivalent to passing infer_dictionary=True. null_fallback : str, default "__HIVE_DEFAULT_PARTITION__" When inferring a schema for partition fields this value will be replaced by null. The default is set to __HIVE_DEFAULT_PARTITION__ for compatibility with Spark schema : Schema, default None Use this schema instead of inferring a schema from partition values. Partition values will be validated against this schema before accumulation into the Partitioning's dictionary. segment_encoding : str, default "uri" After splitting paths into segments, decode the segments. Valid values are "uri" (URI-decode segments) and "none" (leave as-is). Returns ------- PartitioningFactory To be used in the FileSystemFactoryOptions. """ cdef: CHivePartitioningFactoryOptions c_options if max_partition_dictionary_size in {-1, None}: infer_dictionary = True elif max_partition_dictionary_size != 0: raise NotImplementedError("max_partition_dictionary_size must be " "0, -1, or None") if infer_dictionary: c_options.infer_dictionary = True c_options.null_fallback = tobytes(null_fallback) if schema: c_options.schema = pyarrow_unwrap_schema(schema) c_options.segment_encoding = _get_segment_encoding(segment_encoding) return PartitioningFactory.wrap( CHivePartitioning.MakeFactory(c_options)) @property def dictionaries(self): """ The unique values for each partition field, if available. Those values are only available if the Partitioning object was created through dataset discovery from a PartitioningFactory, or if the dictionaries were manually specified in the constructor. If not available, this returns None. """ cdef vector[shared_ptr[CArray]] c_arrays c_arrays = self.hive_partitioning.dictionaries() res = [] for arr in c_arrays: if arr.get() == nullptr: # Partitioning object has not been created through # inspected Factory return None res.append(pyarrow_wrap_array(arr)) return res cdef class DatasetFactory(_Weakrefable): """ DatasetFactory is used to create a Dataset, inspect the Schema of the fragments contained in it, and declare a partitioning. """ cdef: shared_ptr[CDatasetFactory] wrapped CDatasetFactory* factory def __init__(self): _forbid_instantiation(self.__class__) cdef init(self, const shared_ptr[CDatasetFactory]& sp): self.wrapped = sp self.factory = sp.get() @staticmethod cdef wrap(const shared_ptr[CDatasetFactory]& sp): cdef DatasetFactory self = \ DatasetFactory.__new__(DatasetFactory) self.init(sp) return self cdef inline shared_ptr[CDatasetFactory] unwrap(self) nogil: return self.wrapped @property def root_partition(self): return Expression.wrap(self.factory.root_partition()) @root_partition.setter def root_partition(self, Expression expr): check_status(self.factory.SetRootPartition(expr.unwrap())) def inspect_schemas(self): cdef CResult[vector[shared_ptr[CSchema]]] result cdef CInspectOptions options with nogil: result = self.factory.InspectSchemas(options) schemas = [] for s in GetResultValue(result): schemas.append(pyarrow_wrap_schema(s)) return schemas def inspect(self): """ Inspect all data fragments and return a common Schema. Returns ------- Schema """ cdef: CInspectOptions options CResult[shared_ptr[CSchema]] result with nogil: result = self.factory.Inspect(options) return pyarrow_wrap_schema(GetResultValue(result)) def finish(self, Schema schema=None): """ Create a Dataset using the inspected schema or an explicit schema (if given). Parameters ---------- schema : Schema, default None The schema to conform the source to. If None, the inspected schema is used. Returns ------- Dataset """ cdef: shared_ptr[CSchema] sp_schema CResult[shared_ptr[CDataset]] result if schema is not None: sp_schema = pyarrow_unwrap_schema(schema) with nogil: result = self.factory.FinishWithSchema(sp_schema) else: with nogil: result = self.factory.Finish() return Dataset.wrap(GetResultValue(result)) cdef class FileSystemFactoryOptions(_Weakrefable): """ Influences the discovery of filesystem paths. Parameters ---------- partition_base_dir : str, optional For the purposes of applying the partitioning, paths will be stripped of the partition_base_dir. Files not matching the partition_base_dir prefix will be skipped for partitioning discovery. The ignored files will still be part of the Dataset, but will not have partition information. partitioning : Partitioning/PartitioningFactory, optional Apply the Partitioning to every discovered Fragment. See Partitioning or PartitioningFactory documentation. exclude_invalid_files : bool, optional (default True) If True, invalid files will be excluded (file format