# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import warnings cdef class ChunkedArray(_PandasConvertible): """ An array-like composed from a (possibly empty) collection of pyarrow.Arrays Warnings -------- Do not call this class's constructor directly. """ def __cinit__(self): self.chunked_array = NULL def __init__(self): raise TypeError("Do not call ChunkedArray's constructor directly, use " "`chunked_array` function instead.") cdef void init(self, const shared_ptr[CChunkedArray]& chunked_array): self.sp_chunked_array = chunked_array self.chunked_array = chunked_array.get() def __reduce__(self): return chunked_array, (self.chunks, self.type) @property def data(self): import warnings warnings.warn("Calling .data on ChunkedArray is provided for " "compatibility after Column was removed, simply drop " "this attribute", FutureWarning) return self @property def type(self): return pyarrow_wrap_data_type(self.sp_chunked_array.get().type()) def length(self): return self.chunked_array.length() def __len__(self): return self.length() def __repr__(self): type_format = object.__repr__(self) return '{0}\n{1}'.format(type_format, str(self)) def to_string(self, *, int indent=0, int window=10, c_bool skip_new_lines=False): """ Render a "pretty-printed" string representation of the ChunkedArray Parameters ---------- indent : int How much to indent right the content of the array, by default ``0``. window : int How many items to preview at the begin and end of the array when the arrays is bigger than the window. The other elements will be ellipsed. skip_new_lines : bool If the array should be rendered as a single line of text or if each element should be on its own line. """ cdef: c_string result PrettyPrintOptions options with nogil: options = PrettyPrintOptions(indent, window) options.skip_new_lines = skip_new_lines check_status( PrettyPrint( deref(self.chunked_array), options, &result ) ) return frombytes(result, safe=True) def format(self, **kwargs): import warnings warnings.warn('ChunkedArray.format is deprecated, ' 'use ChunkedArray.to_string') return self.to_string(**kwargs) def __str__(self): return self.to_string() def validate(self, *, full=False): """ Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full: bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalid """ if full: with nogil: check_status(self.sp_chunked_array.get().ValidateFull()) else: with nogil: check_status(self.sp_chunked_array.get().Validate()) @property def null_count(self): """ Number of null entries Returns ------- int """ return self.chunked_array.null_count() @property def nbytes(self): """ Total number of bytes consumed by the elements of the chunked array. """ size = 0 for chunk in self.iterchunks(): size += chunk.nbytes return size def __sizeof__(self): return super(ChunkedArray, self).__sizeof__() + self.nbytes def __iter__(self): for chunk in self.iterchunks(): for item in chunk: yield item def __getitem__(self, key): """ Slice or return value at given index Parameters ---------- key : integer or slice Slices with step not equal to 1 (or None) will produce a copy rather than a zero-copy view Returns ------- value : Scalar (index) or ChunkedArray (slice) """ if isinstance(key, slice): return _normalize_slice(self, key) return self.getitem(_normalize_index(key, self.chunked_array.length())) cdef getitem(self, int64_t index): cdef int j for j in range(self.num_chunks): if index < self.chunked_array.chunk(j).get().length(): return self.chunk(j)[index] else: index -= self.chunked_array.chunk(j).get().length() def is_null(self, *, nan_is_null=False): """ Return boolean array indicating the null values. Parameters ---------- nan_is_null : bool (optional, default False) Whether floating-point NaN values should also be considered null. Returns ------- array : boolean Array or ChunkedArray """ options = _pc().NullOptions(nan_is_null=nan_is_null) return _pc().call_function('is_null', [self], options) def is_valid(self): """ Return boolean array indicating the non-null values. """ return _pc().is_valid(self) def __eq__(self, other): try: return self.equals(other) except TypeError: return NotImplemented def fill_null(self, fill_value): """ See pyarrow.compute.fill_null docstring for usage. """ return _pc().fill_null(self, fill_value) def equals(self, ChunkedArray other): """ Return whether the contents of two chunked arrays are equal. Parameters ---------- other : pyarrow.ChunkedArray Chunked array to compare against. Returns ------- are_equal : bool """ if other is None: return False cdef: CChunkedArray* this_arr = self.chunked_array CChunkedArray* other_arr = other.chunked_array c_bool result with nogil: result = this_arr.Equals(deref(other_arr)) return result def _to_pandas(self, options, **kwargs): return _array_like_to_pandas(self, options) def to_numpy(self): """ Return a NumPy copy of this array (experimental). Returns ------- array : numpy.ndarray """ cdef: PyObject* out PandasOptions c_options object values if self.type.id == _Type_EXTENSION: storage_array = chunked_array( [chunk.storage for chunk in self.iterchunks()], type=self.type.storage_type ) return storage_array.to_numpy() with nogil: check_status( ConvertChunkedArrayToPandas( c_options, self.sp_chunked_array, self, &out ) ) # wrap_array_output uses pandas to convert to Categorical, here # always convert to numpy array values = PyObject_to_object(out) if isinstance(values, dict): values = np.take(values['dictionary'], values['indices']) return values def __array__(self, dtype=None): values = self.to_numpy() if dtype is None: return values return values.astype(dtype) def cast(self, object target_type, safe=True): """ Cast array values to another data type See pyarrow.compute.cast for usage """ return _pc().cast(self, target_type, safe=safe) def dictionary_encode(self, null_encoding='mask'): """ Compute dictionary-encoded representation of array Returns ------- pyarrow.ChunkedArray Same chunking as the input, all chunks share a common dictionary. """ options = _pc().DictionaryEncodeOptions(null_encoding) return _pc().call_function('dictionary_encode', [self], options) def flatten(self, MemoryPool memory_pool=None): """ Flatten this ChunkedArray. If it has a struct type, the column is flattened into one array per struct field. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : List[ChunkedArray] """ cdef: vector[shared_ptr[CChunkedArray]] flattened CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) with nogil: flattened = GetResultValue(self.chunked_array.Flatten(pool)) return [pyarrow_wrap_chunked_array(col) for col in flattened] def combine_chunks(self, MemoryPool memory_pool=None): """ Flatten this ChunkedArray into a single non-chunked array. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : Array """ return concat_arrays(self.chunks) def unique(self): """ Compute distinct elements in array Returns ------- pyarrow.Array """ return _pc().call_function('unique', [self]) def value_counts(self): """ Compute counts of unique elements in array. Returns ------- An array of structs """ return _pc().call_function('value_counts', [self]) def slice(self, offset=0, length=None): """ Compute zero-copy slice of this ChunkedArray Parameters ---------- offset : int, default 0 Offset from start of array to slice length : int, default None Length of slice (default is until end of batch starting from offset) Returns ------- sliced : ChunkedArray """ cdef shared_ptr[CChunkedArray] result if offset < 0: raise IndexError('Offset must be non-negative') offset = min(len(self), offset) if length is None: result = self.chunked_array.Slice(offset) else: result = self.chunked_array.Slice(offset, length) return pyarrow_wrap_chunked_array(result) def filter(self, mask, object null_selection_behavior="drop"): """ Select values from a chunked array. See pyarrow.compute.filter for full usage. """ return _pc().filter(self, mask, null_selection_behavior) def index(self, value, start=None, end=None, *, memory_pool=None): """ Find the first index of a value. See pyarrow.compute.index for full usage. """ return _pc().index(self, value, start, end, memory_pool=memory_pool) def take(self, object indices): """ Select values from a chunked array. See pyarrow.compute.take for full usage. """ return _pc().take(self, indices) def drop_null(self): """ Remove missing values from a chunked array. See pyarrow.compute.drop_null for full description. """ return _pc().drop_null(self) def unify_dictionaries(self, MemoryPool memory_pool=None): """ Unify dictionaries across all chunks. This method returns an equivalent chunked array, but where all chunks share the same dictionary values. Dictionary indices are transposed accordingly. If there are no dictionaries in the chunked array, it is returned unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- result : ChunkedArray """ cdef: CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) shared_ptr[CChunkedArray] c_result with nogil: c_result = GetResultValue(CDictionaryUnifier.UnifyChunkedArray( self.sp_chunked_array, pool)) return pyarrow_wrap_chunked_array(c_result) @property def num_chunks(self): """ Number of underlying chunks Returns ------- int """ return self.chunked_array.num_chunks() def chunk(self, i): """ Select a chunk by its index Parameters ---------- i : int Returns ------- pyarrow.Array """ if i >= self.num_chunks or i < 0: raise IndexError('Chunk index out of range.') return pyarrow_wrap_array(self.chunked_array.chunk(i)) @property def chunks(self): return list(self.iterchunks()) def iterchunks(self): for i in range(self.num_chunks): yield self.chunk(i) def to_pylist(self): """ Convert to a list of native Python objects. """ result = [] for i in range(self.num_chunks): result += self.chunk(i).to_pylist() return result def chunked_array(arrays, type=None): """ Construct chunked array from list of array-like objects Parameters ---------- arrays : Array, list of Array, or values coercible to arrays Must all be the same data type. Can be empty only if type also passed. type : DataType or string coercible to DataType Returns ------- ChunkedArray """ cdef: Array arr vector[shared_ptr[CArray]] c_arrays shared_ptr[CChunkedArray] sp_chunked_array type = ensure_type(type, allow_none=True) if isinstance(arrays, Array): arrays = [arrays] for x in arrays: arr = x if isinstance(x, Array) else array(x, type=type) if type is None: # it allows more flexible chunked array construction from to coerce # subsequent arrays to the firstly inferred array type # it also spares the inference overhead after the first chunk type = arr.type else: if arr.type != type: raise TypeError( "All array chunks must have type {}".format(type) ) c_arrays.push_back(arr.sp_array) if c_arrays.size() == 0 and type is None: raise ValueError("When passing an empty collection of arrays " "you must also pass the data type") sp_chunked_array.reset( new CChunkedArray(c_arrays, pyarrow_unwrap_data_type(type)) ) with nogil: check_status(sp_chunked_array.get().Validate()) return pyarrow_wrap_chunked_array(sp_chunked_array) cdef _schema_from_arrays(arrays, names, metadata, shared_ptr[CSchema]* schema): cdef: Py_ssize_t K = len(arrays) c_string c_name shared_ptr[CDataType] c_type shared_ptr[const CKeyValueMetadata] c_meta vector[shared_ptr[CField]] c_fields if metadata is not None: c_meta = KeyValueMetadata(metadata).unwrap() if K == 0: if names is None or len(names) == 0: schema.reset(new CSchema(c_fields, c_meta)) return arrays else: raise ValueError('Length of names ({}) does not match ' 'length of arrays ({})'.format(len(names), K)) c_fields.resize(K) if names is None: raise ValueError('Must pass names or schema when constructing ' 'Table or RecordBatch.') if len(names) != K: raise ValueError('Length of names ({}) does not match ' 'length of arrays ({})'.format(len(names), K)) converted_arrays = [] for i in range(K): val = arrays[i] if not isinstance(val, (Array, ChunkedArray)): val = array(val) c_type = ( val.type).sp_type if names[i] is None: c_name = b'None' else: c_name = tobytes(names[i]) c_fields[i].reset(new CField(c_name, c_type, True)) converted_arrays.append(val) schema.reset(new CSchema(c_fields, c_meta)) return converted_arrays cdef _sanitize_arrays(arrays, names, schema, metadata, shared_ptr[CSchema]* c_schema): cdef Schema cy_schema if schema is None: converted_arrays = _schema_from_arrays(arrays, names, metadata, c_schema) else: if names is not None: raise ValueError('Cannot pass both schema and names') if metadata is not None: raise ValueError('Cannot pass both schema and metadata') cy_schema = schema if len(schema) != len(arrays): raise ValueError('Schema and number of arrays unequal') c_schema[0] = cy_schema.sp_schema converted_arrays = [] for i, item in enumerate(arrays): item = asarray(item, type=schema[i].type) converted_arrays.append(item) return