# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import ast from collections.abc import Sequence from concurrent import futures # import threading submodule upfront to avoid partially initialized # module bug (ARROW-11983) import concurrent.futures.thread # noqa from copy import deepcopy from itertools import zip_longest import json import operator import re import warnings import numpy as np import pyarrow as pa from pyarrow.lib import _pandas_api, builtin_pickle, frombytes # noqa _logical_type_map = {} def get_logical_type_map(): global _logical_type_map if not _logical_type_map: _logical_type_map.update({ pa.lib.Type_NA: 'empty', pa.lib.Type_BOOL: 'bool', pa.lib.Type_INT8: 'int8', pa.lib.Type_INT16: 'int16', pa.lib.Type_INT32: 'int32', pa.lib.Type_INT64: 'int64', pa.lib.Type_UINT8: 'uint8', pa.lib.Type_UINT16: 'uint16', pa.lib.Type_UINT32: 'uint32', pa.lib.Type_UINT64: 'uint64', pa.lib.Type_HALF_FLOAT: 'float16', pa.lib.Type_FLOAT: 'float32', pa.lib.Type_DOUBLE: 'float64', pa.lib.Type_DATE32: 'date', pa.lib.Type_DATE64: 'date', pa.lib.Type_TIME32: 'time', pa.lib.Type_TIME64: 'time', pa.lib.Type_BINARY: 'bytes', pa.lib.Type_FIXED_SIZE_BINARY: 'bytes', pa.lib.Type_STRING: 'unicode', }) return _logical_type_map def get_logical_type(arrow_type): logical_type_map = get_logical_type_map() try: return logical_type_map[arrow_type.id] except KeyError: if isinstance(arrow_type, pa.lib.DictionaryType): return 'categorical' elif isinstance(arrow_type, pa.lib.ListType): return 'list[{}]'.format(get_logical_type(arrow_type.value_type)) elif isinstance(arrow_type, pa.lib.TimestampType): return 'datetimetz' if arrow_type.tz is not None else 'datetime' elif isinstance(arrow_type, pa.lib.Decimal128Type): return 'decimal' return 'object' _numpy_logical_type_map = { np.bool_: 'bool', np.int8: 'int8', np.int16: 'int16', np.int32: 'int32', np.int64: 'int64', np.uint8: 'uint8', np.uint16: 'uint16', np.uint32: 'uint32', np.uint64: 'uint64', np.float32: 'float32', np.float64: 'float64', 'datetime64[D]': 'date', np.unicode_: 'string', np.bytes_: 'bytes', } def get_logical_type_from_numpy(pandas_collection): try: return _numpy_logical_type_map[pandas_collection.dtype.type] except KeyError: if hasattr(pandas_collection.dtype, 'tz'): return 'datetimetz' # See https://github.com/pandas-dev/pandas/issues/24739 if str(pandas_collection.dtype) == 'datetime64[ns]': return 'datetime64[ns]' result = _pandas_api.infer_dtype(pandas_collection) if result == 'string': return 'unicode' return result def get_extension_dtype_info(column): dtype = column.dtype if str(dtype) == 'category': cats = getattr(column, 'cat', column) assert cats is not None metadata = { 'num_categories': len(cats.categories), 'ordered': cats.ordered, } physical_dtype = str(cats.codes.dtype) elif hasattr(dtype, 'tz'): metadata = {'timezone': pa.lib.tzinfo_to_string(dtype.tz)} physical_dtype = 'datetime64[ns]' else: metadata = None physical_dtype = str(dtype) return physical_dtype, metadata def get_column_metadata(column, name, arrow_type, field_name): """Construct the metadata for a given column Parameters ---------- column : pandas.Series or pandas.Index name : str arrow_type : pyarrow.DataType field_name : str Equivalent to `name` when `column` is a `Series`, otherwise if `column` is a pandas Index then `field_name` will not be the same as `name`. This is the name of the field in the arrow Table's schema. Returns ------- dict """ logical_type = get_logical_type(arrow_type) string_dtype, extra_metadata = get_extension_dtype_info(column) if logical_type == 'decimal': extra_metadata = { 'precision': arrow_type.precision, 'scale': arrow_type.scale, } string_dtype = 'object' if name is not None and not isinstance(name, str): raise TypeError( 'Column name must be a string. Got column {} of type {}'.format( name, type(name).