specific check). This will incur IO for each files in a serial and single threaded fashion. Disabling this feature will skip the IO, but unsupported files may be present in the Dataset (resulting in an error at scan time). selector_ignore_prefixes : list, optional When discovering from a Selector (and not from an explicit file list), ignore files and directories matching any of these prefixes. By default this is ['.', '_']. """ cdef: CFileSystemFactoryOptions options __slots__ = () # avoid mistakingly creating attributes def __init__(self, partition_base_dir=None, partitioning=None, exclude_invalid_files=None, list selector_ignore_prefixes=None): if isinstance(partitioning, PartitioningFactory): self.partitioning_factory = partitioning elif isinstance(partitioning, Partitioning): self.partitioning = partitioning if partition_base_dir is not None: self.partition_base_dir = partition_base_dir if exclude_invalid_files is not None: self.exclude_invalid_files = exclude_invalid_files if selector_ignore_prefixes is not None: self.selector_ignore_prefixes = selector_ignore_prefixes cdef inline CFileSystemFactoryOptions unwrap(self): return self.options @property def partitioning(self): """Partitioning to apply to discovered files. NOTE: setting this property will overwrite partitioning_factory. """ c_partitioning = self.options.partitioning.partitioning() if c_partitioning.get() == nullptr: return None return Partitioning.wrap(c_partitioning) @partitioning.setter def partitioning(self, Partitioning value): self.options.partitioning = ( value).unwrap() @property def partitioning_factory(self): """PartitioningFactory to apply to discovered files and discover a Partitioning. NOTE: setting this property will overwrite partitioning. """ c_factory = self.options.partitioning.factory() if c_factory.get() == nullptr: return None return PartitioningFactory.wrap(c_factory) @partitioning_factory.setter def partitioning_factory(self, PartitioningFactory value): self.options.partitioning = ( value).unwrap() @property def partition_base_dir(self): """ Base directory to strip paths before applying the partitioning. """ return frombytes(self.options.partition_base_dir) @partition_base_dir.setter def partition_base_dir(self, value): self.options.partition_base_dir = tobytes(value) @property def exclude_invalid_files(self): """Whether to exclude invalid files.""" return self.options.exclude_invalid_files @exclude_invalid_files.setter def exclude_invalid_files(self, bint value): self.options.exclude_invalid_files = value @property def selector_ignore_prefixes(self): """ List of prefixes. Files matching one of those prefixes will be ignored by the discovery process. """ return [frombytes(p) for p in self.options.selector_ignore_prefixes] @selector_ignore_prefixes.setter def selector_ignore_prefixes(self, values): self.options.selector_ignore_prefixes = [tobytes(v) for v in values] cdef class FileSystemDatasetFactory(DatasetFactory): """ Create a DatasetFactory from a list of paths with schema inspection. Parameters ---------- filesystem : pyarrow.fs.FileSystem Filesystem to discover. paths_or_selector : pyarrow.fs.Selector or list of path-likes Either a Selector object or a list of path-like objects. format : FileFormat Currently only ParquetFileFormat and IpcFileFormat are supported. options : FileSystemFactoryOptions, optional Various flags influencing the discovery of filesystem paths. """ cdef: CFileSystemDatasetFactory* filesystem_factory def __init__(self, FileSystem filesystem not None, paths_or_selector, FileFormat format not None, FileSystemFactoryOptions options=None): cdef: vector[c_string] paths CFileSelector c_selector CResult[shared_ptr[CDatasetFactory]] result shared_ptr[CFileSystem] c_filesystem shared_ptr[CFileFormat] c_format CFileSystemFactoryOptions c_options options = options or FileSystemFactoryOptions() c_options = options.unwrap() c_filesystem = filesystem.unwrap() c_format = format.unwrap() if isinstance(paths_or_selector, FileSelector): with nogil: c_selector = ( paths_or_selector).selector result = CFileSystemDatasetFactory.MakeFromSelector( c_filesystem, c_selector, c_format, c_options ) elif isinstance(paths_or_selector, (list, tuple)): paths = [tobytes(s) for s in paths_or_selector] with nogil: result = CFileSystemDatasetFactory.MakeFromPaths( c_filesystem, paths, c_format, c_options ) else: raise TypeError('Must pass either paths or a FileSelector, but ' 'passed {}'.format(type(paths_or_selector))) self.init(GetResultValue(result)) cdef