/// // expected - An implementation of std::expected with extensions // Written in 2017 by Simon Brand (@TartanLlama) // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to the // public domain worldwide. This software is distributed without any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. If not, see // . /// #ifndef TL_EXPECTED_HPP #define TL_EXPECTED_HPP #define TL_EXPECTED_VERSION_MAJOR 0 #define TL_EXPECTED_VERSION_MINOR 2 #include #include #include #include #if defined(__EXCEPTIONS) || defined(_CPPUNWIND) #define TL_EXPECTED_EXCEPTIONS_ENABLED #endif #if (defined(_MSC_VER) && _MSC_VER == 1900) /// \exclude #define TL_EXPECTED_MSVC2015 #define TL_EXPECTED_MSVC2015_CONSTEXPR #else #define TL_EXPECTED_MSVC2015_CONSTEXPR constexpr #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \ !defined(__clang__)) /// \exclude #define TL_EXPECTED_GCC49 #endif #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && \ !defined(__clang__)) /// \exclude #define TL_EXPECTED_GCC54 #endif #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && \ !defined(__clang__)) /// \exclude #define TL_EXPECTED_GCC55 #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \ !defined(__clang__)) // GCC < 5 doesn't support overloading on const&& for member functions /// \exclude #define TL_EXPECTED_NO_CONSTRR // GCC < 5 doesn't support some standard C++11 type traits /// \exclude #define TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ std::has_trivial_copy_constructor /// \exclude #define TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ std::has_trivial_copy_assign // This one will be different for GCC 5.7 if it's ever supported /// \exclude #define TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(T) \ std::is_trivially_destructible // GCC 5 < v < 8 has a bug in is_trivially_copy_constructible which breaks std::vector // for non-copyable types #elif (defined(__GNUC__) && __GNUC__ < 8 && \ !defined(__clang__)) #ifndef TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX #define TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX namespace tl { namespace detail { template struct is_trivially_copy_constructible : std::is_trivially_copy_constructible{}; #ifdef _GLIBCXX_VECTOR template struct is_trivially_copy_constructible> : std::is_trivially_copy_constructible{}; #endif } } #endif #define TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ tl::detail::is_trivially_copy_constructible #define TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ std::is_trivially_copy_assignable #define TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible #else /// \exclude #define TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ std::is_trivially_copy_constructible /// \exclude #define TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ std::is_trivially_copy_assignable /// \exclude #define TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(T) \ std::is_trivially_destructible #endif #if __cplusplus > 201103L /// \exclude #define TL_EXPECTED_CXX14 #endif #ifdef TL_EXPECTED_GCC49 #define TL_EXPECTED_GCC49_CONSTEXPR #else #define TL_EXPECTED_GCC49_CONSTEXPR constexpr #endif #if (__cplusplus == 201103L || defined(TL_EXPECTED_MSVC2015) || \ defined(TL_EXPECTED_GCC49)) /// \exclude #define TL_EXPECTED_11_CONSTEXPR #else /// \exclude #define TL_EXPECTED_11_CONSTEXPR constexpr #endif namespace tl { template class expected; #ifndef TL_MONOSTATE_INPLACE_MUTEX #define TL_MONOSTATE_INPLACE_MUTEX /// \brief Used to represent an expected with no data class monostate {}; /// \brief A tag type to tell expected to construct its value in-place struct in_place_t { explicit in_place_t() = default; }; /// \brief A tag to tell expected to construct its value in-place static constexpr in_place_t in_place{}; #endif /// Used as a wrapper to store the unexpected value template class unexpected { public: static_assert(!std::is_same::value, "E must not be void"); unexpected() = delete; constexpr explicit unexpected(const E &e) : m_val(e) {} constexpr explicit unexpected(E &&e) : m_val(std::move(e)) {} /// \returns the contained value /// \group unexpected_value constexpr const E &value() const & { return m_val; } /// \group unexpected_value TL_EXPECTED_11_CONSTEXPR E &value() & { return m_val; } /// \group unexpected_value TL_EXPECTED_11_CONSTEXPR E &&value() && { return std::move(m_val); } /// \exclude constexpr const E &&value() const && { return std::move(m_val); } private: E m_val; }; /// \brief Compares two unexpected objects /// \details Simply compares lhs.value() to rhs.value() /// \group unexpected_relop template constexpr bool operator==(const unexpected &lhs, const unexpected &rhs) { return lhs.value() == rhs.value(); } /// \group unexpected_relop template constexpr bool operator!=(const unexpected &lhs, const unexpected &rhs) { return lhs.value() != rhs.value(); } /// \group unexpected_relop template constexpr bool operator<(const unexpected &lhs, const unexpected &rhs) { return lhs.value() < rhs.value(); } /// \group unexpected_relop template constexpr bool operator<=(const unexpected &lhs, const unexpected &rhs) { return lhs.value() <= rhs.value(); } /// \group unexpected_relop template constexpr bool operator>(const unexpected &lhs, const unexpected &rhs) { return lhs.value() > rhs.value(); } /// \group unexpected_relop template constexpr bool operator>=(const unexpected &lhs, const unexpected &rhs) { return lhs.value() >= rhs.value(); } /// Create an `unexpected` from `e`, deducing the return type /// /// *Example:* /// auto e1 = tl::make_unexpected(42); /// unexpected e2 (42); //same semantics template unexpected::type> make_unexpected(E &&e) { return unexpected::type>(std::forward(e)); } /// \brief A tag type to tell expected to construct the unexpected value struct unexpect_t { unexpect_t() = default; }; /// \brief A tag to tell expected to construct the unexpected value static constexpr unexpect_t unexpect{}; /// \exclude namespace detail { template [[noreturn]] TL_EXPECTED_11_CONSTEXPR void throw_exception(E &&e) { #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED throw std::forward(e); #else #ifdef _MSC_VER __assume(0); #else __builtin_unreachable(); #endif #endif } #ifndef TL_TRAITS_MUTEX #define TL_TRAITS_MUTEX // C++14-style aliases for brevity template using remove_const_t = typename std::remove_const::type; template using remove_reference_t = typename std::remove_reference::type; template using decay_t = typename std::decay::type; template using enable_if_t = typename std::enable_if::type; template using conditional_t = typename std::conditional::type; // std::conjunction from C++17 template struct conjunction : std::true_type {}; template struct conjunction : B {}; template struct conjunction : std::conditional, B>::type {}; // std::invoke from C++17 // https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround template >{}>, int = 0> constexpr auto invoke(Fn &&f, Args &&... args) noexcept( noexcept(std::mem_fn(f)(std::forward(args)...))) -> decltype(std::mem_fn(f)(std::forward(args)...)) { return std::mem_fn(f)(std::forward(args)...); } template >{}>> constexpr auto invoke(Fn &&f, Args &&... args) noexcept( noexcept(std::forward(f)(std::forward(args)...))) -> decltype(std::forward(f)(std::forward(args)...)) { return std::forward(f)(std::forward(args)...); } // std::invoke_result from C++17 template struct invoke_result_impl; template struct invoke_result_impl< F, decltype(detail::invoke(std::declval(), std::declval()...), void()), Us...