__name__ ) ) assert field_name is None or isinstance(field_name, str), \ str(type(field_name)) return { 'name': name, 'field_name': 'None' if field_name is None else field_name, 'pandas_type': logical_type, 'numpy_type': string_dtype, 'metadata': extra_metadata, } def construct_metadata(columns_to_convert, df, column_names, index_levels, index_descriptors, preserve_index, types): """Returns a dictionary containing enough metadata to reconstruct a pandas DataFrame as an Arrow Table, including index columns. Parameters ---------- columns_to_convert : list[pd.Series] df : pandas.DataFrame index_levels : List[pd.Index] index_descriptors : List[Dict] preserve_index : bool types : List[pyarrow.DataType] Returns ------- dict """ num_serialized_index_levels = len([descr for descr in index_descriptors if not isinstance(descr, dict)]) # Use ntypes instead of Python shorthand notation [:-len(x)] as [:-0] # behaves differently to what we want. ntypes = len(types) df_types = types[:ntypes - num_serialized_index_levels] index_types = types[ntypes - num_serialized_index_levels:] column_metadata = [] for col, sanitized_name, arrow_type in zip(columns_to_convert, column_names, df_types): metadata = get_column_metadata(col, name=sanitized_name, arrow_type=arrow_type, field_name=sanitized_name) column_metadata.append(metadata) index_column_metadata = [] if preserve_index is not False: for level, arrow_type, descriptor in zip(index_levels, index_types, index_descriptors): if isinstance(descriptor, dict): # The index is represented in a non-serialized fashion, # e.g. RangeIndex continue metadata = get_column_metadata(level, name=level.name, arrow_type=arrow_type, field_name=descriptor) index_column_metadata.append(metadata) column_indexes = [] levels = getattr(df.columns, 'levels', [df.columns]) names = getattr(df.columns, 'names', [df.columns.name]) for level, name in zip(levels, names): metadata = _get_simple_index_descriptor(level, name) column_indexes.append(metadata) else: index_descriptors = index_column_metadata = column_indexes = [] return { b'pandas': json.dumps({ 'index_columns': index_descriptors, 'column_indexes': column_indexes, 'columns': column_metadata + index_column_metadata, 'creator': { 'library': 'pyarrow', 'version': pa.__version__ }, 'pandas_version': _pandas_api.version }).encode('utf8') } def _get_simple_index_descriptor(level, name): string_dtype, extra_metadata = get_extension_dtype_info(level) pandas_type = get_logical_type_from_numpy(level) if 'mixed' in pandas_type: warnings.warn( "The DataFrame has column names of mixed type. They will be " "converted to strings and not roundtrip correctly.", UserWarning, stacklevel=4) if pandas_type == 'unicode': assert not extra_metadata extra_metadata = {'encoding': 'UTF-8'} return { 'name': name, 'field_name': name, 'pandas_type': pandas_type, 'numpy_type': string_dtype, 'metadata': extra_metadata, } def _column_name_to_strings(name): """Convert a column name (or level) to either a string or a recursive collection of strings. Parameters ---------- name : str or tuple Returns ------- value : str or tuple Examples -------- >>> name = 'foo' >>> _column_name_to_strings(name) 'foo' >>> name = ('foo', 'bar') >>> _column_name_to_strings(name) ('foo', 'bar') >>> import pandas as pd >>> name = (1, pd.Timestamp('2017-02-01 00:00:00')) >>> _column_name_to_strings(name) ('1', '2017-02-01 00:00:00') """ if isinstance(name, str): return name elif isinstance(name, bytes): # XXX: should we assume that bytes in Python 3 are UTF-8? return name.decode('utf8') elif isinstance(name, tuple): return str(tuple(map(_column_name_to_strings, name))) elif isinstance(name, Sequence): raise TypeError("Unsupported type for MultiIndex level") elif name is None: return None return str(name) def _index_level_name(index, i, column_names): """Return the name of an index level or a default name if `index.name` is None or is already a column name. Parameters ---------- index : pandas.Index i : int Returns ------- name : str """ if index.name is not None and index.name not in column_names: return index.name else: return '__index_level_{:d}__'.format(i) def _get_columns_to_convert(df, schema, preserve_index, columns): columns = _resolve_columns_of_interest(df, schema, columns) if not df.columns.is_unique: raise ValueError( 'Duplicate column names found: {}'.format(list(df.columns)) ) if schema is not None: return _get_columns_to_convert_given_schema(df, schema, preserve_index) column_names = [] index_levels = ( _get_index_level_values(df.index) if preserve_index is not False else [] ) columns_to_convert = [] convert_fields = [] for name in columns: col = df[name] name = _column_name_to_strings(name) if _pandas_api.is_sparse(col): raise TypeError( "Sparse pandas data (column {}) not supported.".format(name)) columns_to_convert.append(col) convert_fields.append(None) column_names.append(name) index_descriptors = [] index_column_names = [] for i, index_level in enumerate(index_levels): name = _index_level_name(index_level, i, column_names) if (isinstance(index_level, _pandas_api.pd.RangeIndex) and preserve_index is None): descr = _get_range_index_descriptor(index_level) else: columns_to_convert.append(index_level) convert_fields.append(None) descr = name index_column_names.append(name) index_descriptors.append(descr) all_names = column_names + index_column_names # all_names : all of the columns in the resulting table including the data # columns and serialized index columns # column_names : the names of the data columns # index_column_names : the names of the serialized index columns # index_descriptors : descriptions of each index to be used for # reconstruction # index_levels : the extracted index level values # columns_to_convert : assembled raw data (both data columns and indexes) # to be converted to Arrow format # columns_fields : specified column to use for coercion / casting # during serialization, if a Schema was provided return (all_names, column_names, index_column_names, index_descriptors, index_levels, columns_to_convert, convert_fields) def _get_columns_to_convert_given_schema(df, schema, preserve_index): """ Specialized version of _get_columns_to_convert in case a Schema is specified. In that case, the Schema is used as the single point of truth for the table structure (types, which columns are included, order of columns, ...). """ column_names = [] columns_to_convert = [] convert_fields = [] index_descriptors = [] index_column_names = [] index_levels = [] for name in schema.names: try: col = df[name] is_index = False except KeyError: try: col = _get_index_level(df, name) except (KeyError, IndexError): # name not found as index level raise KeyError( "name '{}' present in the specified schema is not found " "in the columns or index".format(name)) if preserve_index is False: raise ValueError( "name '{}' present in the specified schema corresponds " "to the index, but 'preserve_index=False' was " "specified".format(name)) elif (preserve_index is None and isinstance(col, _pandas_api.pd.RangeIndex)): raise ValueError( "name '{}' is present in the schema, but it is a " "RangeIndex which will not be converted as a column " "in the Table, but saved as metadata-only not in " "columns. Specify 'preserve_index=True' to force it " "being added as a column, or remove it from the " "specified schema".format(name)) is_index = True name = _column_name_to_strings(name) if _pandas_api.is_sparse(col): raise TypeError( "Sparse pandas data (column {}) not supported.".format(name)) field = schema.field(name) columns_to_convert.append(col) convert_fields.append(field) column_names.append(name) if is_index: index_column_names.append(name) index_descriptors.append(name) index_levels.append(col) all_names = column_names + index_column_names return (all_names, column_names, index_column_names, index_descriptors, index_levels, columns_to_convert, convert_fields) def _get_index_level(df, name): """ Get the index level of a DataFrame given 'name' (column name in an arrow Schema). """ key = name if name not in df.index.names and _is_generated_index_name(name): # we know we have an autogenerated name => extract number and get # the index level positionally key = int(name[len("__index_level_"):-2]) return df.index.get_level_values(key) def _level_name(name): # preserve type when default serializable, otherwise str it try: json.dumps(name) return name except TypeError: return str(name) def _get_range_index_descriptor(level): # public start/stop/step attributes added in pandas 0.25.0 return { 'kind': 'range', 'name': _level_name(level.name), 'start': _pandas_api.get_rangeindex_attribute(level, 'start'), 'stop': _pandas_api.get_rangeindex_attribute(level, 