# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime import os import numpy as np import pytest import pyarrow as pa from pyarrow import fs from pyarrow.filesystem import LocalFileSystem from pyarrow.tests import util from pyarrow.tests.parquet.common import ( parametrize_legacy_dataset, parametrize_legacy_dataset_fixed, parametrize_legacy_dataset_not_supported) from pyarrow.util import guid from pyarrow.vendored.version import Version try: import pyarrow.parquet as pq from pyarrow.tests.parquet.common import ( _read_table, _test_dataframe, _write_table) except ImportError: pq = None try: import pandas as pd import pandas.testing as tm except ImportError: pd = tm = None pytestmark = pytest.mark.parquet @pytest.mark.pandas def test_parquet_piece_read(tempdir): df = _test_dataframe(1000) table = pa.Table.from_pandas(df) path = tempdir / 'parquet_piece_read.parquet' _write_table(table, path, version='2.6') with pytest.warns(DeprecationWarning): piece1 = pq.ParquetDatasetPiece(path) result = piece1.read() assert result.equals(table) @pytest.mark.pandas def test_parquet_piece_open_and_get_metadata(tempdir): df = _test_dataframe(100) table = pa.Table.from_pandas(df) path = tempdir / 'parquet_piece_read.parquet' _write_table(table, path, version='2.6') with pytest.warns(DeprecationWarning): piece = pq.ParquetDatasetPiece(path) table1 = piece.read() assert isinstance(table1, pa.Table) meta1 = piece.get_metadata() assert isinstance(meta1, pq.FileMetaData) assert table.equals(table1) @pytest.mark.filterwarnings("ignore:ParquetDatasetPiece:DeprecationWarning") def test_parquet_piece_basics(): path = '/baz.parq' piece1 = pq.ParquetDatasetPiece(path) piece2 = pq.ParquetDatasetPiece(path, row_group=1) piece3 = pq.ParquetDatasetPiece( path, row_group=1, partition_keys=[('foo', 0), ('bar', 1)]) assert str(piece1) == path assert str(piece2) == '/baz.parq | row_group=1' assert str(piece3) == 'partition[foo=0, bar=1] /baz.parq | row_group=1' assert piece1 == piece1 assert piece2 == piece2 assert piece3 == piece3 assert piece1 != piece3 def test_partition_set_dictionary_type(): set1 = pq.PartitionSet('key1', ['foo', 'bar', 'baz']) set2 = pq.PartitionSet('key2', [2007, 2008, 2009]) assert isinstance(set1.dictionary, pa.StringArray) assert isinstance(set2.dictionary, pa.IntegerArray) set3 = pq.PartitionSet('key2', [datetime.datetime(2007, 1, 1)]) with pytest.raises(TypeError): set3.dictionary @parametrize_legacy_dataset_fixed def test_filesystem_uri(tempdir, use_legacy_dataset): table = pa.table({"a": [1, 2, 3]}) directory = tempdir / "data_dir" directory.mkdir() path = directory / "data.parquet" pq.write_table(table, str(path)) # filesystem object result = pq.read_table( path, filesystem=fs.LocalFileSystem(), use_legacy_dataset=use_legacy_dataset) assert result.equals(table) # filesystem URI result = pq.read_table( "data_dir/data.parquet", filesystem=util._filesystem_uri(tempdir), use_legacy_dataset=use_legacy_dataset) assert result.equals(table) @pytest.mark.pandas @parametrize_legacy_dataset def test_read_partitioned_directory(tempdir, use_legacy_dataset): fs = LocalFileSystem._get_instance() _partition_test_for_filesystem(fs, tempdir, use_legacy_dataset) @pytest.mark.filterwarnings("ignore:'ParquetDataset:DeprecationWarning") @pytest.mark.pandas def test_create_parquet_dataset_multi_threaded(tempdir): fs = LocalFileSystem._get_instance() base_path = tempdir _partition_test_for_filesystem(fs, base_path) manifest = pq.ParquetManifest(base_path, filesystem=fs, metadata_nthreads=1) dataset = pq.ParquetDataset(base_path, filesystem=fs, metadata_nthreads=16) assert len(dataset.pieces) > 0 partitions = dataset.partitions assert len(partitions.partition_names) > 0 assert partitions.partition_names == manifest.partitions.partition_names assert len(partitions.levels) == len(manifest.partitions.levels) @pytest.mark.pandas @parametrize_legacy_dataset def test_read_partitioned_columns_selection(tempdir, use_legacy_dataset): # ARROW-3861 - do not include partition columns in resulting table when # `columns` keyword was passed without those columns fs = LocalFileSystem._get_instance() base_path = tempdir _partition_test_for_filesystem(fs, base_path) dataset = pq.ParquetDataset( base_path, use_legacy_dataset=use_legacy_dataset) result = dataset.read(columns=["values"]) if use_legacy_dataset: # ParquetDataset implementation always includes the partition columns # automatically, and we can't easily "fix" this since dask relies on # this behaviour (ARROW-8644) assert result.column_names == ["values", "foo", "bar"] else: assert result.column_names == ["values"] @pytest.mark.pandas @parametrize_legacy_dataset def test_filters_equivalency(tempdir, use_legacy_dataset): fs = LocalFileSystem._get_instance() base_path = tempdir integer_keys = [0, 1] string_keys = ['a', 'b', 'c'] boolean_keys = [True, False] partition_spec = [ ['integer', integer_keys], ['string', string_keys], ['boolean', boolean_keys] ] df = pd.DataFrame({ 'integer': np.array(integer_keys, dtype='i4').repeat(15), 'string': np.tile(np.tile(np.array(string_keys, dtype=object), 5), 2), 'boolean': np.tile(np.tile(np.array(boolean_keys, dtype='bool'), 5), 3), }, columns=['integer', 'string', 'boolean']) _generate_partition_directories(fs, base_path, partition_spec, df) # Old filters syntax: # integer == 1 AND string != b AND boolean == True dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=[('integer', '=', 1), ('string', '!