converted_arrays cdef class RecordBatch(_PandasConvertible): """ Batch of rows of columns of equal length Warnings -------- Do not call this class's constructor directly, use one of the ``RecordBatch.from_*`` functions instead. """ def __cinit__(self): self.batch = NULL self._schema = None def __init__(self): raise TypeError("Do not call RecordBatch's constructor directly, use " "one of the `RecordBatch.from_*` functions instead.") cdef void init(self, const shared_ptr[CRecordBatch]& batch): self.sp_batch = batch self.batch = batch.get() @staticmethod def from_pydict(mapping, schema=None, metadata=None): """ Construct a RecordBatch from Arrow arrays or columns. Parameters ---------- mapping : dict or Mapping A mapping of strings to Arrays or Python lists. schema : Schema, default None If not passed, will be inferred from the Mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- RecordBatch """ return _from_pydict(cls=RecordBatch, mapping=mapping, schema=schema, metadata=metadata) def __reduce__(self): return _reconstruct_record_batch, (self.columns, self.schema) def __len__(self): return self.batch.num_rows() def __eq__(self, other): try: return self.equals(other) except TypeError: return NotImplemented def to_string(self, show_metadata=False): # Use less verbose schema output. schema_as_string = self.schema.to_string( show_field_metadata=show_metadata, show_schema_metadata=show_metadata ) return 'pyarrow.{}\n{}'.format(type(self).__name__, schema_as_string) def __repr__(self): return self.to_string() def validate(self, *, full=False): """ Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full: bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalid """ if full: with nogil: check_status(self.batch.ValidateFull()) else: with nogil: check_status(self.batch.Validate()) def replace_schema_metadata(self, metadata=None): """ Create shallow copy of record batch by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata Parameters ---------- metadata : dict, default None Returns ------- shallow_copy : RecordBatch """ cdef: shared_ptr[const CKeyValueMetadata] c_meta shared_ptr[CRecordBatch] c_batch metadata = ensure_metadata(metadata, allow_none=True) c_meta = pyarrow_unwrap_metadata(metadata) with nogil: c_batch = self.batch.ReplaceSchemaMetadata(c_meta) return pyarrow_wrap_batch(c_batch) @property def num_columns(self): """ Number of columns Returns ------- int """ return self.batch.num_columns() @property def num_rows(self): """ Number of rows Due to the definition of a RecordBatch, all columns have the same number of rows. Returns ------- int """ return len(self) @property def schema(self): """ Schema of the RecordBatch and its columns Returns ------- pyarrow.Schema """ if self._schema is None: self._schema = pyarrow_wrap_schema(self.batch.schema()) return self._schema def field(self, i): """ Select a schema field by its column name or numeric index Parameters ---------- i : int or string The index or name of the field to retrieve Returns ------- pyarrow.Field """ return self.schema.field(i) @property def columns(self): """ List of all columns in numerical order Returns ------- list of pa.Array """ return [self.column(i) for i in range(self.num_columns)] def _ensure_integer_index(self, i): """ Ensure integer index (convert string column name to integer if needed). """ if isinstance(i, (bytes, str)): field_indices = self.schema.get_all_field_indices(i) if len(field_indices) == 0: raise KeyError( "Field \"{}\" does not exist in record batch schema" .format(i)) elif len(field_indices) > 1: raise KeyError( "Field \"{}\" exists {} times in record batch schema" .format(i, len(field_indices))) else: return field_indices[0] elif isinstance(i, int): return i else: raise TypeError("Index must either be string or integer") def column(self, i): """ Select single column from record batch Parameters ---------- i : int or string The index or name of the column to retrieve. Returns ------- column : pyarrow.Array """ return self._column(self._ensure_integer_index(i)) def _column(self, int i): """ Select single column from record batch by its numeric index. Parameters ---------- i : int The index of the column to retrieve. Returns ------- column : pyarrow.Array """ cdef int index = _normalize_index(i, self.num_columns) cdef Array result = pyarrow_wrap_array(self.batch.column(index)) result._name = self.schema[index].name return result @property def nbytes(self): """ Total number of bytes consumed by the elements of the record batch. """ size = 0 for i in range(self.num_columns): size += self.column(i).nbytes return size def __sizeof__(self): return super(RecordBatch, self).__sizeof__() + self.nbytes def __getitem__(self, key): """ Slice or return column at given index or column name Parameters ---------- key : integer, str, or slice Slices with step not equal to 1 (or None) will produce a copy rather than a zero-copy view Returns ------- value : Array (index/column) or RecordBatch (slice) """ if isinstance(key, slice): return _normalize_slice(self, key) else: return self.column(key) def serialize(self, memory_pool=None): """ Write RecordBatch to Buffer as encapsulated IPC message. Parameters ---------- memory_pool : MemoryPool, default None Uses default memory pool if not specified Returns ------- serialized : Buffer """ cdef shared_ptr[CBuffer] buffer cdef CIpcWriteOptions options = CIpcWriteOptions.Defaults() options.memory_pool = maybe_unbox_memory_pool(memory_pool) with nogil: buffer = GetResultValue( SerializeRecordBatch(deref(self.batch), options)) return pyarrow_wrap_buffer(buffer) def slice(self, offset=0, length=None): """ Compute zero-copy slice of this RecordBatch Parameters ---------- offset : int, default 0 Offset from start of record batch to slice length : int, default None Length of slice (default is until end of batch starting from offset) Returns ------- sliced : RecordBatch """ cdef shared_ptr[CRecordBatch] result if offset < 0: raise IndexError('Offset must be non-negative') offset = min(len(self), offset) if length is None: result = self.batch.Slice(offset) else: result = self.batch.Slice(offset, length) return pyarrow_wrap_batch(result) def filter(self, mask, object null_selection_behavior="drop"): """ Select record from a record batch. See pyarrow.compute.filter for full usage. """ return _pc().filter(self, mask, null_selection_behavior) def equals(self, object other, bint