;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2016 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; code to compute 16 SHA1 using SSE ;; %include "reg_sizes.asm" [bits 64] default rel section .text ;; Magic functions defined in FIPS 180-1 ;; ; macro MAGIC_F0 F,B,C,D,T ;; F = (D ^ (B & (C ^ D))) %macro MAGIC_F0 5 %define %%regF %1 %define %%regB %2 %define %%regC %3 %define %%regD %4 %define %%regT %5 movdqa %%regF,%%regC pxor %%regF,%%regD pand %%regF,%%regB pxor %%regF,%%regD %endmacro ; macro MAGIC_F1 F,B,C,D,T ;; F = (B ^ C ^ D) %macro MAGIC_F1 5 %define %%regF %1 %define %%regB %2 %define %%regC %3 %define %%regD %4 %define %%regT %5 movdqa %%regF,%%regD pxor %%regF,%%regC pxor %%regF,%%regB %endmacro ; macro MAGIC_F2 F,B,C,D,T ;; F = ((B & C) | (B & D) | (C & D)) %macro MAGIC_F2 5 %define %%regF %1 %define %%regB %2 %define %%regC %3 %define %%regD %4 %define %%regT %5 movdqa %%regF,%%regB movdqa %%regT,%%regB por %%regF,%%regC pand %%regT,%%regC pand %%regF,%%regD por %%regF,%%regT %endmacro ; macro MAGIC_F3 F,B,C,D,T ;; F = (B ^ C ^ D) %macro MAGIC_F3 5 %define %%regF %1 %define %%regB %2 %define %%regC %3 %define %%regD %4 %define %%regT %5 MAGIC_F1 %%regF,%%regB,%%regC,%%regD,%%regT %endmacro ; PROLD reg, imm, tmp %macro PROLD 3 %define %%reg %1 %define %%imm %2 %define %%tmp %3 movdqa %%tmp, %%reg pslld %%reg, %%imm psrld %%tmp, (32-%%imm) por %%reg, %%tmp %endmacro %macro SHA1_STEP_00_15 11 %define %%regA %1 %define %%regB %2 %define %%regC %3 %define %%regD %4 %define %%regE %5 %define %%regT %6 %define %%regF %7 %define %%memW %8 %define %%immCNT %9 %define %%MAGIC %10 %define %%data %11 paddd %%regE,%%immCNT paddd %%regE,[%%data + (%%memW * 16)] movdqa %%regT,%%regA PROLD %%regT,5, %%regF paddd %%regE,%%regT %%MAGIC %%regF,%%regB,%%regC,%%regD,%%regT ;; FUN = MAGIC_Fi(B,C,D) PROLD %%regB,30, %%regT paddd %%regE,%%regF %endmacro %macro SHA1_STEP_16_79 11 %define %%regA %1 %define %%regB %2 %define %%regC %3 %define %%regD %4 %define %%regE %5 %define %%regT %6 %define %%regF %7 %define %%memW %8 %define %%immCNT %9 %define %%MAGIC %10 %define %%data %11 paddd %%regE,%%immCNT movdqa W14, [%%data + ((%%memW - 14) & 15) * 16] pxor W16, W14 pxor W16, [%%data + ((%%memW - 8) & 15) * 16] pxor W16, [%%data + ((%%memW - 3) & 15) * 16] movdqa %%regF, W16 pslld W16, 1 psrld %%regF, (32-1) por %%regF, W16 ROTATE_W movdqa [%%data + ((%%memW - 0) & 15) * 16],%%regF paddd %%regE,%%regF movdqa %%regT,%%regA PROLD %%regT,5, %%regF paddd %%regE,%%regT %%MAGIC %%regF,%%regB,%%regC,%%regD,%%regT ;; FUN = MAGIC_Fi(B,C,D) PROLD %%regB,30, %%regT paddd %%regE,%%regF %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %ifidn __OUTPUT_FORMAT__, elf64 ; Linux %define arg0 rdi %define arg1 rsi %define arg2 rdx %define arg3 rcx %define arg4 r8 %define arg5 r9 %define tmp1 r10 %define tmp2 r11 %define tmp3 r12 ; must be saved and restored %define tmp4 r13 ; must be saved and restored %define tmp5 r14 ; must be saved and restored %define tmp6 r15 ; must be saved and restored %define return rax %define func(x) x: %macro FUNC_SAVE 0 push r12 push r13 push r14 push r15 %endmacro %macro FUNC_RESTORE 0 pop r15 pop r14 pop r13 pop r12 %endmacro %else ; Windows %define arg0 rcx %define arg1 rdx %define arg2 r8 %define arg3 r9 %define arg4 r10 %define