// Formatting library for C++ - formatting library implementation tests // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #include #include // clang-format off #include "test-assert.h" // clang-format on #include "fmt/format.h" #include "gmock/gmock.h" #include "util.h" using fmt::detail::bigint; using fmt::detail::fp; using fmt::detail::max_value; static_assert(!std::is_copy_constructible::value, ""); static_assert(!std::is_copy_assignable::value, ""); TEST(bigint_test, construct) { EXPECT_EQ(fmt::to_string(bigint()), ""); EXPECT_EQ(fmt::to_string(bigint(0x42)), "42"); EXPECT_EQ(fmt::to_string(bigint(0x123456789abcedf0)), "123456789abcedf0"); } TEST(bigint_test, compare) { bigint n1(42); bigint n2(42); EXPECT_EQ(compare(n1, n2), 0); n2 <<= 32; EXPECT_LT(compare(n1, n2), 0); bigint n3(43); EXPECT_LT(compare(n1, n3), 0); EXPECT_GT(compare(n3, n1), 0); bigint n4(42 * 0x100000001); EXPECT_LT(compare(n2, n4), 0); EXPECT_GT(compare(n4, n2), 0); } TEST(bigint_test, add_compare) { EXPECT_LT( add_compare(bigint(0xffffffff), bigint(0xffffffff), bigint(1) <<= 64), 0); EXPECT_LT(add_compare(bigint(1) <<= 32, bigint(1), bigint(1) <<= 96), 0); EXPECT_GT(add_compare(bigint(1) <<= 32, bigint(0), bigint(0xffffffff)), 0); EXPECT_GT(add_compare(bigint(0), bigint(1) <<= 32, bigint(0xffffffff)), 0); EXPECT_GT(add_compare(bigint(42), bigint(1), bigint(42)), 0); EXPECT_GT(add_compare(bigint(0xffffffff), bigint(1), bigint(0xffffffff)), 0); EXPECT_LT(add_compare(bigint(10), bigint(10), bigint(22)), 0); EXPECT_LT(add_compare(bigint(0x100000010), bigint(0x100000010), bigint(0x300000010)), 0); EXPECT_GT(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000000)), 0); EXPECT_EQ(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000001)), 0); EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000002)), 0); EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000003)), 0); } TEST(bigint_test, shift_left) { bigint n(0x42); n <<= 0; EXPECT_EQ(fmt::to_string(n), "42"); n <<= 1; EXPECT_EQ(fmt::to_string(n), "84"); n <<= 25; EXPECT_EQ(fmt::to_string(n), "108000000"); } TEST(bigint_test, multiply) { bigint n(0x42); EXPECT_THROW(n *= 0, assertion_failure); n *= 1; EXPECT_EQ(fmt::to_string(n), "42"); n *= 2; EXPECT_EQ(fmt::to_string(n), "84"); n *= 0x12345678; EXPECT_EQ(fmt::to_string(n), "962fc95e0"); bigint bigmax(max_value()); bigmax *= max_value(); EXPECT_EQ(fmt::to_string(bigmax), "fffffffe00000001"); const auto max64 = max_value(); bigmax = max64; bigmax *= max64; EXPECT_EQ(fmt::to_string(bigmax), "fffffffffffffffe0000000000000001"); const auto max128 = (fmt::detail::uint128_t(max64) << 64) | max64; bigmax = max128; bigmax *= max128; EXPECT_EQ(fmt::to_string(bigmax), "fffffffffffffffffffffffffffffffe00000000000000000000000000000001"); } TEST(bigint_test, square) { bigint n0(0); n0.square(); EXPECT_EQ(fmt::to_string(n0), "0"); bigint n1(0x100); n1.square(); EXPECT_EQ(fmt::to_string(n1), "10000"); bigint n2(0xfffffffff); n2.square(); EXPECT_EQ(fmt::to_string(n2), "ffffffffe000000001"); bigint n3(max_value()); n3.square(); EXPECT_EQ(fmt::to_string(n3), "fffffffffffffffe0000000000000001"); bigint