=', 'b'), ('boolean', '==', 'True')], use_legacy_dataset=use_legacy_dataset, ) table = dataset.read() result_df = (table.to_pandas().reset_index(drop=True)) assert 0 not in result_df['integer'].values assert 'b' not in result_df['string'].values assert False not in result_df['boolean'].values # filters in disjunctive normal form: # (integer == 1 AND string != b AND boolean == True) OR # (integer == 2 AND boolean == False) # TODO(ARROW-3388): boolean columns are reconstructed as string filters = [ [ ('integer', '=', 1), ('string', '!=', 'b'), ('boolean', '==', 'True') ], [('integer', '=', 0), ('boolean', '==', 'False')] ] dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=filters, use_legacy_dataset=use_legacy_dataset) table = dataset.read() result_df = table.to_pandas().reset_index(drop=True) # Check that all rows in the DF fulfill the filter # Pandas 0.23.x has problems with indexing constant memoryviews in # categoricals. Thus we need to make an explicit copy here with np.array. df_filter_1 = (np.array(result_df['integer']) == 1) \ & (np.array(result_df['string']) != 'b') \ & (np.array(result_df['boolean']) == 'True') df_filter_2 = (np.array(result_df['integer']) == 0) \ & (np.array(result_df['boolean']) == 'False') assert df_filter_1.sum() > 0 assert df_filter_2.sum() > 0 assert result_df.shape[0] == (df_filter_1.sum() + df_filter_2.sum()) if use_legacy_dataset: # Check for \0 in predicate values. Until they are correctly # implemented in ARROW-3391, they would otherwise lead to weird # results with the current code. with pytest.raises(NotImplementedError): filters = [[('string', '==', b'1\0a')]] pq.ParquetDataset(base_path, filesystem=fs, filters=filters) with pytest.raises(NotImplementedError): filters = [[('string', '==', '1\0a')]] pq.ParquetDataset(base_path, filesystem=fs, filters=filters) else: for filters in [[[('string', '==', b'1\0a')]], [[('string', '==', '1\0a')]]]: dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=filters, use_legacy_dataset=False) assert dataset.read().num_rows == 0 @pytest.mark.pandas @parametrize_legacy_dataset def test_filters_cutoff_exclusive_integer(tempdir, use_legacy_dataset): fs = LocalFileSystem._get_instance() base_path = tempdir integer_keys = [0, 1, 2, 3, 4] partition_spec = [ ['integers', integer_keys], ] N = 5 df = pd.DataFrame({ 'index': np.arange(N), 'integers': np.array(integer_keys, dtype='i4'), }, columns=['index', 'integers']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=[ ('integers', '<', 4), ('integers', '>', 1), ], use_legacy_dataset=use_legacy_dataset ) table = dataset.read() result_df = (table.to_pandas() .sort_values(by='index') .reset_index(drop=True)) result_list = [x for x in map(int, result_df['integers'].values)] assert result_list == [2, 3] @pytest.mark.pandas @parametrize_legacy_dataset @pytest.mark.xfail( # different error with use_legacy_datasets because result_df is no longer # categorical raises=(TypeError, AssertionError), reason='Loss of type information in creation of categoricals.' ) def test_filters_cutoff_exclusive_datetime(tempdir, use_legacy_dataset): fs = LocalFileSystem._get_instance() base_path = tempdir date_keys = [ datetime.date(2018, 4, 9), datetime.date(2018, 4, 10), datetime.date(2018, 4, 11), datetime.date(2018, 4, 12), datetime.date(2018, 4, 13) ] partition_spec = [ ['dates', date_keys] ] N = 5 df = pd.DataFrame({ 'index': np.arange(N), 'dates': np.array(date_keys, dtype='datetime64'), }, columns=['index', 'dates']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=[ ('dates', '<', "2018-04-12"), ('dates', '>', "2018-04-10") ], use_legacy_dataset=use_legacy_dataset ) table = dataset.read() result_df = (table.to_pandas() .sort_values(by='index') .reset_index(drop=True)) expected = pd.Categorical( np.array([datetime.date(2018, 4, 11)], dtype='datetime64'), categories=np.array(date_keys, dtype='datetime64')) assert result_df['dates'].values == expected @pytest.mark.pandas @pytest.mark.dataset def test_filters_inclusive_datetime(tempdir): # ARROW-11480 path = tempdir / 'timestamps.parquet' pd.DataFrame({ "dates": pd.date_range("2020-01-01", periods=10, freq="D"), "id": range(10) }).to_parquet(path, use_deprecated_int96_timestamps=True) table = pq.read_table(path, filters=[ ("dates", "<=", datetime.datetime(2020, 1, 5)) ]) assert table.column('id').to_pylist() == [0, 1, 2, 3, 4] @pytest.mark.pandas @parametrize_legacy_dataset def test_filters_inclusive_integer(tempdir, use_legacy_dataset): fs = LocalFileSystem._get_instance() base_path = tempdir integer_keys = [0, 1, 2, 3, 4] partition_spec = [ ['integers', integer_keys], ] N = 5 df = pd.DataFrame({ 'index': np.arange(N), 'integers': np.array(integer_keys, dtype='i4'), }, columns=['index', 'integers']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=[ ('integers', '<=', 3), ('integers', '>=', 2), ], use_legacy_dataset=use_legacy_dataset ) table = dataset.read() result_df = (table.to_pandas() .sort_values(by='index') .reset_index(drop=True)) result_list = [int(x) for x in map(int, result_df['integers'].values)] assert result_list == [2, 3] @pytest.mark.pandas @parametrize_legacy_dataset def test_filters_inclusive_set(tempdir, use_legacy_dataset): fs = LocalFileSystem._get_instance() base_path = tempdir integer_keys = [0, 1] string_keys = ['a', 'b', 'c'] boolean_keys = [True, False] partition_spec = [ ['integer', integer_keys], ['string', string_keys], ['boolean', boolean_keys] ] df = pd.DataFrame({ 'integer': np.array(integer_keys, dtype='i4').repeat(15), 'string': np.tile(np.tile(np.array(string_keys, dtype=object), 5), 2), 'boolean': np.tile(np.tile(np.array(boolean_keys, dtype='bool'), 5), 3), }, columns=['integer', 'string', 'boolean']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=[('string', 'in', 'ab')], use_legacy_dataset=use_legacy_dataset ) table = dataset.read() result_df = (table.to_pandas().reset_index(drop=True)) assert 'a' in result_df['string'].values assert 