;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2020 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; Function API: ; UINT16 crc16_t10dif_copy_by4_02( ; UINT16 init_crc, //initial CRC value, 16 bits ; unsigned char *dst, //buffer pointer destination for copy ; const unsigned char *src, //buffer pointer to calculate CRC on ; UINT64 len //buffer length in bytes (64-bit data) ; ); ; ; Authors: ; Erdinc Ozturk ; Vinodh Gopal ; James Guilford ; ; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" ; URL: http://download.intel.com/design/intarch/papers/323102.pdf ; %include "reg_sizes.asm" %define fetch_dist 1024 [bits 64] default rel section .text %ifidn __OUTPUT_FORMAT__, win64 %xdefine arg1 rcx %xdefine arg2 rdx %xdefine arg3 r8 %xdefine arg4 r9 %xdefine tmp1 r10 %xdefine arg1_low32 ecx %else %xdefine arg1 rdi %xdefine arg2 rsi %xdefine arg3 rdx %xdefine arg4 rcx %xdefine tmp1 r10 %xdefine arg1_low32 edi %endif align 16 mk_global crc16_t10dif_copy_by4_02, function crc16_t10dif_copy_by4_02: endbranch ; adjust the 16-bit initial_crc value, scale it to 32 bits shl arg1_low32, 16 ; After this point, code flow is exactly same as a 32-bit CRC. ; The only difference is before returning eax, we will shift ; it right 16 bits, to scale back to 16 bits. sub rsp,16*4+8 ; push the xmm registers into the stack to maintain movdqa [rsp+16*2],xmm6 movdqa [rsp+16*3],xmm7 ; check if smaller than 128B cmp arg4, 128 ; for sizes less than 128, we can't fold 64B at a time... jl _less_than_128 ; load the initial crc value vmovd xmm6, arg1_low32 ; initial crc ; crc value does not need to be byte-reflected, but it needs to ; be moved to the high part of the register. ; because data will be byte-reflected and will align with ; initial crc at correct place. vpslldq xmm6, 12 vmovdqa xmm7, [SHUF_MASK] ; receive the initial 64B data, xor the initial crc value vmovdqu xmm0, [arg3] vmovdqu xmm1, [arg3+16] vmovdqu xmm2, [arg3+32] vmovdqu xmm3, [arg3+48] ; copy initial data vmovdqu [arg2], xmm0 vmovdqu [arg2+16], xmm1 vmovdqu [arg2+32], xmm2 vmovdqu [arg2+48], xmm3 vpshufb xmm0, xmm7 ; XOR the initial_crc value vpxor xmm0, xmm6 vpshufb xmm1, xmm7 vpshufb xmm2, xmm7 vpshufb xmm3, xmm7 vmovdqa xmm6, [rk3] ;xmm6 has rk3 and rk4 ;imm value of pclmulqdq instruction ;will determine which constant to use ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; we subtract 128 instead of 64 to save one instruction from the loop sub arg4, 128 ; at this section of the code, there is 64*x+y (0<=y<64) bytes of ; buffer. The _fold_64_B_loop ; loop will fold 64B at a time until we have 64+y Bytes of buffer ; fold 64B at a time. This section of the code folds 4 xmm ; registers in parallel _fold_64_B_loop: ; update the buffer pointer add arg3, 64 ; buf += 64; add arg2, 64 prefetchnta [arg3+fetch_dist+0] vmovdqu xmm4, xmm0 vmovdqu xmm5, xmm1 vpclmulqdq xmm0, xmm6 , 0x11 vpclmulqdq xmm1, xmm6 , 0x11 vpclmulqdq xmm4, xmm6, 0x0 vpclmulqdq xmm5, xmm6, 0x0 vpxor xmm0, xmm4 