'stop'), 'step': _pandas_api.get_rangeindex_attribute(level, 'step') } def _get_index_level_values(index): n = len(getattr(index, 'levels', [index])) return [index.get_level_values(i) for i in range(n)] def _resolve_columns_of_interest(df, schema, columns): if schema is not None and columns is not None: raise ValueError('Schema and columns arguments are mutually ' 'exclusive, pass only one of them') elif schema is not None: columns = schema.names elif columns is not None: columns = [c for c in columns if c in df.columns] else: columns = df.columns return columns def dataframe_to_types(df, preserve_index, columns=None): (all_names, column_names, _, index_descriptors, index_columns, columns_to_convert, _) = _get_columns_to_convert(df, None, preserve_index, columns) types = [] # If pandas knows type, skip conversion for c in columns_to_convert: values = c.values if _pandas_api.is_categorical(values): type_ = pa.array(c, from_pandas=True).type elif _pandas_api.is_extension_array_dtype(values): type_ = pa.array(c.head(0), from_pandas=True).type else: values, type_ = get_datetimetz_type(values, c.dtype, None) type_ = pa.lib._ndarray_to_arrow_type(values, type_) if type_ is None: type_ = pa.array(c, from_pandas=True).type types.append(type_) metadata = construct_metadata( columns_to_convert, df, column_names, index_columns, index_descriptors, preserve_index, types ) return all_names, types, metadata def dataframe_to_arrays(df, schema, preserve_index, nthreads=1, columns=None, safe=True): (all_names, column_names, index_column_names, index_descriptors, index_columns, columns_to_convert, convert_fields) = _get_columns_to_convert(df, schema, preserve_index, columns) # NOTE(wesm): If nthreads=None, then we use a heuristic to decide whether # using a thread pool is worth it. Currently the heuristic is whether the # nrows > 100 * ncols and ncols > 1. if nthreads is None: nrows, ncols = len(df), len(df.columns) if nrows > ncols * 100 and ncols > 1: nthreads = pa.cpu_count() else: nthreads = 1 def convert_column(col, field): if field is None: field_nullable = True type_ = None else: field_nullable = field.nullable type_ = field.type try: result = pa.array(col, type=type_, from_pandas=True, safe=safe) except (pa.ArrowInvalid, pa.ArrowNotImplementedError, pa.ArrowTypeError) as e: e.args += ("Conversion failed for column {!s} with type {!s}" .format(col.name, col.dtype),) raise e if not field_nullable and result.null_count > 0: raise ValueError("Field {} was non-nullable but pandas column " "had {} null values".format(str(field), result.null_count)) return result def _can_definitely_zero_copy(arr): return (isinstance(arr, np.ndarray) and arr.flags.contiguous and issubclass(arr.dtype.type, np.integer)) if nthreads == 1: arrays = [convert_column(c, f) for c, f in zip(columns_to_convert, convert_fields)] else: arrays = [] with futures.ThreadPoolExecutor(nthreads) as executor: for c, f in zip(columns_to_convert, convert_fields): if _can_definitely_zero_copy(c.values): arrays.append(convert_column(c, f)) else: arrays.append(executor.submit(convert_column, c, f)) for i, maybe_fut in enumerate(arrays): if isinstance(maybe_fut, futures.Future): arrays[i] = maybe_fut.result() types = [x.type for x in arrays] if schema is None: fields = [] for name, type_ in zip(all_names, types): name = name if name is not None else 'None' fields.append(pa.field(name, type_)) schema = pa.schema(fields) pandas_metadata = construct_metadata( columns_to_convert, df, column_names, index_columns, index_descriptors, preserve_index, types ) metadata = deepcopy(schema.metadata) if schema.metadata else dict() metadata.update(pandas_metadata) schema = schema.with_metadata(metadata) return arrays, schema def get_datetimetz_type(values, dtype, type_): if values.dtype.type != np.datetime64: return values, type_ if _pandas_api.is_datetimetz(dtype) and type_ is None: # If no user type passed, construct a tz-aware timestamp type tz = dtype.tz unit = dtype.unit type_ = pa.timestamp(unit, tz) elif type_ is None: # Trust the NumPy dtype type_ = pa.from_numpy_dtype(values.dtype) return values, type_ # ---------------------------------------------------------------------- # Converting