'b' in result_df['string'].values assert 'c' not in result_df['string'].values dataset = pq.ParquetDataset( base_path, filesystem=fs, filters=[('integer', 'in', [1]), ('string', 'in', ('a', 'b')), ('boolean', 'not in', {False})], use_legacy_dataset=use_legacy_dataset ) table = dataset.read() result_df = (table.to_pandas().reset_index(drop=True)) assert 0 not in result_df['integer'].values assert 'c' not in result_df['string'].values assert False not in result_df['boolean'].values @pytest.mark.pandas @parametrize_legacy_dataset def test_filters_invalid_pred_op(tempdir, use_legacy_dataset): fs = LocalFileSystem._get_instance() base_path = tempdir integer_keys = [0, 1, 2, 3, 4] partition_spec = [ ['integers', integer_keys], ] N = 5 df = pd.DataFrame({ 'index': np.arange(N), 'integers': np.array(integer_keys, dtype='i4'), }, columns=['index', 'integers']) _generate_partition_directories(fs, base_path, partition_spec, df) with pytest.raises(TypeError): pq.ParquetDataset(base_path, filesystem=fs, filters=[('integers', 'in', 3), ], use_legacy_dataset=use_legacy_dataset) with pytest.raises(ValueError): pq.ParquetDataset(base_path, filesystem=fs, filters=[('integers', '=<', 3), ], use_legacy_dataset=use_legacy_dataset) if use_legacy_dataset: with pytest.raises(ValueError): pq.ParquetDataset(base_path, filesystem=fs, filters=[('integers', 'in', set()), ], use_legacy_dataset=use_legacy_dataset) else: # Dataset API returns empty table instead dataset = pq.ParquetDataset(base_path, filesystem=fs, filters=[('integers', 'in', set()), ], use_legacy_dataset=use_legacy_dataset) assert dataset.read().num_rows == 0 if use_legacy_dataset: with pytest.raises(ValueError): pq.ParquetDataset(base_path, filesystem=fs, filters=[('integers', '!=', {3})], use_legacy_dataset=use_legacy_dataset) else: dataset = pq.ParquetDataset(base_path, filesystem=fs, filters=[('integers', '!=', {3})], use_legacy_dataset=use_legacy_dataset) with pytest.raises(NotImplementedError): assert dataset.read().num_rows == 0 @pytest.mark.pandas @parametrize_legacy_dataset_fixed def test_filters_invalid_column(tempdir, use_legacy_dataset): # ARROW-5572 - raise error on invalid name in filter specification # works with new dataset / xfail with legacy implementation fs = LocalFileSystem._get_instance() base_path = tempdir integer_keys = [0, 1, 2, 3, 4] partition_spec = [['integers', integer_keys]] N = 5 df = pd.DataFrame({ 'index': np.arange(N), 'integers': np.array(integer_keys, dtype='i4'), }, columns=['index', 'integers']) _generate_partition_directories(fs, base_path, partition_spec, df) msg = r"No match for FieldRef.Name\(non_existent_column\)" with pytest.raises(ValueError, match=msg): pq.ParquetDataset(base_path, filesystem=fs, filters=[('non_existent_column', '<', 3), ], use_legacy_dataset=use_legacy_dataset).read() @pytest.mark.pandas @parametrize_legacy_dataset def test_filters_read_table(tempdir, use_legacy_dataset): # test that filters keyword is passed through in read_table fs = LocalFileSystem._get_instance() base_path = tempdir integer_keys = [0, 1, 2, 3, 4] partition_spec = [ ['integers', integer_keys], ] N = 5 df = pd.DataFrame({ 'index': np.arange(N), 'integers': np.array(integer_keys, dtype='i4'), }, columns=['index', 'integers']) _generate_partition_directories(fs, base_path, partition_spec, df) table = pq.read_table( base_path, filesystem=fs, filters=[('integers', '<', 3)], use_legacy_dataset=use_legacy_dataset) assert table.num_rows == 3 table = pq.read_table( base_path, filesystem=fs, filters=[[('integers', '<', 3)]], use_legacy_dataset=use_legacy_dataset) assert table.num_rows == 3 table = pq.read_pandas( base_path, filters=[('integers', '<', 3)], use_legacy_dataset=use_legacy_dataset) assert table.num_rows == 3 @pytest.mark.pandas @parametrize_legacy_dataset_fixed def test_partition_keys_with_underscores(tempdir, use_legacy_dataset): # ARROW-5666 - partition field values with underscores preserve underscores # xfail with legacy dataset -> they get interpreted as integers fs = LocalFileSystem._get_instance() base_path = tempdir string_keys = ["2019_2", "2019_3"] partition_spec = [ ['year_week', string_keys], ] N = 2 df = pd.DataFrame({ 'index': np.arange(N), 'year_week': np.array(string_keys, dtype='object'), }, columns=['index', 'year_week']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset( base_path, use_legacy_dataset=use_legacy_dataset) result = dataset.read() assert result.column("year_week").to_pylist() == string_keys @pytest.mark.s3 @parametrize_legacy_dataset def test_read_s3fs(s3_example_s3fs, use_legacy_dataset): fs, path = s3_example_s3fs path = path + "/test.parquet" table = pa.table({"a": [1, 2, 3]}) _write_table(table, path, filesystem=fs) result = _read_table( path, filesystem=fs, use_legacy_dataset=use_legacy_dataset ) assert result.equals(table) @pytest.mark.s3 @parametrize_legacy_dataset def test_read_directory_s3fs(s3_example_s3fs, use_legacy_dataset): fs, directory = s3_example_s3fs path = directory + "/test.parquet" table = pa.table({"a": [1, 2, 3]}) _write_table(table, path, filesystem=fs) result = _read_table( directory, filesystem=fs, use_legacy_dataset=use_legacy_dataset ) assert result.equals(table) @pytest.mark.pandas @pytest.mark.s3 @parametrize_legacy_dataset def test_read_partitioned_directory_s3fs_wrapper( s3_example_s3fs, use_legacy_dataset ): import s3fs from pyarrow.filesystem import S3FSWrapper if Version(s3fs.