vpxor xmm1, xmm5 prefetchnta [arg3+fetch_dist+32] vmovdqu xmm4, xmm2 vmovdqu xmm5, xmm3 vpclmulqdq xmm2, xmm6, 0x11 vpclmulqdq xmm3, xmm6, 0x11 vpclmulqdq xmm4, xmm6, 0x0 vpclmulqdq xmm5, xmm6, 0x0 vpxor xmm2, xmm4 vpxor xmm3, xmm5 vmovdqu xmm4, [arg3] vmovdqu xmm5, [arg3+16] vmovdqu [arg2], xmm4 vmovdqu [arg2+16], xmm5 vpshufb xmm4, xmm7 vpshufb xmm5, xmm7 vpxor xmm0, xmm4 vpxor xmm1, xmm5 vmovdqu xmm4, [arg3+32] vmovdqu xmm5, [arg3+48] vmovdqu [arg2+32], xmm4 vmovdqu [arg2+48], xmm5 vpshufb xmm4, xmm7 vpshufb xmm5, xmm7 vpxor xmm2, xmm4 vpxor xmm3, xmm5 sub arg4, 64 ; check if there is another 64B in the buffer to be able to fold jge _fold_64_B_loop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; add arg3, 64 add arg2, 64 ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer ; the 64B of folded data is in 4 of the xmm registers: xmm0, xmm1, xmm2, xmm3 ; fold the 4 xmm registers to 1 xmm register with different constants vmovdqa xmm6, [rk1] ;xmm6 has rk1 and rk2 ;imm value of pclmulqdq instruction will ;determine which constant to use vmovdqa xmm4, xmm0 vpclmulqdq xmm0, xmm6, 0x11 vpclmulqdq xmm4, xmm6, 0x0 vpxor xmm1, xmm4 vpxor xmm1, xmm0 vmovdqa xmm4, xmm1 vpclmulqdq xmm1, xmm6, 0x11 vpclmulqdq xmm4, xmm6, 0x0 vpxor xmm2, xmm4 vpxor xmm2, xmm1 vmovdqa xmm4, xmm2 vpclmulqdq xmm2, xmm6, 0x11 vpclmulqdq xmm4, xmm6, 0x0 vpxor xmm3, xmm4 vpxor xmm3, xmm2 ; instead of 64, we add 48 to the loop counter to save 1 instruction from the loop ; instead of a cmp instruction, we use the negative flag with the jl instruction add arg4, 64-16 jl _final_reduction_for_128 ; now we have 16+y bytes left to reduce. 16 Bytes ; is in register xmm3 and the rest is in memory ; we can fold 16 bytes at a time if y>=16 ; continue folding 16B at a time _16B_reduction_loop: vmovdqa xmm4, xmm3 vpclmulqdq xmm3, xmm6, 0x11 vpclmulqdq xmm4, xmm6, 0x0 vpxor xmm3, xmm4 vmovdqu xmm0, [arg3] vmovdqu [arg2], xmm0 vpshufb xmm0, xmm7 vpxor xmm3, xmm0 add arg3, 16 add arg2, 16 sub arg4, 16 ; instead of a cmp instruction, we utilize the flags with the jge instruction ; equivalent of: cmp arg4, 16-16 ; check if there is any more 16B in the buffer to be able to fold jge _16B_reduction_loop ;now we have 16+z bytes left to reduce, where 0<= z < 16. ;first, we reduce the data in the xmm3 register _final_reduction_for_128: ; check if any more data to fold. If not, compute the CRC of the final 128 bits add arg4, 16 je _128_done ; here we are getting data that is less than 16 bytes. ; since we know that there was data before the pointer, ; we can offset the input pointer before the actual point, ; to receive exactly 16 bytes. ; after that the registers need to be adjusted. _get_last_two_xmms: vmovdqa xmm2, xmm3 vmovdqu xmm1, [arg3 - 16 + arg4] vmovdqu [arg2 - 16 + arg4], xmm1 vpshufb xmm1, xmm7 ; get rid of the extra data that was loaded before ; load the shift constant lea rax, [pshufb_shf_table + 16] sub rax, arg4 vmovdqu xmm0, [rax] ; shift xmm2 to the left