# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import os import pytest import pyarrow as pa try: import pyarrow.parquet as pq from pyarrow.tests.parquet.common import _write_table except ImportError: pq = None try: import pandas as pd import pandas.testing as tm from pyarrow.tests.parquet.common import alltypes_sample except ImportError: pd = tm = None pytestmark = pytest.mark.parquet @pytest.mark.pandas def test_pass_separate_metadata(): # ARROW-471 df = alltypes_sample(size=10000) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, compression='snappy', version='2.6') buf.seek(0) metadata = pq.read_metadata(buf) buf.seek(0) fileh = pq.ParquetFile(buf, metadata=metadata) tm.assert_frame_equal(df, fileh.read().to_pandas()) @pytest.mark.pandas def test_read_single_row_group(): # ARROW-471 N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.6') buf.seek(0) pf = pq.ParquetFile(buf) assert pf.num_row_groups == K row_groups = [pf.read_row_group(i) for i in range(K)] result = pa.concat_tables(row_groups) tm.assert_frame_equal(df, result.to_pandas()) @pytest.mark.pandas def test_read_single_row_group_with_column_subset(): N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.6') buf.seek(0) pf = pq.ParquetFile(buf) cols = list(df.columns[:2]) row_groups = [pf.read_row_group(i, columns=cols) for i in range(K)] result = pa.concat_tables(row_groups) tm.assert_frame_equal(df[cols], result.to_pandas()) # ARROW-4267: Selection of duplicate columns still leads to these columns # being read uniquely. row_groups = [pf.read_row_group(i, columns=cols + cols) for i in range(K)] result = pa.concat_tables(row_groups) tm.assert_frame_equal(df[cols], result.to_pandas()) @pytest.mark.pandas def test_read_multiple_row_groups(): N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.6') buf.seek(0) pf = pq.ParquetFile(buf) assert pf.num_row_groups == K result = pf.read_row_groups(range(K)) tm.assert_frame_equal(df, result.to_pandas()) @pytest.mark.pandas def test_read_multiple_row_groups_with_column_subset(): N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.6') buf.seek(0) pf = pq.ParquetFile(buf) cols = list(df.columns[:2]) result = pf.read_row_groups(range(K), columns=cols) tm.assert_frame_equal(df[cols], result.to_pandas()) # ARROW-4267: Selection of duplicate columns still leads to these columns # being read uniquely. result = pf.read_row_groups(range(K), columns=cols + cols) tm.assert_frame_equal(df[cols], result.to_pandas()) @pytest.mark.pandas def test_scan_contents(): N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.6') buf.seek(0) pf = pq.ParquetFile(buf) assert pf.scan_contents() == 10000 assert pf.scan_contents(df.columns[:4]) == 10000 def test_parquet_file_pass_directory_instead_of_file(tempdir): # ARROW-7208 path = tempdir / 'directory' os.mkdir(str(path)) with pytest.raises(IOError, match="Expected file path"): pq.ParquetFile(path) def test_read_column_invalid_index(): table = pa.table([pa.array([4, 5]), pa.array(["foo", "bar"])], names=['ints', 'strs']) bio = pa.BufferOutputStream() pq.write_table(table, bio) f = pq.ParquetFile(bio.getvalue()) assert f.reader.read_column(0).to_pylist() == [4, 5] assert f.reader.read_column(1).to_pylist() == ["foo", "bar"] for index in (-1, 2): with pytest.raises((ValueError, IndexError)): f.reader.read_column(index) @pytest.mark.pandas @pytest.mark.parametrize('batch_size', [300, 1000, 1300]) def test_iter_batches_columns_reader(tempdir, batch_size): total_size = 3000 chunk_size = 1000 # TODO: Add categorical support df = alltypes_sample(size=total_size) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms', chunk_size=chunk_size) file_ = pq.ParquetFile(filename) for columns in [df.columns[:10], df.columns[10:]]: batches = file_.iter_batches(batch_size=batch_size, columns=columns) batch_starts = range(0, total_size+batch_size, batch_size) for batch, start in zip(batches, batch_starts): end = min(total_size, start + batch_size) tm.assert_frame_equal( batch.to_pandas(), df.iloc[start:end, :].loc[:, columns].reset_index(drop=True) ) @pytest.mark.pandas @pytest.mark.parametrize('chunk_size', [1000]) def test_iter_batches_reader(tempdir, chunk_size): df = alltypes_sample(size=10000, categorical=True) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) assert arrow_table.schema.pandas_metadata is not None _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms', chunk_size=chunk_size) file_ = pq.ParquetFile(filename) def get_all_batches(f): for row_group in range(f.num_row_groups): batches = f.iter_batches( batch_size=900, row_groups=[row_group], ) for batch in batches: yield batch batches = list(get_all_batches(file_)) batch_no = 0 for i in range(file_.num_row_groups): tm.assert_frame_equal( batches[batch_no].to_pandas(), file_.read_row_groups([i]).to_pandas().head(900) ) batch_no += 1 tm.assert_frame_equal( batches[batch_no].to_pandas().reset_index(drop=True), file_.read_row_groups([i]).to_pandas().iloc[900:].reset_index( drop=True ) ) batch_no += 1 @pytest.mark.pandas @pytest.mark.parametrize('pre_buffer', [False, True]) def test_pre_buffer(pre_buffer): N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.6') buf.seek(0) pf = pq.ParquetFile(buf, pre_buffer=pre_buffer) assert pf.read().num_rows == N