__version__) >= Version("0.5"): pytest.skip("S3FSWrapper no longer working for s3fs 0.5+") fs, path = s3_example_s3fs with pytest.warns(FutureWarning): wrapper = S3FSWrapper(fs) _partition_test_for_filesystem(wrapper, path) # Check that we can auto-wrap dataset = pq.ParquetDataset( path, filesystem=fs, use_legacy_dataset=use_legacy_dataset ) dataset.read() @pytest.mark.pandas @pytest.mark.s3 @parametrize_legacy_dataset def test_read_partitioned_directory_s3fs(s3_example_s3fs, use_legacy_dataset): fs, path = s3_example_s3fs _partition_test_for_filesystem( fs, path, use_legacy_dataset=use_legacy_dataset ) def _partition_test_for_filesystem(fs, base_path, use_legacy_dataset=True): foo_keys = [0, 1] bar_keys = ['a', 'b', 'c'] partition_spec = [ ['foo', foo_keys], ['bar', bar_keys] ] N = 30 df = pd.DataFrame({ 'index': np.arange(N), 'foo': np.array(foo_keys, dtype='i4').repeat(15), 'bar': np.tile(np.tile(np.array(bar_keys, dtype=object), 5), 2), 'values': np.random.randn(N) }, columns=['index', 'foo', 'bar', 'values']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset( base_path, filesystem=fs, use_legacy_dataset=use_legacy_dataset) table = dataset.read() result_df = (table.to_pandas() .sort_values(by='index') .reset_index(drop=True)) expected_df = (df.sort_values(by='index') .reset_index(drop=True) .reindex(columns=result_df.columns)) expected_df['foo'] = pd.Categorical(df['foo'], categories=foo_keys) expected_df['bar'] = pd.Categorical(df['bar'], categories=bar_keys) assert (result_df.columns == ['index', 'values', 'foo', 'bar']).all() tm.assert_frame_equal(result_df, expected_df) def _generate_partition_directories(fs, base_dir, partition_spec, df): # partition_spec : list of lists, e.g. [['foo', [0, 1, 2], # ['bar', ['a', 'b', 'c']] # part_table : a pyarrow.Table to write to each partition DEPTH = len(partition_spec) pathsep = getattr(fs, "pathsep", getattr(fs, "sep", "/")) def _visit_level(base_dir, level, part_keys): name, values = partition_spec[level] for value in values: this_part_keys = part_keys + [(name, value)] level_dir = pathsep.join([ str(base_dir), '{}={}'.format(name, value) ]) fs.mkdir(level_dir) if level == DEPTH - 1: # Generate example data file_path = pathsep.join([level_dir, guid()]) filtered_df = _filter_partition(df, this_part_keys) part_table = pa.Table.from_pandas(filtered_df) with fs.open(file_path, 'wb') as f: _write_table(part_table, f) assert fs.exists(file_path) file_success = pathsep.join([level_dir, '_SUCCESS']) with fs.open(file_success, 'wb') as f: pass else: _visit_level(level_dir, level + 1, this_part_keys) file_success = pathsep.join([level_dir, '_SUCCESS']) with fs.open(file_success, 'wb') as f: pass _visit_level(base_dir, 0, []) def _test_read_common_metadata_files(fs, base_path): import pandas as pd import pyarrow.parquet as pq N = 100 df = pd.DataFrame({ 'index': np.arange(N), 'values': np.random.randn(N) }, columns=['index', 'values']) base_path = str(base_path) data_path = os.path.join(base_path, 'data.parquet') table = pa.Table.from_pandas(df) with fs.open(data_path, 'wb') as f: _write_table(table, f) metadata_path = os.path.join(base_path, '_common_metadata') with fs.open(metadata_path, 'wb') as f: pq.write_metadata(table.schema, f) dataset = pq.ParquetDataset(base_path, filesystem=fs) assert dataset.common_metadata_path == str(metadata_path) with fs.open(data_path) as f: common_schema = pq.read_metadata(f).schema assert dataset.schema.equals(common_schema) # handle list of one directory dataset2 = pq.ParquetDataset([base_path], filesystem=fs) assert dataset2.schema.equals(dataset.schema) @pytest.mark.pandas def test_read_common_metadata_files(tempdir): fs = LocalFileSystem._get_instance() _test_read_common_metadata_files(fs, tempdir) @pytest.mark.pandas def test_read_metadata_files(tempdir): fs = LocalFileSystem._get_instance() N = 100 df = pd.DataFrame({ 'index': np.arange(N), 'values': np.random.randn(N) }, columns=['index', 'values']) data_path = tempdir / 'data.parquet' table = pa.Table.from_pandas(df) with fs.open(data_path, 'wb') as f: _write_table(table, f) metadata_path = tempdir / '_metadata' with fs.open(metadata_path, 'wb') as f: pq.write_metadata(table.schema, f) dataset = pq.ParquetDataset(tempdir, filesystem=fs) assert dataset.metadata_path == str(metadata_path) with fs.open(data_path) as f: metadata_schema = pq.read_metadata(f).schema assert dataset.schema.equals(metadata_schema) def _filter_partition(df, part_keys): predicate = np.ones(len(df), dtype=bool) to_drop = [] for name, value in part_keys: to_drop.append(name) # to avoid pandas warning if isinstance(value, (datetime.date, datetime.datetime)): value = pd.Timestamp(value) predicate &= df[name] == value return df[predicate].drop(to_drop, axis=1) @parametrize_legacy_dataset @pytest.mark.pandas def test_filter_before_validate_schema(tempdir, use_legacy_dataset): # ARROW-4076 apply filter before schema validation # to avoid checking unneeded schemas # create partitioned dataset with mismatching schemas which would # otherwise raise if first validation all schemas dir1 = tempdir / 'A=0' dir1.mkdir() table1 = pa.Table.from_pandas(pd.DataFrame({'B': [1, 2, 3]})) pq.write_table(table1, dir1 / 'data.parquet') dir2 = tempdir / 'A=1' dir2.mkdir() table2 = pa.Table.from_pandas(pd.DataFrame({'B': ['a', 'b', 'c']})) pq.write_table(table2, dir2 / 'data.parquet') # read single file using filter table = pq.read_table(tempdir, filters=[[('A', '==', 0)]], use_legacy_dataset=use_legacy_dataset) assert table.column('B').equals(pa.chunked_array([[1, 2, 3]])) @pytest.mark.pandas @parametrize_legacy_dataset def test_read_multiple_files(tempdir, use_legacy_dataset): nfiles = 10 size = 5 dirpath = tempdir / guid() dirpath.mkdir() test_data = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) # Hack so that we don't have a dtype cast in v1 files df['uint32'] = df['uint32'].astype(np.int64) path = dirpath / '{}.parquet'.format(i) table = pa.Table.from_pandas(df) _write_table(table, path) test_data.append(table) paths.append(path) # Write a _SUCCESS.crc file (dirpath / '_SUCCESS.crc').touch() def read_multiple_files(paths, columns=None, use_threads=True, **kwargs): dataset = pq.ParquetDataset( paths, use_legacy_dataset=use_legacy_dataset, **kwargs) return dataset.read(columns=columns, use_threads=use_threads) result = read_multiple_files(paths) expected = pa.concat_tables(test_data) assert result.equals(expected) # Read with provided metadata # TODO(dataset) specifying metadata not yet supported metadata = pq.read_metadata(paths[0]) if use_legacy_dataset: result2 = read_multiple_files(paths, metadata=metadata) assert result2.equals(expected) result3 = pq.ParquetDataset(dirpath, schema=metadata.schema).read() assert result3.equals(expected) else: with pytest.raises(ValueError, match="no longer supported"): pq.read_table(paths, metadata=metadata, use_legacy_dataset=False) # Read column subset to_read = [0, 2, 6, result.num_columns - 1] col_names = [result.field(i).name for i in to_read] out = pq.read_table( dirpath, columns=col_names, use_legacy_dataset=use_legacy_dataset ) expected = pa.Table.from_arrays([result.column(i) for i in to_read], names=col_names, metadata=result.schema.metadata) assert out.equals(expected) # Read with multiple threads pq.read_table( dirpath, use_threads=True, use_legacy_dataset=use_legacy_dataset ) # Test failure modes with non-uniform metadata bad_apple = _test_dataframe(size, seed=i).iloc[:, :4] bad_apple_path = tempdir / '{}.parquet'.format(guid()) t = pa.Table.from_pandas(bad_apple) _write_table(t, bad_apple_path) if not use_legacy_dataset: # TODO(dataset) Dataset API skips bad files return bad_meta = pq.read_metadata(bad_apple_path) with pytest.raises(ValueError): read_multiple_files(paths + [bad_apple_path]) with pytest.raises(ValueError): read_multiple_files(paths, metadata=bad_meta) mixed_paths = [bad_apple_path, paths[0]] with pytest.raises(ValueError): read_multiple_files(mixed_paths, schema=bad_meta.schema) with pytest.raises(ValueError): read_multiple_files(mixed_paths) @pytest.mark.pandas @parametrize_legacy_dataset def test_dataset_read_pandas(tempdir, use_legacy_dataset): nfiles = 5 size = 5 dirpath = tempdir / guid() dirpath.mkdir() test_data = [] frames = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) df.index = np.arange(i * size, (i + 1) * size) df.index.name = 'index' path = dirpath / '{}.parquet'.format(i) table = pa.Table.from_pandas(df) _write_table(table, path) test_data.append(table) frames.append(df) paths.append(path) dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset) columns = ['uint8', 'strings'] result = dataset.read_pandas(columns=columns).to_pandas() expected = pd.concat([x[columns] for x in frames]) tm.assert_frame_equal(result, expected) # also be able to pass the columns as a set (ARROW-12314) result = dataset.read_pandas(columns=set(columns)).to_pandas() assert result.shape == expected.shape # column order can be different because of using a set tm.assert_frame_equal(result.reindex(columns=expected.columns), expected) @pytest.mark.filterwarnings("ignore:'ParquetDataset:DeprecationWarning") @pytest.mark.pandas @parametrize_legacy_dataset def test_dataset_memory_map(tempdir, use_legacy_dataset): # ARROW-2627: Check that we can use ParquetDataset with memory-mapping dirpath = tempdir / guid() dirpath.mkdir() df = _test_dataframe(10, seed=0) path = dirpath / '{}.parquet'.format(0) table = pa.Table.from_pandas(df) _write_table(table, path, version='2.6') dataset = pq.ParquetDataset( dirpath, memory_map=True, use_legacy_dataset=use_legacy_dataset) assert dataset.read().equals(table) if use_legacy_dataset: assert dataset.pieces[0].read().equals(table) @pytest.mark.pandas @parametrize_legacy_dataset def test_dataset_enable_buffered_stream(tempdir, use_legacy_dataset): dirpath = tempdir / guid() dirpath.mkdir() df = _test_dataframe(10, seed=0) path = dirpath / '{}.parquet'.format(0) table = pa.Table.from_pandas(df) _write_table(table, path, version='2.6') with pytest.raises(ValueError): pq.ParquetDataset( dirpath, buffer_size=-64, use_legacy_dataset=use_legacy_dataset) for buffer_size in [128, 1024]: dataset = pq.ParquetDataset( dirpath, buffer_size=buffer_size, use_legacy_dataset=use_legacy_dataset) assert dataset.read().equals(table) @pytest.mark.pandas @parametrize_legacy_dataset def test_dataset_enable_pre_buffer(tempdir, use_legacy_dataset): dirpath = tempdir / guid() dirpath.mkdir() df = _test_dataframe(10, seed=0) path = dirpath / '{}.parquet'.format(0) table = pa.Table.from_pandas(df) _write_table(table, path, version='2.6') for pre_buffer in (True, False): dataset = pq.ParquetDataset( dirpath, pre_buffer=pre_buffer, use_legacy_dataset=use_legacy_dataset) assert dataset.read().equals(table) actual = pq.read_table(dirpath, pre_buffer=pre_buffer, use_legacy_dataset=use_legacy_dataset) assert actual.equals(table) def _make_example_multifile_dataset(base_path, nfiles=10, file_nrows=5): test_data = [] paths = [] for i in range(nfiles): df = _test_dataframe(file_nrows, seed=i) path = base_path / '{}.parquet'.format(i) test_data.append(_write_table(df, path)) paths.append(path) return paths def _assert_dataset_paths(dataset, paths, use_legacy_dataset): if use_legacy_dataset: assert set(map(str, paths)) == {x.path for x in dataset._pieces} else: paths = [str(path.as_posix()) for path in paths] assert set(paths) == set(dataset._dataset.files) @pytest.mark.pandas @parametrize_legacy_dataset @pytest.mark.parametrize('dir_prefix', ['_', '.']) def test_ignore_private_directories(tempdir, dir_prefix, use_legacy_dataset): dirpath = tempdir / guid() dirpath.mkdir() paths = _make_example_multifile_dataset(dirpath, nfiles=10, file_nrows=5) # private directory (dirpath / '{}staging'.format(dir_prefix)).mkdir() dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset) _assert_dataset_paths(dataset, paths, use_legacy_dataset) @pytest.mark.pandas @parametrize_legacy_dataset def test_ignore_hidden_files_dot(tempdir, use_legacy_dataset): dirpath = tempdir / guid() dirpath.mkdir() paths = _make_example_multifile_dataset(dirpath, nfiles=10, file_nrows=5) with (dirpath / '.DS_Store').open('wb') as f: f.write(b'gibberish') with (dirpath / '.private').open('wb') as f: f.write(b'gibberish') dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset) _assert_dataset_paths(dataset, paths, use_legacy_dataset) @pytest.mark.pandas @parametrize_legacy_dataset def test_ignore_hidden_files_underscore(tempdir, use_legacy_dataset): dirpath = tempdir / guid() dirpath.mkdir() paths = _make_example_multifile_dataset(dirpath, nfiles=10, file_nrows=5) with (dirpath / '_committed_123').open('wb') as f: f.write(b'abcd') with (dirpath / '_started_321').open('wb') as f: f.write(b'abcd') dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset) _assert_dataset_paths(dataset, paths, use_legacy_dataset) @pytest.mark.pandas @parametrize_legacy_dataset @pytest.mark.parametrize('dir_prefix', ['_', '.']) def test_ignore_no_private_directories_in_base_path( tempdir, dir_prefix, use_legacy_dataset ): # ARROW-8427 - don't ignore explicitly listed files if parent directory # is a private directory dirpath = tempdir / "{0}data".format(dir_prefix) / guid() dirpath.mkdir(parents=True) paths = _make_example_multifile_dataset(dirpath, nfiles=10, file_nrows=5) dataset = pq.ParquetDataset(paths, use_legacy_dataset=use_legacy_dataset) _assert_dataset_paths(dataset, paths, use_legacy_dataset) # ARROW-9644 - don't ignore full directory with underscore in base path dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset) _assert_dataset_paths(dataset, paths, use_legacy_dataset) @pytest.mark.pandas @parametrize_legacy_dataset_fixed def test_ignore_custom_prefixes(tempdir, use_legacy_dataset): # ARROW-9573 - allow override of default ignore_prefixes part = ["xxx"] * 3 + ["yyy"] * 3 table = pa.table([ pa.array(range(len(part))), pa.array(part).dictionary_encode(), ], names=['index', '_part']) # TODO use_legacy_dataset ARROW-10247 pq.write_to_dataset(table, str(tempdir), partition_cols=['_part']) private_duplicate = tempdir / '_private_duplicate' private_duplicate.mkdir() pq.write_to_dataset(table, str(private_duplicate), partition_cols=['_part']) read = pq.read_table( tempdir, use_legacy_dataset=use_legacy_dataset, ignore_prefixes=['_private']) assert read.equals(table) @parametrize_legacy_dataset_fixed def test_empty_directory(tempdir, use_legacy_dataset): # ARROW-5310 - reading empty directory # fails with legacy implementation empty_dir = tempdir / 'dataset' empty_dir.mkdir() dataset = pq.ParquetDataset( empty_dir, use_legacy_dataset=use_legacy_dataset) result = dataset.read() assert result.num_rows == 0 assert result.num_columns == 0 def _test_write_to_dataset_with_partitions(base_path, use_legacy_dataset=True, filesystem=None, schema=None, index_name=None): import pandas as pd import pandas.testing as tm import pyarrow.parquet as pq # ARROW-1400 output_df = pd.DataFrame({'group1': list('aaabbbbccc'), 'group2': list('eefeffgeee'), 'num': list(range(10)), 'nan': [np.nan] * 10, 'date': np.arange('2017-01-01', '2017-01-11', dtype='datetime64[D]')}) cols = output_df.columns.tolist() partition_by = ['group1', 'group2'] output_table = pa.Table.from_pandas(output_df, schema=schema, safe=False, preserve_index=False) pq.write_to_dataset(output_table, base_path, partition_by, filesystem=filesystem, use_legacy_dataset=use_legacy_dataset) metadata_path = os.path.join(str(base_path), '_common_metadata') if filesystem is not None: with filesystem.open(metadata_path, 'wb') as f: pq.write_metadata(output_table.schema, f) else: pq.write_metadata(output_table.schema, metadata_path) # ARROW-2891: Ensure the output_schema is preserved when writing a # partitioned dataset dataset = pq.ParquetDataset(base_path, filesystem=filesystem, validate_schema=True, use_legacy_dataset=use_legacy_dataset) # ARROW-2209: Ensure the dataset schema also includes the partition columns if use_legacy_dataset: dataset_cols = set(dataset.schema.to_arrow_schema().names) else: # NB schema property is an arrow and not parquet schema dataset_cols = set(dataset.schema.names) assert dataset_cols == set(output_table.schema.names) input_table = dataset.read() input_df = input_table.to_pandas() # Read data back in and compare with original DataFrame # Partitioned columns added to the end of the DataFrame when read input_df_cols = input_df.columns.tolist() assert partition_by == input_df_cols[-1 * len(partition_by):] input_df = input_df[cols] # Partitioned columns become 'categorical' dtypes for col in partition_by: output_df[col] = output_df[col].astype('category') tm.assert_frame_equal(output_df, input_df) def _test_write_to_dataset_no_partitions(base_path, use_legacy_dataset=True, filesystem=None): import pandas as pd import pyarrow.parquet as pq # ARROW-1400 output_df = pd.DataFrame({'group1': list('aaabbbbccc'), 'group2': list('eefeffgeee'), 'num': list(range(10)), 'date': np.arange('2017-01-01', '2017-01-11', dtype='datetime64[D]')}) cols = output_df.columns.tolist() output_table = pa.Table.from_pandas(output_df) if filesystem is None: filesystem = LocalFileSystem._get_instance() # Without partitions, append files to root_path n = 5 for i in range(n): pq.write_to_dataset(output_table, base_path, filesystem=filesystem) output_files = [file for file in filesystem.ls(str(base_path)) if