n4; n4.assign_pow10(10); EXPECT_EQ(fmt::to_string(n4), "2540be400"); } TEST(bigint_test, divmod_assign_zero_divisor) { bigint zero(0); EXPECT_THROW(bigint(0).divmod_assign(zero), assertion_failure); EXPECT_THROW(bigint(42).divmod_assign(zero), assertion_failure); } TEST(bigint_test, divmod_assign_self) { bigint n(100); EXPECT_THROW(n.divmod_assign(n), assertion_failure); } TEST(bigint_test, divmod_assign_unaligned) { // (42 << 340) / pow(10, 100): bigint n1(42); n1 <<= 340; bigint n2; n2.assign_pow10(100); int result = n1.divmod_assign(n2); EXPECT_EQ(result, 9406); EXPECT_EQ(fmt::to_string(n1), "10f8353019583bfc29ffc8f564e1b9f9d819dbb4cf783e4507eca1539220p96"); } TEST(bigint_test, divmod_assign) { // 100 / 10: bigint n1(100); int result = n1.divmod_assign(bigint(10)); EXPECT_EQ(result, 10); EXPECT_EQ(fmt::to_string(n1), "0"); // pow(10, 100) / (42 << 320): n1.assign_pow10(100); result = n1.divmod_assign(bigint(42) <<= 320); EXPECT_EQ(result, 111); EXPECT_EQ(fmt::to_string(n1), "13ad2594c37ceb0b2784c4ce0bf38ace408e211a7caab24308a82e8f10p96"); // 42 / 100: bigint n2(42); n1.assign_pow10(2); result = n2.divmod_assign(n1); EXPECT_EQ(result, 0); EXPECT_EQ(fmt::to_string(n2), "2a"); } template void run_double_tests() { fmt::print("warning: double is not IEC559, skipping FP tests\n"); } template <> void run_double_tests() { // Construct from double. EXPECT_EQ(fp(1.23), fp(0x13ae147ae147aeu, -52)); } TEST(fp_test, double_tests) { run_double_tests::is_iec559>(); } TEST(fp_test, normalize) { const auto v = fp(0xbeef, 42); auto normalized = normalize(v); EXPECT_EQ(normalized.f, 0xbeef000000000000); EXPECT_EQ(normalized.e, -6); } TEST(fp_test, multiply) { auto v = fp(123ULL << 32, 4) * fp(56ULL << 32, 7); EXPECT_EQ(v.f, 123u * 56u); EXPECT_EQ(v.e, 4 + 7 + 64); v = fp(123ULL << 32, 4) * fp(567ULL << 31, 8); EXPECT_EQ(v.f, (123 * 567 + 1u) / 2); EXPECT_EQ(v.e, 4 + 8 + 64); } TEST(fp_test, get_cached_power) { using limits = std::numeric_limits; for (auto exp = limits::min_exponent; exp <= limits::max_exponent; ++exp) { int dec_exp = 0; auto power = fmt::detail::get_cached_power(exp, dec_exp); bigint exact, cache(power.f); if (dec_exp >= 0) { exact.assign_pow10(dec_exp); if (power.e <= 0) exact <<= -power.e; else cache <<= power.e; exact.align(cache); cache.align(exact); auto exact_str = fmt::to_string(exact); auto cache_str = fmt::to_string(cache); EXPECT_EQ(exact_str.size(), cache_str.size()); EXPECT_EQ(exact_str.substr(0, 15), cache_str.substr(0, 15)); int diff = cache_str[15] - exact_str[15]; if (diff == 1) EXPECT_GT(exact_str[16], '8'); else EXPECT_EQ(diff, 0); } else { cache.assign_pow10(-dec_exp); cache *= power.f + 1; // Inexact check. exact = 1; exact <<= -power.e; exact.align(cache); auto exact_str = fmt::to_string(exact); auto cache_str = fmt::to_string(cache); EXPECT_EQ(exact_str.size(), cache_str.size()); EXPECT_EQ(exact_str.substr(0, 16), cache_str.substr(0, 16)); } } } TEST(fp_test, dragonbox_max_k) { using fmt::detail::dragonbox::floor_log10_pow2; using float_info = fmt::detail::dragonbox::float_info; EXPECT_EQ( fmt::detail::const_check(float_info::max_k), float_info::kappa - floor_log10_pow2(std::numeric_limits::min_exponent - fmt::detail::num_significand_bits() - 1)); using double_info = fmt::detail::dragonbox::float_info; EXPECT_EQ( fmt::detail::const_check(double_info::max_k), double_info::kappa - floor_log10_pow2(std::numeric_limits::min_exponent - fmt::detail::num_significand_bits() - 1)); } TEST(fp_test, get_round_direction) { using fmt::detail::get_round_direction; using fmt::detail::round_direction; EXPECT_EQ(get_round_direction(100, 50, 0), round_direction::down); EXPECT_EQ(get_round_direction(100, 51, 0), round_direction::up); EXPECT_EQ(get_round_direction(100, 40, 10), round_direction::down); EXPECT_EQ(get_round_direction(100, 60, 10), round_direction::up); for (size_t i = 41; i < 60; ++i) EXPECT_EQ(get_round_direction(100, i, 10), round_direction::unknown); uint64_t max = max_value(); EXPECT_THROW(get_round_direction(100, 100, 0), assertion_failure); EXPECT_THROW(get_round_direction(100, 0, 100), assertion_failure); EXPECT_THROW(get_round_direction(100, 0, 50), assertion_failure); // Check that remainder + error doesn't overflow. EXPECT_EQ(get_round_direction(max, max - 1, 2), round_direction::up); // Check that 2 * (remainder + error) doesn't overflow. EXPECT_EQ(get_round_direction(max, max / 2 + 1, max / 2), round_direction::unknown); // Check that remainder - error doesn't overflow. EXPECT_EQ(get_round_direction(100, 40, 41), round_direction::unknown); // Check that 2 * (remainder - error) doesn't overflow. EXPECT_EQ(get_round_direction(max, max - 1, 1), round_direction::up); } TEST(fp_test, fixed_handler) { struct handler : fmt::detail::gen_digits_handler { char buffer[10]; handler(int prec = 0) : fmt::detail::gen_digits_handler() { buf = buffer; precision = prec; } }; handler().on_digit('0', 100, 99, 0, false); EXPECT_THROW(handler().on_digit('0', 100, 100, 0, false), assertion_failure); namespace digits = fmt::detail::digits; EXPECT_EQ(handler(1).on_digit('0', 100, 10, 10, false), digits::error); // Check that divisor - error doesn't overflow. EXPECT_EQ(handler(1).on_digit('0', 100, 10, 101, false), digits::error); // Check that 2 * error doesn't overflow. uint64_t max = max_value(); EXPECT_EQ(handler(1).on_digit('0', max, 10, max - 1, false), digits::error); } TEST(fp_test, grisu_format_compiles_with_on_ieee_double) { auto buf = fmt::memory_buffer(); format_float(0.42, -1, fmt::detail::float_specs(), buf); } TEST(format_impl_test, format_error_code) { std::string msg = "error 42", sep = ": "; { auto buffer = fmt::memory_buffer(); format_to(fmt::appender(buffer), "garbage"); fmt::detail::format_error_code(buffer, 42, "test"); EXPECT_EQ(to_string(buffer), "test: " + msg); } { auto buffer = fmt::memory_buffer(); auto prefix = std::string(fmt::inline_buffer_size - msg.size() - sep.size() + 1, 'x'); fmt::detail::format_error_code(buffer, 42, prefix); EXPECT_EQ(msg, to_string(buffer)); } int codes[] = {42, -1}; for (size_t i = 0, n = sizeof(codes) / sizeof(*codes); i < n; ++i) { // Test maximum buffer size. msg = fmt::format("error {}", codes[i]); fmt::memory_buffer buffer; auto prefix = std::string(fmt::inline_buffer_size - msg.size() - sep.size(), 