check_metadata=False): """ Check if contents of two record batches are equal. Parameters ---------- other : pyarrow.RecordBatch RecordBatch to compare against. check_metadata : bool, default False Whether schema metadata equality should be checked as well. Returns ------- are_equal : bool """ cdef: CRecordBatch* this_batch = self.batch shared_ptr[CRecordBatch] other_batch = pyarrow_unwrap_batch(other) c_bool result if not other_batch: return False with nogil: result = this_batch.Equals(deref(other_batch), check_metadata) return result def take(self, object indices): """ Select records from a RecordBatch. See pyarrow.compute.take for full usage. """ return _pc().take(self, indices) def drop_null(self): """ Remove missing values from a RecordBatch. See pyarrow.compute.drop_null for full usage. """ return _pc().drop_null(self) def to_pydict(self): """ Convert the RecordBatch to a dict or OrderedDict. Returns ------- dict """ entries = [] for i in range(self.batch.num_columns()): name = bytes(self.batch.column_name(i)).decode('utf8') column = self[i].to_pylist() entries.append((name, column)) return ordered_dict(entries) def _to_pandas(self, options, **kwargs): return Table.from_batches([self])._to_pandas(options, **kwargs) @classmethod def from_pandas(cls, df, Schema schema=None, preserve_index=None, nthreads=None, columns=None): """ Convert pandas.DataFrame to an Arrow RecordBatch Parameters ---------- df : pandas.DataFrame schema : pyarrow.Schema, optional The expected schema of the RecordBatch. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored. preserve_index : bool, optional Whether to store the index as an additional column in the resulting ``RecordBatch``. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. nthreads : int, default None (may use up to system CPU count threads) If greater than 1, convert columns to Arrow in parallel using indicated number of threads columns : list, optional List of column to be converted. If None, use all columns. Returns ------- pyarrow.RecordBatch """ from pyarrow.pandas_compat import dataframe_to_arrays arrays, schema = dataframe_to_arrays( df, schema, preserve_index, nthreads=nthreads, columns=columns ) return cls.from_arrays(arrays, schema=schema) @staticmethod def from_arrays(list arrays, names=None, schema=None, metadata=None): """ Construct a RecordBatch from multiple pyarrow.Arrays Parameters ---------- arrays : list of pyarrow.Array One for each field in RecordBatch names : list of str, optional Names for the batch fields. If not passed, schema must be passed schema : Schema, default None Schema for the created batch. If not passed, names must be passed metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- pyarrow.RecordBatch """ cdef: Array arr shared_ptr[CSchema] c_schema vector[shared_ptr[CArray]] c_arrays int64_t num_rows if len(arrays) > 0: num_rows = len(arrays[0]) else: num_rows = 0 if isinstance(names, Schema): import warnings warnings.warn("Schema passed to names= option, please " "pass schema= explicitly. " "Will raise exception in future", FutureWarning) schema = names names = None converted_arrays = _sanitize_arrays(arrays, names, schema, metadata, &c_schema) c_arrays.reserve(len(arrays)) for arr in converted_arrays: if len(arr) != num_rows: raise ValueError('Arrays were not all the same length: ' '{0} vs {1}'.format(len(arr), num_rows)) c_arrays.push_back(arr.sp_array) result = pyarrow_wrap_batch(CRecordBatch.Make(c_schema, num_rows, c_arrays)) result.validate() return result @staticmethod def from_struct_array(StructArray struct_array): """ Construct a RecordBatch from a StructArray. Each field in the StructArray will become a column in the resulting ``RecordBatch``. Parameters ---------- struct_array : StructArray Array to construct the record batch from. Returns ------- pyarrow.RecordBatch """ cdef: shared_ptr[CRecordBatch] c_record_batch with nogil: c_record_batch = GetResultValue( CRecordBatch.FromStructArray(struct_array.sp_array)) return pyarrow_wrap_batch(c_record_batch) def _export_to_c(self, uintptr_t out_ptr, uintptr_t out_schema_ptr=0): """ Export to a C ArrowArray struct, given its pointer. If a C ArrowSchema struct pointer is also given, the record batch schema is exported to it at the same time. Parameters ---------- out_ptr: int The raw pointer to a C ArrowArray struct. out_schema_ptr: int (optional) The raw pointer to a C ArrowSchema struct. Be careful: if you don't pass the ArrowArray struct to a consumer, array memory will leak. This is a low-level function intended for expert users. """ with nogil: check_status(ExportRecordBatch(deref(self.sp_batch), out_ptr, out_schema_ptr)) @staticmethod def _import_from_c(uintptr_t in_ptr, schema): """ Import RecordBatch from a C ArrowArray struct, given its pointer and the imported schema. Parameters ---------- in_ptr: int The raw pointer to a C ArrowArray struct. type: Schema or int Either a Schema object, or the raw pointer to a C ArrowSchema struct. This is a low-level function intended for expert users. """ cdef: shared_ptr[CRecordBatch] c_batch c_schema = pyarrow_unwrap_schema(schema) if c_schema == nullptr: # Not a Schema object, perhaps a raw ArrowSchema pointer schema_ptr = schema with nogil: c_batch = GetResultValue(ImportRecordBatch( in_ptr, schema_ptr)) else: with nogil: c_batch = GetResultValue(ImportRecordBatch( in_ptr, c_schema)) return pyarrow_wrap_batch(c_batch) def _reconstruct_record_batch(columns, schema): """ Internal: reconstruct RecordBatch from pickled components. """ return RecordBatch.from_arrays(columns, schema=schema) def table_to_blocks(options, Table table, categories, extension_columns): cdef: PyObject* result_obj shared_ptr[CTable] c_table CMemoryPool* pool PandasOptions c_options = _convert_pandas_options(options) if categories is not None: c_options.categorical_columns = {tobytes(cat) for cat in categories} if extension_columns is not None: c_options.extension_columns = {tobytes(col) for col in extension_columns} # ARROW-3789(wesm); Convert date/timestamp types to datetime64[ns] c_options.coerce_temporal_nanoseconds = True if c_options.self_destruct: # Move the shared_ptr, table is now unsafe to use further c_table = move(table.sp_table) table.table = NULL else: c_table = table.sp_table with nogil: check_status( libarrow.ConvertTableToPandas(c_options, move(c_table), &result_obj) ) return PyObject_to_object(result_obj) cdef class Table(_PandasConvertible): """ A collection of top-level named, equal length Arrow arrays. Warning ------- Do not call this class's constructor directly, use one of the ``from_*`` methods instead. """ def __cinit__(self): self.table = NULL def __init__(self): raise TypeError("Do not call Table's constructor directly, use one of " "the `Table.from_*` functions instead.") def to_string(self, *, show_metadata=False, preview_cols=0): """ Return human-readable string representation of Table. Parameters ---------- show_metadata : bool, default True Display Field-level and Schema-level KeyValueMetadata. preview_cols : int, default 0 Display values of the columns for the first N columns. Returns ------- str """ # Use less verbose schema output. schema_as_string = self.schema.to_string( show_field_metadata=show_metadata, show_schema_metadata=show_metadata ) title = 'pyarrow.