arg5 r11 %define tmp1 r12 ; must be saved and restored %define tmp2 r13 ; must be saved and restored %define tmp3 r14 ; must be saved and restored %define tmp4 r15 ; must be saved and restored %define tmp5 rdi ; must be saved and restored %define tmp6 rsi ; must be saved and restored %define return rax %define stack_size 10*16 + 7*8 ; must be an odd multiple of 8 %define func(x) proc_frame x %macro FUNC_SAVE 0 alloc_stack stack_size save_xmm128 xmm6, 0*16 save_xmm128 xmm7, 1*16 save_xmm128 xmm8, 2*16 save_xmm128 xmm9, 3*16 save_xmm128 xmm10, 4*16 save_xmm128 xmm11, 5*16 save_xmm128 xmm12, 6*16 save_xmm128 xmm13, 7*16 save_xmm128 xmm14, 8*16 save_xmm128 xmm15, 9*16 save_reg r12, 10*16 + 0*8 save_reg r13, 10*16 + 1*8 save_reg r14, 10*16 + 2*8 save_reg r15, 10*16 + 3*8 save_reg rdi, 10*16 + 4*8 save_reg rsi, 10*16 + 5*8 end_prolog %endmacro %macro FUNC_RESTORE 0 movdqa xmm6, [rsp + 0*16] movdqa xmm7, [rsp + 1*16] movdqa xmm8, [rsp + 2*16] movdqa xmm9, [rsp + 3*16] movdqa xmm10, [rsp + 4*16] movdqa xmm11, [rsp + 5*16] movdqa xmm12, [rsp + 6*16] movdqa xmm13, [rsp + 7*16] movdqa xmm14, [rsp + 8*16] movdqa xmm15, [rsp + 9*16] mov r12, [rsp + 10*16 + 0*8] mov r13, [rsp + 10*16 + 1*8] mov r14, [rsp + 10*16 + 2*8] mov r15, [rsp + 10*16 + 3*8] mov rdi, [rsp + 10*16 + 4*8] mov rsi, [rsp + 10*16 + 5*8] add rsp, stack_size %endmacro %endif ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %define loops arg3 ;variables of mh_sha1 %define mh_in_p arg0 %define mh_digests_p arg1 %define mh_data_p arg2 %define mh_segs tmp1 ;variables used by storing segs_digests on stack %define RSP_SAVE tmp2 %define FRAMESZ 4*5*16 ;BYTES*DWORDS*SEGS %define pref tmp3 %macro PREFETCH_X 1 %define %%mem %1 prefetchnta %%mem %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %define MOVPS movups %define A xmm0 %define B xmm1 %define C xmm2 %define D xmm3 %define E xmm4 %define F xmm5 ; tmp %define G xmm6 ; tmp %define TMP G %define FUN F %define K xmm7 %define AA xmm8 %define BB xmm9 %define CC xmm10 %define DD xmm11 %define EE xmm12 %define T0 xmm6 %define T1 xmm7 %define T2 xmm8 %define T3 xmm9 %define T4 xmm10 %define T5 xmm11 %macro ROTATE_ARGS 0 %xdefine TMP_ E %xdefine E D %xdefine D C %xdefine C B %xdefine B A %xdefine A TMP_ %endm %define W14 xmm13 %define W15 xmm14 %define W16 xmm15 %macro ROTATE_W 0 %xdefine TMP_ W16 %xdefine W16 W15 %xdefine W15 W14 %xdefine W14 TMP_ %endm ;init hash digests ; segs_digests:low addr-> high_addr ; a | b | c | ...| p | (16) ; h0 | h0 | h0 | ...| h0 | | Aa| Ab | Ac |...| Ap | ; h1 | h1 | h1 | ...| h1 | | Ba| Bb | Bc |...| Bp | ; .... ; h4 | h4 | h4 | ...| h4 | | Ea| Eb | Ec |...| Ep | align 32 ;void mh_sha1_block_sse(const uint8_t * input_data, uint32_t digests[SHA1_DIGEST_WORDS][HASH_SEGS], ; uint8_t frame_buffer[MH_SHA1_BLOCK_SIZE], uint32_t num_blocks); ; arg 0 pointer to input data ; arg 1 pointer to digests, include segments digests(uint32_t digests[16][5]) ; arg 2 pointer to aligned_frame_buffer which is used to save the big_endian data. ; arg 3 number of 1KB blocks ; mk_global mh_sha1_block_sse, function, internal func(mh_sha1_block_sse) endbranch FUNC_SAVE ; save rsp mov RSP_SAVE, rsp cmp loops, 0 jle .return ; leave enough space to store segs_digests sub rsp, FRAMESZ ; align rsp to 16 Bytes needed by sse and rsp, ~0x0F %assign