> { using type = decltype(detail::invoke(std::declval(), std::declval()...)); }; template using invoke_result = invoke_result_impl; template using invoke_result_t = typename invoke_result::type; #endif // Trait for checking if a type is a tl::expected template struct is_expected_impl : std::false_type {}; template struct is_expected_impl> : std::true_type {}; template using is_expected = is_expected_impl>; template using expected_enable_forward_value = detail::enable_if_t< std::is_constructible::value && !std::is_same, in_place_t>::value && !std::is_same, detail::decay_t>::value && !std::is_same, detail::decay_t>::value>; template using expected_enable_from_other = detail::enable_if_t< std::is_constructible::value && std::is_constructible::value && !std::is_constructible &>::value && !std::is_constructible &&>::value && !std::is_constructible &>::value && !std::is_constructible &&>::value && !std::is_convertible &, T>::value && !std::is_convertible &&, T>::value && !std::is_convertible &, T>::value && !std::is_convertible &&, T>::value>; template using is_void_or = conditional_t::value, std::true_type, U>; template using is_copy_constructible_or_void = is_void_or>; template using is_move_constructible_or_void = is_void_or>; template using is_copy_assignable_or_void = is_void_or>; template using is_move_assignable_or_void = is_void_or>; } // namespace detail /// \exclude namespace detail { struct no_init_t {}; static constexpr no_init_t no_init{}; // Implements the storage of the values, and ensures that the destructor is // trivial if it can be. // // This specialization is for where neither `T` or `E` is trivially // destructible, so the destructors must be called on destruction of the // `expected` template ::value, bool = std::is_trivially_destructible::value> struct expected_storage_base { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template ::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&... args) : m_val(std::forward(args)...), m_has_val(true) {} template &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list il, Args &&... args) : m_val(il, std::forward(args)...), m_has_val(true) {} template ::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&... args) : m_unexpect(std::forward(args)...), m_has_val(false) {} template &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list il, Args &&... args) : m_unexpect(il, std::forward(args)...), m_has_val(false) {} ~expected_storage_base() { if (m_has_val) { m_val.~T(); } else { m_unexpect.~unexpected(); } } union { char m_no_init; T m_val; unexpected m_unexpect; }; bool m_has_val; }; // This specialization is for when both `T` and `E` are trivially-destructible, // so the destructor of the `expected` can be trivial. template struct expected_storage_base { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template ::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&... args) : m_val(std::forward(args)...), m_has_val(true) {} template &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list il, Args &&... args) : m_val(il, std::forward(args)...), m_has_val(true) {} template ::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&... args) : m_unexpect(std::forward(args)...), m_has_val(false) {} template &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list il, Args &&... args) : m_unexpect(il, std::forward(args)...), m_has_val(false) {} ~expected_storage_base() = default; union { char m_no_init; T m_val; unexpected m_unexpect; }; bool m_has_val; }; // T is trivial, E is not. template struct expected_storage_base { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} TL_EXPECTED_MSVC2015_CONSTEXPR expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template ::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&... args) : m_val(std::forward(args)...), m_has_val(true) {} template &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list il, Args &&... args) : m_val(il, std::forward(args)...), m_has_val(true) {} template ::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&... args) : m_unexpect(std::forward(args)...), m_has_val(false) {} template &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list il, Args &&... args) : m_unexpect(il, std::forward(args)...), m_has_val(false) {} ~expected_storage_base() { if (!m_has_val) { m_unexpect.~unexpected(); } } union { char m_no_init; T m_val; unexpected m_unexpect; }; bool m_has_val; }; // E is trivial, T is not. template struct expected_storage_base { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template ::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&... args) : m_val(std::forward(args)...), m_has_val(true) {} template &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list il, Args &&... args) : m_val(il, std::forward(args)...), m_has_val(true) {} template ::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&... args) : m_unexpect(std::forward(args)...), m_has_val(false) {} template &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list il, Args &&... args) : m_unexpect(il, std::forward(args)...), m_has_val(false) {} ~expected_storage_base() { if (m_has_val) { m_val.~T(); } } union { char m_no_init; T m_val; unexpected m_unexpect; }; bool m_has_val; }; // `T` is `void`, `E` is trivially-destructible template struct expected_storage_base { TL_EXPECTED_MSVC2015_CONSTEXPR expected_storage_base() : m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_val(), m_has_val(false) {} constexpr expected_storage_base(in_place_t) : m_has_val(true) {} template ::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&... args) : m_unexpect(std::forward(args)...), m_has_val(false) {} template &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list il, Args &&... args) : m_unexpect(il, std::forward(args)...), m_has_val(false) {} ~expected_storage_base() = default; struct dummy {}; union { dummy m_val; unexpected m_unexpect; }; bool m_has_val; }; // `T` is `void`, `E` is not trivially-destructible template struct expected_storage_base { constexpr expected_storage_base() : m_dummy(), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_dummy(), m_has_val(false) {} constexpr expected_storage_base(in_place_t) : m_dummy(), m_has_val(true) {} template ::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&... args) : m_unexpect(std::forward(args)...), m_has_val(false) {} template &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list il, Args &&... args) : m_unexpect(il, std::forward(args)...), m_has_val(false) {} ~expected_storage_base() { if (!m_has_val) { m_unexpect.