// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "rocksdb/cache.h" #include #include #include #include #include #include "cache/lru_cache.h" #include "port/stack_trace.h" #include "test_util/testharness.h" #include "util/coding.h" #include "util/string_util.h" // HyperClockCache only supports 16-byte keys, so some of the tests // originally written for LRUCache do not work on the other caches. // Those tests were adapted to use 16-byte keys. We kept the original ones. // TODO: Remove the original tests if they ever become unused. namespace ROCKSDB_NAMESPACE { namespace { // Conversions between numeric keys/values and the types expected by Cache. std::string EncodeKey16Bytes(int k) { std::string result; PutFixed32(&result, k); result.append(std::string(12, 'a')); // Because we need a 16B output, we // add a 12-byte padding. return result; } int DecodeKey16Bytes(const Slice& k) { assert(k.size() == 16); return DecodeFixed32(k.data()); // Decodes only the first 4 bytes of k. } std::string EncodeKey32Bits(int k) { std::string result; PutFixed32(&result, k); return result; } int DecodeKey32Bits(const Slice& k) { assert(k.size() == 4); return DecodeFixed32(k.data()); } void* EncodeValue(uintptr_t v) { return reinterpret_cast(v); } int DecodeValue(void* v) { return static_cast(reinterpret_cast(v)); } void DumbDeleter(const Slice& /*key*/, void* /*value*/) {} void EraseDeleter1(const Slice& /*key*/, void* value) { Cache* cache = reinterpret_cast(value); cache->Erase("foo"); } void EraseDeleter2(const Slice& /*key*/, void* value) { Cache* cache = reinterpret_cast(value); cache->Erase(EncodeKey16Bytes(1234)); } const std::string kLRU = "lru"; const std::string kHyperClock = "hyper_clock"; } // anonymous namespace class CacheTest : public testing::TestWithParam { public: static CacheTest* current_; static std::string type_; static void Deleter(const Slice& key, void* v) { if (type_ == kHyperClock) { current_->deleted_keys_.push_back(DecodeKey16Bytes(key)); } else { current_->deleted_keys_.push_back(DecodeKey32Bits(key)); } current_->deleted_values_.push_back(DecodeValue(v)); } static const int kCacheSize = 1000; static const int kNumShardBits = 4; static const int kCacheSize2 = 100; static const int kNumShardBits2 = 2; std::vector deleted_keys_; std::vector deleted_values_; std::shared_ptr cache_; std::shared_ptr cache2_; size_t estimated_value_size_ = 1; CacheTest() : cache_(NewCache(kCacheSize, kNumShardBits, false)), cache2_(NewCache(kCacheSize2, kNumShardBits2, false)) { current_ = this; type_ = GetParam(); } ~CacheTest() override {} std::shared_ptr NewCache(size_t capacity) { auto type = GetParam(); if (type == kLRU) { return NewLRUCache(capacity); } if (type == kHyperClock) { return HyperClockCacheOptions( capacity, estimated_value_size_ /*estimated_value_size*/) .MakeSharedCache(); } return nullptr; } std::shared_ptr NewCache( size_t capacity, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy charge_policy = kDontChargeCacheMetadata) { auto type = GetParam(); if (type == kLRU) { LRUCacheOptions co; co.capacity = capacity; co.num_shard_bits = num_shard_bits; co.strict_capacity_limit = strict_capacity_limit; co.high_pri_pool_ratio = 0; co.metadata_charge_policy = charge_policy; return NewLRUCache(co); } if (type == kHyperClock) { return HyperClockCacheOptions(capacity, 1 /*estimated_value_size*/, num_shard_bits, strict_capacity_limit, nullptr /*allocator*/, charge_policy) .MakeSharedCache(); } return nullptr; } // These functions encode/decode keys in tests cases that use // int keys. // Currently, HyperClockCache requires keys to be 16B long, whereas // LRUCache doesn't, so the encoding depends on the cache type. std::string EncodeKey(int k) { auto type = GetParam(); if (type == kHyperClock) { return EncodeKey16Bytes(k); } else { return EncodeKey32Bits(k); } } int DecodeKey(const Slice& k) { auto type = GetParam(); if (type == kHyperClock) { return DecodeKey16Bytes(k); } else { return DecodeKey32Bits(k); } } int Lookup(std::shared_ptr cache, int key) { Cache::Handle* handle = cache->Lookup(EncodeKey(key)); const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle)); if (handle != nullptr) { cache->Release(handle); } return r; } void Insert(std::shared_ptr cache, int key, int value, int charge = 1) { EXPECT_OK(cache->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter)); } void Erase(std::shared_ptr cache, int key) { cache->Erase(EncodeKey(key)); } int Lookup(int key) { return Lookup(cache_, key); } void Insert(int key, int value, int charge = 1) { Insert(cache_, key, value, charge); } void Erase(int key) { Erase(cache_, key); } int Lookup2(int key) { return Lookup(cache2_, key); } void Insert2(int key, int value, int charge = 1) { Insert(cache2_, key, value, charge); } void Erase2(int key) { Erase(cache2_, key); } }; CacheTest* CacheTest::current_; std::string CacheTest::type_; class LRUCacheTest : public CacheTest {}; TEST_P(CacheTest, UsageTest) { auto type = GetParam(); // cache is std::shared_ptr and will be automatically cleaned up. const size_t kCapacity = 100000; auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata); auto precise_cache = NewCache(kCapacity, 0, false, kFullChargeCacheMetadata); ASSERT_EQ(0, cache->GetUsage()); size_t baseline_meta_usage = precise_cache->GetUsage(); if (type != kHyperClock) { ASSERT_EQ(0, baseline_meta_usage); } size_t usage = 0; char value[10] = "abcdef"; // make sure everything will be cached for (int i = 1; i < 100; ++i) { std::string key; if (type == kLRU) { key = std::string(i, 'a'); } else { key = EncodeKey(i); } auto kv_size = key.size() + 5; ASSERT_OK(cache->Insert(key, reinterpret_cast(value), kv_size, DumbDeleter)); ASSERT_OK(precise_cache->Insert(key, reinterpret_cast(value), kv_size, DumbDeleter)); usage += kv_size; ASSERT_EQ(usage, cache->GetUsage()); if (type == kHyperClock) { ASSERT_EQ(baseline_meta_usage + usage, precise_cache->GetUsage()); } else { ASSERT_LT(usage, precise_cache->GetUsage()); } } cache->EraseUnRefEntries(); precise_cache->EraseUnRefEntries(); ASSERT_EQ(0, cache->GetUsage()); ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage()); // make sure the cache will be overloaded for (size_t i = 1; i < kCapacity; ++i) { std::string key; if (type == kLRU) { key = std::to_string(i); } else { key = EncodeKey(static_cast(1000 + i)); } ASSERT_OK(cache->Insert(key, reinterpret_cast(value), key.size() + 5, DumbDeleter)); ASSERT_OK(precise_cache->Insert(key, reinterpret_cast(value), key.size() + 5, DumbDeleter)); } // the usage should be close to the capacity ASSERT_GT(kCapacity, cache->GetUsage()); ASSERT_GT(kCapacity, precise_cache->GetUsage()); ASSERT_LT(kCapacity * 0.95, cache->GetUsage()); if (type != kHyperClock) { ASSERT_LT(kCapacity * 0.95, precise_cache->GetUsage()); } else { // estimated value size of 1 is weird for clock cache, because // almost