I 0 ; copy segs_digests into stack %rep 5 MOVPS A, [mh_digests_p + I*64 + 16*0] MOVPS B, [mh_digests_p + I*64 + 16*1] MOVPS C, [mh_digests_p + I*64 + 16*2] MOVPS D, [mh_digests_p + I*64 + 16*3] movdqa [rsp + I*64 + 16*0], A movdqa [rsp + I*64 + 16*1], B movdqa [rsp + I*64 + 16*2], C movdqa [rsp + I*64 + 16*3], D %assign I (I+1) %endrep .block_loop: ;transform to big-endian data and store on aligned_frame movdqa F, [PSHUFFLE_BYTE_FLIP_MASK] ;transform input data from DWORD*16_SEGS*5 to DWORD*4_SEGS*5*4 %assign I 0 %rep 16 MOVPS T0,[mh_in_p + I*64+0*16] MOVPS T1,[mh_in_p + I*64+1*16] MOVPS T2,[mh_in_p + I*64+2*16] MOVPS T3,[mh_in_p + I*64+3*16] pshufb T0, F movdqa [mh_data_p +(I)*16 +0*256],T0 pshufb T1, F movdqa [mh_data_p +(I)*16 +1*256],T1 pshufb T2, F movdqa [mh_data_p +(I)*16 +2*256],T2 pshufb T3, F movdqa [mh_data_p +(I)*16 +3*256],T3 %assign I (I+1) %endrep mov mh_segs, 0 ;start from the first 4 segments mov pref, 1024 ;avoid prefetch repeadtedly .segs_loop: ;; Initialize digests movdqa A, [rsp + 0*64 + mh_segs] movdqa B, [rsp + 1*64 + mh_segs] movdqa C, [rsp + 2*64 + mh_segs] movdqa D, [rsp + 3*64 + mh_segs] movdqa E, [rsp + 4*64 + mh_segs] movdqa AA, A movdqa BB, B movdqa CC, C movdqa DD, D movdqa EE, E ;; ;; perform 0-79 steps ;; movdqa K, [K00_19] ;; do rounds 0...15 %assign I 0 %rep 16 SHA1_STEP_00_15 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F0, mh_data_p ROTATE_ARGS %assign I (I+1) %endrep ;; do rounds 16...19 movdqa W16, [mh_data_p + ((16 - 16) & 15) * 16] movdqa W15, [mh_data_p + ((16 - 15) & 15) * 16] %rep 4 SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F0, mh_data_p ROTATE_ARGS %assign I (I+1) %endrep PREFETCH_X [mh_in_p + pref+128*0] ;; do rounds 20...39 movdqa K, [K20_39] %rep 20 SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F1, mh_data_p ROTATE_ARGS %assign I (I+1) %endrep ;; do rounds 40...59 movdqa K, [K40_59] %rep 20 SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F2, mh_data_p ROTATE_ARGS %assign I (I+1) %endrep PREFETCH_X [mh_in_p + pref+128*1] ;; do rounds 60...79 movdqa K, [K60_79] %rep 20 SHA1_STEP_16_79 A,B,C,D,E, TMP,FUN, I, K, MAGIC_F3, mh_data_p ROTATE_ARGS %assign I (I+1) %endrep paddd A, AA paddd B, BB paddd C, CC paddd D, DD paddd E, EE ; write out digests movdqa [rsp + 0*64 + mh_segs], A movdqa [rsp + 1*64 + mh_segs], B movdqa [rsp + 2*64 + mh_segs], C movdqa [rsp + 3*64 + mh_segs], D movdqa [rsp + 4*64 + mh_segs], E add pref, 256 add mh_data_p, 256 add mh_segs, 16 cmp mh_segs, 64 jc .segs_loop sub mh_data_p, (1024) add mh_in_p, (1024) sub loops, 1 jne .block_loop %assign I 0 ; copy segs_digests back to mh_digests_p %rep 5 movdqa A, [rsp + I*64 + 16*0] movdqa B, [rsp + I*64 + 16*1] movdqa C, [rsp + I*64 + 16*2] movdqa D, [rsp + I*64 + 16*3] MOVPS [mh_digests_p + I*64 + 16*0], A MOVPS [mh_digests_p + I*64 + 16*1], B MOVPS [mh_digests_p + I*64 + 16*2], C MOVPS [mh_digests_p + I*64 + 16*3], D %assign I (I+1) %endrep mov rsp, RSP_SAVE ; restore rsp .return: FUNC_RESTORE ret endproc_frame section .data align=16 align 16 PSHUFFLE_BYTE_FLIP_MASK: dq 0x0405060700010203, 0x0c0d0e0f08090a0b K00_19: dq 0x5A8279995A827999, 0x5A8279995A827999 K20_39: dq 0x6ED9EBA16ED9EBA1, 0x6ED9EBA16ED9EBA1 K40_59: dq 0x8F1BBCDC8F1BBCDC, 0x8F1BBCDC8F1BBCDC K60_79: dq 0xCA62C1D6CA62C1D6, 0xCA62C1D6CA62C1D6