file.endswith(".parquet")] assert len(output_files) == n # Deduplicated incoming DataFrame should match # original outgoing Dataframe input_table = pq.ParquetDataset( base_path, filesystem=filesystem, use_legacy_dataset=use_legacy_dataset ).read() input_df = input_table.to_pandas() input_df = input_df.drop_duplicates() input_df = input_df[cols] assert output_df.equals(input_df) @pytest.mark.pandas @parametrize_legacy_dataset def test_write_to_dataset_with_partitions(tempdir, use_legacy_dataset): _test_write_to_dataset_with_partitions(str(tempdir), use_legacy_dataset) @pytest.mark.pandas @parametrize_legacy_dataset def test_write_to_dataset_with_partitions_and_schema( tempdir, use_legacy_dataset ): schema = pa.schema([pa.field('group1', type=pa.string()), pa.field('group2', type=pa.string()), pa.field('num', type=pa.int64()), pa.field('nan', type=pa.int32()), pa.field('date', type=pa.timestamp(unit='us'))]) _test_write_to_dataset_with_partitions( str(tempdir), use_legacy_dataset, schema=schema) @pytest.mark.pandas @parametrize_legacy_dataset def test_write_to_dataset_with_partitions_and_index_name( tempdir, use_legacy_dataset ): _test_write_to_dataset_with_partitions( str(tempdir), use_legacy_dataset, index_name='index_name') @pytest.mark.pandas @parametrize_legacy_dataset def test_write_to_dataset_no_partitions(tempdir, use_legacy_dataset): _test_write_to_dataset_no_partitions(str(tempdir), use_legacy_dataset) @pytest.mark.pandas @parametrize_legacy_dataset def test_write_to_dataset_pathlib(tempdir, use_legacy_dataset): _test_write_to_dataset_with_partitions( tempdir / "test1", use_legacy_dataset) _test_write_to_dataset_no_partitions( tempdir / "test2", use_legacy_dataset) @pytest.mark.pandas @pytest.mark.s3 @parametrize_legacy_dataset def test_write_to_dataset_pathlib_nonlocal( tempdir, s3_example_s3fs, use_legacy_dataset ): # pathlib paths are only accepted for local files fs, _ = s3_example_s3fs with pytest.raises(TypeError, match="path-like objects are only allowed"): _test_write_to_dataset_with_partitions( tempdir / "test1", use_legacy_dataset, filesystem=fs) with pytest.raises(TypeError, match="path-like objects are only allowed"): _test_write_to_dataset_no_partitions( tempdir / "test2", use_legacy_dataset, filesystem=fs) @pytest.mark.pandas @pytest.mark.s3 @parametrize_legacy_dataset def test_write_to_dataset_with_partitions_s3fs( s3_example_s3fs, use_legacy_dataset ): fs, path = s3_example_s3fs _test_write_to_dataset_with_partitions( path, use_legacy_dataset, filesystem=fs) @pytest.mark.pandas @pytest.mark.s3 @parametrize_legacy_dataset def test_write_to_dataset_no_partitions_s3fs( s3_example_s3fs, use_legacy_dataset ): fs, path = s3_example_s3fs _test_write_to_dataset_no_partitions( path, use_legacy_dataset, filesystem=fs) @pytest.mark.filterwarnings("ignore:'ParquetDataset:DeprecationWarning") @pytest.mark.pandas @parametrize_legacy_dataset_not_supported def test_write_to_dataset_with_partitions_and_custom_filenames( tempdir, use_legacy_dataset ): output_df = pd.DataFrame({'group1': list('aaabbbbccc'), 'group2': list('eefeffgeee'), 'num': list(range(10)), 'nan': [np.nan] * 10, 'date': np.arange('2017-01-01', '2017-01-11', dtype='datetime64[D]')}) partition_by = ['group1', 'group2'] output_table = pa.Table.from_pandas(output_df) path = str(tempdir) def partition_filename_callback(keys): return "{}-{}.parquet".format(*keys) pq.write_to_dataset(output_table, path, partition_by, partition_filename_callback, use_legacy_dataset=use_legacy_dataset) dataset = pq.ParquetDataset(path) # ARROW-3538: Ensure partition filenames match the given pattern # defined in the local function partition_filename_callback expected_basenames = [ 'a-e.parquet', 'a-f.parquet', 'b-e.parquet', 'b-f.parquet', 'b-g.parquet', 'c-e.parquet' ] output_basenames = [os.path.basename(p.path) for p in dataset.pieces] assert sorted(expected_basenames) == sorted(output_basenames) @pytest.mark.dataset @pytest.mark.pandas def test_write_to_dataset_filesystem(tempdir): df = pd.DataFrame({'A': [1, 2, 3]}) table = pa.Table.from_pandas(df) path = str(tempdir) pq.write_to_dataset(table, path, filesystem=fs.LocalFileSystem()) result = pq.read_table(path) assert result.equals(table) # TODO(dataset) support pickling def _make_dataset_for_pickling(tempdir, N=100): path = tempdir / 'data.parquet' fs = LocalFileSystem._get_instance() df = pd.DataFrame({ 'index': np.arange(N), 'values': np.random.randn(N) }, columns=['index', 'values']) table = pa.Table.from_pandas(df) num_groups = 3 with pq.ParquetWriter(path, table.schema) as writer: for i in range(num_groups): writer.write_table(table) reader = pq.ParquetFile(path) assert reader.metadata.num_row_groups == num_groups metadata_path = tempdir / '_metadata' with fs.open(metadata_path, 'wb') as f: pq.write_metadata(table.schema, f) dataset = pq.ParquetDataset(tempdir, filesystem=fs) assert dataset.metadata_path == str(metadata_path) return dataset def _assert_dataset_is_picklable(dataset, pickler): def is_pickleable(obj): return obj == pickler.loads(pickler.dumps(obj)) assert is_pickleable(dataset) assert is_pickleable(dataset.metadata) assert is_pickleable(dataset.metadata.schema) assert len(dataset.metadata.schema) for column in dataset.metadata.schema: assert is_pickleable(column) for piece in dataset._pieces: assert is_pickleable(piece) metadata = piece.get_metadata() assert metadata.num_row_groups for i in range(metadata.num_row_groups): assert is_pickleable(metadata.row_group(i)) @pytest.mark.pandas def test_builtin_pickle_dataset(tempdir, datadir): import pickle dataset = _make_dataset_for_pickling(tempdir) _assert_dataset_is_picklable(dataset, pickler=pickle) @pytest.mark.pandas def