{}\n{}'.format(type(self).__name__, schema_as_string) pieces = [title] if preview_cols: pieces.append('----') for i in range(min(self.num_columns, preview_cols)): pieces.append('{}: {}'.format( self.field(i).name, self.column(i).to_string(indent=0, skip_new_lines=True) )) if preview_cols < self.num_columns: pieces.append('...') return '\n'.join(pieces) def __repr__(self): if self.table == NULL: raise ValueError("Table's internal pointer is NULL, do not use " "any methods or attributes on this object") return self.to_string(preview_cols=10) cdef void init(self, const shared_ptr[CTable]& table): self.sp_table = table self.table = table.get() def validate(self, *, full=False): """ Perform validation checks. An exception is raised if validation fails. By default only cheap validation checks are run. Pass `full=True` for thorough validation checks (potentially O(n)). Parameters ---------- full: bool, default False If True, run expensive checks, otherwise cheap checks only. Raises ------ ArrowInvalid """ if full: with nogil: check_status(self.table.ValidateFull()) else: with nogil: check_status(self.table.Validate()) def __reduce__(self): # Reduce the columns as ChunkedArrays to avoid serializing schema # data twice columns = [col for col in self.columns] return _reconstruct_table, (columns, self.schema) def __getitem__(self, key): """ Slice or return column at given index or column name. Parameters ---------- key : integer, str, or slice Slices with step not equal to 1 (or None) will produce a copy rather than a zero-copy view. Returns ------- ChunkedArray (index/column) or Table (slice) """ if isinstance(key, slice): return _normalize_slice(self, key) else: return self.column(key) def slice(self, offset=0, length=None): """ Compute zero-copy slice of this Table. Parameters ---------- offset : int, default 0 Offset from start of table to slice. length : int, default None Length of slice (default is until end of table starting from offset). Returns ------- Table """ cdef shared_ptr[CTable] result if offset < 0: raise IndexError('Offset must be non-negative') offset = min(len(self), offset) if length is None: result = self.table.Slice(offset) else: result = self.table.Slice(offset, length) return pyarrow_wrap_table(result) def filter(self, mask, object null_selection_behavior="drop"): """ Select records from a Table. See :func:`pyarrow.compute.filter` for full usage. """ return _pc().filter(self, mask, null_selection_behavior) def take(self, object indices): """ Select records from a Table. See :func:`pyarrow.compute.take` for full usage. """ return _pc().take(self, indices) def drop_null(self): """ Remove missing values from a Table. See :func:`pyarrow.compute.drop_null` for full usage. """ return _pc().drop_null(self) def select(self, object columns): """ Select columns of the Table. Returns a new Table with the specified columns, and metadata preserved. Parameters ---------- columns : list-like The column names or integer indices to select. Returns ------- Table """ cdef: shared_ptr[CTable] c_table vector[int] c_indices for idx in columns: idx = self._ensure_integer_index(idx) idx = _normalize_index(idx, self.num_columns) c_indices.push_back( idx) with nogil: c_table = GetResultValue(self.table.SelectColumns(move(c_indices))) return pyarrow_wrap_table(c_table) def replace_schema_metadata(self, metadata=None): """ Create shallow copy of table by replacing schema key-value metadata with the indicated new metadata (which may be None), which deletes any existing metadata. Parameters ---------- metadata : dict, default None Returns ------- Table """ cdef: shared_ptr[const CKeyValueMetadata] c_meta shared_ptr[CTable] c_table metadata = ensure_metadata(metadata, allow_none=True) c_meta = pyarrow_unwrap_metadata(metadata) with nogil: c_table = self.table.ReplaceSchemaMetadata(c_meta) return pyarrow_wrap_table(c_table) def flatten(self, MemoryPool memory_pool=None): """ Flatten this Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- Table """ cdef: shared_ptr[CTable] flattened CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) with nogil: flattened = GetResultValue(self.table.Flatten(pool)) return pyarrow_wrap_table(flattened) def combine_chunks(self, MemoryPool memory_pool=None): """ Make a new table by combining the chunks this table has. All the underlying chunks in the ChunkedArray of each column are concatenated into zero or one chunk. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. Returns ------- Table """ cdef: shared_ptr[CTable] combined CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) with nogil: combined = GetResultValue(self.table.CombineChunks(pool)) return pyarrow_wrap_table(combined) def unify_dictionaries(self, MemoryPool memory_pool=None): """ Unify dictionaries across all chunks. This method returns an equivalent table, but where all chunks of each column share the same dictionary values. Dictionary indices are transposed accordingly. Columns without dictionaries are returned unchanged. Parameters ---------- memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool Returns ------- Table """ cdef: CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) shared_ptr[CTable] c_result with nogil: c_result = GetResultValue(CDictionaryUnifier.UnifyTable( deref(self.table), pool)) return pyarrow_wrap_table(c_result) def __eq__(self, other): try: return self.equals(other) except TypeError: return NotImplemented def equals(self, Table other, bint check_metadata=False): """ Check if contents of two tables are equal. Parameters ---------- other : pyarrow.Table Table to compare against. check_metadata : bool, default False Whether schema metadata equality should be checked as well. Returns ------- bool """ if other is None: return False cdef: CTable* this_table = self.table CTable* other_table = other.table c_bool result with nogil: result = this_table.Equals(deref(other_table), check_metadata) return result def cast(self, Schema target_schema, bint safe=True): """ Cast table values to another schema. Parameters ---------- target_schema : Schema Schema to cast to, the names and order of fields must match. safe : bool, default True Check for overflows or other unsafe conversions. Returns ------- Table """ cdef: ChunkedArray column, casted Field field list newcols = [] if self.schema.names != target_schema.names: raise ValueError("Target schema's field names are not matching " "the table's field names: {!r}, {!r}" .format(self.schema.names, target_schema.names)) for column, field in zip(self.itercolumns(), target_schema): casted = column.cast(field.type, safe=safe) newcols.append(casted) return Table.from_arrays(newcols, schema=target_schema) @classmethod def from_pandas(cls, df, Schema schema=None, preserve_index=None, nthreads=None, columns=None, bint safe=True): """ Convert pandas.DataFrame to an Arrow Table. The column types in the resulting Arrow Table are inferred from the dtypes of the pandas.Series in the DataFrame. In the case of non-object Series, the NumPy dtype is translated to its Arrow equivalent. In the case of `object`, we need to guess the datatype by looking at the Python objects in this Series. Be aware that Series of the `object` dtype don't carry enough information to always lead to a meaningful Arrow type. In the case that we cannot infer a type, e.g. because the DataFrame is of length 0 or the Series only contains None/nan objects, the type is set to null. This behavior can be avoided by constructing an explicit schema and passing it to this function. Parameters ---------- df : pandas.DataFrame schema : pyarrow.Schema, optional The expected schema of the Arrow Table. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored. preserve_index : bool, optional Whether to store the index as an additional column in the resulting ``Table``. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Use ``preserve_index=True`` to force it to be stored as a column. nthreads : int, default None (may use up to system CPU count threads) If greater than 1, convert columns to Arrow in parallel using indicated number of threads. columns : list, optional List of column to be converted. If None, use all columns. safe : bool, default True Check for overflows or other unsafe conversions. Returns ------- Table Examples -------- >>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({ ... 'int': [1, 2], ... 'str': ['a', 'b'] ... }) >>> pa.Table.from_pandas(df) """ from pyarrow.pandas_compat import dataframe_to_arrays arrays, schema = dataframe_to_arrays( df, schema=schema, preserve_index=preserve_index, nthreads=nthreads, columns=columns, safe=safe ) return cls.from_arrays(arrays, schema=schema) @staticmethod def from_arrays(arrays, names=None, schema=None, metadata=None): """ Construct a Table from Arrow arrays. Parameters ---------- arrays : list of pyarrow.Array or pyarrow.ChunkedArray Equal-length arrays that should form the table. names : list of str, optional Names for the table columns. If not passed, schema must be passed. schema : Schema, default None Schema for the created table. If not passed, names must be passed. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table """ cdef: vector[shared_ptr[CChunkedArray]] columns shared_ptr[CSchema] c_schema int i, K = len(arrays) converted_arrays = _sanitize_arrays(arrays, names, schema, metadata, &c_schema) columns.reserve(K) for item in converted_arrays: if isinstance(item, Array): columns.push_back( make_shared[CChunkedArray]( ( item).sp_array ) ) elif isinstance(item, ChunkedArray): columns.push_back(( item).sp_chunked_array) else: raise TypeError(type(item)) result = pyarrow_wrap_table(CTable.Make(c_schema, columns)) result.validate() return result @staticmethod def from_pydict(mapping, schema=None, metadata=None): """ Construct a Table from Arrow arrays or columns. Parameters ---------- mapping : dict or Mapping A mapping of strings to Arrays or Python lists. schema : Schema, default None If not passed, will be inferred from the Mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table """ return _from_pydict(cls=Table, mapping=mapping, schema=schema, metadata=metadata) @staticmethod def from_batches(batches, Schema schema=None): """ Construct a Table from a sequence or iterator of Arrow RecordBatches. Parameters ---------- batches : sequence or iterator of RecordBatch Sequence of RecordBatch to be converted, all schemas must be equal. schema : Schema, default None If not passed, will be inferred from the first RecordBatch. Returns ------- Table """ cdef: vector[shared_ptr[CRecordBatch]] c_batches shared_ptr[CTable] c_table shared_ptr[CSchema] c_schema RecordBatch batch for batch in batches: c_batches.push_back(batch.sp_batch) if schema is None: if c_batches.size() == 0: raise ValueError('Must pass schema, or at least ' 'one RecordBatch') c_schema = c_batches[0].get().schema() else: c_schema = schema.sp_schema with nogil: c_table = GetResultValue( CTable.FromRecordBatches(c_schema, move(c_batches))) return pyarrow_wrap_table(c_table) def to_batches(self, max_chunksize=None, **kwargs): """ Convert Table to list of (contiguous) RecordBatch objects. Parameters ---------- max_chunksize : int, default None Maximum size for RecordBatch chunks. Individual chunks may be smaller depending on the chunk layout of individual columns. Returns ------- list of RecordBatch """ cdef: unique_ptr[TableBatchReader] reader int64_t c_max_chunksize list result = [] shared_ptr[CRecordBatch] batch reader.reset(new TableBatchReader(deref(self.table))) if 'chunksize' in kwargs: max_chunksize = kwargs['chunksize'] msg = ('The parameter chunksize is deprecated for ' 'pyarrow.Table.to_batches as of 0.15, please use ' 'the parameter max_chunksize instead') warnings.warn(msg, FutureWarning) if max_chunksize is not None: c_max_chunksize = max_chunksize reader.get().set_chunksize(c_max_chunksize) while True: with nogil: check_status(reader.get().ReadNext(&batch)) if batch.get() == NULL: break result.append(pyarrow_wrap_batch(batch)) return result def _to_pandas(self, options, categories=None, ignore_metadata=False, types_mapper=None): from pyarrow.pandas_compat import table_to_blockmanager mgr = table_to_blockmanager( options, self, categories, ignore_metadata=ignore_metadata, types_mapper=types_mapper) return pandas_api.data_frame(mgr) def to_pydict(self): """ Convert the Table to a dict or OrderedDict. Returns ------- dict """ cdef: size_t i size_t num_columns = self.table.num_columns() list entries = [] ChunkedArray column for i in range(num_columns): column = self.column(i) entries.append((self.field(i).name, column.to_pylist())) return ordered_dict(entries) @property def schema(self): """ Schema of the table and its columns. Returns ------- Schema """ return pyarrow_wrap_schema(self.table.schema()) def field(self, i): """ Select a schema field by its column name or numeric index. Parameters ---------- i : int or string The index or name of the field to retrieve. Returns ------- Field """ return self.schema.field(i) def _ensure_integer_index(self, i): """ Ensure integer index (convert string column name to integer if needed). """ if isinstance(i, (bytes, str)): field_indices = self.schema.get_all_field_indices(i) if len(field_indices) == 0: raise KeyError("Field \"{}\" does not exist in table schema" .format(i)) elif len(field_indices) > 1: raise KeyError("Field \"{}\" exists {} times in table schema" .format(i, len(field_indices))) else: return field_indices[0] elif isinstance(i, int): return i else: raise TypeError("Index must either be string or integer") def column(self, i): """ Select a column by its column name, or numeric index. Parameters ---------- i : int or string The index or name of the column to retrieve. Returns ------- ChunkedArray """ return self._column(self._ensure_integer_index(i)) def _column(self, int i): """ Select a column by its numeric index. Parameters ---------- i : int The index of the column to retrieve. Returns ------- ChunkedArray """ cdef int index = _normalize_index(i, self.num_columns) cdef ChunkedArray result = pyarrow_wrap_chunked_array( self.table.column(index)) result._name = self.schema[index].name return result def itercolumns(self): """ Iterator over all columns in their numerical order. Yields ------ ChunkedArray """ for i in range(self.num_columns): yield self._column(i) @property def columns(self): """ List of all columns in numerical order. Returns ------- list of ChunkedArray """ return [self._column(i) for i in range(self.num_columns)] @property def num_columns(self): """ Number of columns in this table. Returns ------- int """ return self.table.num_columns() @property def num_rows(self): """ Number of rows in this table. Due to the definition of a table, all columns have the same number of rows. Returns ------- int """ return self.table.num_rows() def __len__(self): return self.num_rows @property def shape(self): """ Dimensions of the table: (#rows, #columns). Returns ------- (int, int) Number of rows and number of columns. """ return (self.num_rows, self.num_columns) @property def nbytes(self): """ Total number of bytes consumed by the elements of the table. Returns ------- int """ size = 0 for column in self.itercolumns(): size += column.nbytes return size def __sizeof__(self): return super(Table, self).__sizeof__() + self.nbytes def add_column(self, int i, field_, column): """ Add column to Table at position. A new table is returned with the column added, the original table object is left unchanged. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array, list of Array, or values coercible to arrays Column data. Returns ------- Table New table with the passed column added. """ cdef: shared_ptr[CTable] c_table Field c_field ChunkedArray c_arr if isinstance(column, ChunkedArray): c_arr = column else: c_arr = chunked_array(column) if isinstance(field_, Field): c_field = field_ else: c_field = field(field_, c_arr.type) with nogil: c_table = GetResultValue(self.table.AddColumn( i, c_field.sp_field, c_arr.sp_chunked_array)) return pyarrow_wrap_table(c_table) def append_column(self, field_, column): """ Append column at end of columns. Parameters ---------- field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array, list of Array, or values coercible to arrays Column data. Returns ------- Table New table with the passed column added. """ return self.add_column(self.num_columns, field_, column) def remove_column(self, int i): """ Create new Table with the indicated column removed. Parameters ---------- i : int Index of column to remove. Returns ------- Table New table without the column. """ cdef shared_ptr[CTable] c_table with nogil: c_table = GetResultValue(self.table.RemoveColumn(i)) return pyarrow_wrap_table(c_table) def set_column(self, int i, field_, column): """ Replace column in Table at position. Parameters ---------- i : int Index to place the column at. field_ : str or Field If a string is passed then the type is deduced from the column data. column : Array, list of Array, or values coercible to arrays Column data. Returns ------- Table New table with the passed column set. """ cdef: shared_ptr[CTable] c_table Field c_field ChunkedArray c_arr if isinstance(column, ChunkedArray): c_arr = column else: c_arr = chunked_array(column) if isinstance(field_, Field): c_field = field_ else: c_field = field(field_, c_arr.type) with nogil: c_table = GetResultValue(self.table.SetColumn( i, c_field.sp_field, c_arr.sp_chunked_array)) return pyarrow_wrap_table(c_table) @property def column_names(self): """ Names of the table's columns. Returns ------- list of str """ names = self.table.ColumnNames() return [frombytes(name) for name in names] def rename_columns(self, names): """ Create new table with columns renamed to provided names. Parameters ---------- names : list of str List of new column names. Returns ------- Table """ cdef: shared_ptr[CTable] c_table vector[c_string] c_names for name in names: c_names.push_back(tobytes(name)) with nogil: c_table = GetResultValue(self.table.RenameColumns(move(c_names))) return pyarrow_wrap_table(c_table) def drop(self, columns): """ Drop one or more columns and return a new table. Parameters ---------- columns : list of str List of field names referencing existing columns. Raises ------ KeyError If any of the passed columns name are not existing. Returns ------- Table New table