~unexpected(); } } union { char m_dummy; unexpected m_unexpect; }; bool m_has_val; }; // This base class provides some handy member functions which can be used in // further derived classes template struct expected_operations_base : expected_storage_base { using expected_storage_base::expected_storage_base; template void construct(Args &&... args) noexcept { new (std::addressof(this->m_val)) T(std::forward(args)...); this->m_has_val = true; } template void construct_with(Rhs &&rhs) noexcept { new (std::addressof(this->m_val)) T(std::forward(rhs).get()); this->m_has_val = true; } template void construct_error(Args &&... args) noexcept { new (std::addressof(this->m_unexpect)) unexpected(std::forward(args)...); this->m_has_val = false; } #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED // These assign overloads ensure that the most efficient assignment // implementation is used while maintaining the strong exception guarantee. // The problematic case is where rhs has a value, but *this does not. // // This overload handles the case where we can just copy-construct `T` // directly into place without throwing. template ::value> * = nullptr> void assign(const expected_operations_base &rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected(); construct(rhs.get()); } else { assign_common(rhs); } } // This overload handles the case where we can attempt to create a copy of // `T`, then no-throw move it into place if the copy was successful. template ::value && std::is_nothrow_move_constructible::value> * = nullptr> void assign(const expected_operations_base &rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { T tmp = rhs.get(); geterr().~unexpected(); construct(std::move(tmp)); } else { assign_common(rhs); } } // This overload is the worst-case, where we have to move-construct the // unexpected value into temporary storage, then try to copy the T into place. // If the construction succeeds, then everything is fine, but if it throws, // then we move the old unexpected value back into place before rethrowing the // exception. template ::value && !std::is_nothrow_move_constructible::value> * = nullptr> void assign(const expected_operations_base &rhs) { if (!this->m_has_val && rhs.m_has_val) { auto tmp = std::move(geterr()); geterr().~unexpected(); try { construct(rhs.get()); } catch (...) { geterr() = std::move(tmp); throw; } } else { assign_common(rhs); } } // These overloads do the same as above, but for rvalues template ::value> * = nullptr> void assign(expected_operations_base &&rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected(); construct(std::move(rhs).get()); } else { assign_common(std::move(rhs)); } } template ::value> * = nullptr> void assign(expected_operations_base &&rhs) { if (!this->m_has_val && rhs.m_has_val) { auto tmp = std::move(geterr()); geterr().~unexpected(); try { construct(std::move(rhs).get()); } catch (...) { geterr() = std::move(tmp); throw; } } else { assign_common(std::move(rhs)); } } #else // If exceptions are disabled then we can just copy-construct void assign(const expected_operations_base &rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected(); construct(rhs.get()); } else { assign_common(rhs); } } void assign(expected_operations_base &&rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected(); construct(std::move(rhs).get()); } else { assign_common(rhs); } } #endif // The common part of move/copy assigning template void assign_common(Rhs &&rhs) { if (this->m_has_val) { if (rhs.m_has_val) { get() = std::forward(rhs).get(); } else { destroy_val(); construct_error(std::forward(rhs).geterr()); } } else { if (!rhs.m_has_val) { geterr() = std::forward(rhs).geterr(); } } } bool has_value() const { return this->m_has_val; } TL_EXPECTED_11_CONSTEXPR T &get() & { return this->m_val; } constexpr const T &get() const & { return this->m_val; } TL_EXPECTED_11_CONSTEXPR T &&get() && { return std::move(this->m_val); } #ifndef TL_EXPECTED_NO_CONSTRR constexpr const T &&get() const && { return std::move(this->m_val); } #endif TL_EXPECTED_11_CONSTEXPR unexpected &geterr() & { return this->m_unexpect; } constexpr const unexpected &geterr() const & { return this->m_unexpect; } TL_EXPECTED_11_CONSTEXPR unexpected &&geterr() && { return std::move(this->m_unexpect); } #ifndef TL_EXPECTED_NO_CONSTRR constexpr const unexpected &&geterr() const && { return std::move(this->m_unexpect); } #endif constexpr void destroy_val() { get().~T(); } }; // This base class provides some handy member functions which can be used in // further derived classes template struct expected_operations_base : expected_storage_base { using expected_storage_base::expected_storage_base; template void construct() noexcept { this->m_has_val = true; } // This function doesn't use its argument, but needs it so that code in // levels above this can work independently of whether T is void template void construct_with(Rhs &&) noexcept { this->m_has_val = true; } template void construct_error(Args &&... args) noexcept { new (std::addressof(this->m_unexpect)) unexpected(std::forward(args)...); this->m_has_val = false; } template void assign(Rhs &&rhs) noexcept { if (!this->m_has_val) { if (rhs.m_has_val) { geterr().~unexpected(); construct(); } else { geterr() = std::forward(rhs).geterr(); } } else { if (!rhs.m_has_val) { construct_error(std::forward(rhs).geterr()); } } } bool has_value() const { return this->m_has_val; } TL_EXPECTED_11_CONSTEXPR unexpected &geterr() & { return this->m_unexpect; } constexpr const unexpected &geterr() const & { return this->m_unexpect; } TL_EXPECTED_11_CONSTEXPR unexpected &&geterr() && { return std::move(this->m_unexpect); } #ifndef TL_EXPECTED_NO_CONSTRR constexpr const unexpected &&geterr() const && { return std::move(this->m_unexpect); } #endif constexpr void destroy_val() { //no-op } }; // This class manages conditionally having a trivial copy constructor // This specialization is for when T and E are trivially copy constructible template :: value &&TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(E)::value> struct expected_copy_base : expected_operations_base { using expected_operations_base::expected_operations_base; }; // This specialization is for when T or E are not trivially copy constructible template struct expected_copy_base : expected_operations_base { using expected_operations_base::expected_operations_base; expected_copy_base() = default; expected_copy_base(const expected_copy_base &rhs) : expected_operations_base(no_init) { if (rhs.has_value()) { this->construct_with(rhs); } else { this->construct_error(rhs.geterr()); } } expected_copy_base(expected_copy_base &&rhs) = default; expected_copy_base &operator=(const expected_copy_base &rhs) = default; expected_copy_base &operator=(expected_copy_base &&rhs) = default; }; // This class manages conditionally having a trivial move constructor // Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it // doesn't implement an analogue to std::is_trivially_move_constructible. We // have to make do with a non-trivial move constructor even if T is trivially // move constructible #ifndef TL_EXPECTED_GCC49 template >::value &&std::is_trivially_move_constructible::value> struct expected_move_base : expected_copy_base { using expected_copy_base::expected_copy_base; }; #else template struct expected_move_base; #endif template struct expected_move_base : expected_copy_base { using expected_copy_base::expected_copy_base; expected_move_base() = default; expected_move_base(const expected_move_base &rhs) = default; expected_move_base(expected_move_base &&rhs) noexcept( std::is_nothrow_move_constructible::value) : expected_copy_base(no_init) { if (rhs.has_value()) { this->construct_with(std::move(rhs)); } else { this->construct_error(std::move(rhs.geterr())); } } expected_move_base &operator=(const expected_move_base &rhs) = default; expected_move_base &operator=(expected_move_base &&rhs) = default; }; // This class manages conditionally having a trivial copy assignment operator template >::value &&TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(E)::value &&TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(E)::value &&TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(E)::value> struct expected_copy_assign_base : expected_move_base { using expected_move_base::expected_move_base; }; template struct expected_copy_assign_base : expected_move_base { using expected_move_base::expected_move_base; expected_copy_assign_base() = default; expected_copy_assign_base(const expected_copy_assign_base &rhs) = default; expected_copy_assign_base(expected_copy_assign_base &&rhs) = default; expected_copy_assign_base &operator=(const expected_copy_assign_base &rhs) { this->assign(rhs); return *this; } expected_copy_assign_base & operator=(expected_copy_assign_base &&rhs) = default; }; // This class manages conditionally having a trivial move assignment operator // Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it // doesn't implement an analogue to std::is_trivially_move_assignable. We have // to make do with a non-trivial move assignment operator even if T is trivially // move assignable #ifndef TL_EXPECTED_GCC49 template , std::is_trivially_move_constructible, std::is_trivially_move_assignable>>:: value &&std::is_trivially_destructible::value &&std::is_trivially_move_constructible::value &&std::is_trivially_move_assignable::value> struct expected_move_assign_base : expected_copy_assign_base { using expected_copy_assign_base::expected_copy_assign_base; }; #else template struct expected_move_assign_base; #endif template struct expected_move_assign_base : expected_copy_assign_base { using expected_copy_assign_base::expected_copy_assign_base; expected_move_assign_base() = default; expected_move_assign_base(const expected_move_assign_base &rhs) = default; expected_move_assign_base(expected_move_assign_base &&rhs) = default; expected_move_assign_base & operator=(const expected_move_assign_base &rhs) = default; expected_move_assign_base & operator=(expected_move_assign_base &&rhs) noexcept( std::is_nothrow_move_constructible::value &&std::is_nothrow_move_assignable::value) { this->assign(std::move(rhs)); return *this; } }; // expected_delete_ctor_base will conditionally delete copy and move // constructors depending on whether T is copy/move constructible template ::value && std::is_copy_constructible::value), bool EnableMove = (is_move_constructible_or_void::value && std::is_move_constructible::value)> struct expected_delete_ctor_base { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = default; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = default; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; template struct expected_delete_ctor_base { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = default; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = delete; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; template struct expected_delete_ctor_base { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = delete; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = default; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; template struct expected_delete_ctor_base { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = delete; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = delete; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; // expected_delete_assign_base will conditionally delete copy and move // constructors depending on whether T and E are copy/move constructible + // assignable template ::value && std::is_copy_constructible::value && is_copy_assignable_or_void::value && std::is_copy_assignable::value), bool EnableMove = (is_move_constructible_or_void::value && std::is_move_constructible::value && is_move_assignable_or_void::value && std::is_move_assignable::value)> struct expected_delete_assign_base { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = default; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = default; }; template struct expected_delete_assign_base { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = default; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = delete; }; template struct expected_delete_assign_base { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = delete; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = default; }; template struct expected_delete_assign_base { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = delete; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = delete; }; // This is needed to be able to construct the expected_default_ctor_base which // follows, while still conditionally deleting the default constructor. struct default_constructor_tag { explicit constexpr default_constructor_tag() = default; }; // expected_default_ctor_base will ensure that expected has a deleted default // consturctor if T is not default constructible. // This specialization is for when T is default constructible template ::value || std::is_void::value> struct expected_default_ctor_base { constexpr expected_default_ctor_base() noexcept = default; constexpr expected_default_ctor_base( expected_default_ctor_base const &) noexcept = default; constexpr expected_default_ctor_base(expected_default_ctor_base &&) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base const &) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base &&) noexcept = default; constexpr explicit expected_default_ctor_base(default_constructor_tag) {} }; // This specialization is for when T is not default constructible template struct expected_default_ctor_base { constexpr expected_default_ctor_base() noexcept = delete; constexpr expected_default_ctor_base( expected_default_ctor_base const &) noexcept = default; constexpr expected_default_ctor_base(expected_default_ctor_base &&) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base const &) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base &&) noexcept = default; constexpr explicit expected_default_ctor_base(default_constructor_tag) {} }; } // namespace detail template class bad_expected_access : public std::exception { public: explicit bad_expected_access(E e) : m_val(std::move(e)) {} virtual const char *what() const noexcept override { return "Bad expected access"; } const E &error() const & { return m_val; } E &error() & { return m_val; } const E &&error() const && { return std::move(m_val); } E &&error() && { return std::move(m_val); } private: E m_val; }; /// An `expected` object is an object that contains the storage for /// another object and manages the lifetime of this contained object `T`. /// Alternatively it could contain the storage for another unexpected object /// `E`. The contained object may not be initialized after the expected object /// has been initialized, and may not be destroyed before the expected object /// has been destroyed. The initialization state of the contained object is /// tracked by the expected object. template class expected : private detail::expected_move_assign_base, private detail::expected_delete_ctor_base, private