by arg4 bytes vpshufb xmm2, xmm0 ; shift xmm3 to the right by 16-arg4 bytes vpxor xmm0, [mask1] vpshufb xmm3, xmm0 vpblendvb xmm1, xmm1, xmm2, xmm0 ; fold 16 Bytes vmovdqa xmm2, xmm1 vmovdqa xmm4, xmm3 vpclmulqdq xmm3, xmm6, 0x11 vpclmulqdq xmm4, xmm6, 0x0 vpxor xmm3, xmm4 vpxor xmm3, xmm2 _128_done: ; compute crc of a 128-bit value vmovdqa xmm6, [rk5] ; rk5 and rk6 in xmm6 vmovdqa xmm0, xmm3 ;64b fold vpclmulqdq xmm3, xmm6, 0x1 vpslldq xmm0, 8 vpxor xmm3, xmm0 ;32b fold vmovdqa xmm0, xmm3 vpand xmm0, [mask2] vpsrldq xmm3, 12 vpclmulqdq xmm3, xmm6, 0x10 vpxor xmm3, xmm0 ;barrett reduction _barrett: vmovdqa xmm6, [rk7] ; rk7 and rk8 in xmm6 vmovdqa xmm0, xmm3 vpclmulqdq xmm3, xmm6, 0x01 vpslldq xmm3, 4 vpclmulqdq xmm3, xmm6, 0x11 vpslldq xmm3, 4 vpxor xmm3, xmm0 vpextrd eax, xmm3,1 _cleanup: ; scale the result back to 16 bits shr eax, 16 vmovdqa xmm6, [rsp+16*2] vmovdqa xmm7, [rsp+16*3] add rsp,16*4+8 ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 16 _less_than_128: ; check if there is enough buffer to be able to fold 16B at a time cmp arg4, 32 jl _less_than_32 vmovdqa xmm7, [SHUF_MASK] ; if there is, load the constants vmovdqa xmm6, [rk1] ; rk1 and rk2 in xmm6 vmovd xmm0, arg1_low32 ; get the initial crc value vpslldq xmm0, 12 ; align it to its correct place vmovdqu xmm3, [arg3] ; load the plaintext vmovdqu [arg2], xmm3 ; store copy vpshufb xmm3, xmm7 ; byte-reflect the plaintext vpxor xmm3, xmm0 ; update the buffer pointer add arg3, 16 add arg2, 16 ; update the counter. subtract 32 instead of 16 to save one instruction from the loop sub arg4, 32 jmp _16B_reduction_loop align 16 _less_than_32: ; mov initial crc to the return value. this is necessary for zero-length buffers. mov eax, arg1_low32 test arg4, arg4 je _cleanup vmovdqa xmm7, [SHUF_MASK] vmovd xmm0, arg1_low32 ; get the initial crc value vpslldq xmm0, 12 ; align it to its correct place cmp arg4, 16 je _exact_16_left jl _less_than_16_left vmovdqu xmm3, [arg3] ; load the plaintext vmovdqu [arg2], xmm3 ; store the copy vpshufb xmm3, xmm7 ; byte-reflect the plaintext vpxor xmm3, xmm0 ; xor the initial crc value add arg3, 16 add arg2, 16 sub arg4, 16 vmovdqa xmm6, [rk1] ; rk1 and rk2 in xmm6 jmp _get_last_two_xmms align 16 _less_than_16_left: ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first. vpxor xmm1, xmm1 mov r11, rsp vmovdqa [r11], xmm1 cmp arg4, 4 jl _only_less_than_4 ; backup the counter value mov tmp1, arg4 cmp arg4, 8 jl _less_than_8_left ; load 8 Bytes mov rax, [arg3] mov [arg2], rax mov [r11], rax add r11, 8 sub arg4, 8 add arg3, 8 add arg2, 8 _less_than_8_left: cmp arg4, 4 jl _less_than_4_left ; load 4 Bytes mov eax, [arg3] mov [arg2], eax mov [r11], eax add r11, 4 sub arg4, 4 add arg3, 4 add arg2, 4 _less_than_4_left: cmp arg4, 2 jl _less_than_2_left ; load 2 Bytes mov ax, [arg3] mov [arg2], ax mov [r11], ax add r11, 2 sub arg4, 2 add arg3, 2 add arg2, 2 _less_than_2_left: cmp arg4, 1 jl _zero_left ; load 1 Byte mov al, [arg3] mov [arg2], al