'x'); fmt::detail::format_error_code(buffer, codes[i], prefix); EXPECT_EQ(prefix + sep + msg, to_string(buffer)); size_t size = fmt::inline_buffer_size; EXPECT_EQ(size, buffer.size()); buffer.resize(0); // Test with a message that doesn't fit into the buffer. prefix += 'x'; fmt::detail::format_error_code(buffer, codes[i], prefix); EXPECT_EQ(to_string(buffer), msg); } } TEST(format_impl_test, compute_width) { EXPECT_EQ(4, fmt::detail::compute_width( fmt::basic_string_view( reinterpret_cast("ёжик")))); } // Tests fmt::detail::count_digits for integer type Int. template void test_count_digits() { for (Int i = 0; i < 10; ++i) EXPECT_EQ(1u, fmt::detail::count_digits(i)); for (Int i = 1, n = 1, end = max_value() / 10; n <= end; ++i) { n *= 10; EXPECT_EQ(fmt::detail::count_digits(n - 1), i); EXPECT_EQ(fmt::detail::count_digits(n), i + 1); } } TEST(format_impl_test, count_digits) { test_count_digits(); test_count_digits(); } #if FMT_USE_FLOAT128 TEST(format_impl_test, write_float128) { auto s = std::string(); fmt::detail::write(std::back_inserter(s), __float128(42)); EXPECT_EQ(s, "42"); } #endif struct double_double { double a; double b; explicit constexpr double_double(double a_val = 0, double b_val = 0) : a(a_val), b(b_val) {} operator double() const { return a + b; } auto operator-() const -> double_double { return double_double(-a, -b); } }; bool operator>=(const double_double& lhs, const double_double& rhs) { return lhs.a + lhs.b >= rhs.a + rhs.b; } struct slow_float { float value; explicit constexpr slow_float(float val = 0) : value(val) {} operator float() const { return value; } auto operator-() const -> slow_float { return slow_float(-value); } }; namespace std { template <> struct is_floating_point : std::true_type {}; template <> struct numeric_limits { // is_iec559 is true for double-double in libstdc++. static constexpr bool is_iec559 = true; static constexpr int digits = 106; }; template <> struct is_floating_point : std::true_type {}; template <> struct numeric_limits : numeric_limits {}; } // namespace std FMT_BEGIN_NAMESPACE namespace detail { template <> struct is_fast_float : std::false_type {}; namespace dragonbox { template <> struct float_info { using carrier_uint = uint32_t; static const int exponent_bits = 8; }; } // namespace dragonbox } // namespace detail FMT_END_NAMESPACE TEST(format_impl_test, write_double_double) { auto s = std::string(); fmt::detail::write(std::back_inserter(s), double_double(42), {}); // Specializing is_floating_point is broken in MSVC. if (!FMT_MSC_VERSION) EXPECT_EQ(s, "42"); } TEST(format_impl_test, write_dragon_even) { auto s = std::string(); fmt::detail::write(std::back_inserter(s), slow_float(33554450.0f), {}); // Specializing is_floating_point is broken in MSVC. if (!FMT_MSC_VERSION) EXPECT_EQ(s, "33554450"); } #ifdef _WIN32 # include TEST(format_impl_test, write_console_signature) { decltype(::WriteConsoleW)* p = fmt::detail::WriteConsoleW; (void)p; } #endif // A public domain branchless UTF-8 decoder by Christopher Wellons: // https://github.com/skeeto/branchless-utf8 constexpr bool unicode_is_surrogate(uint32_t c) { return c >= 0xD800U && c <= 0xDFFFU; } FMT_CONSTEXPR char* utf8_encode(char* s, uint32_t c) { if (c >= (1UL << 16)) { s[0] = static_cast(0xf0 | (c >> 18)); s[1] = static_cast(0x80 | ((c >> 12) & 0x3f)); s[2] = static_cast(0x80 | ((c >> 6) & 0x3f)); s[3] = static_cast(0x80 | ((c >> 0) & 0x3f)); return s + 4; } else if (c >= (1UL << 11)) { s[0] = static_cast(0xe0 | (c >> 12)); s[1] = static_cast(0x80 | ((c >> 6) & 0x3f)); s[2] = static_cast(0x80 | ((c >> 0) & 0x3f)); return s + 3; } else if (c >= (1UL << 7)) { s[0] = static_cast(0xc0 | (c >> 6)); s[1] = static_cast(0x80 | ((c >> 0) & 0x3f)); return s + 2; } else { s[0] = static_cast(c); return s + 1; } } // Make sure it can decode every character TEST(format_impl_test, utf8_decode_decode_all) { for (uint32_t i = 0; i < 0x10ffff; i++) { if (!unicode_is_surrogate(i)) { int e; uint32_t c; char buf[8] = {0}; char* end = utf8_encode(buf, i); const char* res = fmt::detail::utf8_decode(buf, &c, &e); EXPECT_EQ(end, res); EXPECT_EQ(c, i); EXPECT_EQ(e, 0); } } } // Reject everything outside of U+0000..U+10FFFF TEST(format_impl_test, utf8_decode_out_of_range) { for (uint32_t i = 0x110000; i < 0x1fffff; i++) { int e; uint32_t c; char buf[8] = {0}; utf8_encode(buf, i); const char* end = fmt::detail::utf8_decode(buf, &c, &e); EXPECT_NE(e, 0); EXPECT_EQ(end - buf, 4); } } // Does it reject all surrogate halves? TEST(format_impl_test, utf8_decode_surrogate_halves) { for (uint32_t i = 0xd800; i <= 0xdfff; i++) { int e; uint32_t c; char buf[8] = {0}; utf8_encode(buf, i); fmt::detail::utf8_decode(buf, &c, &e); EXPECT_NE(e, 0); } } // How about non-canonical encodings? TEST(format_impl_test, utf8_decode_non_canonical_encodings) { int e; uint32_t c; const char* end; char buf2[8] = {char(0xc0), char(0xA4)}; end = fmt::detail::utf8_decode(buf2, &c, &e); EXPECT_NE(e, 0); // non-canonical len 2 EXPECT_EQ(end, buf2 + 2); // non-canonical recover 2 char buf3[8] = {char(0xe0), char(0x80), char(0xA4)}; end = fmt::detail::utf8_decode(buf3, &c, &e); EXPECT_NE(e, 0); // non-canonical len 3 EXPECT_EQ(end, buf3 + 3); // non-canonical recover 3 char buf4[8] = {char(0xf0), char(0x80), char(0x80), char(0xA4)}; end = fmt::detail::utf8_decode(buf4, &c, &e); EXPECT_NE(e, 0); // non-canonical encoding len 4 EXPECT_EQ(end, buf4 + 4); // non-canonical recover 4 } // Let's try some bogus byte sequences TEST(format_impl_test, utf8_decode_bogus_byte_sequences) { int e; uint32_t c; // Invalid first byte char buf0[4] = {char(0xff)}; auto len = fmt::detail::utf8_decode(buf0, &c, &e) - buf0; EXPECT_NE(e, 0); // "bogus [ff] 0x%02x U+%04lx", e, (unsigned long)c); EXPECT_EQ(len, 1); // "bogus [ff] recovery %d", len); // Invalid first byte char buf1[4] = {char(0x80)}; len = fmt::detail::utf8_decode(buf1, &c, &e) - buf1; EXPECT_NE(e, 0); // "bogus [80] 0x%02x U+%04lx", e, (unsigned long)c); EXPECT_EQ(len, 1); // "bogus [80] recovery %d", len); // Looks like a two-byte sequence but second byte is wrong char buf2[4] = {char(0xc0), char(0x0a)}; len = fmt::detail::utf8_decode(buf2, &c, &e) - buf2; EXPECT_NE(e, 0); // "bogus [c0 0a] 0x%02x U+%04lx", e, (unsigned long)c EXPECT_EQ(len, 2); // "bogus [c0 0a] recovery %d", len); }