detail::expected_delete_assign_base, private detail::expected_default_ctor_base { static_assert(!std::is_reference::value, "T must not be a reference"); static_assert(!std::is_same>::value, "T must not be in_place_t"); static_assert(!std::is_same>::value, "T must not be unexpect_t"); static_assert(!std::is_same>>::value, "T must not be unexpected"); static_assert(!std::is_reference::value, "E must not be a reference"); T *valptr() { return std::addressof(this->m_val); } const T *valptr() const { return std::addressof(this->m_val); } unexpected *errptr() { return std::addressof(this->m_unexpect); } const unexpected *errptr() const { return std::addressof(this->m_unexpect); } template ::value> * = nullptr> U &val() { return this->m_val; } unexpected &err() { return this->m_unexpect; } template ::value> * = nullptr> const U &val() const { return this->m_val; } const unexpected &err() const { return this->m_unexpect; } using impl_base = detail::expected_move_assign_base; using ctor_base = detail::expected_default_ctor_base; public: typedef T value_type; typedef E error_type; typedef unexpected unexpected_type; #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) /// \group and_then /// Carries out some operation which returns an expected on the stored object /// if there is one. \requires `std::invoke(std::forward(f), value())` /// returns an `expected` for some `U`. \returns Let `U` be the result /// of `std::invoke(std::forward(f), value())`. Returns an /// `expected`. The return value is empty if `*this` is empty, /// otherwise the return value of `std::invoke(std::forward(f), value())` /// is returned. /// \synopsis template \nconstexpr auto and_then(F &&f) &; template TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) & { return and_then_impl(*this, std::forward(f)); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) &&; template TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) && { return and_then_impl(std::move(*this), std::forward(f)); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &; template constexpr auto and_then(F &&f) const & { return and_then_impl(*this, std::forward(f)); } #ifndef TL_EXPECTED_NO_CONSTRR /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &&; template constexpr auto and_then(F &&f) const && { return and_then_impl(std::move(*this), std::forward(f)); } #endif #else /// \group and_then /// Carries out some operation which returns an expected on the stored object /// if there is one. \requires `std::invoke(std::forward(f), value())` /// returns an `expected` for some `U`. \returns Let `U` be the result /// of `std::invoke(std::forward(f), value())`. Returns an /// `expected`. The return value is empty if `*this` is empty, /// otherwise the return value of `std::invoke(std::forward(f), value())` /// is returned. /// \synopsis template \nconstexpr auto and_then(F &&f) &; template TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) & -> decltype(and_then_impl(*this, std::forward(f))) { return and_then_impl(*this, std::forward(f)); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) &&; template TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) && -> decltype( and_then_impl(std::move(*this), std::forward(f))) { return and_then_impl(std::move(*this), std::forward(f)); } /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &; template constexpr auto and_then(F &&f) const & -> decltype( and_then_impl(*this, std::forward(f))) { return and_then_impl(*this, std::forward(f)); } #ifndef TL_EXPECTED_NO_CONSTRR /// \group and_then /// \synopsis template \nconstexpr auto and_then(F &&f) const &&; template constexpr auto and_then(F &&f) const && -> decltype( and_then_impl(std::move(*this), std::forward(f))) { return and_then_impl(std::move(*this), std::forward(f)); } #endif #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward(f), /// value())`. If `U` is `void`, returns an `expected, otherwise // returns an `expected`. If `*this` is unexpected, the /// result is `*this`, otherwise an `expected` is constructed from the /// return value of `std::invoke(std::forward(f), value())` and is /// returned. /// /// \group map /// \synopsis template constexpr auto map(F &&f) &; template TL_EXPECTED_11_CONSTEXPR auto map(F &&f) & { return expected_map_impl(*this, std::forward(f)); } /// \group map /// \synopsis template constexpr auto map(F &&f) &&; template TL_EXPECTED_11_CONSTEXPR auto map(F &&f) && { return expected_map_impl(std::move(*this), std::forward(f)); } /// \group map /// \synopsis template constexpr auto map(F &&f) const &; template constexpr auto map(F &&f) const & { return expected_map_impl(*this, std::forward(f)); } /// \group map /// \synopsis template constexpr auto map(F &&f) const &&; template constexpr auto map(F &&f) const && { return expected_map_impl(std::move(*this), std::forward(f)); } #else /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward(f), /// value())`. If `U` is `void`, returns an `expected, otherwise // returns an `expected`. If `*this` is unexpected, the /// result is `*this`, otherwise an `expected` is constructed from the /// return value of `std::invoke(std::forward(f), value())` and is /// returned. /// /// \group map /// \synopsis template constexpr auto map(F &&f) &; template TL_EXPECTED_11_CONSTEXPR decltype( expected_map_impl(std::declval(), std::declval())) map(F &&f) & { return expected_map_impl(*this, std::forward(f)); } /// \group map /// \synopsis template constexpr auto map(F &&f) &&; template TL_EXPECTED_11_CONSTEXPR decltype( expected_map_impl(std::declval(), std::declval())) map(F &&f) && { return expected_map_impl(std::move(*this), std::forward(f)); } /// \group map /// \synopsis template constexpr auto map(F &&f) const &; template constexpr decltype(expected_map_impl(std::declval(), std::declval())) map(F &&f) const & { return expected_map_impl(*this, std::forward(f)); } #ifndef TL_EXPECTED_NO_CONSTRR /// \group map /// \synopsis template constexpr auto map(F &&f) const &&; template constexpr decltype(expected_map_impl(std::declval(), std::declval())) map(F &&f) const && { return expected_map_impl(std::move(*this), std::forward(f)); } #endif #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) /// \brief Carries out some operation on the stored unexpected object if there /// is one. /// \returns Let `U` be the result of `std::invoke(std::forward(f), /// value())`. If `U` is `void`, returns an `expected`, otherwise /// returns an `expected`. If `*this` has an expected /// value, the result is `*this`, otherwise an `expected` is constructed /// from `make_unexpected(std::invoke(std::forward(f), value()))` and is /// returned. /// /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) &; template TL_EXPECTED_11_CONSTEXPR auto map_error(F &&f) & { return map_error_impl(*this, std::forward(f)); } /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) &&; template TL_EXPECTED_11_CONSTEXPR auto map_error(F &&f) && { return map_error_impl(std::move(*this), std::forward(f)); } /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) const &; template constexpr auto map_error(F &&f) const & { return map_error_impl(*this, std::forward(f)); } /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) const &&; template constexpr auto