all of the capacity will be used for metadata, and due to only // using power of 2 table sizes, we might hit strict occupancy limit // before hitting capacity limit. ASSERT_LT(kCapacity * 0.80, precise_cache->GetUsage()); } } // TODO: This test takes longer than expected on ClockCache. This is // because the values size estimate at construction is too sloppy. // Fix this. // Why is it so slow? The cache is constructed with an estimate of 1, but // then the charge is claimed to be 21. This will cause the hash table // to be extremely sparse, which in turn means clock needs to scan too // many slots to find victims. TEST_P(CacheTest, PinnedUsageTest) { auto type = GetParam(); // cache is std::shared_ptr and will be automatically cleaned up. const size_t kCapacity = 200000; auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata); auto precise_cache = NewCache(kCapacity, 8, false, kFullChargeCacheMetadata); size_t baseline_meta_usage = precise_cache->GetUsage(); if (type != kHyperClock) { ASSERT_EQ(0, baseline_meta_usage); } size_t pinned_usage = 0; char value[10] = "abcdef"; std::forward_list unreleased_handles; std::forward_list unreleased_handles_in_precise_cache; // Add entries. Unpin some of them after insertion. Then, pin some of them // again. Check GetPinnedUsage(). for (int i = 1; i < 100; ++i) { std::string key; if (type == kLRU) { key = std::string(i, 'a'); } else { key = EncodeKey(i); } auto kv_size = key.size() + 5; Cache::Handle* handle; Cache::Handle* handle_in_precise_cache; ASSERT_OK(cache->Insert(key, reinterpret_cast(value), kv_size, DumbDeleter, &handle)); assert(handle); ASSERT_OK(precise_cache->Insert(key, reinterpret_cast(value), kv_size, DumbDeleter, &handle_in_precise_cache)); assert(handle_in_precise_cache); pinned_usage += kv_size; ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage()); if (i % 2 == 0) { cache->Release(handle); precise_cache->Release(handle_in_precise_cache); pinned_usage -= kv_size; ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage()); } else { unreleased_handles.push_front(handle); unreleased_handles_in_precise_cache.push_front(handle_in_precise_cache); } if (i % 3 == 0) { unreleased_handles.push_front(cache->Lookup(key)); auto x = precise_cache->Lookup(key); assert(x); unreleased_handles_in_precise_cache.push_front(x); // If i % 2 == 0, then the entry was unpinned before Lookup, so pinned // usage increased if (i % 2 == 0) { pinned_usage += kv_size; } ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage()); } } auto precise_cache_pinned_usage = precise_cache->GetPinnedUsage(); ASSERT_LT(pinned_usage, precise_cache_pinned_usage); // check that overloading the cache does not change the pinned usage for (size_t i = 1; i < 2 * kCapacity; ++i) { std::string key; if (type == kLRU) { key = std::to_string(i); } else { key = EncodeKey(static_cast(1000 + i)); } ASSERT_OK(cache->Insert(key, reinterpret_cast(value), key.size() + 5, DumbDeleter)); ASSERT_OK(precise_cache->Insert(key, reinterpret_cast(value), key.size() + 5, DumbDeleter)); } ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage()); cache->EraseUnRefEntries(); precise_cache->EraseUnRefEntries(); ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage()); // release handles for pinned entries to prevent memory leaks for (auto handle : unreleased_handles) { cache->Release(handle); } for (auto handle : unreleased_handles_in_precise_cache) { precise_cache->Release(handle); } ASSERT_EQ(0, cache->GetPinnedUsage()); ASSERT_EQ(0, precise_cache->GetPinnedUsage()); cache->EraseUnRefEntries(); precise_cache->EraseUnRefEntries(); ASSERT_EQ(0, cache->GetUsage()); ASSERT_EQ(baseline_meta_usage, precise_cache->GetUsage()); } TEST_P(CacheTest, HitAndMiss) { ASSERT_EQ(-1, Lookup(100)); Insert(100, 101); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(200, 201); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(100, 102); if (GetParam() == kHyperClock) { // ClockCache usually doesn't overwrite on Insert ASSERT_EQ(101, Lookup(100)); } else { ASSERT_EQ(102, Lookup(100)); } ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); ASSERT_EQ(1U, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); if (GetParam() == kHyperClock) { ASSERT_EQ(102, deleted_values_[0]); } else { ASSERT_EQ(101, deleted_values_[0]); } } TEST_P(CacheTest, InsertSameKey) { if (GetParam() == kHyperClock) { ROCKSDB_GTEST_BYPASS( "ClockCache doesn't guarantee Insert overwrite same key."); return; } Insert(1, 1); Insert(1, 2); ASSERT_EQ(2, Lookup(1)); } TEST_P(CacheTest, Erase) { Erase(200); ASSERT_EQ(0U, deleted_keys_.size()); Insert(100, 101); Insert(200, 201); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1U, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1U, deleted_keys_.size()); } TEST_P(CacheTest, EntriesArePinned) { if (GetParam() == kHyperClock) { ROCKSDB_GTEST_BYPASS( "ClockCache doesn't guarantee Insert overwrite same key."); return; } Insert(100, 101); Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(101, DecodeValue(cache_->Value(h1))); ASSERT_EQ(1U, cache_->GetUsage()); Insert(100, 102); Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(102, DecodeValue(cache_->Value(h2))); ASSERT_EQ(0U, deleted_keys_.size()); ASSERT_EQ(2U, cache_->GetUsage()); cache_->Release(h1); ASSERT_EQ(1U, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); ASSERT_EQ(1U, cache_->GetUsage()); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(1U, deleted_keys_.size()); ASSERT_EQ(1U, cache_->GetUsage()); cache_->Release(h2); ASSERT_EQ(2U, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[1]); ASSERT_EQ(102, deleted_values_[1]); ASSERT_EQ(0U, cache_->GetUsage()); } TEST_P(CacheTest, EvictionPolicy) { Insert(100, 101); Insert(200, 201); // Frequently used entry must be kept around for (int i = 0; i < 2 * kCacheSize; i++) { Insert(1000 + i, 2000 + i); ASSERT_EQ(101, Lookup(100)); } ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); } TEST_P(CacheTest, ExternalRefPinsEntries) { Insert(100, 101); Cache::Handle* h = cache_->Lookup(EncodeKey(100)); ASSERT_TRUE(cache_->Ref(h)); ASSERT_EQ(101, DecodeValue(cache_->Value(h))); ASSERT_EQ(1U, cache_->GetUsage()); for (int i = 0; i < 3; ++i) { if (i > 0) { // First release (i == 1) corresponds to Ref(), second release (i == 2) // corresponds to Lookup(). Then, since all external refs are released, // the below insertions should push out the cache entry. cache_->Release(h); } // double cache size because the usage bit in block cache prevents 100 from // being evicted in the first kCacheSize iterations for (int j = 0; j < 2 * kCacheSize + 100; j++) { Insert(1000 + j, 2000 + j); } // Clock cache is even more stateful and needs more churn to evict if (GetParam() == kHyperClock) { for (int j = 0; j < kCacheSize; j++) { Insert(11000 + j, 11000 + j); } } if (i < 