// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #pragma once #include "util/coding_lean.h" #include "util/math.h" #ifdef TEST_UINT128_COMPAT #undef HAVE_UINT128_EXTENSION #endif namespace ROCKSDB_NAMESPACE { // Unsigned128 is a 128 bit value supporting (at least) bitwise operators, // shifts, and comparisons. __uint128_t is not always available. #ifdef HAVE_UINT128_EXTENSION using Unsigned128 = __uint128_t; #else struct Unsigned128 { uint64_t lo; uint64_t hi; inline Unsigned128() { static_assert(sizeof(Unsigned128) == 2 * sizeof(uint64_t), "unexpected overhead in representation"); lo = 0; hi = 0; } inline Unsigned128(uint64_t lower) { lo = lower; hi = 0; } inline Unsigned128(uint64_t lower, uint64_t upper) { lo = lower; hi = upper; } explicit operator uint64_t() { return lo; } explicit operator uint32_t() { return static_cast(lo); } explicit operator uint16_t() { return static_cast(lo); } explicit operator uint8_t() { return static_cast(lo); } }; inline Unsigned128 operator<<(const Unsigned128& lhs, unsigned shift) { shift &= 127; Unsigned128 rv; if (shift >= 64) { rv.lo = 0; rv.hi = lhs.lo << (shift & 63); } else { uint64_t tmp = lhs.lo; rv.lo = tmp << shift; // Ensure shift==0 shifts away everything. (This avoids another // conditional branch on shift == 0.) tmp = tmp >> 1 >> (63 - shift); rv.hi = tmp | (lhs.hi << shift); } return rv; } inline Unsigned128& operator<<=(Unsigned128& lhs, unsigned shift) { lhs = lhs << shift; return lhs; } inline Unsigned128 operator>>(const Unsigned128& lhs, unsigned shift) { shift &= 127; Unsigned128 rv; if (shift >= 64) { rv.hi = 0; rv.lo = lhs.hi >> (shift & 63); } else { uint64_t tmp = lhs.hi; rv.hi = tmp >> shift; // Ensure shift==0 shifts away everything tmp = tmp << 1 << (63 - shift); rv.lo = tmp | (lhs.lo >> shift); } return rv; } inline Unsigned128& operator>>=(Unsigned128& lhs, unsigned shift) { lhs = lhs >> shift; return lhs; } inline Unsigned128 operator&(const Unsigned128& lhs, const Unsigned128& rhs) { return Unsigned128(lhs.lo & rhs.lo, lhs.hi & rhs.hi); } inline Unsigned128& operator&=(Unsigned128& lhs, const Unsigned128& rhs) { lhs = lhs & rhs; return lhs; } inline Unsigned128 operator|(const Unsigned128& lhs, const Unsigned128& rhs) { return Unsigned128(lhs.lo | rhs.lo, lhs.hi | rhs.hi); } inline Unsigned128& operator|=(Unsigned128& lhs, const Unsigned128& rhs) { lhs = lhs | rhs; return lhs; } inline Unsigned128 operator^(const Unsigned128& lhs, const Unsigned128& rhs) { return Unsigned128(lhs.lo ^ rhs.lo, lhs.hi ^ rhs.hi); } inline Unsigned128& operator^=(Unsigned128& lhs, const Unsigned128& rhs) { lhs = lhs ^ rhs; return lhs; } inline Unsigned128 operator~(const Unsigned128& v) { return Unsigned128(~v.lo, ~v.hi); } inline bool operator==(const Unsigned128& lhs, const Unsigned128& rhs) { return lhs.lo == rhs.lo && lhs.hi == rhs.hi; } inline bool operator!=(const Unsigned128& lhs, const Unsigned128& rhs) { return lhs.lo != rhs.lo || lhs.hi != rhs.hi; } inline bool operator>(const Unsigned128& lhs, const Unsigned128& rhs) { return lhs.hi > rhs.hi || (lhs.hi == rhs.hi && lhs.lo > rhs.lo); } inline bool operator<(const Unsigned128& lhs, const Unsigned128& rhs) { return lhs.hi < rhs.hi || (lhs.hi == rhs.hi && lhs.lo < rhs.lo); } inline bool operator>=(const Unsigned128& lhs, const Unsigned128& rhs) { return lhs.hi > rhs.hi || (lhs.hi == rhs.hi && lhs.lo >= rhs.lo); } inline bool operator<=(const Unsigned128& lhs, const Unsigned128& rhs) { return lhs.hi < rhs.hi || (lhs.hi == rhs.hi && lhs.lo <= rhs.lo); } #endif inline uint64_t Lower64of128(Unsigned128 v) { #ifdef HAVE_UINT128_EXTENSION return static_cast(v); #else return v.lo; #endif } inline uint64_t Upper64of128(Unsigned128 v) { #ifdef HAVE_UINT128_EXTENSION return static_cast(v >> 64); #else return v.hi; #endif } // This generally compiles down to a single fast instruction on 64-bit. // This doesn't really make sense as operator* because it's not a // general 128x128 multiply and provides more output than 64x64 multiply. inline Unsigned128 Multiply64to128(uint64_t a, uint64_t b) { #ifdef HAVE_UINT128_EXTENSION return Unsigned128{a} * Unsigned128{b}; #else // Full decomposition // NOTE: GCC seems to fully understand this code as 64-bit x 64-bit // -> 128-bit multiplication and optimize it appropriately. uint64_t tmp = uint64_t{b & 0xffffFFFF} * uint64_t{a & 0xffffFFFF}; uint64_t lower = tmp & 0xffffFFFF; tmp >>= 32; tmp += uint64_t{b & 0xffffFFFF} * uint64_t{a >> 32}; // Avoid overflow: first add lower 32 of tmp2, and later upper 32 uint64_t tmp2 = uint64_t{b >> 32} * uint64_t{a & 0xffffFFFF}; tmp += tmp2 & 0xffffFFFF; lower |= tmp << 32; tmp >>= 32; tmp += tmp2 >> 32; tmp += uint64_t{b >> 32} * uint64_t{a >> 32}; return Unsigned128(lower, tmp); #endif } template <> inline int FloorLog2(Unsigned128 v) { if (Upper64of128(v) == 0) { return FloorLog2(Lower64of128(v)); } else { return FloorLog2(Upper64of128(v)) + 64; } } template <> inline int CountTrailingZeroBits(Unsigned128 v) { if (Lower64of128(v) != 0) { return CountTrailingZeroBits(Lower64of128(v)); } else { return CountTrailingZeroBits(Upper64of128(v)) + 64; } } template <> inline int BitsSetToOne(Unsigned128 v) { return BitsSetToOne(Lower64of128(v)) + BitsSetToOne(Upper64of128(v)); } template <> inline int BitParity(Unsigned128 v) { return BitParity(Lower64of128(v) ^ Upper64of128(v)); } template <> inline Unsigned128 EndianSwapValue(Unsigned128 v) { return (Unsigned128{EndianSwapValue(Lower64of128(v))} << 64) | EndianSwapValue(Upper64of128(v)); } template <> inline Unsigned128 ReverseBits(Unsigned128 v) { return (Unsigned128{ReverseBits(Lower64of128(v))} << 64) | ReverseBits(Upper64of128(v)); } template <> inline Unsigned128 DownwardInvolution(Unsigned128 v) { return (Unsigned128{DownwardInvolution(Upper64of128(v))} << 64) | DownwardInvolution(Upper64of128(v) ^ Lower64of128(v)); } template struct IsUnsignedUpTo128 : std::integral_constant::value || std::is_same::value> {}; inline void EncodeFixed128(char* dst, Unsigned128 value) { EncodeFixed64(dst, Lower64of128(value)); EncodeFixed64(dst + 8, Upper64of128(value)); } inline Unsigned128 DecodeFixed128(const char* ptr) { Unsigned128 rv = DecodeFixed64(ptr + 8); return (rv << 64) | DecodeFixed64(ptr); } // A version of EncodeFixed* for generic algorithms. Likely to be used // with Unsigned128, so lives here for now. template inline void EncodeFixedGeneric(char* /*dst*/, T /*value*/) { // Unfortunately, GCC does not appear to optimize this simple code down // to a trivial load on Intel: // // T ret_val = 0; // for (size_t i = 0; i < sizeof(T); ++i) { // ret_val |= (static_cast(static_cast(ptr[i])) << (8 * // i)); // } // return ret_val; // // But does unroll the loop, and does optimize manually unrolled version // for specific sizes down to a trivial load. I have no idea why it doesn't // do both on this code. // So instead, we rely on specializations static_assert(sizeof(T) == 0, "No specialization provided for this type"); } template <> inline void EncodeFixedGeneric(char* dst, uint16_t value) { return EncodeFixed16(dst, value); } template <> inline void EncodeFixedGeneric(char* dst, uint32_t value) { return EncodeFixed32(dst, value); } template <> inline void EncodeFixedGeneric(char* dst, uint64_t value) { return EncodeFixed64(dst, value); } template <> inline void EncodeFixedGeneric(char* dst, Unsigned128 value) { return EncodeFixed128(dst, value); } // A version of EncodeFixed* for generic algorithms. template inline T DecodeFixedGeneric(const char* /*dst*/) { static_assert(sizeof(T) == 0, "No specialization provided for this type"); } template <> inline uint16_t DecodeFixedGeneric(const char* dst) { return DecodeFixed16(dst); } template <> inline uint32_t DecodeFixedGeneric(const char* dst) { return DecodeFixed32(dst); } template <> inline uint64_t DecodeFixedGeneric(const char* dst) { return DecodeFixed64(dst); } template <> inline Unsigned128 DecodeFixedGeneric(const char* dst) { return DecodeFixed128(dst); } } // namespace ROCKSDB_NAMESPACE