map_error(F &&f) const && { return map_error_impl(std::move(*this), std::forward(f)); } #else /// \brief Carries out some operation on the stored unexpected object if there /// is one. /// \returns Let `U` be the result of `std::invoke(std::forward(f), /// value())`. Returns an `expected`. If `*this` has an expected /// value, the result is `*this`, otherwise an `expected` is constructed /// from `make_unexpected(std::invoke(std::forward(f), value()))` and is /// returned. /// /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) &; template TL_EXPECTED_11_CONSTEXPR decltype(map_error_impl(std::declval(), std::declval())) map_error(F &&f) & { return map_error_impl(*this, std::forward(f)); } /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) &&; template TL_EXPECTED_11_CONSTEXPR decltype(map_error_impl(std::declval(), std::declval())) map_error(F &&f) && { return map_error_impl(std::move(*this), std::forward(f)); } /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) const &; template constexpr decltype(map_error_impl(std::declval(), std::declval())) map_error(F &&f) const & { return map_error_impl(*this, std::forward(f)); } #ifndef TL_EXPECTED_NO_CONSTRR /// \group map_error /// \synopsis template constexpr auto map_error(F &&f) const &&; template constexpr decltype(map_error_impl(std::declval(), std::declval())) map_error(F &&f) const && { return map_error_impl(std::move(*this), std::forward(f)); } #endif #endif /// \brief Calls `f` if the expectd is in the unexpected state /// \requires `F` is invokable with `E`, and `std::invoke_result_t` /// must be void or convertible to `expcted`. /// \effects If `*this` has a value, returns `*this`. /// Otherwise, if `f` returns `void`, calls `std::forward(f)(E)` and returns /// `std::nullopt`. Otherwise, returns `std::forward(f)(E)`. /// /// \group or_else template expected TL_EXPECTED_11_CONSTEXPR or_else(F &&f) & { return or_else_impl(*this, std::forward(f)); } template expected TL_EXPECTED_11_CONSTEXPR or_else(F &&f) && { return or_else_impl(std::move(*this), std::forward(f)); } template expected constexpr or_else(F &&f) const & { return or_else_impl(*this, std::forward(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template expected constexpr or_else(F &&f) const && { return or_else_impl(std::move(*this), std::forward(f)); } #endif constexpr expected() = default; constexpr expected(const expected &rhs) = default; constexpr expected(expected &&rhs) = default; expected &operator=(const expected &rhs) = default; expected &operator=(expected &&rhs) = default; template ::value> * = nullptr> constexpr expected(in_place_t, Args &&... args) : impl_base(in_place, std::forward(args)...), ctor_base(detail::default_constructor_tag{}) {} template &, Args &&...>::value> * = nullptr> constexpr expected(in_place_t, std::initializer_list il, Args &&... args) : impl_base(in_place, il, std::forward(args)...), ctor_base(detail::default_constructor_tag{}) {} /// \group unexpected_ctor /// \synopsis EXPLICIT constexpr expected(const unexpected &e); template ::value> * = nullptr, detail::enable_if_t::value> * = nullptr> explicit constexpr expected(const unexpected &e) : impl_base(unexpect, e.value()), ctor_base(detail::default_constructor_tag{}) {} /// \exclude template < class G = E, detail::enable_if_t::value> * = nullptr, detail::enable_if_t::value> * = nullptr> constexpr expected(unexpected const &e) : impl_base(unexpect, e.value()), ctor_base(detail::default_constructor_tag{}) {} /// \group unexpected_ctor /// \synopsis EXPLICIT constexpr expected(unexpected &&e); template < class G = E, detail::enable_if_t::value> * = nullptr, detail::enable_if_t::value> * = nullptr> explicit constexpr expected(unexpected &&e) noexcept( std::is_nothrow_constructible::value) : impl_base(unexpect, std::move(e.value())), ctor_base(detail::default_constructor_tag{}) {} /// \exclude template < class G = E, detail::enable_if_t::value> * = nullptr, detail::enable_if_t::value> * = nullptr> constexpr expected(unexpected &&e) noexcept( std::is_nothrow_constructible::value) : impl_base(unexpect, std::move(e.value())), ctor_base(detail::default_constructor_tag{}) {} template ::value> * = nullptr> constexpr explicit expected(unexpect_t, Args &&... args) : impl_base(unexpect, std::forward(args)...), ctor_base(detail::default_constructor_tag{}) {} /// \exclude template &, Args &&...>::value> * = nullptr> constexpr explicit expected(unexpect_t, std::initializer_list il, Args &&... args) : impl_base(unexpect, il, std::forward(args)...), ctor_base(detail::default_constructor_tag{}) {} template ::value && std::is_convertible::value)> * = nullptr, detail::expected_enable_from_other * = nullptr> explicit TL_EXPECTED_11_CONSTEXPR expected(const expected &rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(*rhs); } else { this->construct_error(rhs.error()); } } /// \exclude template ::value && std::is_convertible::value)> * = nullptr, detail::expected_enable_from_other * = nullptr> TL_EXPECTED_11_CONSTEXPR expected(const expected &rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(*rhs); } else { this->construct_error(rhs.error()); } } template < class U, class G, detail::enable_if_t::value && std::is_convertible::value)> * = nullptr, detail::expected_enable_from_other * = nullptr> explicit TL_EXPECTED_11_CONSTEXPR expected(expected &&rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(std::move(*rhs)); } else { this->construct_error(std::move(rhs.error())); } } /// \exclude template < class U, class G, detail::enable_if_t<(std::is_convertible::value && std::is_convertible::value)> * = nullptr, detail::expected_enable_from_other * = nullptr> TL_EXPECTED_11_CONSTEXPR expected(expected &&rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(std::move(*rhs)); } else { this->construct_error(std::move(rhs.error())); } } template < class U = T, detail::enable_if_t::value> * = nullptr, detail::expected_enable_forward_value * = nullptr> explicit TL_EXPECTED_MSVC2015_CONSTEXPR expected(U &&v) : expected(in_place, std::forward(v)) {} /// \exclude template < class U = T, detail::enable_if_t::value> * = nullptr, detail::expected_enable_forward_value * = nullptr> TL_EXPECTED_MSVC2015_CONSTEXPR expected(U &&v) : expected(in_place, std::forward(v)) {} template < class U = T, class G = T, detail::enable_if_t::value> * = nullptr, detail::enable_if_t::value> * = nullptr, detail::enable_if_t< (!std::is_same, detail::decay_t>::value && !detail::conjunction, std::is_same>>::value && std::is_constructible::value && std::is_assignable::value && std::is_nothrow_move_constructible::value)> * = nullptr> expected &operator=(U &&v) { if (has_value()) { val() = std::forward(v); } else { err().~unexpected(); ::new (valptr()) T(std::forward(v)); this->m_has_val = true; } return *this; } /// \exclude template < class U = T, class G = T, detail::enable_if_t::value> * = nullptr, detail::enable_if_t::value> * = nullptr, detail::enable_if_t< (!std::is_same, detail::decay_t>::value && !detail::conjunction, std::is_same>>::value && std::is_constructible::value && std::is_assignable::value && std::is_nothrow_move_constructible::value)> * = nullptr> expected &operator=(U &&v) { if (has_value()) { val() = std::forward(v); } else { auto tmp = std::move(err()); err().