test_cloudpickle_dataset(tempdir, datadir): cp = pytest.importorskip('cloudpickle') dataset = _make_dataset_for_pickling(tempdir) _assert_dataset_is_picklable(dataset, pickler=cp) @pytest.mark.pandas @parametrize_legacy_dataset def test_partitioned_dataset(tempdir, use_legacy_dataset): # ARROW-3208: Segmentation fault when reading a Parquet partitioned dataset # to a Parquet file path = tempdir / "ARROW-3208" df = pd.DataFrame({ 'one': [-1, 10, 2.5, 100, 1000, 1, 29.2], 'two': [-1, 10, 2, 100, 1000, 1, 11], 'three': [0, 0, 0, 0, 0, 0, 0] }) table = pa.Table.from_pandas(df) pq.write_to_dataset(table, root_path=str(path), partition_cols=['one', 'two']) table = pq.ParquetDataset( path, use_legacy_dataset=use_legacy_dataset).read() pq.write_table(table, path / "output.parquet") @pytest.mark.pandas @parametrize_legacy_dataset def test_dataset_read_dictionary(tempdir, use_legacy_dataset): path = tempdir / "ARROW-3325-dataset" t1 = pa.table([[util.rands(10) for i in range(5)] * 10], names=['f0']) t2 = pa.table([[util.rands(10) for i in range(5)] * 10], names=['f0']) # TODO pass use_legacy_dataset (need to fix unique names) pq.write_to_dataset(t1, root_path=str(path)) pq.write_to_dataset(t2, root_path=str(path)) result = pq.ParquetDataset( path, read_dictionary=['f0'], use_legacy_dataset=use_legacy_dataset).read() # The order of the chunks is non-deterministic ex_chunks = [t1[0].chunk(0).dictionary_encode(), t2[0].chunk(0).dictionary_encode()] assert result[0].num_chunks == 2 c0, c1 = result[0].chunk(0), result[0].chunk(1) if c0.equals(ex_chunks[0]): assert c1.equals(ex_chunks[1]) else: assert c0.equals(ex_chunks[1]) assert c1.equals(ex_chunks[0]) @pytest.mark.dataset def test_dataset_unsupported_keywords(): with pytest.raises(ValueError, match="not yet supported with the new"): pq.ParquetDataset("", use_legacy_dataset=False, schema=pa.schema([])) with pytest.raises(ValueError, match="not yet supported with the new"): pq.ParquetDataset("", use_legacy_dataset=False, metadata=pa.schema([])) with pytest.raises(ValueError, match="not yet supported with the new"): pq.ParquetDataset("", use_legacy_dataset=False, validate_schema=False) with pytest.raises(ValueError, match="not yet supported with the new"): pq.ParquetDataset("", use_legacy_dataset=False, split_row_groups=True) with pytest.raises(ValueError, match="not yet supported with the new"): pq.ParquetDataset("", use_legacy_dataset=False, metadata_nthreads=4) with pytest.raises(ValueError, match="no longer supported"): pq.read_table("", use_legacy_dataset=False, metadata=pa.schema([])) @pytest.mark.dataset def test_dataset_partitioning(tempdir): import pyarrow.dataset as ds # create small dataset with directory partitioning root_path = tempdir / "test_partitioning" (root_path / "2012" / "10" / "01").mkdir(parents=True) table = pa.table({'a': [1, 2, 3]}) pq.write_table( table, str(root_path / "2012" / "10" / "01" / "data.parquet")) # This works with new dataset API # read_table part = ds.partitioning(field_names=["year", "month", "day"]) result = pq.read_table( str(root_path), partitioning=part, use_legacy_dataset=False) assert result.column_names == ["a", "year", "month", "day"] result = pq.ParquetDataset( str(root_path), partitioning=part, use_legacy_dataset=False).read() assert result.column_names == ["a", "year", "month", "day"] # This raises an error for legacy dataset with pytest.raises(ValueError): pq.read_table( str(root_path), partitioning=part, use_legacy_dataset=True) with pytest.raises(ValueError): pq.ParquetDataset( str(root_path), partitioning=part, use_legacy_dataset=True) @pytest.mark.dataset def test_parquet_dataset_new_filesystem(tempdir): # Ensure we can pass new FileSystem object to ParquetDataset # (use new implementation automatically without specifying # use_legacy_dataset=False) table = pa.table({'a': [1, 2, 3]}) pq.write_table(table, tempdir / 'data.parquet') # don't use simple LocalFileSystem (as that gets mapped to legacy one) filesystem = fs.SubTreeFileSystem(str(tempdir), fs.LocalFileSystem()) dataset = pq.ParquetDataset('.', filesystem=filesystem) result = dataset.read() assert result.equals(table) @pytest.mark.filterwarnings("ignore:'ParquetDataset:DeprecationWarning") def test_parquet_dataset_partitions_piece_path_with_fsspec(tempdir): # ARROW-10462 ensure that on Windows we properly use posix-style paths # as used by fsspec fsspec = pytest.importorskip("fsspec") filesystem = fsspec.filesystem('file') table = pa.table({'a': [1, 2, 3]}) pq.write_table(table, tempdir / 'data.parquet') # pass a posix-style path (using "/" also on Windows) path = str(tempdir).replace("\\", "/") dataset = pq.ParquetDataset(path, filesystem=filesystem) # ensure the piece path is also posix-style expected = path + "/data.parquet" assert dataset.pieces[0].path == expected @pytest.mark.dataset def test_parquet_dataset_deprecated_properties(tempdir): table = pa.table({'a': [1, 2, 3]}) path = tempdir / 'data.parquet' pq.write_table(table, path) dataset = pq.ParquetDataset(path) with pytest.warns(DeprecationWarning, match="'ParquetDataset.pieces"): dataset.pieces with pytest.warns(DeprecationWarning, match="'ParquetDataset.partitions"): dataset.partitions with pytest.warns(DeprecationWarning, match="'ParquetDataset.memory_map"): dataset.memory_map with pytest.warns(DeprecationWarning, match="'ParquetDataset.read_dictio"): dataset.read_dictionary with pytest.warns(DeprecationWarning, match="'ParquetDataset.buffer_size"): dataset.buffer_size with pytest.warns(DeprecationWarning, match="'ParquetDataset.fs"): dataset.fs dataset2 = pq.ParquetDataset(path, use_legacy_dataset=False) with pytest.warns(DeprecationWarning, match="'ParquetDataset.pieces"): dataset2.pieces