2) { ASSERT_EQ(101, Lookup(100)); } } ASSERT_EQ(-1, Lookup(100)); } TEST_P(CacheTest, EvictionPolicyRef) { Insert(100, 101); Insert(101, 102); Insert(102, 103); Insert(103, 104); Insert(200, 101); Insert(201, 102); Insert(202, 103); Insert(203, 104); Cache::Handle* h201 = cache_->Lookup(EncodeKey(200)); Cache::Handle* h202 = cache_->Lookup(EncodeKey(201)); Cache::Handle* h203 = cache_->Lookup(EncodeKey(202)); Cache::Handle* h204 = cache_->Lookup(EncodeKey(203)); Insert(300, 101); Insert(301, 102); Insert(302, 103); Insert(303, 104); // Insert entries much more than cache capacity. for (int i = 0; i < 100 * kCacheSize; i++) { Insert(1000 + i, 2000 + i); } // Check whether the entries inserted in the beginning // are evicted. Ones without extra ref are evicted and // those with are not. ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(-1, Lookup(101)); ASSERT_EQ(-1, Lookup(102)); ASSERT_EQ(-1, Lookup(103)); ASSERT_EQ(-1, Lookup(300)); ASSERT_EQ(-1, Lookup(301)); ASSERT_EQ(-1, Lookup(302)); ASSERT_EQ(-1, Lookup(303)); ASSERT_EQ(101, Lookup(200)); ASSERT_EQ(102, Lookup(201)); ASSERT_EQ(103, Lookup(202)); ASSERT_EQ(104, Lookup(203)); // Cleaning up all the handles cache_->Release(h201); cache_->Release(h202); cache_->Release(h203); cache_->Release(h204); } TEST_P(CacheTest, EvictEmptyCache) { auto type = GetParam(); // Insert item large than capacity to trigger eviction on empty cache. auto cache = NewCache(1, 0, false); if (type == kLRU) { ASSERT_OK(cache->Insert("foo", nullptr, 10, DumbDeleter)); } else { ASSERT_OK(cache->Insert(EncodeKey(1000), nullptr, 10, DumbDeleter)); } } TEST_P(CacheTest, EraseFromDeleter) { auto type = GetParam(); // Have deleter which will erase item from cache, which will re-enter // the cache at that point. std::shared_ptr cache = NewCache(10, 0, false); std::string foo, bar; Cache::DeleterFn erase_deleter; if (type == kLRU) { foo = "foo"; bar = "bar"; erase_deleter = EraseDeleter1; } else { foo = EncodeKey(1234); bar = EncodeKey(5678); erase_deleter = EraseDeleter2; } ASSERT_OK(cache->Insert(foo, nullptr, 1, DumbDeleter)); ASSERT_OK(cache->Insert(bar, cache.get(), 1, erase_deleter)); cache->Erase(bar); ASSERT_EQ(nullptr, cache->Lookup(foo)); ASSERT_EQ(nullptr, cache->Lookup(bar)); } TEST_P(CacheTest, ErasedHandleState) { // insert a key and get two handles Insert(100, 1000); Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(h1, h2); ASSERT_EQ(DecodeValue(cache_->Value(h1)), 1000); ASSERT_EQ(DecodeValue(cache_->Value(h2)), 1000); // delete the key from the cache Erase(100); // can no longer find in the cache ASSERT_EQ(-1, Lookup(100)); // release one handle cache_->Release(h1); // still can't find in cache ASSERT_EQ(-1, Lookup(100)); cache_->Release(h2); } TEST_P(CacheTest, HeavyEntries) { // Add a bunch of light and heavy entries and then count the combined // size of items still in the cache, which must be approximately the // same as the total capacity. const int kLight = 1; const int kHeavy = 10; int added = 0; int index = 0; while (added < 2 * kCacheSize) { const int weight = (index & 1) ? kLight : kHeavy; Insert(index, 1000 + index, weight); added += weight; index++; } int cached_weight = 0; for (int i = 0; i < index; i++) { const int weight = (i & 1 ? kLight : kHeavy); int r = Lookup(i); if (r >= 0) { cached_weight += weight; ASSERT_EQ(1000 + i, r); } } ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10); } TEST_P(CacheTest, NewId) { uint64_t a = cache_->NewId(); uint64_t b = cache_->NewId(); ASSERT_NE(a, b); } class Value { public: explicit Value(int v) : v_(v) {} int v_; }; namespace { void deleter(const Slice& /*key*/, void* value) { delete static_cast(value); } } // namespace TEST_P(CacheTest, ReleaseAndErase) { std::shared_ptr cache = NewCache(5, 0, false); Cache::Handle* handle; Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1, &CacheTest::Deleter, &handle); ASSERT_TRUE(s.ok()); ASSERT_EQ(5U, cache->GetCapacity()); ASSERT_EQ(1U, cache->GetUsage()); ASSERT_EQ(0U, deleted_keys_.size()); auto erased = cache->Release(handle, true); ASSERT_TRUE(erased); // This tests that deleter has been called ASSERT_EQ(1U, deleted_keys_.size()); } TEST_P(CacheTest, ReleaseWithoutErase) { std::shared_ptr cache = NewCache(5, 0, false); Cache::Handle* handle; Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1, &CacheTest::Deleter, &handle); ASSERT_TRUE(s.ok()); ASSERT_EQ(5U, cache->GetCapacity()); ASSERT_EQ(1U, cache->GetUsage()); ASSERT_EQ(0U, deleted_keys_.size()); auto erased = cache->Release(handle); ASSERT_FALSE(erased); // This tests that deleter is not called. When cache has free capacity it is // not expected to immediately erase the released items. ASSERT_EQ(0U, deleted_keys_.size()); } TEST_P(CacheTest, SetCapacity) { auto type = GetParam(); if (type == kHyperClock) { ROCKSDB_GTEST_BYPASS( "FastLRUCache and HyperClockCache don't support arbitrary capacity " "adjustments."); return; } // test1: increase capacity // lets create a cache with capacity 5, // then, insert 5 elements, then increase capacity // to 10, returned capacity should be 10, usage=5 std::shared_ptr cache = NewCache(5, 0, false); std::vector handles(10); // Insert 5 entries, but not releasing. for (int i = 0; i < 5; i++) { std::string key = EncodeKey(i + 1); Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); ASSERT_TRUE(s.ok()); } ASSERT_EQ(5U, cache->GetCapacity()); ASSERT_EQ(5U, cache->GetUsage()); cache->SetCapacity(10); ASSERT_EQ(10U, cache->GetCapacity()); ASSERT_EQ(5U, cache->GetUsage()); // test2: decrease capacity // insert 5 more elements to cache, then release 5, // then decrease capacity to 7, final capacity should be 7 // and usage should be 7 for (int i = 5; i < 10; i++) { std::string key = EncodeKey(i + 1); Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); ASSERT_TRUE(s.ok()); } ASSERT_EQ(10U, cache->GetCapacity()); ASSERT_EQ(10U, cache->GetUsage()); for (int i = 0; i < 5; i++) { cache->Release(handles[i]); } ASSERT_EQ(10U, cache->GetCapacity()); ASSERT_EQ(10U, cache->GetUsage()); cache->SetCapacity(7); ASSERT_EQ(7, cache->GetCapacity()); ASSERT_EQ(7, cache->GetUsage()); // release remaining 5 to keep valgrind happy for (int i = 5; i < 10; i++) { cache->Release(handles[i]); } // Make sure this doesn't crash or upset ASAN/valgrind cache->DisownData(); } TEST_P(LRUCacheTest, SetStrictCapacityLimit) { // test1: set the flag to false. Insert more keys than capacity. See if they // all go through. std::shared_ptr cache = NewCache(5, 0, false); std::vector handles(10); Status s; for (int i = 0; i < 10; i++) { std::string key = EncodeKey(i + 1); s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); ASSERT_OK(s); ASSERT_NE(nullptr, handles[i]); } ASSERT_EQ(10, cache->GetUsage()); // test2: set the flag to true. Insert and check if it fails. std::string extra_key = EncodeKey(100); Value* extra_value = new Value(0); cache->SetStrictCapacityLimit(true); Cache::Handle* handle; s = cache->Insert(extra_key, extra_value, 1, &deleter, &handle); ASSERT_TRUE(s.IsMemoryLimit()); ASSERT_EQ(nullptr, handle); ASSERT_EQ(10, cache->GetUsage()); for (int i = 0; i < 10; i++) { cache->Release(handles[i]); } // test3: init with flag being true. std::shared_ptr cache2 = NewCache(5, 0, true); for (int i = 0; i < 5; i++) { std::string key = EncodeKey(i + 1); s = cache2->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); ASSERT_OK(s); ASSERT_NE(nullptr, handles[i]); } s = cache2->Insert(extra_key, extra_value, 1, &deleter, &handle); ASSERT_TRUE(s.IsMemoryLimit()); ASSERT_EQ(nullptr, handle); // test insert without handle s = cache2->Insert(extra_key, extra_value, 1, &deleter); // AS if the key have been inserted into cache but get evicted immediately. ASSERT_OK(s); ASSERT_EQ(5, cache2->GetUsage()); ASSERT_EQ(nullptr, cache2->Lookup(extra_key)); for (int i = 0; i < 5; i++) { cache2->Release(handles[i]); } } TEST_P(CacheTest, OverCapacity) { size_t n = 10; // a LRUCache with n entries and one shard only std::shared_ptr cache = NewCache(n, 0, false); std::vector handles(n + 1); // Insert n+1 entries, but not releasing. for (int i = 0; i < static_cast(n + 1); i++) { std::string key = EncodeKey(i + 1); Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); ASSERT_TRUE(s.ok()); } // Guess what's in the cache now? for (int i = 0; i < static_cast(n + 1); i++) { std::string key = EncodeKey(i + 1); auto h = cache->Lookup(key); ASSERT_TRUE(h != nullptr); if (h) cache->Release(h); } // the cache is over capacity since nothing could be evicted ASSERT_EQ(n + 1U, cache->GetUsage()); for (int i = 0; i < static_cast(n + 1); i++) { cache->Release(handles[i]); } if (GetParam() == kHyperClock) { // Make sure eviction is triggered. ASSERT_OK(cache->Insert(EncodeKey(-1), nullptr, 1, &deleter, &handles[0])); // cache is under capacity now since elements were released ASSERT_GE(n, cache->GetUsage()); // clean up cache->Release(handles[0]); } else { // LRUCache checks for over-capacity in Release. // cache is exactly at capacity now with minimal eviction ASSERT_EQ(n, cache->GetUsage()); // element 0 is evicted and the rest is there // This is consistent with the LRU policy since the element 0 // was released first for (int i = 0; i < static_cast(n + 1); i++) { std::string key = EncodeKey(i + 1); auto h = cache->Lookup(key); if (h) { ASSERT_NE(static_cast(i), 0U); cache->Release(h); } else { ASSERT_EQ(static_cast(i), 0U); } } } } namespace { std::vector> legacy_callback_state; void legacy_callback(void* value, size_t charge) { legacy_callback_state.push_back( {DecodeValue(value), static_cast(charge)}); } }; // namespace TEST_P(CacheTest, ApplyToAllCacheEntriesTest) { std::vector> inserted; legacy_callback_state.clear(); for (int i = 0; i < 10; ++i) { Insert(i, i * 2, i + 1); inserted.push_back({i * 2, i + 1}); } cache_->ApplyToAllCacheEntries(legacy_callback, true); std::sort(inserted.begin(), inserted.end()); std::sort(legacy_callback_state.begin(), legacy_callback_state.end()); ASSERT_EQ(inserted.size(), legacy_callback_state.size()); for (int i = 0; i < static_cast(inserted.size()); ++i) { EXPECT_EQ(inserted[i], legacy_callback_state[i]); } } TEST_P(CacheTest, ApplyToAllEntriesTest) { std::vector callback_state; const auto callback = [&](const Slice& key, void* value, size_t charge, Cache::DeleterFn