without the columns. """ indices = [] for col in columns: idx = self.schema.get_field_index(col) if idx == -1: raise KeyError("Column {!r} not found".format(col)) indices.append(idx) indices.sort() indices.reverse() table = self for idx in indices: table = table.remove_column(idx) return table def _reconstruct_table(arrays, schema): """ Internal: reconstruct pa.Table from pickled components. """ return Table.from_arrays(arrays, schema=schema) def record_batch(data, names=None, schema=None, metadata=None): """ Create a pyarrow.RecordBatch from another Python data structure or sequence of arrays. Parameters ---------- data : pandas.DataFrame, list A DataFrame or list of arrays or chunked arrays. names : list, default None Column names if list of arrays passed as data. Mutually exclusive with 'schema' argument. schema : Schema, default None The expected schema of the RecordBatch. If not passed, will be inferred from the data. Mutually exclusive with 'names' argument. metadata : dict or Mapping, default None Optional metadata for the schema (if schema not passed). Returns ------- RecordBatch See Also -------- RecordBatch.from_arrays, RecordBatch.from_pandas, table """ # accept schema as first argument for backwards compatibility / usability if isinstance(names, Schema) and schema is None: schema = names names = None if isinstance(data, (list, tuple)): return RecordBatch.from_arrays(data, names=names, schema=schema, metadata=metadata) elif _pandas_api.is_data_frame(data): return RecordBatch.from_pandas(data, schema=schema) else: raise TypeError("Expected pandas DataFrame or list of arrays") def table(data, names=None, schema=None, metadata=None, nthreads=None): """ Create a pyarrow.Table from a Python data structure or sequence of arrays. Parameters ---------- data : pandas.DataFrame, dict, list A DataFrame, mapping of strings to Arrays or Python lists, or list of arrays or chunked arrays. names : list, default None Column names if list of arrays passed as data. Mutually exclusive with 'schema' argument. schema : Schema, default None The expected schema of the Arrow Table. If not passed, will be inferred from the data. Mutually exclusive with 'names' argument. If passed, the output will have exactly this schema (raising an error when columns are not found in the data and ignoring additional data not specified in the schema, when data is a dict or DataFrame). metadata : dict or Mapping, default None Optional metadata for the schema (if schema not passed). nthreads : int, default None (may use up to system CPU count threads) For pandas.DataFrame inputs: if greater than 1, convert columns to Arrow in parallel using indicated number of threads. Returns ------- Table See Also -------- Table.from_arrays, Table.from_pandas, Table.from_pydict """ # accept schema as first argument for backwards compatibility / usability if isinstance(names, Schema) and schema is None: schema = names names = None if isinstance(data, (list, tuple)): return Table.from_arrays(data, names=names, schema=schema, metadata=metadata) elif isinstance(data, dict): if names is not None: raise ValueError( "The 'names' argument is not valid when passing a dictionary") return Table.from_pydict(data, schema=schema, metadata=metadata) elif _pandas_api.is_data_frame(data): if names is not None or metadata is not None: raise ValueError( "The 'names' and 'metadata' arguments are not valid when " "passing a pandas DataFrame") return Table.from_pandas(data, schema=schema, nthreads=nthreads) else: raise TypeError( "Expected pandas DataFrame, python dictionary or list of arrays") def concat_tables(tables, c_bool promote=False, MemoryPool memory_pool=None): """ Concatenate pyarrow.Table objects. If promote==False, a zero-copy concatenation will be performed. The schemas of all the Tables must be the same (except the metadata), otherwise an exception will be raised. The result Table will share the metadata with the first table. If promote==True, any null type arrays will be casted to the type of other arrays in the column of the same name. If a table is missing a particular field, null values of the appropriate type will be generated to take the place of the missing field. The new schema will share the metadata with the first table. Each field in the new schema will share the metadata with the first table which has the field defined. Note that type promotions may involve additional allocations on the given ``memory_pool``. Parameters ---------- tables : iterable of pyarrow.Table objects Pyarrow tables to concatenate into a single Table. promote : bool, default False If True, concatenate tables with null-filling and null type promotion. memory_pool : MemoryPool, default None For memory allocations, if required, otherwise use default pool. """ cdef: vector[shared_ptr[CTable]] c_tables shared_ptr[CTable] c_result_table CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) Table table CConcatenateTablesOptions options = ( CConcatenateTablesOptions.Defaults()) for table in tables: c_tables.push_back(table.sp_table) with nogil: options.unify_schemas = promote c_result_table = GetResultValue( ConcatenateTables(c_tables, options, pool)) return pyarrow_wrap_table(c_result_table) def _from_pydict(cls, mapping, schema, metadata): """ Construct a Table/RecordBatch from Arrow arrays or columns. Parameters ---------- cls : Class Table/RecordBatch mapping : dict or Mapping A mapping of strings to Arrays or Python lists. schema : Schema, default None If not passed, will be inferred from the Mapping values. metadata : dict or Mapping, default None Optional metadata for the schema (if inferred). Returns ------- Table/RecordBatch """ arrays = [] if schema is None: names = [] for k, v in mapping.items(): names.append(k) arrays.append(asarray(v)) return cls.from_arrays(arrays, names, metadata=metadata) elif isinstance(schema, Schema): for field in schema: try: v = mapping[field.name] except KeyError: try: v = mapping[tobytes(field.name)] except KeyError: present = mapping.keys() missing = [n for n in schema.names if n not in present] raise KeyError( "The passed mapping doesn't contain the " "following field(s) of the schema: {}". format(', '.join(missing)) ) arrays.append(asarray(v, type=field.type)) # Will raise if metadata is not None return cls.from_arrays(arrays, schema=schema, metadata=metadata) else: raise TypeError('Schema must be an instance of pyarrow.Schema')