mov [r11], al _zero_left: vmovdqa xmm3, [rsp] vpshufb xmm3, xmm7 vpxor xmm3, xmm0 ; xor the initial crc value ; shl tmp1, 4 lea rax, [pshufb_shf_table + 16] sub rax, tmp1 vmovdqu xmm0, [rax] vpxor xmm0, [mask1] vpshufb xmm3, xmm0 jmp _128_done align 16 _exact_16_left: vmovdqu xmm3, [arg3] vmovdqu [arg2], xmm3 vpshufb xmm3, xmm7 vpxor xmm3, xmm0 ; xor the initial crc value jmp _128_done _only_less_than_4: cmp arg4, 3 jl _only_less_than_3 ; load 3 Bytes mov al, [arg3] mov [arg2], al mov [r11], al mov al, [arg3+1] mov [arg2+1], al mov [r11+1], al mov al, [arg3+2] mov [arg2+2], al mov [r11+2], al vmovdqa xmm3, [rsp] vpshufb xmm3, xmm7 vpxor xmm3, xmm0 ; xor the initial crc value vpsrldq xmm3, 5 jmp _barrett _only_less_than_3: cmp arg4, 2 jl _only_less_than_2 ; load 2 Bytes mov al, [arg3] mov [arg2], al mov [r11], al mov al, [arg3+1] mov [arg2+1], al mov [r11+1], al vmovdqa xmm3, [rsp] vpshufb xmm3, xmm7 vpxor xmm3, xmm0 ; xor the initial crc value vpsrldq xmm3, 6 jmp _barrett _only_less_than_2: ; load 1 Byte mov al, [arg3] mov [arg2],al mov [r11], al vmovdqa xmm3, [rsp] vpshufb xmm3, xmm7 vpxor xmm3, xmm0 ; xor the initial crc value vpsrldq xmm3, 7 jmp _barrett section .data ; precomputed constants ; these constants are precomputed from the poly: 0x8bb70000 (0x8bb7 scaled to 32 bits) align 16 ; Q = 0x18BB70000 ; rk1 = 2^(32*3) mod Q << 32 ; rk2 = 2^(32*5) mod Q << 32 ; rk3 = 2^(32*15) mod Q << 32 ; rk4 = 2^(32*17) mod Q << 32 ; rk5 = 2^(32*3) mod Q << 32 ; rk6 = 2^(32*2) mod Q << 32 ; rk7 = floor(2^64/Q) ; rk8 = Q rk1: DQ 0x2d56000000000000 rk2: DQ 0x06df000000000000 rk3: DQ 0x044c000000000000 rk4: DQ 0xe658000000000000 rk5: DQ 0x2d56000000000000 rk6: DQ 0x1368000000000000 rk7: DQ 0x00000001f65a57f8 rk8: DQ 0x000000018bb70000 mask1: dq 0x8080808080808080, 0x8080808080808080 mask2: dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF SHUF_MASK: dq 0x08090A0B0C0D0E0F, 0x0001020304050607 pshufb_shf_table: ; use these values for shift constants for the pshufb instruction ; different alignments result in values as shown: ; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1 ; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2 ; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3 ; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4 ; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5 ; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6 ; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7 ; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8 ; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9 ; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10 ; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11 ; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12 ; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13 ; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14 ; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15 dq 0x8786858483828100, 0x8f8e8d8c8b8a8988 dq 0x0706050403020100, 0x000e0d0c0b0a0908