init(self, shared_ptr[CDatasetFactory]& sp): DatasetFactory.init(self, sp) self.filesystem_factory = sp.get() cdef class UnionDatasetFactory(DatasetFactory): """ Provides a way to inspect/discover a Dataset's expected schema before materialization. Parameters ---------- factories : list of DatasetFactory """ cdef: CUnionDatasetFactory* union_factory def __init__(self, list factories): cdef: DatasetFactory factory vector[shared_ptr[CDatasetFactory]] c_factories for factory in factories: c_factories.push_back(factory.unwrap()) self.init(GetResultValue(CUnionDatasetFactory.Make(c_factories))) cdef init(self, const shared_ptr[CDatasetFactory]& sp): DatasetFactory.init(self, sp) self.union_factory = sp.get() cdef class ParquetFactoryOptions(_Weakrefable): """ Influences the discovery of parquet dataset. Parameters ---------- partition_base_dir : str, optional For the purposes of applying the partitioning, paths will be stripped of the partition_base_dir. Files not matching the partition_base_dir prefix will be skipped for partitioning discovery. The ignored files will still be part of the Dataset, but will not have partition information. partitioning : Partitioning, PartitioningFactory, optional The partitioning scheme applied to fragments, see ``Partitioning``. validate_column_chunk_paths : bool, default False Assert that all ColumnChunk paths are consistent. The parquet spec allows for ColumnChunk data to be stored in multiple files, but ParquetDatasetFactory supports only a single file with all ColumnChunk data. If this flag is set construction of a ParquetDatasetFactory will raise an error if ColumnChunk data is not resident in a single file. """ cdef: CParquetFactoryOptions options __slots__ = () # avoid mistakingly creating attributes def __init__(self, partition_base_dir=None, partitioning=None, validate_column_chunk_paths=False): if isinstance(partitioning, PartitioningFactory): self.partitioning_factory = partitioning elif isinstance(partitioning, Partitioning): self.partitioning = partitioning if partition_base_dir is not None: self.partition_base_dir = partition_base_dir self.options.validate_column_chunk_paths = validate_column_chunk_paths cdef inline CParquetFactoryOptions unwrap(self): return self.options @property def partitioning(self): """Partitioning to apply to discovered files. NOTE: setting this property will overwrite partitioning_factory. """ c_partitioning = self.options.partitioning.partitioning() if c_partitioning.get() == nullptr: return None return Partitioning.wrap(c_partitioning) @partitioning.setter def partitioning(self, Partitioning value): self.options.partitioning = ( value).unwrap() @property def partitioning_factory(self): """PartitioningFactory to apply to discovered files and discover a Partitioning. NOTE: setting this property will overwrite partitioning. """ c_factory = self.options.partitioning.factory() if c_factory.get() == nullptr: return None return PartitioningFactory.wrap(c_factory) @partitioning_factory.setter def partitioning_factory(self, PartitioningFactory value): self.options.partitioning = ( value).unwrap() @property def partition_base_dir(self): """ Base directory to strip paths before applying the partitioning. """ return frombytes(self.options.partition_base_dir) @partition_base_dir.setter def partition_base_dir(self, value): self.options.partition_base_dir = tobytes(value) @property def validate_column_chunk_paths(self): """ Base directory to strip paths before applying the partitioning. """ return self.options.validate_column_chunk_paths @validate_column_chunk_paths.setter def validate_column_chunk_paths(self, value): self.options.validate_column_chunk_paths = value cdef class ParquetDatasetFactory(DatasetFactory): """ Create a ParquetDatasetFactory from a Parquet `_metadata` file. Parameters ---------- metadata_path : str Path to the `_metadata` parquet metadata-only file generated with `pyarrow.parquet.write_metadata`. filesystem : pyarrow.fs.FileSystem Filesystem to read the metadata_path from, and subsequent parquet files. format : ParquetFileFormat Parquet format options. options : ParquetFactoryOptions, optional Various flags influencing the discovery of filesystem paths. """ cdef: CParquetDatasetFactory* parquet_factory def __init__(self, metadata_path, FileSystem filesystem not None, FileFormat format not None, ParquetFactoryOptions options=None): cdef: c_string path shared_ptr[CFileSystem] c_filesystem shared_ptr[CParquetFileFormat] c_format CResult[shared_ptr[CDatasetFactory]] result CParquetFactoryOptions c_options c_path = tobytes(metadata_path) c_filesystem = filesystem.unwrap() c_format = static_pointer_cast[CParquetFileFormat, CFileFormat]( format.unwrap()) options = options or ParquetFactoryOptions() c_options = options.unwrap() result = CParquetDatasetFactory.MakeFromMetaDataPath( c_path, c_filesystem, c_format, c_options) self.init(GetResultValue(result)) cdef init(self, shared_ptr[CDatasetFactory]& sp): DatasetFactory.init(self, sp) self.parquet_factory = sp.get() cdef class RecordBatchIterator(_Weakrefable): """An iterator over a sequence of record batches.""" cdef: # An object that must be kept alive with the iterator. object iterator_owner # Iterator is a non-POD type and Cython uses offsetof, leading # to a compiler warning unless wrapped like so shared_ptr[CRecordBatchIterator] iterator def __init__(self): _forbid_instantiation(self.__class__, subclasses_instead=False) @staticmethod cdef wrap(object owner, CRecordBatchIterator iterator): cdef RecordBatchIterator self = \ RecordBatchIterator.__new__(RecordBatchIterator) self.iterator_owner = owner self.iterator = make_shared[CRecordBatchIterator](move(iterator)) return self def __iter__(self): return self def __next__(self): cdef shared_ptr[CRecordBatch] record_batch with nogil: record_batch = GetResultValue(move(self.iterator.get().Next())) if record_batch == NULL: raise StopIteration return pyarrow_wrap_batch(record_batch) class TaggedRecordBatch(collections.namedtuple( "TaggedRecordBatch", ["record_batch", "fragment"])): """ A combination of a record batch and the fragment it came from. Parameters ---------- record_batch : The record batch. fragment : fragment of the record batch. """ cdef class TaggedRecordBatchIterator(_Weakrefable): """An iterator over a sequence of record batches with fragments.""" cdef: object iterator_owner shared_ptr[CTaggedRecordBatchIterator] iterator def __init__(self): _forbid_instantiation(self.__class__, subclasses_instead=False) @staticmethod cdef wrap(object owner, CTaggedRecordBatchIterator iterator): cdef TaggedRecordBatchIterator self = \ TaggedRecordBatchIterator.__new__(TaggedRecordBatchIterator) self.iterator_owner = owner self.iterator = make_shared[CTaggedRecordBatchIterator]( move(iterator)) return self def __iter__(self): return self def __next__(self): cdef CTaggedRecordBatch batch with nogil: batch = GetResultValue(move(self.iterator.get().Next())) if batch.record_batch == NULL: raise StopIteration return TaggedRecordBatch( record_batch=pyarrow_wrap_batch(batch.record_batch), fragment=Fragment.wrap(batch.fragment)) _DEFAULT_BATCH_SIZE = 2**20 cdef void _populate_builder(const shared_ptr[CScannerBuilder]& ptr, object columns=None, Expression filter=None, int batch_size=_DEFAULT_BATCH_SIZE, bint use_threads=True, bint use_async=False, MemoryPool memory_pool=None, FragmentScanOptions fragment_scan_options=None)\ except *: cdef: CScannerBuilder *builder vector[CExpression] c_exprs builder = ptr.get() check_status(builder.Filter(_bind( filter, pyarrow_wrap_schema(builder.schema())))) if columns is not None: if isinstance(columns, dict): for expr in columns.values(): if not isinstance(expr, Expression): raise TypeError( "Expected an Expression for a 'column' dictionary " "value, got {} instead".format(type(expr)) ) c_exprs.push_back(( expr).unwrap()) check_status( builder.Project(c_exprs, [tobytes(c) for c in columns.keys()]) ) elif isinstance(columns, list): check_status(builder.ProjectColumns([tobytes(c) for c in columns])) else: raise ValueError( "Expected a list or a dict for 'columns', " "got {} instead.".format(type(columns)) ) check_status(builder.BatchSize(batch_size)) check_status(builder.UseThreads(use_threads)) check_status(builder.UseAsync(use_async)) if memory_pool: check_status(builder.Pool(maybe_unbox_memory_pool(memory_pool))) if fragment_scan_options: check_status( builder.FragmentScanOptions(fragment_scan_options.wrapped)) cdef class Scanner(_Weakrefable): """A materialized scan operation with context and options bound. A scanner is the class that glues the scan tasks, data fragments and data sources together. Parameters ---------- dataset : Dataset Dataset to scan. columns : list of str or dict, default None The columns to project. This can be a list of column names to include (order and duplicates will be preserved), or a dictionary with {new_column_name: expression} values for more advanced projections. The columns will be passed down to Datasets and corresponding data fragments to avoid loading, copying, and deserializing columns that will not be required further down the compute chain. By default all of the available columns are projected. Raises an exception if any of the referenced column names does not exist in the dataset's Schema. filter : Expression, default None Scan will return only the rows matching the filter. If possible the predicate will be pushed down to exploit the partition information or internal metadata found in the data source, e.g. Parquet statistics. Otherwise filters the loaded RecordBatches before yielding them. batch_size : int, default 1M The maximum row count for scanned record batches. If scanned record batches are overflowing memory then this method can be called to reduce their size. use_threads : bool, default True If enabled, then maximum parallelism will be used determined by the number of available CPU cores. use_async : bool, default False If enabled, an async scanner will be used that should offer better performance with high-latency/highly-parallel filesystems (e.g. S3) memory_pool : MemoryPool, default None For memory allocations, if required. If not specified, uses the default pool. """ cdef: shared_ptr[CScanner] wrapped CScanner* scanner def __init__(self): _forbid_instantiation(self.__class__) cdef void init(self, const shared_ptr[CScanner]& sp): self.wrapped = sp self.scanner = sp.get() @staticmethod cdef wrap(const shared_ptr[CScanner]& sp): cdef Scanner self = Scanner.__new__(Scanner) self.init(sp) return self cdef inline shared_ptr[CScanner] unwrap(self): return self.wrapped @staticmethod def from_dataset(Dataset dataset not None, bint use_threads=True, bint use_async=False, MemoryPool memory_pool=None, object columns=None, Expression filter=None, int batch_size=_DEFAULT_BATCH_SIZE, FragmentScanOptions fragment_scan_options=None): """ Create Scanner from Dataset, refer to Scanner class doc for additional details on Scanner. Parameters ---------- dataset : Dataset Dataset to scan. columns : list of str or dict, default None The columns to project. filter : Expression, default None Scan will return only the rows matching the filter. batch_size : int, default 1M The maximum row count for scanned record batches. use_threads : bool, default True If enabled, then maximum parallelism will be used determined by the number of available CPU cores. use_async : bool, default False If enabled, an async scanner will be used that should offer better performance with high-latency/highly-parallel filesystems (e.g. S3) memory_pool : MemoryPool, default None For memory allocations, if required. If not specified, uses the default pool. fragment_scan_options : FragmentScanOptions The fragment scan options. """ cdef: shared_ptr[CScanOptions] options = make_shared[CScanOptions]() shared_ptr[CScannerBuilder] builder shared_ptr[CScanner] scanner builder = make_shared[CScannerBuilder](dataset.unwrap(), options) _populate_builder(builder, columns=columns, filter=filter, batch_size=batch_size, use_threads=use_threads, use_async=use_async, memory_pool=memory_pool, fragment_scan_options=fragment_scan_options) scanner = GetResultValue(builder.get().Finish()) return Scanner.wrap(scanner) @staticmethod def from_fragment(Fragment fragment not None, Schema schema=None, bint use_threads=True, bint use_async=False, MemoryPool memory_pool=None, object columns=None, Expression filter=None, int batch_size=_DEFAULT_BATCH_SIZE, FragmentScanOptions fragment_scan_options=None): """ Create Scanner from Fragment, refer to Scanner class doc for additional details on Scanner. Parameters ---------- fragment : Fragment fragment to scan. schema : Schema The schema of the fragment. columns : list of str or dict, default None The columns to project. filter : Expression, default None Scan will return only the rows matching the filter. batch_size : int, default 1M The maximum row count for scanned record batches. use_threads : bool, default True If enabled, then maximum parallelism will be used determined by the number of available CPU cores. use_async : bool, default False If enabled, an async scanner will be used that should offer better performance with high-latency/highly-parallel filesystems (e.g. S3) memory_pool : MemoryPool, default None For memory allocations, if required. If not specified, uses the default pool. fragment_scan_options : FragmentScanOptions The fragment scan options. """ cdef: shared_ptr[CScanOptions] options = make_shared[CScanOptions]() shared_ptr[CScannerBuilder] builder shared_ptr[CScanner] scanner schema = schema or fragment.physical_schema builder = make_shared[CScannerBuilder](pyarrow_unwrap_schema(schema), fragment.unwrap(), options) _populate_builder(builder, columns=columns, filter=filter, batch_size=batch_size, use_threads=use_threads, use_async=use_async, memory_pool=memory_pool, fragment_scan_options=fragment_scan_options) scanner = GetResultValue(builder.get().Finish()) return Scanner.wrap(scanner) @staticmethod def from_batches(source, Schema schema=None, bint use_threads=True, bint use_async=False, MemoryPool memory_pool=None, object columns=None, Expression filter=None, int batch_size=_DEFAULT_BATCH_SIZE, FragmentScanOptions fragment_scan_options=None): """ Create a Scanner from an iterator of batches. This creates a scanner which can be used only once. It is intended to support writing a dataset (which takes a scanner) from a source which can be read only once (e.g. a RecordBatchReader or generator). Parameters ---------- source : Iterator The iterator of Batches. schema : Schema The schema of the batches. columns : list of str or dict, default None The columns to project. filter : Expression, default None Scan will return only the rows matching the filter. batch_size : int, default 1M The maximum row count for scanned record batches. use_threads : bool, default True If enabled, then maximum parallelism will be used determined by the number of available CPU cores. use_async : bool, default False If enabled, an async scanner will be used that should offer better performance with high-latency/highly-parallel filesystems (e.g. S3) memory_pool : MemoryPool, default None For memory allocations, if required. If not specified, uses the default pool. fragment_scan_options : FragmentScanOptions The fragment scan options. """ cdef: shared_ptr[CScanOptions] options = make_shared[CScanOptions]() shared_ptr[CScannerBuilder] builder shared_ptr[CScanner] scanner RecordBatchReader reader if isinstance(source, pa.ipc.RecordBatchReader): if schema: raise ValueError('Cannot specify a schema when providing ' 'a RecordBatchReader') reader = source elif _is_iterable(source): if schema is None: raise ValueError('Must provide schema to construct scanner ' 'from an iterable') reader = pa.ipc.RecordBatchReader.from_batches(schema, source) else: raise TypeError('Expected a RecordBatchReader or an iterable of ' 'batches instead of the given type: ' + type(source).__name__) builder = CScannerBuilder.FromRecordBatchReader(reader.reader) _populate_builder(builder, columns=columns, filter=filter, batch_size=batch_size, use_threads=use_threads, use_async=use_async, memory_pool=memory_pool, fragment_scan_options=fragment_scan_options) scanner = GetResultValue(builder.get().Finish()) return Scanner.wrap(scanner) @property def dataset_schema(self): """The schema with which batches will be read from fragments.""" return pyarrow_wrap_schema( self.scanner.options().get().dataset_schema) @property def projected_schema(self): """The materialized schema of the data, accounting for projections. This is the schema of any data returned from the scanner. """ return pyarrow_wrap_schema( self.scanner.options().get().projected_schema) def to_batches(self): """Consume a Scanner in record batches. Returns ------- record_batches : iterator of RecordBatch """ def _iterator(batch_iter): for batch in batch_iter: yield batch.record_batch # Don't make ourselves a generator so errors are raised immediately return _iterator(self.scan_batches()) def scan_batches(self): """Consume a Scanner in record batches with corresponding fragments. Returns ------- record_batches : iterator of TaggedRecordBatch """ cdef CTaggedRecordBatchIterator iterator with nogil: iterator = move(GetResultValue(self.scanner.ScanBatches())) # Don't make ourselves a generator so errors are raised immediately return TaggedRecordBatchIterator.wrap(self, move(iterator)) def to_table(self): """Convert a Scanner into a Table. Use this convenience utility with care. This will serially materialize the Scan result in memory before creating the Table. Returns ------- table : Table """ cdef CResult[shared_ptr[CTable]] result with nogil: result = self.scanner.ToTable() return pyarrow_wrap_table(GetResultValue(result)) def take(self, object indices): """Select rows of data by index. Will only consume as many batches of the underlying dataset as needed. Otherwise, this is equivalent to ``to_table().take(indices)``. Returns ------- table : Table """ cdef CResult[shared_ptr[CTable]] result cdef shared_ptr[CArray] c_indices = pyarrow_unwrap_array(indices) with nogil: result = self.scanner.TakeRows(deref(c_indices)) return pyarrow_wrap_table(GetResultValue(result)) def head(self, int num_rows): """Load the first N rows of the dataset. Returns ------- table : Table instance """ cdef CResult[shared_ptr[CTable]] result with nogil: result = self.scanner.Head(num_rows) return pyarrow_wrap_table(GetResultValue(result)) def count_rows(self): """Count rows matching the scanner filter. Returns ------- count : int """ cdef CResult[int64_t] result with nogil: result = self.scanner.CountRows() return GetResultValue(result) def to_reader(self): """Consume this scanner as a RecordBatchReader.""" cdef RecordBatchReader reader reader = RecordBatchReader.__new__(RecordBatchReader) reader.reader = GetResultValue(self.scanner.ToRecordBatchReader()) return reader def _get_partition_keys(Expression partition_expression): """ Extract partition keys (equality constraints between a field and a scalar) from an expression as a dict mapping the field's name to its value. NB: All expressions yielded by a HivePartitioning or DirectoryPartitioning will be conjunctions of equality conditions and are accessible through this function. Other subexpressions will be ignored. For example, an expression of is converted to {'part': 'A', 'year': 2016} """ cdef: CExpression expr = partition_expression.unwrap() pair[CFieldRef, CDatum] ref_val out = {} for ref_val in GetResultValue(CExtractKnownFieldValues(expr)).map: assert ref_val.first.name() != nullptr assert ref_val.second.kind() == DatumType_SCALAR val = pyarrow_wrap_scalar(ref_val.second.scalar()) out[frombytes(deref(ref_val.first.name()))] = val.as_py() return out ctypedef CParquetFileWriter* _CParquetFileWriterPtr cdef class WrittenFile(_Weakrefable): """ Metadata information about files written as part of a dataset write operation """ """The full path to the created file""" cdef public str path """ If the file is a parquet file this will contain the parquet metadata. This metadata will have the file path attribute set to the path of the written file. """ cdef public object metadata def __init__(self, path, metadata): self.path = path self.metadata = metadata cdef void _filesystemdataset_write_visitor( dict visit_args, CFileWriter* file_writer): cdef: str path str base_dir WrittenFile written_file FileMetaData parquet_metadata CParquetFileWriter* parquet_file_writer parquet_metadata = None path = frombytes(deref(file_writer).destination().path) if deref(deref(file_writer).format()).type_name() == b"parquet": parquet_file_writer = dynamic_cast[_CParquetFileWriterPtr](file_writer) with nogil: metadata = deref( deref(parquet_file_writer).parquet_writer()).metadata() if metadata: base_dir = frombytes(visit_args['base_dir']) parquet_metadata = FileMetaData() parquet_metadata.init(metadata) parquet_metadata.set_file_path(os.path.relpath(path, base_dir)) written_file = WrittenFile(path, parquet_metadata) visit_args['file_visitor'](written_file) def _filesystemdataset_write( Scanner data not None, object base_dir not None, str basename_template not None, FileSystem filesystem not None, Partitioning partitioning not None, FileWriteOptions file_options not None, int max_partitions, object file_visitor, str existing_data_behavior not None ): """ CFileSystemDataset.Write wrapper """ cdef: CFileSystemDatasetWriteOptions c_options shared_ptr[CScanner] c_scanner vector[shared_ptr[CRecordBatch]] c_batches dict visit_args c_options.file_write_options = file_options.unwrap() c_options.filesystem = filesystem.unwrap() c_options.base_dir = tobytes(_stringify_path(base_dir)) c_options.partitioning = partitioning.unwrap() c_options.max_partitions = max_partitions c_options.basename_template = tobytes(basename_template) if existing_data_behavior == 'error': c_options.existing_data_behavior = ExistingDataBehavior_ERROR elif existing_data_behavior == 'overwrite_or_ignore': c_options.existing_data_behavior =\ ExistingDataBehavior_OVERWRITE_OR_IGNORE elif existing_data_behavior == 'delete_matching': c_options.existing_data_behavior = ExistingDataBehavior_DELETE_MATCHING else: raise ValueError( ("existing_data_behavior must be one of 'error', ", "'overwrite_or_ignore' or 'delete_matching'") ) if file_visitor is not None: visit_args = {'base_dir': c_options.base_dir, 'file_visitor': file_visitor} # Need to use post_finish because parquet metadata is not available # until after Finish has been called c_options.writer_post_finish = BindFunction[cb_writer_finish_internal]( &_filesystemdataset_write_visitor, visit_args) c_scanner = data.unwrap() with nogil: check_status(CFileSystemDataset.Write(c_options, c_scanner))