/********************************************************************** Copyright(c) 2021 Arm Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Arm Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **********************************************************************/ #include #include #include #include "endian_helper.h" extern void sha1_aarch64_x1(const uint8_t * data, int num_blocks, uint32_t digest[]); static inline void sha1_job_x1(SHA1_JOB * job, int blocks) { sha1_aarch64_x1(job->buffer, blocks, job->result_digest); } #ifndef min #define min(a,b) (((a) < (b)) ? (a) : (b)) #endif #define SHA1_MB_ASIMD_MAX_LANES 4 void sha1_mb_asimd_x4(SHA1_JOB *, SHA1_JOB *, SHA1_JOB *, SHA1_JOB *, int); #define LANE_IS_NOT_FINISHED(state,i) \ (((state->lens[i]&(~0xf))!=0) && state->ldata[i].job_in_lane!=NULL) #define LANE_IS_FINISHED(state,i) \ (((state->lens[i]&(~0xf))==0) && state->ldata[i].job_in_lane!=NULL) #define LANE_IS_FREE(state,i) \ (((state->lens[i]&(~0xf))==0) && state->ldata[i].job_in_lane==NULL) #define LANE_IS_INVALID(state,i) \ (((state->lens[i]&(~0xf))!=0) && state->ldata[i].job_in_lane==NULL) void sha1_mb_mgr_init_asimd(SHA1_MB_JOB_MGR * state) { unsigned int i; state->unused_lanes = 0xf; state->num_lanes_inuse = 0; for (i = 0; i < SHA1_MB_ASIMD_MAX_LANES; i++) { state->unused_lanes <<= 4; state->unused_lanes |= SHA1_MB_ASIMD_MAX_LANES - 1 - i; state->lens[i] = i; state->ldata[i].job_in_lane = 0; } // lanes > SHA1_MB_ASIMD_MAX_LANES is invalid lane for (; i < SHA1_MAX_LANES; i++) { state->lens[i] = 0xf; state->ldata[i].job_in_lane = 0; } } static int sha1_mb_mgr_do_jobs(SHA1_MB_JOB_MGR * state) { int lane_idx, len, i, lanes, blocks; int lane_idx_array[SHA1_MAX_LANES]; if (state->num_lanes_inuse == 0) { return -1; } lanes = 0, len = 0; for (i = 0; i < SHA1_MAX_LANES && lanes < state->num_lanes_inuse; i++) { if (LANE_IS_NOT_FINISHED(state, i)) { if (lanes) len = min(len, state->lens[i]); else len = state->lens[i]; lane_idx_array[lanes] = i; lanes++; } } if (lanes == 0) return -1; lane_idx = len & 0xf; len = len & (~0xf); blocks = len >> 4; /* for less-than-3-lane job, ASIMD really does not have much advantage * compared to scalar due to wasted >= 50% capacity * therefore we only run ASIMD for 3/4 lanes of data */ if (lanes == SHA1_MB_ASIMD_MAX_LANES) { sha1_mb_asimd_x4(state->ldata[lane_idx_array[0]].job_in_lane, state->ldata[lane_idx_array[1]].job_in_lane, state->ldata[lane_idx_array[2]].job_in_lane, state->ldata[lane_idx_array[3]].job_in_lane, blocks); } else if (lanes == 3) { /* in case of 3 lanes, apparently ASIMD will still operate as if * there were four lanes of data in processing (waste 25% capacity) * theoretically we can let ASIMD implementation know the number of lanes * so that it could "at least" save some memory loading time * but in practice, we can just pass lane 0 as dummy for similar * cache performance */ SHA1_JOB dummy; dummy.buffer = state->ldata[lane_idx_array[0]].job_in_lane->buffer; dummy.len = state->ldata[lane_idx_array[0]].job_in_lane->len; sha1_mb_asimd_x4(state->ldata[lane_idx_array[0]].job_in_lane, &dummy, state->ldata[lane_idx_array[1]].job_in_lane, state->ldata[lane_idx_array[2]].job_in_lane, blocks); } else { sha1_job_x1(state->ldata[lane_idx_array[0]].job_in_lane, blocks); if (lanes >= 2) { sha1_job_x1(state->ldata[lane_idx_array[1]].job_in_lane, blocks); } } // only return the min length job for (i = 0; i < SHA1_MAX_LANES; i++) { if (LANE_IS_NOT_FINISHED(state, i)) { state->lens[i] -= len; state->ldata[i].job_in_lane->len -= len; state->ldata[i].job_in_lane->buffer += len << 2; } } return lane_idx; } static SHA1_JOB *sha1_mb_mgr_free_lane(SHA1_MB_JOB_MGR * state) { int i; SHA1_JOB *ret = NULL; for (i = 0; i < SHA1_MB_ASIMD_MAX_LANES; i++) { if (LANE_IS_FINISHED(state, i)) { state->unused_lanes <<= 4; state->unused_lanes |= i; state->num_lanes_inuse--; ret = state->ldata[i].job_in_lane; ret->status = STS_COMPLETED; state->ldata[i].job_in_lane = NULL; break; } } return ret; } static void sha1_mb_mgr_insert_job(SHA1_MB_JOB_MGR * state, SHA1_JOB * job) { int lane_idx; // add job into lanes lane_idx = state->unused_lanes & 0xf; // fatal error assert(lane_idx < SHA1_MB_ASIMD_MAX_LANES); state->lens[lane_idx] = (job->len << 4) | lane_idx; state->ldata[lane_idx].job_in_lane = job; state->unused_lanes >>= 4; state->num_lanes_inuse++; } SHA1_JOB *sha1_mb_mgr_submit_asimd(SHA1_MB_JOB_MGR * state, SHA1_JOB * job) { #ifndef NDEBUG int lane_idx; #endif SHA1_JOB *ret; // add job into lanes sha1_mb_mgr_insert_job(state, job); ret = sha1_mb_mgr_free_lane(state); if (ret != NULL) { return ret; } // submit will wait all lane has data if (state->num_lanes_inuse < SHA1_MB_ASIMD_MAX_LANES) return NULL; #ifndef NDEBUG lane_idx = sha1_mb_mgr_do_jobs(state); assert(lane_idx != -1); #else sha1_mb_mgr_do_jobs(state); #endif // ~ i = lane_idx; ret = sha1_mb_mgr_free_lane(state); return ret; } SHA1_JOB *sha1_mb_mgr_flush_asimd(SHA1_MB_JOB_MGR * state) { SHA1_JOB *ret; ret = sha1_mb_mgr_free_lane(state); if (ret) { return ret; } sha1_mb_mgr_do_jobs(state); return sha1_mb_mgr_free_lane(state); }