pandas.DataFrame to a dict containing only NumPy arrays or other # objects friendly to pyarrow.serialize def dataframe_to_serialized_dict(frame): block_manager = frame._data blocks = [] axes = [ax for ax in block_manager.axes] for block in block_manager.blocks: values = block.values block_data = {} if _pandas_api.is_datetimetz(values.dtype): block_data['timezone'] = pa.lib.tzinfo_to_string(values.tz) if hasattr(values, 'values'): values = values.values elif _pandas_api.is_categorical(values): block_data.update(dictionary=values.categories, ordered=values.ordered) values = values.codes block_data.update( placement=block.mgr_locs.as_array, block=values ) # If we are dealing with an object array, pickle it instead. if values.dtype == np.dtype(object): block_data['object'] = None block_data['block'] = builtin_pickle.dumps( values, protocol=builtin_pickle.HIGHEST_PROTOCOL) blocks.append(block_data) return { 'blocks': blocks, 'axes': axes } def serialized_dict_to_dataframe(data): import pandas.core.internals as _int reconstructed_blocks = [_reconstruct_block(block) for block in data['blocks']] block_mgr = _int.BlockManager(reconstructed_blocks, data['axes']) return _pandas_api.data_frame(block_mgr) def _reconstruct_block(item, columns=None, extension_columns=None): """ Construct a pandas Block from the `item` dictionary coming from pyarrow's serialization or returned by arrow::python::ConvertTableToPandas. This function takes care of converting dictionary types to pandas categorical, Timestamp-with-timezones to the proper pandas Block, and conversion to pandas ExtensionBlock Parameters ---------- item : dict For basic types, this is a dictionary in the form of {'block': np.ndarray of values, 'placement': pandas block placement}. Additional keys are present for other types (dictionary, timezone, object). columns : Column names of the table being constructed, used for extension types extension_columns : dict Dictionary of {column_name: pandas_dtype} that includes all columns and corresponding dtypes that will be converted to a pandas ExtensionBlock. Returns ------- pandas Block """ import pandas.core.internals as _int block_arr = item.get('block', None) placement = item['placement'] if 'dictionary' in item: cat = _pandas_api.categorical_type.from_codes( block_arr, categories=item['dictionary'], ordered=item['ordered']) block = _int.make_block(cat, placement=placement) elif 'timezone' in item: dtype = make_datetimetz(item['timezone']) block = _int.make_block(block_arr, placement=placement, klass=_int.DatetimeTZBlock, dtype=dtype) elif 'object' in item: block = _int.make_block(builtin_pickle.loads(block_arr), placement=placement) elif 'py_array' in item: # create ExtensionBlock arr = item['py_array'] assert len(placement) == 1 name = columns[placement[0]] pandas_dtype = extension_columns[name] if not hasattr(pandas_dtype, '__from_arrow__'): raise ValueError("This column does not support to be converted " "to a pandas ExtensionArray") pd_ext_arr = pandas_dtype.__from_arrow__(arr) block = _int.make_block(pd_ext_arr, placement=placement) else: block = _int.make_block(block_arr, placement=placement) return block def make_datetimetz(tz): tz = pa.lib.string_to_tzinfo(tz) return _pandas_api.datetimetz_type('ns', tz=tz) # ---------------------------------------------------------------------- # Converting pyarrow.Table efficiently to pandas.DataFrame def table_to_blockmanager(options, table, categories=None, ignore_metadata=False, types_mapper=None): from pandas.core.internals import BlockManager all_columns = [] column_indexes = [] pandas_metadata = table.schema.pandas_metadata if not ignore_metadata and pandas_metadata is not None: all_columns = pandas_metadata['columns'] column_indexes = pandas_metadata.get('column_indexes', []) index_descriptors = pandas_metadata['index_columns'] table = _add_any_metadata(table, pandas_metadata) table, index = _reconstruct_index(table, index_descriptors, all_columns) ext_columns_dtypes = _get_extension_dtypes( table, all_columns, types_mapper) else: index = _pandas_api.pd.RangeIndex(table.num_rows) ext_columns_dtypes = _get_extension_dtypes(table, [], types_mapper) _check_data_column_metadata_consistency(all_columns) columns = _deserialize_column_index(table, all_columns, column_indexes) blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes) axes = [columns, index] return BlockManager(blocks, axes) # Set of the string repr of all numpy dtypes that can be stored in a pandas # dataframe (complex not included since not supported by Arrow) _pandas_supported_numpy_types = { str(np.dtype(typ)) for typ in (np.sctypes['int'] + np.sctypes['uint'] + np.sctypes['float'] + ['object', 'bool']) } def _get_extension_dtypes(table, columns_metadata, types_mapper=None): """ Based on the stored column pandas metadata and the extension types in the arrow schema, infer which columns should be converted to a pandas extension dtype. The 'numpy_type' field in the column metadata stores the string representation of the original pandas dtype (and, despite its name, not the 'pandas_type' field). Based on this string representation, a pandas/numpy dtype is constructed and then we can check if this dtype supports conversion from arrow. """ ext_columns = {} # older pandas version that does not yet support extension dtypes if _pandas_api.extension_dtype is None: return ext_columns # infer the extension columns from the pandas metadata for col_meta in columns_metadata: name = col_meta['name'] dtype = col_meta['numpy_type'] if dtype not in _pandas_supported_numpy_types: # pandas_dtype is expensive, so avoid doing this for types # that are certainly numpy dtypes pandas_dtype = _pandas_api.pandas_dtype(dtype) if isinstance(pandas_dtype, _pandas_api.extension_dtype): if hasattr(pandas_dtype, "__from_arrow__"): ext_columns[name] = pandas_dtype # infer from extension type in the schema for field in table.schema: typ = field.type if isinstance(typ, pa.BaseExtensionType): try: pandas_dtype = typ.to_pandas_dtype() except NotImplementedError: pass else: ext_columns[field.name] = pandas_dtype # use the specified mapping of built-in arrow types to pandas dtypes if types_mapper: for field in table.schema: typ = field.type pandas_dtype = types_mapper(typ) if pandas_dtype is not None: ext_columns[field.name] = pandas_dtype return ext_columns def _check_data_column_metadata_consistency(all_columns): # It can never be the case in a released version of pyarrow that # c['name'] is None *and* 'field_name' is not a key in the column metadata, # because the change to allow c['name'] to be None and the change to add # 'field_name' are in the same release (0.8.0) assert all( (c['name'] is None and 'field_name' in c) or c['name'] is not None for c in all_columns ) def _deserialize_column_index(block_table, all_columns, column_indexes): column_strings = [frombytes(x) if isinstance(x, bytes) else x for x in block_table.column_names] if all_columns: columns_name_dict = { c.get('field_name', _column_name_to_strings(c['name'])): c['name'] for c in all_columns } columns_values = [ columns_name_dict.get(name, name) for name in column_strings ] else: columns_values = column_strings # If we're passed multiple column indexes then evaluate with # ast.literal_eval, since the column index values show up as a list of # tuples to_pair = ast.literal_eval if len(column_indexes) > 1 else lambda x: (x,) # Create the column index # Construct the base index if not columns_values: columns = _pandas_api.pd.Index(columns_values) else: columns = _pandas_api.pd.MultiIndex.from_tuples( list(map(to_pair, columns_values)), names=[col_index['name'] for col_index in column_indexes] or None, ) # if we're reconstructing the index if len(column_indexes) > 0: columns = _reconstruct_columns_from_metadata(columns, column_indexes) # ARROW-1751: flatten a single level column MultiIndex for pandas 0.21.0 columns = _flatten_single_level_multiindex(columns) return columns def _reconstruct_index(table, index_descriptors, all_columns): # 0. 'field_name' is the name of the column in the arrow Table # 1. 'name' is the user-facing name of the column, that is, it came from # pandas # 2. 'field_name' and 'name' differ for index columns # 3. We fall back on c['name'] for backwards compatibility field_name_to_metadata = { c.get('field_name', c['name']): c for c in all_columns } # Build up a list of index columns and names while removing those columns # from the original table index_arrays = [] index_names = [] result_table = table for descr in index_descriptors: if isinstance(descr, str): result_table, index_level, index_name = _extract_index_level( table, result_table, descr, field_name_to_metadata) if index_level is None: # ARROW-1883: the serialized index column was not found continue elif descr['kind'] == 'range': index_name = descr['name'] index_level = _pandas_api.pd.RangeIndex(descr['start'], descr['stop'], step=descr['step'], name=index_name) if len(index_level) != len(table): # Possibly the result of munged metadata continue else: raise ValueError("Unrecognized index kind: {}" .format(descr['kind'])) index_arrays.append(index_level) index_names.append(index_name) pd = _pandas_api.pd # Reconstruct the row index if len(index_arrays) > 1: index = pd.MultiIndex.from_arrays(index_arrays, names=index_names) elif len(index_arrays) == 1: index = index_arrays[0] if not isinstance(index, pd.Index): # Box anything that wasn't boxed above index = pd.Index(index, name=index_names[0]) else: index = pd.RangeIndex(table.num_rows) return result_table, index def _extract_index_level(table, result_table, field_name, field_name_to_metadata): logical_name = field_name_to_metadata[field_name]['name'] index_name = _backwards_compatible_index_name(field_name, logical_name) i = table.schema.get_field_index(field_name) if i == -1: # The serialized index column was removed by the user return result_table, None, None pd = _pandas_api.pd col = table.column(i) values = col.to_pandas().values if hasattr(values, 'flags') and not values.flags.writeable: # ARROW-1054: in pandas 0.19.2, factorize will reject # non-writeable arrays when calling MultiIndex.from_arrays values = values.copy() if isinstance(col.type, pa.lib.TimestampType) and col.type.tz is not None: index_level = make_tz_aware(pd.Series(values), col.type.tz) else: index_level = pd.Series(values, dtype=values.dtype) result_table = result_table.remove_column( result_table.schema.get_field_index(field_name) ) return result_table, index_level, index_name def _backwards_compatible_index_name(raw_name, logical_name): """Compute the name of an index column that is compatible with older versions of :mod:`pyarrow`. Parameters ---------- raw_name : str logical_name : str Returns ------- result : str Notes ----- * Part of :func:`~pyarrow.pandas_compat.table_to_blockmanager` """ # Part of table_to_blockmanager if raw_name == logical_name and _is_generated_index_name(raw_name): return None else: return logical_name def _is_generated_index_name(name): pattern = r'^__index_level_\d+__$' return re.match(pattern, name) is not None _pandas_logical_type_map = { 'date': 'datetime64[D]', 'datetime': 'datetime64[ns]', 'unicode': np.unicode_, 'bytes': np.bytes_, 'string': np.str_, 'integer': np.int64, 'floating': np.float64, 'empty': np.object_, } def _pandas_type_to_numpy_type(pandas_type): """Get the numpy dtype that corresponds to a pandas type. Parameters ---------- pandas_type : str The result of a call to pandas.lib.infer_dtype. Returns ------- dtype : np.dtype The dtype that corresponds to `pandas_type`. """ try: return _pandas_logical_type_map[pandas_type] except KeyError: if 'mixed' in pandas_type: # catching 'mixed', 'mixed-integer' and 'mixed-integer-float' return np.object_ return np.dtype(pandas_type) def _get_multiindex_codes(mi): # compat for pandas < 0.24 (MI labels renamed to codes). if isinstance(mi, _pandas_api.pd.MultiIndex): return mi.codes if hasattr(mi, 'codes') else mi.labels else: return None def _reconstruct_columns_from_metadata(columns, column_indexes): """Construct a pandas MultiIndex from `columns` and column index metadata in `column_indexes`. Parameters ---------- columns : List[pd.Index] The columns coming from a pyarrow.Table column_indexes : List[Dict[str, str]] The column index metadata deserialized from the JSON schema metadata in a :class:`~pyarrow.Table`. Returns ------- result : MultiIndex The index reconstructed using `column_indexes` metadata with levels of the correct type. Notes ----- * Part of :func:`~pyarrow.pandas_compat.table_to_blockmanager` """ pd = _pandas_api.pd # Get levels and labels, and provide sane defaults if the index has a # single level to avoid if/else spaghetti. levels = getattr(columns, 'levels', None) or [columns] labels = _get_multiindex_codes(columns) or [ pd.RangeIndex(len(level)) for level in levels ] # Convert each level to the dtype provided in the metadata levels_dtypes = [ (level, col_index.get('pandas_type', str(level.dtype)), col_index.get('numpy_type', None)) for level, col_index in zip_longest( levels, column_indexes, fillvalue={} ) ] new_levels = [] encoder = operator.methodcaller('encode', 'UTF-8') for level, pandas_dtype, numpy_dtype in levels_dtypes: dtype = _pandas_type_to_numpy_type(pandas_dtype) # Since our metadata is UTF-8 encoded, Python turns things that were # bytes into unicode strings when json.loads-ing them. We need to # convert them back to bytes to preserve metadata. if dtype == np.bytes_: level = level.map(encoder) elif level.dtype != dtype: level = level.astype(dtype) # ARROW-9096: if original DataFrame was upcast we keep that if level.dtype != numpy_dtype: level = level.astype(numpy_dtype) new_levels.append(level) return pd.MultiIndex(new_levels, labels, names=columns.names) def _table_to_blocks(options, block_table, categories, extension_columns): # Part of table_to_blockmanager # Convert an arrow table to Block from the internal pandas API columns = block_table.column_names result = pa.lib.table_to_blocks(options, block_table, categories, list(extension_columns.keys())) return [_reconstruct_block(item, columns, extension_columns) for item in result] def _flatten_single_level_multiindex(index): pd = _pandas_api.pd if isinstance(index, pd.MultiIndex) and index.nlevels == 1: levels, = index.levels labels, = _get_multiindex_codes(index) # ARROW-9096: use levels.dtype to match cast with original DataFrame dtype = levels.dtype # Cheaply check that we do not somehow have duplicate column names if not index.is_unique: raise ValueError('Found non-unique column index') return pd.Index( [levels[_label] if _label != -1 else None for _label in labels], dtype=dtype, name=index.names[0] ) return index def _add_any_metadata(table, pandas_metadata): modified_columns = {} modified_fields = {} schema = table.schema index_columns = pandas_metadata['index_columns'] # only take index columns into account if they are an actual table column index_columns = [idx_col for idx_col in index_columns if isinstance(idx_col, str)] n_index_levels = len(index_columns) n_columns = len(pandas_metadata['columns']) - n_index_levels # Add time zones for i, col_meta in enumerate(pandas_metadata['columns']): raw_name = col_meta.get('field_name') if not raw_name: # deal with metadata written with arrow < 0.8 or fastparquet raw_name = col_meta['name'] if i >= n_columns: # index columns raw_name = index_columns[i - n_columns] if raw_name is None: raw_name = 'None' idx = schema.get_field_index(raw_name) if idx != -1: if col_meta['pandas_type'] == 'datetimetz': col = table[idx] if not isinstance(col.type, pa.lib.TimestampType): continue metadata = col_meta['metadata'] if not metadata: continue metadata_tz = metadata.get('timezone') if metadata_tz and metadata_tz != col.type.tz: converted = col.to_pandas() tz_aware_type = pa.timestamp('ns', tz=metadata_tz) with_metadata = pa.Array.from_pandas(converted, type=tz_aware_type) modified_fields[idx] = pa.field(schema[idx].name, tz_aware_type) modified_columns[idx] = with_metadata if len(modified_columns) > 0: columns = [] fields = [] for i in range(len(table.schema)): if i in modified_columns: columns.append(modified_columns[i]) fields.append(modified_fields[i]) else: columns.append(table[i]) fields.append(table.schema[i]) return pa.Table.from_arrays(columns, schema=pa.schema(fields)) else: return table # ---------------------------------------------------------------------- # Helper functions used in lib def make_tz_aware(series, tz): """ Make a datetime64 Series timezone-aware for the given tz """ tz = pa.lib.string_to_tzinfo(tz) series = (series.dt.tz_localize('utc') .dt.tz_convert(tz)) return series