deleter) { callback_state.push_back(std::to_string(DecodeKey(key)) + "," + std::to_string(DecodeValue(value)) + "," + std::to_string(charge)); assert(deleter == &CacheTest::Deleter); }; std::vector inserted; callback_state.clear(); for (int i = 0; i < 10; ++i) { Insert(i, i * 2, i + 1); inserted.push_back(std::to_string(i) + "," + std::to_string(i * 2) + "," + std::to_string(i + 1)); } cache_->ApplyToAllEntries(callback, /*opts*/ {}); std::sort(inserted.begin(), inserted.end()); std::sort(callback_state.begin(), callback_state.end()); ASSERT_EQ(inserted.size(), callback_state.size()); for (int i = 0; i < static_cast(inserted.size()); ++i) { EXPECT_EQ(inserted[i], callback_state[i]); } } TEST_P(CacheTest, ApplyToAllEntriesDuringResize) { // This is a mini-stress test of ApplyToAllEntries, to ensure // items in the cache that are neither added nor removed // during ApplyToAllEntries are counted exactly once. // Insert some entries that we expect to be seen exactly once // during iteration. constexpr int kSpecialCharge = 2; constexpr int kNotSpecialCharge = 1; constexpr int kSpecialCount = 100; size_t expected_usage = 0; for (int i = 0; i < kSpecialCount; ++i) { Insert(i, i * 2, kSpecialCharge); expected_usage += kSpecialCharge; } // For callback int special_count = 0; const auto callback = [&](const Slice&, void*, size_t charge, Cache::DeleterFn) { if (charge == static_cast(kSpecialCharge)) { ++special_count; } }; // Start counting std::thread apply_thread([&]() { // Use small average_entries_per_lock to make the problem difficult Cache::ApplyToAllEntriesOptions opts; opts.average_entries_per_lock = 2; cache_->ApplyToAllEntries(callback, opts); }); // In parallel, add more entries, enough to cause resize but not enough // to cause ejections. (Note: if any cache shard is over capacity, there // will be ejections) for (int i = kSpecialCount * 1; i < kSpecialCount * 5; ++i) { Insert(i, i * 2, kNotSpecialCharge); expected_usage += kNotSpecialCharge; } apply_thread.join(); // verify no evictions ASSERT_EQ(cache_->GetUsage(), expected_usage); // verify everything seen in ApplyToAllEntries ASSERT_EQ(special_count, kSpecialCount); } TEST_P(CacheTest, DefaultShardBits) { // Prevent excessive allocation (to save time & space) estimated_value_size_ = 100000; // Implementations use different minimum shard sizes size_t min_shard_size = (GetParam() == kHyperClock ? 32U * 1024U : 512U) * 1024U; std::shared_ptr cache = NewCache(32U * min_shard_size); ShardedCacheBase* sc = dynamic_cast(cache.get()); ASSERT_EQ(5, sc->GetNumShardBits()); cache = NewCache(min_shard_size / 1000U * 999U); sc = dynamic_cast(cache.get()); ASSERT_EQ(0, sc->GetNumShardBits()); cache = NewCache(3U * 1024U * 1024U * 1024U); sc = dynamic_cast(cache.get()); // current maximum of 6 ASSERT_EQ(6, sc->GetNumShardBits()); if constexpr (sizeof(size_t) > 4) { cache = NewCache(128U * min_shard_size); sc = dynamic_cast(cache.get()); // current maximum of 6 ASSERT_EQ(6, sc->GetNumShardBits()); } } TEST_P(CacheTest, GetChargeAndDeleter) { Insert(1, 2); Cache::Handle* h1 = cache_->Lookup(EncodeKey(1)); ASSERT_EQ(2, DecodeValue(cache_->Value(h1))); ASSERT_EQ(1, cache_->GetCharge(h1)); ASSERT_EQ(&CacheTest::Deleter, cache_->GetDeleter(h1)); cache_->Release(h1); } INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest, testing::Values(kLRU, kHyperClock)); INSTANTIATE_TEST_CASE_P(CacheTestInstance, LRUCacheTest, testing::Values(kLRU)); } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }