// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2012 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/hash.h" #include #include #include #include "test_util/testharness.h" #include "util/coding.h" #include "util/coding_lean.h" #include "util/hash128.h" #include "util/math.h" #include "util/math128.h" using ROCKSDB_NAMESPACE::BijectiveHash2x64; using ROCKSDB_NAMESPACE::BijectiveUnhash2x64; using ROCKSDB_NAMESPACE::DecodeFixed64; using ROCKSDB_NAMESPACE::EncodeFixed32; using ROCKSDB_NAMESPACE::EndianSwapValue; using ROCKSDB_NAMESPACE::GetSliceHash64; using ROCKSDB_NAMESPACE::Hash; using ROCKSDB_NAMESPACE::Hash128; using ROCKSDB_NAMESPACE::Hash2x64; using ROCKSDB_NAMESPACE::Hash64; using ROCKSDB_NAMESPACE::Lower32of64; using ROCKSDB_NAMESPACE::Lower64of128; using ROCKSDB_NAMESPACE::ReverseBits; using ROCKSDB_NAMESPACE::Slice; using ROCKSDB_NAMESPACE::Unsigned128; using ROCKSDB_NAMESPACE::Upper32of64; using ROCKSDB_NAMESPACE::Upper64of128; // The hash algorithm is part of the file format, for example for the Bloom // filters. Test that the hash values are stable for a set of random strings of // varying lengths. TEST(HashTest, Values) { constexpr uint32_t kSeed = 0xbc9f1d34; // Same as BloomHash. EXPECT_EQ(Hash("", 0, kSeed), 3164544308u); EXPECT_EQ(Hash("\x08", 1, kSeed), 422599524u); EXPECT_EQ(Hash("\x17", 1, kSeed), 3168152998u); EXPECT_EQ(Hash("\x9a", 1, kSeed), 3195034349u); EXPECT_EQ(Hash("\x1c", 1, kSeed), 2651681383u); EXPECT_EQ(Hash("\x4d\x76", 2, kSeed), 2447836956u); EXPECT_EQ(Hash("\x52\xd5", 2, kSeed), 3854228105u); EXPECT_EQ(Hash("\x91\xf7", 2, kSeed), 31066776u); EXPECT_EQ(Hash("\xd6\x27", 2, kSeed), 1806091603u); EXPECT_EQ(Hash("\x30\x46\x0b", 3, kSeed), 3808221797u); EXPECT_EQ(Hash("\x56\xdc\xd6", 3, kSeed), 2157698265u); EXPECT_EQ(Hash("\xd4\x52\x33", 3, kSeed), 1721992661u); EXPECT_EQ(Hash("\x6a\xb5\xf4", 3, kSeed), 2469105222u); EXPECT_EQ(Hash("\x67\x53\x81\x1c", 4, kSeed), 118283265u); EXPECT_EQ(Hash("\x69\xb8\xc0\x88", 4, kSeed), 3416318611u); EXPECT_EQ(Hash("\x1e\x84\xaf\x2d", 4, kSeed), 3315003572u); EXPECT_EQ(Hash("\x46\xdc\x54\xbe", 4, kSeed), 447346355u); EXPECT_EQ(Hash("\xd0\x7a\x6e\xea\x56", 5, kSeed), 4255445370u); EXPECT_EQ(Hash("\x86\x83\xd5\xa4\xd8", 5, kSeed), 2390603402u); EXPECT_EQ(Hash("\xb7\x46\xbb\x77\xce", 5, kSeed), 2048907743u); EXPECT_EQ(Hash("\x6c\xa8\xbc\xe5\x99", 5, kSeed), 2177978500u); EXPECT_EQ(Hash("\x5c\x5e\xe1\xa0\x73\x81", 6, kSeed), 1036846008u); EXPECT_EQ(Hash("\x08\x5d\x73\x1c\xe5\x2e", 6, kSeed), 229980482u); EXPECT_EQ(Hash("\x42\xfb\xf2\x52\xb4\x10", 6, kSeed), 3655585422u); EXPECT_EQ(Hash("\x73\xe1\xff\x56\x9c\xce", 6, kSeed), 3502708029u); EXPECT_EQ(Hash("\x5c\xbe\x97\x75\x54\x9a\x52", 7, kSeed), 815120748u); EXPECT_EQ(Hash("\x16\x82\x39\x49\x88\x2b\x36", 7, kSeed), 3056033698u); EXPECT_EQ(Hash("\x59\x77\xf0\xa7\x24\xf4\x78", 7, kSeed), 587205227u); EXPECT_EQ(Hash("\xd3\xa5\x7c\x0e\xc0\x02\x07", 7, kSeed), 2030937252u); EXPECT_EQ(Hash("\x31\x1b\x98\x75\x96\x22\xd3\x9a", 8, kSeed), 469635402u); EXPECT_EQ(Hash("\x38\xd6\xf7\x28\x20\xb4\x8a\xe9", 8, kSeed), 3530274698u); EXPECT_EQ(Hash("\xbb\x18\x5d\xf4\x12\x03\xf7\x99", 8, kSeed), 1974545809u); EXPECT_EQ(Hash("\x80\xd4\x3b\x3b\xae\x22\xa2\x78", 8, kSeed), 3563570120u); EXPECT_EQ(Hash("\x1a\xb5\xd0\xfe\xab\xc3\x61\xb2\x99", 9, kSeed), 2706087434u); EXPECT_EQ(Hash("\x8e\x4a\xc3\x18\x20\x2f\x06\xe6\x3c", 9, kSeed), 1534654151u); EXPECT_EQ(Hash("\xb6\xc0\xdd\x05\x3f\xc4\x86\x4c\xef", 9, kSeed), 2355554696u); EXPECT_EQ(Hash("\x9a\x5f\x78\x0d\xaf\x50\xe1\x1f\x55", 9, kSeed), 1400800912u); EXPECT_EQ(Hash("\x22\x6f\x39\x1f\xf8\xdd\x4f\x52\x17\x94", 10, kSeed), 3420325137u); EXPECT_EQ(Hash("\x32\x89\x2a\x75\x48\x3a\x4a\x02\x69\xdd", 10, kSeed), 3427803584u); EXPECT_EQ(Hash("\x06\x92\x5c\xf4\x88\x0e\x7e\x68\x38\x3e", 10, kSeed), 1152407945u); EXPECT_EQ(Hash("\xbd\x2c\x63\x38\xbf\xe9\x78\xb7\xbf\x15", 10, kSeed), 3382479516u); } // The hash algorithm is part of the file format, for example for the Bloom // filters. TEST(HashTest, Hash64Misc) { constexpr uint32_t kSeed = 0; // Same as GetSliceHash64 for (char fill : {'\0', 'a', '1', '\xff'}) { const size_t max_size = 1000; const std::string str(max_size, fill); for (size_t size = 0; size <= max_size; ++size) { uint64_t here = Hash64(str.data(), size, kSeed); // Must be same as unseeded Hash64 and GetSliceHash64 EXPECT_EQ(here, Hash64(str.data(), size)); EXPECT_EQ(here, GetSliceHash64(Slice(str.data(), size))); // Upper and Lower must reconstruct hash EXPECT_EQ(here, (uint64_t{Upper32of64(here)} << 32) | Lower32of64(here)); EXPECT_EQ(here, (uint64_t{Upper32of64(here)} << 32) + Lower32of64(here)); EXPECT_EQ(here, (uint64_t{Upper32of64(here)} << 32) ^ Lower32of64(here)); // Seed changes hash value (with high probability) for (uint64_t var_seed = 1; var_seed != 0; var_seed <<= 1) { EXPECT_NE(here, Hash64(str.data(), size, var_seed)); } // Size changes hash value (with high probability) size_t max_smaller_by = std::min(size_t{30}, size); for (size_t smaller_by = 1; smaller_by <= max_smaller_by; ++smaller_by) { EXPECT_NE(here, Hash64(str.data(), size - smaller_by, kSeed)); } } } } // Test that hash values are "non-trivial" for "trivial" inputs TEST(HashTest, Hash64Trivial) { // Thorough test too slow for regression testing constexpr bool thorough = false; // For various seeds, make sure hash of empty string is not zero. constexpr uint64_t max_seed = thorough ? 0x1000000 : 0x10000; for (uint64_t seed = 0; seed < max_seed; ++seed) { uint64_t here = Hash64("", 0, seed); EXPECT_NE(Lower32of64(here), 0u); EXPECT_NE(Upper32of64(here), 0u); } // For standard seed, make sure hash of small strings are not zero constexpr uint32_t kSeed = 0; // Same as GetSliceHash64 char input[4]; constexpr int max_len = thorough ? 3 : 2; for (int len = 1; len <= max_len; ++len) { for (uint32_t i = 0; (i >> (len * 8)) == 0; ++i) { EncodeFixed32(input, i); uint64_t here = Hash64(input, len, kSeed); EXPECT_NE(Lower32of64(here), 0u); EXPECT_NE(Upper32of64(here), 0u); } } } // Test that the hash values are stable for a set of random strings of // varying small lengths. TEST(HashTest, Hash64SmallValueSchema) { constexpr uint32_t kSeed = 0; // Same as GetSliceHash64 EXPECT_EQ(Hash64("", 0, kSeed), uint64_t{5999572062939766020u}); EXPECT_EQ(Hash64("\x08", 1, kSeed), uint64_t{583283813901344696u}); EXPECT_EQ(Hash64("\x17", 1, kSeed), uint64_t{16175549975585474943u}); EXPECT_EQ(Hash64("\x9a", 1, kSeed), uint64_t{16322991629225003903u}); EXPECT_EQ(Hash64("\x1c", 1, kSeed), uint64_t{13269285487706833447u}); EXPECT_EQ(Hash64("\x4d\x76", 2, kSeed), uint64_t{6859542833406258115u}); EXPECT_EQ(Hash64("\x52\xd5", 2, kSeed), uint64_t{4919611532550636959u}); EXPECT_EQ(Hash64("\x91\xf7", 2, kSeed), uint64_t{14199427467559720719u}); EXPECT_EQ(Hash64("\xd6\x27", 2, kSeed), uint64_t{12292689282614532691u}); EXPECT_EQ(Hash64("\x30\x46\x0b", 3, kSeed), uint64_t{11404699285340020889u}); EXPECT_EQ(Hash64("\x56\xdc\xd6", 3, kSeed), uint64_t{12404347133785524237u}); EXPECT_EQ(Hash64("\xd4\x52\x33", 3, kSeed), uint64_t{15853805298481534034u}); EXPECT_EQ(Hash64("\x6a\xb5\xf4", 3, kSeed), uint64_t{16863488758399383382u}); EXPECT_EQ(Hash64("\x67\x53\x81\x1c", 4, kSeed), uint64_t{9010661983527562386u}); EXPECT_EQ(Hash64("\x69\xb8\xc0\x88", 4, kSeed), uint64_t{6611781377647041447u}); EXPECT_EQ(Hash64("\x1e\x84\xaf\x2d", 4, kSeed), uint64_t{15290969111616346501u}); EXPECT_EQ(Hash64("\x46\xdc\x54\xbe", 4, kSeed), uint64_t{7063754590279313623u}); EXPECT_EQ(Hash64("\xd0\x7a\x6e\xea\x56", 5, kSeed), uint64_t{6384167718754869899u}); EXPECT_EQ(Hash64("\x86\x83\xd5\xa4\xd8", 5, kSeed), uint64_t{16874407254108011067u}); EXPECT_EQ(Hash64("\xb7\x46\xbb\x77\xce", 5, kSeed), uint64_t{16809880630149135206u}); EXPECT_EQ(Hash64("\x6c\xa8\xbc\xe5\x99", 5, kSeed), uint64_t{1249038833153141148u}); EXPECT_EQ(Hash64("\x5c\x5e\xe1\xa0\x73\x81", 6, kSeed), uint64_t{17358142495308219330u}); EXPECT_EQ(Hash64("\x08\x5d\x73\x1c\xe5\x2e", 6, kSeed), uint64_t{4237646583134806322u}); EXPECT_EQ(Hash64("\x42\xfb\xf2\x52\xb4\x10", 6, kSeed), uint64_t{4373664924115234051u}); EXPECT_EQ(Hash64("\x73\xe1\xff\x56\x9c\xce", 6, kSeed), uint64_t{12012981210634596029u}); EXPECT_EQ(Hash64("\x5c\xbe\x97\x75\x54\x9a\x52", 7, kSeed), uint64_t{5716522398211028826u}); EXPECT_EQ(Hash64("\x16\x82\x39\x49\x88\x2b\x36", 7, kSeed), uint64_t{15604531309862565013u}); EXPECT_EQ(Hash64("\x59\x77\xf0\xa7\x24\xf4\x78", 7, kSeed), uint64_t{8601330687345614172u}); EXPECT_EQ(Hash64("\xd3\xa5\x7c\x0e\xc0\x02\x07", 7, kSeed), uint64_t{8088079329364056942u}); EXPECT_EQ(Hash64("\x31\x1b\x98\x75\x96\x22\xd3\x9a", 8, kSeed), uint64_t{9844314944338447628u}); EXPECT_EQ(Hash64("\x38\xd6\xf7\x28\x20\xb4\x8a\xe9", 8, kSeed), uint64_t{10973293517982163143u}); EXPECT_EQ(Hash64("\xbb\x18\x5d\xf4\x12\x03\xf7\x99", 8, kSeed), uint64_t{9986007080564743219u}); EXPECT_EQ(Hash64("\x80\xd4\x3b\x3b\xae\x22\xa2\x78", 8, kSeed), uint64_t{1729303145008254458u}); EXPECT_EQ(Hash64("\x1a\xb5\xd0\xfe\xab\xc3\x61\xb2\x99", 9, kSeed), uint64_t{13253403748084181481u}); EXPECT_EQ(Hash64("\x8e\x4a\xc3\x18\x20\x2f\x06\xe6\x3c", 9, kSeed), uint64_t{7768754303876232188u}); EXPECT_EQ(Hash64("\xb6\xc0\xdd\x05\x3f\xc4\x86\x4c\xef", 9, kSeed), uint64_t{12439346786701492u}); EXPECT_EQ(Hash64("\x9a\x5f\x78\x0d\xaf\x50\xe1\x1f\x55", 9, kSeed), uint64_t{10841838338450144690u}); EXPECT_EQ(Hash64("\x22\x6f\x39\x1f\xf8\xdd\x4f\x52\x17\x94", 10, kSeed), uint64_t{12883919702069153152u}); EXPECT_EQ(Hash64("\x32\x89\x2a\x75\x48\x3a\x4a\x02\x69\xdd", 10, kSeed), uint64_t{12692903507676842188u}); EXPECT_EQ(Hash64("\x06\x92\x5c\xf4\x88\x0e\x7e\x68\x38\x3e", 10, kSeed), uint64_t{6540985900674032620u}); EXPECT_EQ(Hash64("\xbd\x2c\x63\x38\xbf\xe9\x78\xb7\xbf\x15", 10, kSeed), uint64_t{10551812464348219044u}); } std::string Hash64TestDescriptor(const char *repeat, size_t limit) { const char *mod61_encode = "abcdefghijklmnopqrstuvwxyz123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; std::string input; while (input.size() < limit) { input.append(repeat); } std::string rv; for (size_t i = 0; i < limit; ++i) { uint64_t h = GetSliceHash64(Slice(input.data(), i)); rv.append(1, mod61_encode[static_cast(h % 61)]); } return rv; } // XXPH3 changes its algorithm for various sizes up through 250 bytes, so // we need to check the stability of larger sizes also. TEST(HashTest, Hash64LargeValueSchema) { // Each of these derives a "descriptor" from the hash values for all // lengths up to 430. // Note that "c" is common for the zero-length string. EXPECT_EQ( Hash64TestDescriptor("foo", 430), "cRhyWsY67B6klRA1udmOuiYuX7IthyGBKqbeosz2hzVglWCmQx8nEdnpkvPfYX56Up2OWOTV" "lTzfAoYwvtqKzjD8E9xttR2unelbXbIV67NUe6bOO23BxaSFRcA3njGu5cUWfgwOqNoTsszp" "uPvKRP6qaUR5VdoBkJUCFIefd7edlNK5mv6JYWaGdwxehg65hTkTmjZoPKxTZo4PLyzbL9U4" "xt12ITSfeP2MfBHuLI2z2pDlBb44UQKVMx27LEoAHsdLp3WfWfgH3sdRBRCHm33UxCM4QmE2" "xJ7gqSvNwTeH7v9GlC8zWbGroyD3UVNeShMLx29O7tH1biemLULwAHyIw8zdtLMDpEJ8m2ic" "l6Lb4fDuuFNAs1GCVUthjK8CV8SWI8Rsz5THSwn5CGhpqUwSZcFknjwWIl5rNCvDxXJqYr"); // Note that "1EeRk" is common for "Rocks" EXPECT_EQ( Hash64TestDescriptor("Rocks", 430), "c1EeRkrzgOYWLA8PuhJrwTePJewoB44WdXYDfhbk3ZxTqqg25WlPExDl7IKIQLJvnA6gJxxn" "9TCSLkFGfJeXehaSS1GBqWSzfhEH4VXiXIUCuxJXxtKXcSC6FrNIQGTZbYDiUOLD6Y5inzrF" "9etwQhXUBanw55xAUdNMFQAm2GjJ6UDWp2mISLiMMkLjANWMKLaZMqaFLX37qB4MRO1ooVRv" "zSvaNRSCLxlggQCasQq8icWjzf3HjBlZtU6pd4rkaUxSzHqmo9oM5MghbU5Rtxg8wEfO7lVN" "5wdMONYecslQTwjZUpO1K3LDf3K3XK6sUXM6ShQQ3RHmMn2acB4YtTZ3QQcHYJSOHn2DuWpa" "Q8RqzX5lab92YmOLaCdOHq1BPsM7SIBzMdLgePNsJ1vvMALxAaoDUHPxoFLO2wx18IXnyX"); EXPECT_EQ( Hash64TestDescriptor("RocksDB", 430), "c1EeRkukbkb28wLTahwD2sfUhZzaBEnF8SVrxnPVB6A7b8CaAl3UKsDZISF92GSq2wDCukOq" "Jgrsp7A3KZhDiLW8dFXp8UPqPxMCRlMdZeVeJ2dJxrmA6cyt99zkQFj7ELbut6jAeVqARFnw" "fnWVXOsaLrq7bDCbMcns2DKvTaaqTCLMYxI7nhtLpFN1jR755FRQFcOzrrDbh7QhypjdvlYw" "cdAMSZgp9JMHxbM23wPSuH6BOFgxejz35PScZfhDPvTOxIy1jc3MZsWrMC3P324zNolO7JdW" "CX2I5UDKjjaEJfxbgVgJIXxtQGlmj2xkO5sPpjULQV4X2HlY7FQleJ4QRaJIB4buhCA4vUTF" "eMFlxCIYUpTCsal2qsmnGOWa8WCcefrohMjDj1fjzSvSaQwlpyR1GZHF2uPOoQagiCpHpm"); } TEST(HashTest, Hash128Misc) { constexpr uint32_t kSeed = 0; // Same as GetSliceHash128 for (char fill : {'\0', 'a', '1', '\xff', 'e'}) { const size_t max_size = 1000; std::string str(max_size, fill); if (fill == 'e') { // Use different characters to check endianness handling for (size_t i = 0; i < str.size(); ++i) { str[i] += static_cast(i); } } for (size_t size = 0; size <= max_size; ++size) { Unsigned128 here = Hash128(str.data(), size, kSeed); // Must be same as unseeded Hash128 and GetSliceHash128 EXPECT_EQ(here, Hash128(str.data(), size)); EXPECT_EQ(here, GetSliceHash128(Slice(str.data(), size))); { uint64_t hi, lo; Hash2x64(str.data(), size, &hi, &lo); EXPECT_EQ(Lower64of128(here), lo); EXPECT_EQ(Upper64of128(here), hi); } if (size == 16) { const uint64_t in_hi = DecodeFixed64(str.data() + 8); const uint64_t in_lo = DecodeFixed64(str.data()); uint64_t hi, lo; BijectiveHash2x64(in_hi, in_lo, &hi, &lo); EXPECT_EQ(Lower64of128(here), lo); EXPECT_EQ(Upper64of128(here), hi); uint64_t un_hi, un_lo; BijectiveUnhash2x64(hi, lo, &un_hi, &un_lo); EXPECT_EQ(in_lo, un_lo); EXPECT_EQ(in_hi, un_hi); } // Upper and Lower must reconstruct hash EXPECT_EQ(here, (Unsigned128{Upper64of128(here)} << 64) | Lower64of128(here)); EXPECT_EQ(here, (Unsigned128{Upper64of128(here)} << 64) ^ Lower64of128(here)); // Seed changes hash value (with high probability) for (uint64_t var_seed = 1; var_seed != 0; var_seed <<= 1) { Unsigned128 seeded = Hash128(str.data(), size, var_seed); EXPECT_NE(here, seeded); // Must match seeded Hash2x64 { uint64_t hi, lo; Hash2x64(str.data(), size, var_seed, &hi, &lo); EXPECT_EQ(Lower64of128(seeded), lo); EXPECT_EQ(Upper64of128(seeded), hi); } if (size == 16) { const uint64_t in_hi = DecodeFixed64(str.data() + 8); const uint64_t in_lo = DecodeFixed64(str.data()); uint64_t hi, lo; BijectiveHash2x64(in_hi, in_lo, var_seed, &hi, &lo); EXPECT_EQ(Lower64of128(seeded), lo); EXPECT_EQ(Upper64of128(seeded), hi); uint64_t un_hi, un_lo; BijectiveUnhash2x64(hi, lo, var_seed, &un_hi, &un_lo); EXPECT_EQ(in_lo, un_lo); EXPECT_EQ(in_hi, un_hi); } } // Size changes hash value (with high probability) size_t max_smaller_by = std::min(size_t{30}, size); for (size_t smaller_by = 1; smaller_by <= max_smaller_by; ++smaller_by) { EXPECT_NE(here, Hash128(str.data(), size - smaller_by, kSeed)); } } } } // Test that hash values are "non-trivial" for "trivial" inputs TEST(HashTest, Hash128Trivial) { // Thorough test too slow for regression testing constexpr bool thorough = false; // For various seeds, make sure hash of empty string is not zero. constexpr uint64_t max_seed = thorough ? 0x1000000 : 0x10000; for (uint64_t seed = 0; seed < max_seed; ++seed) { Unsigned128 here = Hash128("", 0, seed); EXPECT_NE(Lower64of128(here), 0u); EXPECT_NE(Upper64of128(here), 0u); } // For standard seed, make sure hash of small strings are not zero constexpr uint32_t kSeed = 0; // Same as GetSliceHash128 char input[4]; constexpr int max_len = thorough ? 3 : 2; for (int len = 1; len <= max_len; ++len) { for (uint32_t i = 0; (i >> (len * 8)) == 0; ++i) { EncodeFixed32(input, i); Unsigned128 here = Hash128(input, len, kSeed); EXPECT_NE(Lower64of128(here), 0u); EXPECT_NE(Upper64of128(here), 0u); } } } std::string Hash128TestDescriptor(const char *repeat, size_t limit) { const char *mod61_encode = "abcdefghijklmnopqrstuvwxyz123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; std::string input; while (input.size() < limit) { input.append(repeat); } std::string rv; for (size_t i = 0; i < limit; ++i) { auto h = GetSliceHash128(Slice(input.data(), i)); uint64_t h2 = Upper64of128(h) + Lower64of128(h); rv.append(1, mod61_encode[static_cast(h2 % 61)]); } return rv; } // XXH3 changes its algorithm for various sizes up through 250 bytes, so // we need to check the stability of larger sizes also. TEST(HashTest, Hash128ValueSchema) { // Each of these derives a "descriptor" from the hash values for all // lengths up to 430. // Note that "b" is common for the zero-length string. EXPECT_EQ( Hash128TestDescriptor("foo", 430), "bUMA3As8n9I4vNGhThXlEevxZlyMcbb6TYAlIKJ2f5ponsv99q962rYclQ7u3gfnRdCDQ5JI" "2LrGUaCycbXrvLFe4SjgRb9RQwCfrnmNQ7VSEwSKMnkGCK3bDbXSrnIh5qLXdtvIZklbJpGH" "Dqr93BlqF9ubTnOSYkSdx89XvQqflMIW8bjfQp9BPjQejWOeEQspnN1D3sfgVdFhpaQdHYA5" "pI2XcPlCMFPxvrFuRr7joaDvjNe9IUZaunLPMewuXmC3EL95h52Ju3D7y9RNKhgYxMTrA84B" "yJrMvyjdm3vlBxet4EN7v2GEyjbGuaZW9UL6lrX6PghJDg7ACfLGdxNbH3qXM4zaiG2RKnL5" "S3WXKR78RBB5fRFQ8KDIEQjHFvSNsc3GrAEi6W8P2lv8JMTzjBODO2uN4wadVQFT9wpGfV"); // Note that "35D2v" is common for "Rocks" EXPECT_EQ( Hash128TestDescriptor("Rocks", 430), "b35D2vzvklFVDqJmyLRXyApwGGO3EAT3swhe8XJAN3mY2UVPglzdmydxcba6JI2tSvwO6zSu" "ANpjSM7tc9G5iMhsa7R8GfyCXRO1TnLg7HvdWNdgGGBirxZR68BgT7TQsYJt6zyEyISeXI1n" "MXA48Xo7dWfJeYN6Z4KWlqZY7TgFXGbks9AX4ehZNSGtIhdO5i58qlgVX1bEejeOVaCcjC79" "67DrMfOKds7rUQzjBa77sMPcoPW1vu6ljGJPZH3XkRyDMZ1twxXKkNxN3tE8nR7JHwyqBAxE" "fTcjbOWrLZ1irWxRSombD8sGDEmclgF11IxqEhe3Rt7gyofO3nExGckKkS9KfRqsCHbiUyva" "JGkJwUHRXaZnh58b4i1Ei9aQKZjXlvIVDixoZrjcNaH5XJIJlRZce9Z9t82wYapTpckYSg"); EXPECT_EQ( Hash128TestDescriptor("RocksDB", 430), "b35D2vFUst3XDZCRlSrhmYYakmqImV97LbBsV6EZlOEQpUPH1d1sD3xMKAPlA5UErHehg5O7" "n966fZqhAf3hRc24kGCLfNAWjyUa7vSNOx3IcPoTyVRFZeFlcCtfl7t1QJumHOCpS33EBmBF" "hvK13QjBbDWYWeHQhJhgV9Mqbx17TIcvUkEnYZxb8IzWNmjVsJG44Z7v52DjGj1ZzS62S2Vv" "qWcDO7apvH5VHg68E9Wl6nXP21vlmUqEH9GeWRehfWVvY7mUpsAg5drHHQyDSdiMceiUuUxJ" "XJqHFcDdzbbPk7xDvbLgWCKvH8k3MpQNWOmbSSRDdAP6nGlDjoTToYkcqVREHJzztSWAAq5h" "GHSUNJ6OxsMHhf8EhXfHtKyUzRmPtjYyeckQcGmrQfFFLidc6cjMDKCdBG6c6HVBrS7H2R"); } TEST(FastRange32Test, Values) { using ROCKSDB_NAMESPACE::FastRange32; // Zero range EXPECT_EQ(FastRange32(0, 0), 0U); EXPECT_EQ(FastRange32(123, 0), 0U); EXPECT_EQ(FastRange32(0xffffffff, 0), 0U); // One range EXPECT_EQ(FastRange32(0, 1), 0U); EXPECT_EQ(FastRange32(123, 1), 0U); EXPECT_EQ(FastRange32(0xffffffff, 1), 0U); // Two range EXPECT_EQ(FastRange32(0, 2), 0U); EXPECT_EQ(FastRange32(123, 2), 0U); EXPECT_EQ(FastRange32(0x7fffffff, 2), 0U); EXPECT_EQ(FastRange32(0x80000000, 2), 1U); EXPECT_EQ(FastRange32(0xffffffff, 2), 1U); // Seven range EXPECT_EQ(FastRange32(0, 7), 0U); EXPECT_EQ(FastRange32(123, 7), 0U); EXPECT_EQ(FastRange32(613566756, 7), 0U); EXPECT_EQ(FastRange32(613566757, 7), 1U); EXPECT_EQ(FastRange32(1227133513, 7), 1U); EXPECT_EQ(FastRange32(1227133514, 7), 2U); // etc. EXPECT_EQ(FastRange32(0xffffffff, 7), 6U); // Big EXPECT_EQ(FastRange32(1, 0x80000000), 0U); EXPECT_EQ(FastRange32(2, 0x80000000), 1U); EXPECT_EQ(FastRange32(4, 0x7fffffff), 1U); EXPECT_EQ(FastRange32(4, 0x80000000), 2U); EXPECT_EQ(FastRange32(0xffffffff, 0x7fffffff), 0x7ffffffeU); EXPECT_EQ(FastRange32(0xffffffff, 0x80000000), 0x7fffffffU); } TEST(FastRange64Test, Values) { using ROCKSDB_NAMESPACE::FastRange64; // Zero range EXPECT_EQ(FastRange64(0, 0), 0U); EXPECT_EQ(FastRange64(123, 0), 0U); EXPECT_EQ(FastRange64(0xffffFFFF, 0), 0U); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 0), 0U); // One range EXPECT_EQ(FastRange64(0, 1), 0U); EXPECT_EQ(FastRange64(123, 1), 0U); EXPECT_EQ(FastRange64(0xffffFFFF, 1), 0U); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 1), 0U); // Two range EXPECT_EQ(FastRange64(0, 2), 0U); EXPECT_EQ(FastRange64(123, 2), 0U); EXPECT_EQ(FastRange64(0xffffFFFF, 2), 0U); EXPECT_EQ(FastRange64(0x7fffFFFFffffFFFF, 2), 0U); EXPECT_EQ(FastRange64(0x8000000000000000, 2), 1U); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 2), 1U); // Seven range EXPECT_EQ(FastRange64(0, 7), 0U); EXPECT_EQ(FastRange64(123, 7), 0U); EXPECT_EQ(FastRange64(0xffffFFFF, 7), 0U); EXPECT_EQ(FastRange64(2635249153387078802, 7), 0U); EXPECT_EQ(FastRange64(2635249153387078803, 7), 1U); EXPECT_EQ(FastRange64(5270498306774157604, 7), 1U); EXPECT_EQ(FastRange64(5270498306774157605, 7), 2U); EXPECT_EQ(FastRange64(0x7fffFFFFffffFFFF, 7), 3U); EXPECT_EQ(FastRange64(0x8000000000000000, 7), 3U); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 7), 6U); // Big but 32-bit range EXPECT_EQ(FastRange64(0x100000000, 0x80000000), 0U); EXPECT_EQ(FastRange64(0x200000000, 0x80000000), 1U); EXPECT_EQ(FastRange64(0x400000000, 0x7fffFFFF), 1U); EXPECT_EQ(FastRange64(0x400000000, 0x80000000), 2U); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 0x7fffFFFF), 0x7fffFFFEU); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 0x80000000), 0x7fffFFFFU); // Big, > 32-bit range #if SIZE_MAX == UINT64_MAX EXPECT_EQ(FastRange64(0x7fffFFFFffffFFFF, 0x4200000002), 0x2100000000U); EXPECT_EQ(FastRange64(0x8000000000000000, 0x4200000002), 0x2100000001U); EXPECT_EQ(FastRange64(0x0000000000000000, 420000000002), 0U); EXPECT_EQ(FastRange64(0x7fffFFFFffffFFFF, 420000000002), 210000000000U); EXPECT_EQ(FastRange64(0x8000000000000000, 420000000002), 210000000001U); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 420000000002), 420000000001U); EXPECT_EQ(FastRange64(0xffffFFFFffffFFFF, 0xffffFFFFffffFFFF), 0xffffFFFFffffFFFEU); #endif } TEST(FastRangeGenericTest, Values) { using ROCKSDB_NAMESPACE::FastRangeGeneric; // Generic (including big and small) // Note that FastRangeGeneric is also tested indirectly above via // FastRange32 and FastRange64. EXPECT_EQ( FastRangeGeneric(uint64_t{0x8000000000000000}, uint64_t{420000000002}), uint64_t{210000000001}); EXPECT_EQ(FastRangeGeneric(uint64_t{0x8000000000000000}, uint16_t{12468}), uint16_t{6234}); EXPECT_EQ(FastRangeGeneric(uint32_t{0x80000000}, uint16_t{12468}), uint16_t{6234}); // Not recommended for typical use because for example this could fail on // some platforms and pass on others: // EXPECT_EQ(FastRangeGeneric(static_cast(0x80000000), // uint16_t{12468}), // uint16_t{6234}); } // for inspection of disassembly uint32_t FastRange32(uint32_t hash, uint32_t range) { return ROCKSDB_NAMESPACE::FastRange32(hash, range); } // for inspection of disassembly size_t FastRange64(uint64_t hash, size_t range) { return ROCKSDB_NAMESPACE::FastRange64(hash, range); } // Tests for math.h / math128.h (not worth a separate test binary) using ROCKSDB_NAMESPACE::BitParity; using ROCKSDB_NAMESPACE::BitsSetToOne; using ROCKSDB_NAMESPACE::ConstexprFloorLog2; using ROCKSDB_NAMESPACE::CountTrailingZeroBits; using ROCKSDB_NAMESPACE::DecodeFixed128; using ROCKSDB_NAMESPACE::DecodeFixedGeneric; using ROCKSDB_NAMESPACE::DownwardInvolution; using ROCKSDB_NAMESPACE::EncodeFixed128; using ROCKSDB_NAMESPACE::EncodeFixedGeneric; using ROCKSDB_NAMESPACE::FloorLog2; using ROCKSDB_NAMESPACE::Lower64of128; using ROCKSDB_NAMESPACE::Multiply64to128; using ROCKSDB_NAMESPACE::Unsigned128; using ROCKSDB_NAMESPACE::Upper64of128; int blah(int x) { return DownwardInvolution(x); } template static void