~unexpected(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (valptr()) T(std::move(v)); this->m_has_val = true; } catch (...) { err() = std::move(tmp); throw; } #else ::new (valptr()) T(std::move(v)); this->m_has_val = true; #endif } return *this; } template ::value && std::is_assignable::value> * = nullptr> expected &operator=(const unexpected &rhs) { if (!has_value()) { err() = rhs; } else { this->destroy_val(); ::new (errptr()) unexpected(rhs); this->m_has_val = false; } return *this; } template ::value && std::is_move_assignable::value> * = nullptr> expected &operator=(unexpected &&rhs) noexcept { if (!has_value()) { err() = std::move(rhs); } else { this->destroy_val(); ::new (errptr()) unexpected(std::move(rhs)); this->m_has_val = false; } return *this; } template ::value> * = nullptr> void emplace(Args &&... args) { if (has_value()) { val() = T(std::forward(args)...); } else { err().~unexpected(); ::new (valptr()) T(std::forward(args)...); this->m_has_val = true; } } /// \exclude template ::value> * = nullptr> void emplace(Args &&... args) { if (has_value()) { val() = T(std::forward(args)...); } else { auto tmp = std::move(err()); err().~unexpected(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (valptr()) T(std::forward(args)...); this->m_has_val = true; } catch (...) { err() = std::move(tmp); throw; } #else ::new (valptr()) T(std::forward(args)...); this->m_has_val = true; #endif } } template &, Args &&...>::value> * = nullptr> void emplace(std::initializer_list il, Args &&... args) { if (has_value()) { T t(il, std::forward(args)...); val() = std::move(t); } else { err().~unexpected(); ::new (valptr()) T(il, std::forward(args)...); this->m_has_val = true; } } /// \exclude template &, Args &&...>::value> * = nullptr> void emplace(std::initializer_list il, Args &&... args) { if (has_value()) { T t(il, std::forward(args)...); val() = std::move(t); } else { auto tmp = std::move(err()); err().~unexpected(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (valptr()) T(il, std::forward(args)...); this->m_has_val = true; } catch (...) { err() = std::move(tmp); throw; } #else ::new (valptr()) T(il, std::forward(args)...); this->m_has_val = true; #endif } } // TODO SFINAE void swap(expected &rhs) noexcept( std::is_nothrow_move_constructible::value &&noexcept( swap(std::declval(), std::declval())) && std::is_nothrow_move_constructible::value && noexcept(swap(std::declval(), std::declval()))) { if (has_value() && rhs.has_value()) { using std::swap; swap(val(), rhs.val()); } else if (!has_value() && rhs.has_value()) { using std::swap; swap(err(), rhs.err()); } else if (has_value()) { auto temp = std::move(rhs.err()); ::new (rhs.valptr()) T(val()); ::new (errptr()) unexpected_type(std::move(temp)); std::swap(this->m_has_val, rhs.m_has_val); } else { auto temp = std::move(this->err()); ::new (valptr()) T(rhs.val()); ::new (errptr()) unexpected_type(std::move(temp)); std::swap(this->m_has_val, rhs.m_has_val); } } /// \returns a pointer to the stored value /// \requires a value is stored /// \group pointer constexpr const T *operator->() const { return valptr(); } /// \group pointer TL_EXPECTED_11_CONSTEXPR T *operator->() { return valptr(); } /// \returns the stored value /// \requires a value is stored /// \group deref template ::value> * = nullptr> constexpr const U &operator*() const & { return val(); } /// \group deref template ::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &operator*() & { return val(); } /// \group deref template ::value> * = nullptr> constexpr const U &&operator*() const && { return std::move(val()); } /// \group deref template ::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &&operator*() && { return std::move(val()); } /// \returns whether or not the optional has a value /// \group has_value constexpr bool has_value() const noexcept { return this->m_has_val; } /// \group has_value constexpr explicit operator bool() const noexcept { return this->m_has_val; } /// \returns the contained value if there is one, otherwise throws /// [bad_expected_access] /// /// \group value template ::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR const U &value() const & { if (!has_value()) detail::throw_exception(bad_expected_access(err().value())); return val(); } /// \group value template ::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &value() & { if (!has_value()) detail::throw_exception(bad_expected_access(err().value())); return val(); } /// \group value template ::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR const U &&value() const && { if (!has_value()) detail::throw_exception(bad_expected_access(err().value())); return std::move(val()); } /// \group value template ::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &&value() && { if (!has_value()) detail::throw_exception(bad_expected_access(err().value())); return std::move(val()); } /// \returns the unexpected value /// \requires there is an unexpected value /// \group error constexpr const E &error() const & { return err().value(); } /// \group error TL_EXPECTED_11_CONSTEXPR E &error() & { return err().value(); } /// \group error constexpr const E &&error() const && { return std::move(err().value()); } /// \group error TL_EXPECTED_11_CONSTEXPR E &&error() && { return std::move(err().value()); } /// \returns the stored value if there is one, otherwise returns `u` /// \group value_or template constexpr T value_or(U &&v) const & { static_assert(std::is_copy_constructible::value && std::is_convertible::value, "T must be copy-constructible and convertible to from U&&"); return bool(*this) ? **this : static_cast(std::forward(v)); } /// \group value_or template TL_EXPECTED_11_CONSTEXPR T value_or(U &&v) && { static_assert(std::is_move_constructible::value && std::is_convertible::value, "T must be move-constructible and convertible to from U&&"); return bool(*this) ? std::move(**this) : static_cast(std::forward(v)); } }; /// \exclude namespace detail { template using exp_t = typename detail::decay_t::value_type; template using err_t = typename detail::decay_t::error_type; template using ret_t = expected>; #ifdef TL_EXPECTED_CXX14 template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), *std::declval()))> constexpr auto and_then_impl(Exp &&exp, F &&f) { static_assert(detail::is_expected::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward(f), *std::forward(exp)) : Ret(unexpect, exp.error()); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval()))> constexpr auto and_then_impl(Exp &&exp, F &&f) { static_assert(detail::is_expected::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward(f)) : Ret(unexpect, exp.error()); } #else template struct TC; template (), *std::declval())), detail::enable_if_t>::value> * = nullptr> auto and_then_impl(Exp &&exp, F &&f) -> Ret { static_assert(detail::is_expected::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward(f), *std::forward(exp)) : Ret(unexpect, exp.error()); } template ())), detail::enable_if_t>::value> * = nullptr> constexpr auto and_then_impl(Exp &&exp, F &&f) -> Ret { static_assert(detail::is_expected::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward(f)) : Ret(unexpect, exp.error()); } #endif #ifdef TL_EXPECTED_CXX14 template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), *std::declval())), detail::enable_if_t::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) { using result = ret_t>; return exp.has_value() ? result(detail::invoke(std::forward(f), *std::forward(exp))) : result(unexpect, std::forward(exp).error()); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), *std::declval())), detail::enable_if_t::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) { using result = expected>; if (exp.has_value()) { detail::invoke(std::forward(f), *std::forward(exp)); return result(); } return result(unexpect, std::forward(exp).error()); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval())), detail::enable_if_t::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) { using result = ret_t>; return exp.has_value() ? result(detail::invoke(std::forward(f))) : result(unexpect, std::forward(exp).error()); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval())), detail::enable_if_t::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) { using result = expected>; if (exp.has_value()) { detail::invoke(std::forward(f)); return result(); } return result(unexpect, std::forward(exp).error()); } #else template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), *std::declval())), detail::enable_if_t::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) -> ret_t> { using result = ret_t>; return exp.has_value() ? result(detail::invoke(std::forward(f), *std::forward(exp))) : result(unexpect, std::forward(exp).error()); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), *std::declval())), detail::enable_if_t::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) -> expected> { if (exp.has_value()) { detail::invoke(std::forward(f), *std::forward(exp)); return {}; } return unexpected>(std::forward(exp).error()); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval())), detail::enable_if_t::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) -> ret_t> { using result = ret_t>; return exp.has_value() ? result(detail::invoke(std::forward(f))) : result(unexpect, std::forward(exp).error()); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval())), detail::enable_if_t::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) -> expected> { if (exp.has_value()) { detail::invoke(std::forward(f)); return {}; } return unexpected>(std::forward(exp).error()); } #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) { using result = expected, detail::decay_t>; return exp.has_value() ? result(*std::forward(exp)) : result(unexpect, detail::invoke(std::forward(f), std::forward(exp).error())); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) { using result = expected, monostate>; if (exp.has_value()) { return result(*std::forward(exp)); } detail::invoke(std::forward(f), std::forward(exp).error()); return result(unexpect, monostate{}); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) { using result = expected, detail::decay_t>; return exp.has_value() ? result() : result(unexpect, detail::invoke(std::forward(f), std::forward(exp).error())); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) { using result = expected, monostate>; if (exp.has_value()) { return result(); } detail::invoke(std::forward(f), std::forward(exp).error()); return result(unexpect, monostate{}); } #else template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) -> expected, detail::decay_t> { using result = expected, detail::decay_t>; return exp.has_value() ? result(*std::forward(exp)) : result(unexpect, detail::invoke(std::forward(f), std::forward(exp).error())); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) -> expected, monostate> { using result = expected, monostate>; if (exp.has_value()) { return result(*std::forward(exp)); } detail::invoke(std::forward(f), std::forward(exp).error()); return result(unexpect, monostate{}); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) -> expected, detail::decay_t> { using result = expected, detail::decay_t>; return exp.has_value() ? result() : result(unexpect, detail::invoke(std::forward(f), std::forward(exp).error())); } template >::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval(), std::declval().error())), detail::enable_if_t::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) -> expected, monostate> { using result = expected, monostate>; if (exp.has_value()) { return result(); } detail::invoke(std::forward(f), std::forward(exp).error()); return result(unexpect, monostate{}); } #endif #ifdef TL_EXPECTED_CXX14 template (), std::declval().error())), detail::enable_if_t::value> * = nullptr> constexpr auto or_else_impl(Exp &&exp, F &&f) { static_assert(detail::is_expected::value, "F must return an expected"); return exp.has_value() ? std::forward(exp) : detail::invoke(std::forward(f), std::forward(exp).error()); } template (), std::declval().error())), detail::enable_if_t::value> * = nullptr> detail::decay_t or_else_impl(Exp &&exp, F &&f) { return exp.has_value() ? std::forward(exp) : (detail::invoke(std::forward(f), std::forward(exp).error()), std::forward(exp)); } #else template (), std::declval().error())), detail::enable_if_t::value> * = nullptr> auto or_else_impl(Exp &&exp, F &&f) -> Ret { static_assert(detail::is_expected::value, "F must return an expected"); return exp.has_value() ? std::forward(exp) : detail::invoke(std::forward(f), std::forward(exp).error()); } template (), std::declval().error())), detail::enable_if_t::value> * = nullptr> detail::decay_t or_else_impl(Exp &&exp, F &&f) { return exp.has_value() ? std::forward(exp) : (detail::invoke(std::forward(f), std::forward(exp).error()), std::forward(exp)); } #endif } // namespace detail template constexpr bool operator==(const expected &lhs, const expected &rhs) { return (lhs.has_value() != rhs.has_value()) ? false : (!lhs.has_value() ? lhs.error() == rhs.error() : *lhs == *rhs); } template constexpr bool operator!=(const expected &lhs, const expected &rhs) { return (lhs.has_value() != rhs.has_value()) ? true : (!lhs.has_value() ? lhs.error() != rhs.error() : *lhs != *rhs); } template constexpr bool operator==(const expected &x, const U &v) { return x.has_value() ? *x == v : false; } template constexpr bool operator==(const U &v, const expected &x) { return x.has_value() ? *x == v : false; } template constexpr bool operator!=(const expected &x, const U &v) { return x.has_value() ? *x != v : true; } template constexpr bool operator!=(const U &v, const expected &x) { return x.has_value() ? *x != v : true; } template constexpr bool operator==(const expected &x, const unexpected &e) { return x.has_value() ? false : x.error() == e.value(); } template constexpr bool operator==(const unexpected &e, const expected &x) { return x.has_value() ? false : x.error() == e.value(); } template constexpr bool operator!=(const expected &x, const unexpected &e) { return x.has_value() ? true : x.error() != e.value(); } template constexpr bool operator!=(const unexpected &e, const expected &x) { return x.has_value() ? true : x.error() != e.value(); } // TODO is_swappable template ::value && std::is_move_constructible::value> * = nullptr> void swap(expected &lhs, expected &rhs) noexcept(noexcept(lhs.swap(rhs))) { lhs.swap(rhs); } } // namespace tl #define TL_OPTIONAL_EXPECTED_MUTEX #endif