test_BitOps() { // This complex code is to generalize to 128-bit values. Otherwise // we could just use = static_cast(0x5555555555555555ULL); T everyOtherBit = 0; for (unsigned i = 0; i < sizeof(T); ++i) { everyOtherBit = (everyOtherBit << 8) | T{0x55}; } // This one built using bit operations, as our 128-bit layer // might not implement arithmetic such as subtraction. T vm1 = 0; // "v minus one" for (int i = 0; i < int{8 * sizeof(T)}; ++i) { T v = T{1} << i; // If we could directly use arithmetic: // T vm1 = static_cast(v - 1); // FloorLog2 if (v > 0) { EXPECT_EQ(FloorLog2(v), i); EXPECT_EQ(ConstexprFloorLog2(v), i); } if (vm1 > 0) { EXPECT_EQ(FloorLog2(vm1), i - 1); EXPECT_EQ(ConstexprFloorLog2(vm1), i - 1); EXPECT_EQ(FloorLog2(everyOtherBit & vm1), (i - 1) & ~1); EXPECT_EQ(ConstexprFloorLog2(everyOtherBit & vm1), (i - 1) & ~1); } // CountTrailingZeroBits if (v != 0) { EXPECT_EQ(CountTrailingZeroBits(v), i); } if (vm1 != 0) { EXPECT_EQ(CountTrailingZeroBits(vm1), 0); } if (i < int{8 * sizeof(T)} - 1) { EXPECT_EQ(CountTrailingZeroBits(~vm1 & everyOtherBit), (i + 1) & ~1); } // BitsSetToOne EXPECT_EQ(BitsSetToOne(v), 1); EXPECT_EQ(BitsSetToOne(vm1), i); EXPECT_EQ(BitsSetToOne(vm1 & everyOtherBit), (i + 1) / 2); // BitParity EXPECT_EQ(BitParity(v), 1); EXPECT_EQ(BitParity(vm1), i & 1); EXPECT_EQ(BitParity(vm1 & everyOtherBit), ((i + 1) / 2) & 1); // EndianSwapValue T ev = T{1} << (((sizeof(T) - 1 - (i / 8)) * 8) + i % 8); EXPECT_EQ(EndianSwapValue(v), ev); // ReverseBits EXPECT_EQ(ReverseBits(v), static_cast(T{1} << (8 * sizeof(T) - 1 - i))); #ifdef HAVE_UINT128_EXTENSION // Uses multiplication if (std::is_unsigned::value) { // Technical UB on signed type T rv = T{1} << (8 * sizeof(T) - 1 - i); EXPECT_EQ(ReverseBits(vm1), static_cast(rv * ~T{1})); } #endif // DownwardInvolution { T misc = static_cast(/*random*/ 0xc682cd153d0e3279U + i * /*random*/ 0x9b3972f3bea0baa3U); if constexpr (sizeof(T) > 8) { misc = (misc << 64) | (/*random*/ 0x52af031a38ced62dU + i * /*random*/ 0x936f803d9752ddc3U); } T misc_masked = misc & vm1; EXPECT_LE(misc_masked, vm1); T di_misc_masked = DownwardInvolution(misc_masked); EXPECT_LE(di_misc_masked, vm1); if (misc_masked > 0) { // Highest-order 1 in same position EXPECT_EQ(FloorLog2(misc_masked), FloorLog2(di_misc_masked)); } // Validate involution property on short value EXPECT_EQ(DownwardInvolution(di_misc_masked), misc_masked); // Validate involution property on large value T di_misc = DownwardInvolution(misc); EXPECT_EQ(DownwardInvolution(di_misc), misc); // Highest-order 1 in same position if (misc > 0) { EXPECT_EQ(FloorLog2(misc), FloorLog2(di_misc)); } // Validate distributes over xor. // static_casts to avoid numerical promotion effects. EXPECT_EQ(DownwardInvolution(static_cast(misc_masked ^ vm1)), static_cast(di_misc_masked ^ DownwardInvolution(vm1))); T misc2 = static_cast(misc >> 1); EXPECT_EQ(DownwardInvolution(static_cast(misc ^ misc2)), static_cast(di_misc ^ DownwardInvolution(misc2))); // Choose some small number of bits to pull off to test combined // uniqueness guarantee int in_bits = i % 7; unsigned in_mask = (unsigned{1} << in_bits) - 1U; // IMPLICIT: int out_bits = 8 - in_bits; std::vector seen(256, false); for (int j = 0; j < 255; ++j) { T t_in = misc ^ static_cast(j); unsigned in = static_cast(t_in); unsigned out = static_cast(DownwardInvolution(t_in)); unsigned val = ((out << in_bits) | (in & in_mask)) & 255U; EXPECT_FALSE(seen[val]); seen[val] = true; } if (i + 8 < int{8 * sizeof(T)}) { // Also test manipulating bits in the middle of input is // bijective in bottom of output seen = std::vector(256, false); for (int j = 0; j < 255; ++j) { T in = misc ^ (static_cast(j) << i); unsigned val = static_cast(DownwardInvolution(in)) & 255U; EXPECT_FALSE(seen[val]); seen[val] = true; } } } vm1 = (vm1 << 1) | 1; } EXPECT_EQ(ConstexprFloorLog2(T{1}), 0); EXPECT_EQ(ConstexprFloorLog2(T{2}), 1); EXPECT_EQ(ConstexprFloorLog2(T{3}), 1); EXPECT_EQ(ConstexprFloorLog2(T{42}), 5); } TEST(MathTest, BitOps) { test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); test_BitOps(); } TEST(MathTest, BitOps128) { test_BitOps(); } TEST(MathTest, Math128) { const Unsigned128 sixteenHexOnes = 0x1111111111111111U; const Unsigned128 thirtyHexOnes = (sixteenHexOnes << 56) | sixteenHexOnes; const Unsigned128 sixteenHexTwos = 0x2222222222222222U; const Unsigned128 thirtyHexTwos = (sixteenHexTwos << 56) | sixteenHexTwos; // v will slide from all hex ones to all hex twos Unsigned128 v = thirtyHexOnes; for (int i = 0; i <= 30; ++i) { // Test bitwise operations EXPECT_EQ(BitsSetToOne(v), 30); EXPECT_EQ(BitsSetToOne(~v), 128 - 30); EXPECT_EQ(BitsSetToOne(v & thirtyHexOnes), 30 - i); EXPECT_EQ(BitsSetToOne(v | thirtyHexOnes), 30 + i); EXPECT_EQ(BitsSetToOne(v ^ thirtyHexOnes), 2 * i); EXPECT_EQ(BitsSetToOne(v & thirtyHexTwos), i); EXPECT_EQ(BitsSetToOne(v | thirtyHexTwos), 60 - i); EXPECT_EQ(BitsSetToOne(v ^ thirtyHexTwos), 60 - 2 * i); // Test comparisons EXPECT_EQ(v == thirtyHexOnes, i == 0); EXPECT_EQ(v == thirtyHexTwos, i == 30); EXPECT_EQ(v > thirtyHexOnes, i > 0); EXPECT_EQ(v > thirtyHexTwos, false); EXPECT_EQ(v >= thirtyHexOnes, true); EXPECT_EQ(v >= thirtyHexTwos, i == 30); EXPECT_EQ(v < thirtyHexOnes, false); EXPECT_EQ(v < thirtyHexTwos, i < 30); EXPECT_EQ(v <= thirtyHexOnes, i == 0); EXPECT_EQ(v <= thirtyHexTwos, true); // Update v, clearing upper-most byte v = ((v << 12) >> 8) | 0x2; } for (int i = 0; i < 128; ++i) { // Test shifts Unsigned128 sl = thirtyHexOnes << i; Unsigned128 sr = thirtyHexOnes >> i; EXPECT_EQ(BitsSetToOne(sl), std::min(30, 32 - i / 4)); EXPECT_EQ(BitsSetToOne(sr), std::max(0, 30 - (i + 3) / 4)); EXPECT_EQ(BitsSetToOne(sl & sr), i % 2 ? 0 : std::max(0, 30 - i / 2)); } // Test 64x64->128 multiply Unsigned128 product = Multiply64to128(0x1111111111111111U, 0x2222222222222222U); EXPECT_EQ(Lower64of128(product), 2295594818061633090U); EXPECT_EQ(Upper64of128(product), 163971058432973792U); } TEST(MathTest, Coding128) { const char *in = "_1234567890123456"; // Note: in + 1 is likely unaligned Unsigned128 decoded = DecodeFixed128(in + 1); EXPECT_EQ(Lower64of128(decoded), 0x3837363534333231U); EXPECT_EQ(Upper64of128(decoded), 0x3635343332313039U); char out[18]; out[0] = '_'; EncodeFixed128(out + 1, decoded); out[17] = '\0'; EXPECT_EQ(std::string(in), std::string(out)); } TEST(MathTest, CodingGeneric) { const char *in = "_1234567890123456"; // Decode // Note: in + 1 is likely unaligned Unsigned128 decoded128 = DecodeFixedGeneric(in + 1); EXPECT_EQ(Lower64of128(decoded128), 0x3837363534333231U); EXPECT_EQ(Upper64of128(decoded128), 0x3635343332313039U); uint64_t decoded64 = DecodeFixedGeneric(in + 1); EXPECT_EQ(decoded64, 0x3837363534333231U); uint32_t decoded32 = DecodeFixedGeneric(in + 1); EXPECT_EQ(decoded32, 0x34333231U); uint16_t decoded16 = DecodeFixedGeneric(in + 1); EXPECT_EQ(decoded16, 0x3231U); // Encode char out[18]; out[0] = '_'; memset(out + 1, '\0', 17); EncodeFixedGeneric(out + 1, decoded128); EXPECT_EQ(std::string(in), std::string(out)); memset(out + 1, '\0', 9); EncodeFixedGeneric(out + 1, decoded64); EXPECT_EQ(std::string("_12345678"), std::string(out)); memset(out + 1, '\0', 5); EncodeFixedGeneric(out + 1, decoded32); EXPECT_EQ(std::string("_1234"), std::string(out)); memset(out + 1, '\0', 3); EncodeFixedGeneric(out + 1, decoded16); EXPECT_EQ(std::string("_12"), std::string(out)); } int main(int argc, char **argv) { fprintf(stderr, "NPHash64 id: %x\n", static_cast(ROCKSDB_NAMESPACE::GetSliceNPHash64("RocksDB"))); ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }