/* SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2016-2018 Solarflare Communications Inc. * All rights reserved. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ /* sysconf() */ #include #include #include #include "efx.h" #include "sfc.h" #include "sfc_log.h" #include "sfc_ev.h" #include "sfc_rx.h" #include "sfc_tx.h" #include "sfc_kvargs.h" #include "sfc_tweak.h" int sfc_dma_alloc(const struct sfc_adapter *sa, const char *name, uint16_t id, size_t len, int socket_id, efsys_mem_t *esmp) { const struct rte_memzone *mz; sfc_log_init(sa, "name=%s id=%u len=%lu socket_id=%d", name, id, len, socket_id); mz = rte_eth_dma_zone_reserve(sa->eth_dev, name, id, len, sysconf(_SC_PAGESIZE), socket_id); if (mz == NULL) { sfc_err(sa, "cannot reserve DMA zone for %s:%u %#x@%d: %s", name, (unsigned int)id, (unsigned int)len, socket_id, rte_strerror(rte_errno)); return ENOMEM; } esmp->esm_addr = mz->iova; if (esmp->esm_addr == RTE_BAD_IOVA) { (void)rte_memzone_free(mz); return EFAULT; } esmp->esm_mz = mz; esmp->esm_base = mz->addr; return 0; } void sfc_dma_free(const struct sfc_adapter *sa, efsys_mem_t *esmp) { int rc; sfc_log_init(sa, "name=%s", esmp->esm_mz->name); rc = rte_memzone_free(esmp->esm_mz); if (rc != 0) sfc_err(sa, "rte_memzone_free(() failed: %d", rc); memset(esmp, 0, sizeof(*esmp)); } static uint32_t sfc_phy_cap_from_link_speeds(uint32_t speeds) { uint32_t phy_caps = 0; if (~speeds & ETH_LINK_SPEED_FIXED) { phy_caps |= (1 << EFX_PHY_CAP_AN); /* * If no speeds are specified in the mask, any supported * may be negotiated */ if (speeds == ETH_LINK_SPEED_AUTONEG) phy_caps |= (1 << EFX_PHY_CAP_1000FDX) | (1 << EFX_PHY_CAP_10000FDX) | (1 << EFX_PHY_CAP_25000FDX) | (1 << EFX_PHY_CAP_40000FDX) | (1 << EFX_PHY_CAP_50000FDX) | (1 << EFX_PHY_CAP_100000FDX); } if (speeds & ETH_LINK_SPEED_1G) phy_caps |= (1 << EFX_PHY_CAP_1000FDX); if (speeds & ETH_LINK_SPEED_10G) phy_caps |= (1 << EFX_PHY_CAP_10000FDX); if (speeds & ETH_LINK_SPEED_25G) phy_caps |= (1 << EFX_PHY_CAP_25000FDX); if (speeds & ETH_LINK_SPEED_40G) phy_caps |= (1 << EFX_PHY_CAP_40000FDX); if (speeds & ETH_LINK_SPEED_50G) phy_caps |= (1 << EFX_PHY_CAP_50000FDX); if (speeds & ETH_LINK_SPEED_100G) phy_caps |= (1 << EFX_PHY_CAP_100000FDX); return phy_caps; } /* * Check requested device level configuration. * Receive and transmit configuration is checked in corresponding * modules. */ static int sfc_check_conf(struct sfc_adapter *sa) { const struct rte_eth_conf *conf = &sa->eth_dev->data->dev_conf; int rc = 0; sa->port.phy_adv_cap = sfc_phy_cap_from_link_speeds(conf->link_speeds) & sa->port.phy_adv_cap_mask; if ((sa->port.phy_adv_cap & ~(1 << EFX_PHY_CAP_AN)) == 0) { sfc_err(sa, "No link speeds from mask %#x are supported", conf->link_speeds); rc = EINVAL; } #if !EFSYS_OPT_LOOPBACK if (conf->lpbk_mode != 0) { sfc_err(sa, "Loopback not supported"); rc = EINVAL; } #endif if (conf->dcb_capability_en != 0) { sfc_err(sa, "Priority-based flow control not supported"); rc = EINVAL; } if (conf->fdir_conf.mode != RTE_FDIR_MODE_NONE) { sfc_err(sa, "Flow Director not supported"); rc = EINVAL; } if ((conf->intr_conf.lsc != 0) && (sa->intr.type != EFX_INTR_LINE) && (sa->intr.type != EFX_INTR_MESSAGE)) { sfc_err(sa, "Link status change interrupt not supported"); rc = EINVAL; } if (conf->intr_conf.rxq != 0) { sfc_err(sa, "Receive queue interrupt not supported"); rc = EINVAL; } return rc; } /* * Find out maximum number of receive and transmit queues which could be * advertised. * * NIC is kept initialized on success to allow other modules acquire * defaults and capabilities. */ static int sfc_estimate_resource_limits(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); efx_drv_limits_t limits; int rc; uint32_t evq_allocated; uint32_t rxq_allocated; uint32_t txq_allocated; memset(&limits, 0, sizeof(limits)); /* Request at least one Rx and Tx queue */ limits.edl_min_rxq_count = 1; limits.edl_min_txq_count = 1; /* Management event queue plus event queue for each Tx and Rx queue */ limits.edl_min_evq_count = 1 + limits.edl_min_rxq_count + limits.edl_min_txq_count; /* Divide by number of functions to guarantee that all functions * will get promised resources */ /* FIXME Divide by number of functions (not 2) below */ limits.edl_max_evq_count = encp->enc_evq_limit / 2; SFC_ASSERT(limits.edl_max_evq_count >= limits.edl_min_rxq_count); /* Split equally between receive and transmit */ limits.edl_max_rxq_count = MIN(encp->enc_rxq_limit, (limits.edl_max_evq_count - 1) / 2); SFC_ASSERT(limits.edl_max_rxq_count >= limits.edl_min_rxq_count); limits.edl_max_txq_count = MIN(encp->enc_txq_limit, limits.edl_max_evq_count - 1 - limits.edl_max_rxq_count); if (sa->tso) limits.edl_max_txq_count = MIN(limits.edl_max_txq_count, encp->enc_fw_assisted_tso_v2_n_contexts / encp->enc_hw_pf_count); SFC_ASSERT(limits.edl_max_txq_count >= limits.edl_min_rxq_count); /* Configure the minimum required resources needed for the * driver to operate, and the maximum desired resources that the * driver is capable of using. */ efx_nic_set_drv_limits(sa->nic, &limits); sfc_log_init(sa, "init nic"); rc = efx_nic_init(sa->nic); if (rc != 0) goto fail_nic_init; /* Find resource dimensions assigned by firmware to this function */ rc = efx_nic_get_vi_pool(sa->nic, &evq_allocated, &rxq_allocated, &txq_allocated); if (rc != 0) goto fail_get_vi_pool; /* It still may allocate more than maximum, ensure limit */ evq_allocated = MIN(evq_allocated, limits.edl_max_evq_count); rxq_allocated = MIN(rxq_allocated, limits.edl_max_rxq_count); txq_allocated = MIN(txq_allocated, limits.edl_max_txq_count); /* Subtract management EVQ not used for traffic */ SFC_ASSERT(evq_allocated > 0); evq_allocated--; /* Right now we use separate EVQ for Rx and Tx */ sa->rxq_max = MIN(rxq_allocated, evq_allocated / 2); sa->txq_max = MIN(txq_allocated, evq_allocated - sa->rxq_max); /* Keep NIC initialized */ return 0; fail_get_vi_pool: fail_nic_init: efx_nic_fini(sa->nic); return rc; } static int sfc_set_drv_limits(struct sfc_adapter *sa) { const struct rte_eth_dev_data *data = sa->eth_dev->data; efx_drv_limits_t lim; memset(&lim, 0, sizeof(lim)); /* Limits are strict since take into account initial estimation */ lim.edl_min_evq_count = lim.edl_max_evq_count = 1 + data->nb_rx_queues + data->nb_tx_queues; lim.edl_min_rxq_count = lim.edl_max_rxq_count = data->nb_rx_queues; lim.edl_min_txq_count = lim.edl_max_txq_count = data->nb_tx_queues; return efx_nic_set_drv_limits(sa->nic, &lim); } static int sfc_set_fw_subvariant(struct sfc_adapter *sa) { struct sfc_adapter_shared *sas = sfc_sa2shared(sa); const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); uint64_t tx_offloads = sa->eth_dev->data->dev_conf.txmode.offloads; unsigned int txq_index; efx_nic_fw_subvariant_t req_fw_subvariant; efx_nic_fw_subvariant_t cur_fw_subvariant; int rc; if (!encp->enc_fw_subvariant_no_tx_csum_supported) { sfc_info(sa, "no-Tx-checksum subvariant not supported"); return 0; } for (txq_index = 0; txq_index < sas->txq_count; ++txq_index) { struct sfc_txq_info *txq_info = &sas->txq_info[txq_index]; if (txq_info->state & SFC_TXQ_INITIALIZED) tx_offloads |= txq_info->offloads; } if (tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) req_fw_subvariant = EFX_NIC_FW_SUBVARIANT_DEFAULT; else req_fw_subvariant = EFX_NIC_FW_SUBVARIANT_NO_TX_CSUM; rc = efx_nic_get_fw_subvariant(sa->nic, &cur_fw_subvariant); if (rc != 0) { sfc_err(sa, "failed to get FW subvariant: %d", rc); return rc; } sfc_info(sa, "FW subvariant is %u vs required %u", cur_fw_subvariant, req_fw_subvariant); if (cur_fw_subvariant == req_fw_subvariant) return 0; rc = efx_nic_set_fw_subvariant(sa->nic, req_fw_subvariant); if (rc != 0) { sfc_err(sa, "failed to set FW subvariant %u: %d", req_fw_subvariant, rc); return rc; } sfc_info(sa, "FW subvariant set to %u", req_fw_subvariant); return 0; } static int sfc_try_start(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp; int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(sa->state == SFC_ADAPTER_STARTING); sfc_log_init(sa, "set FW subvariant"); rc = sfc_set_fw_subvariant(sa); if (rc != 0) goto fail_set_fw_subvariant; sfc_log_init(sa, "set resource limits"); rc = sfc_set_drv_limits(sa); if (rc != 0) goto fail_set_drv_limits; sfc_log_init(sa, "init nic"); rc = efx_nic_init(sa->nic); if (rc != 0) goto fail_nic_init; encp = efx_nic_cfg_get(sa->nic); /* * Refresh (since it may change on NIC reset/restart) a copy of * supported tunnel encapsulations in shared memory to be used * on supported Rx packet type classes get. */ sa->priv.shared->tunnel_encaps = encp->enc_tunnel_encapsulations_supported; if (encp->enc_tunnel_encapsulations_supported != 0) { sfc_log_init(sa, "apply tunnel config"); rc = efx_tunnel_reconfigure(sa->nic); if (rc != 0) goto fail_tunnel_reconfigure; } rc = sfc_intr_start(sa); if (rc != 0) goto fail_intr_start; rc = sfc_ev_start(sa); if (rc != 0) goto fail_ev_start; rc = sfc_port_start(sa); if (rc != 0) goto fail_port_start; rc = sfc_rx_start(sa); if (rc != 0) goto fail_rx_start; rc = sfc_tx_start(sa); if (rc != 0) goto fail_tx_start; rc = sfc_flow_start(sa); if (rc != 0) goto fail_flows_insert; sfc_log_init(sa, "done"); return 0; fail_flows_insert: sfc_tx_stop(sa); fail_tx_start: sfc_rx_stop(sa); fail_rx_start: sfc_port_stop(sa); fail_port_start: sfc_ev_stop(sa); fail_ev_start: sfc_intr_stop(sa); fail_intr_start: fail_tunnel_reconfigure: efx_nic_fini(sa->nic); fail_nic_init: fail_set_drv_limits: fail_set_fw_subvariant: sfc_log_init(sa, "failed %d", rc); return rc; } int sfc_start(struct sfc_adapter *sa) { unsigned int start_tries = 3; int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); switch (sa->state) { case SFC_ADAPTER_CONFIGURED: break; case SFC_ADAPTER_STARTED: sfc_notice(sa, "already started"); return 0; default: rc = EINVAL; goto fail_bad_state; } sa->state = SFC_ADAPTER_STARTING; do { rc = sfc_try_start(sa); } while ((--start_tries > 0) && (rc == EIO || rc == EAGAIN || rc == ENOENT || rc == EINVAL)); if (rc != 0) goto fail_try_start; sa->state = SFC_ADAPTER_STARTED; sfc_log_init(sa, "done"); return 0; fail_try_start: sa->state = SFC_ADAPTER_CONFIGURED; fail_bad_state: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_stop(struct sfc_adapter *sa) { sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); switch (sa->state) { case SFC_ADAPTER_STARTED: break; case SFC_ADAPTER_CONFIGURED: sfc_notice(sa, "already stopped"); return; default: sfc_err(sa, "stop in unexpected state %u", sa->state); SFC_ASSERT(B_FALSE); return; } sa->state = SFC_ADAPTER_STOPPING; sfc_flow_stop(sa); sfc_tx_stop(sa); sfc_rx_stop(sa); sfc_port_stop(sa); sfc_ev_stop(sa); sfc_intr_stop(sa); efx_nic_fini(sa->nic); sa->state = SFC_ADAPTER_CONFIGURED; sfc_log_init(sa, "done"); } static int sfc_restart(struct sfc_adapter *sa) { int rc; SFC_ASSERT(sfc_adapter_is_locked(sa)); if (sa->state != SFC_ADAPTER_STARTED) return EINVAL; sfc_stop(sa); rc = sfc_start(sa); if (rc != 0) sfc_err(sa, "restart failed"); return rc; } static void sfc_restart_if_required(void *arg) { struct sfc_adapter *sa = arg; /* If restart is scheduled, clear the flag and do it */ if (rte_atomic32_cmpset((volatile uint32_t *)&sa->restart_required, 1, 0)) { sfc_adapter_lock(sa); if (sa->state == SFC_ADAPTER_STARTED) (void)sfc_restart(sa); sfc_adapter_unlock(sa); } } void sfc_schedule_restart(struct sfc_adapter *sa) { int rc; /* Schedule restart alarm if it is not scheduled yet */ if (!rte_atomic32_test_and_set(&sa->restart_required)) return; rc = rte_eal_alarm_set(1, sfc_restart_if_required, sa); if (rc == -ENOTSUP) sfc_warn(sa, "alarms are not supported, restart is pending"); else if (rc != 0) sfc_err(sa, "cannot arm restart alarm (rc=%d)", rc); else sfc_notice(sa, "restart scheduled"); } int sfc_configure(struct sfc_adapter *sa) { int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED || sa->state == SFC_ADAPTER_CONFIGURED); sa->state = SFC_ADAPTER_CONFIGURING; rc = sfc_check_conf(sa); if (rc != 0) goto fail_check_conf; rc = sfc_intr_configure(sa); if (rc != 0) goto fail_intr_configure; rc = sfc_port_configure(sa); if (rc != 0) goto fail_port_configure; rc = sfc_rx_configure(sa); if (rc != 0) goto fail_rx_configure; rc = sfc_tx_configure(sa); if (rc != 0) goto fail_tx_configure; sa->state = SFC_ADAPTER_CONFIGURED; sfc_log_init(sa, "done"); return 0; fail_tx_configure: sfc_rx_close(sa); fail_rx_configure: sfc_port_close(sa); fail_port_configure: sfc_intr_close(sa); fail_intr_configure: fail_check_conf: sa->state = SFC_ADAPTER_INITIALIZED; sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_close(struct sfc_adapter *sa) { sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); sa->state = SFC_ADAPTER_CLOSING; sfc_tx_close(sa); sfc_rx_close(sa); sfc_port_close(sa); sfc_intr_close(sa); sa->state = SFC_ADAPTER_INITIALIZED; sfc_log_init(sa, "done"); } static int sfc_mem_bar_init(struct sfc_adapter *sa, unsigned int membar) { struct rte_eth_dev *eth_dev = sa->eth_dev; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); efsys_bar_t *ebp = &sa->mem_bar; struct rte_mem_resource *res = &pci_dev->mem_resource[membar]; SFC_BAR_LOCK_INIT(ebp, eth_dev->data->name); ebp->esb_rid = membar; ebp->esb_dev = pci_dev; ebp->esb_base = res->addr; return 0; } static void sfc_mem_bar_fini(struct sfc_adapter *sa) { efsys_bar_t *ebp = &sa->mem_bar; SFC_BAR_LOCK_DESTROY(ebp); memset(ebp, 0, sizeof(*ebp)); } /* * A fixed RSS key which has a property of being symmetric * (symmetrical flows are distributed to the same CPU) * and also known to give a uniform distribution * (a good distribution of traffic between different CPUs) */ static const uint8_t default_rss_key[EFX_RSS_KEY_SIZE] = { 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, }; static int sfc_rss_attach(struct sfc_adapter *sa) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; int rc; rc = efx_intr_init(sa->nic, sa->intr.type, NULL); if (rc != 0) goto fail_intr_init; rc = efx_ev_init(sa->nic); if (rc != 0) goto fail_ev_init; rc = efx_rx_init(sa->nic); if (rc != 0) goto fail_rx_init; rc = efx_rx_scale_default_support_get(sa->nic, &rss->context_type); if (rc != 0) goto fail_scale_support_get; rc = efx_rx_hash_default_support_get(sa->nic, &rss->hash_support); if (rc != 0) goto fail_hash_support_get; rc = sfc_rx_hash_init(sa); if (rc != 0) goto fail_rx_hash_init; efx_rx_fini(sa->nic); efx_ev_fini(sa->nic); efx_intr_fini(sa->nic); rte_memcpy(rss->key, default_rss_key, sizeof(rss->key)); return 0; fail_rx_hash_init: fail_hash_support_get: fail_scale_support_get: efx_rx_fini(sa->nic); fail_rx_init: efx_ev_fini(sa->nic); fail_ev_init: efx_intr_fini(sa->nic); fail_intr_init: return rc; } static void sfc_rss_detach(struct sfc_adapter *sa) { sfc_rx_hash_fini(sa); } int sfc_attach(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp; efx_nic_t *enp = sa->nic; int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); efx_mcdi_new_epoch(enp); sfc_log_init(sa, "reset nic"); rc = efx_nic_reset(enp); if (rc != 0) goto fail_nic_reset; /* * Probed NIC is sufficient for tunnel init. * Initialize tunnel support to be able to use libefx * efx_tunnel_config_udp_{add,remove}() in any state and * efx_tunnel_reconfigure() on start up. */ rc = efx_tunnel_init(enp); if (rc != 0) goto fail_tunnel_init; encp = efx_nic_cfg_get(sa->nic); /* * Make a copy of supported tunnel encapsulations in shared * memory to be used on supported Rx packet type classes get. */ sa->priv.shared->tunnel_encaps = encp->enc_tunnel_encapsulations_supported; if (sa->priv.dp_tx->features & SFC_DP_TX_FEAT_TSO) { sa->tso = encp->enc_fw_assisted_tso_v2_enabled; if (!sa->tso) sfc_info(sa, "TSO support isn't available on this adapter"); } if (sa->tso && sa->priv.dp_tx->features & SFC_DP_TX_FEAT_TSO_ENCAP) { sa->tso_encap = encp->enc_fw_assisted_tso_v2_encap_enabled; if (!sa->tso_encap) sfc_info(sa, "Encapsulated TSO support isn't available on this adapter"); } sfc_log_init(sa, "estimate resource limits"); rc = sfc_estimate_resource_limits(sa); if (rc != 0) goto fail_estimate_rsrc_limits; sa->evq_max_entries = encp->enc_evq_max_nevs; SFC_ASSERT(rte_is_power_of_2(sa->evq_max_entries)); sa->evq_min_entries = encp->enc_evq_min_nevs; SFC_ASSERT(rte_is_power_of_2(sa->evq_min_entries)); sa->rxq_max_entries = encp->enc_rxq_max_ndescs; SFC_ASSERT(rte_is_power_of_2(sa->rxq_max_entries)); sa->rxq_min_entries = encp->enc_rxq_min_ndescs; SFC_ASSERT(rte_is_power_of_2(sa->rxq_min_entries)); sa->txq_max_entries = encp->enc_txq_max_ndescs; SFC_ASSERT(rte_is_power_of_2(sa->txq_max_entries)); sa->txq_min_entries = encp->enc_txq_min_ndescs; SFC_ASSERT(rte_is_power_of_2(sa->txq_min_entries)); rc = sfc_intr_attach(sa); if (rc != 0) goto fail_intr_attach; rc = sfc_ev_attach(sa); if (rc != 0) goto fail_ev_attach; rc = sfc_port_attach(sa); if (rc != 0) goto fail_port_attach; rc = sfc_rss_attach(sa); if (rc != 0) goto fail_rss_attach; rc = sfc_filter_attach(sa); if (rc != 0) goto fail_filter_attach; sfc_log_init(sa, "fini nic"); efx_nic_fini(enp); sfc_flow_init(sa); sa->state = SFC_ADAPTER_INITIALIZED; sfc_log_init(sa, "done"); return 0; fail_filter_attach: sfc_rss_detach(sa); fail_rss_attach: sfc_port_detach(sa); fail_port_attach: sfc_ev_detach(sa); fail_ev_attach: sfc_intr_detach(sa); fail_intr_attach: efx_nic_fini(sa->nic); fail_estimate_rsrc_limits: fail_tunnel_init: efx_tunnel_fini(sa->nic); fail_nic_reset: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_detach(struct sfc_adapter *sa) { sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); sfc_flow_fini(sa); sfc_filter_detach(sa); sfc_rss_detach(sa); sfc_port_detach(sa); sfc_ev_detach(sa); sfc_intr_detach(sa); efx_tunnel_fini(sa->nic); sa->state = SFC_ADAPTER_UNINITIALIZED; } static int sfc_kvarg_fv_variant_handler(__rte_unused const char *key, const char *value_str, void *opaque) { uint32_t *value = opaque; if (strcasecmp(value_str, SFC_KVARG_FW_VARIANT_DONT_CARE) == 0) *value = EFX_FW_VARIANT_DONT_CARE; else if (strcasecmp(value_str, SFC_KVARG_FW_VARIANT_FULL_FEATURED) == 0) *value = EFX_FW_VARIANT_FULL_FEATURED; else if (strcasecmp(value_str, SFC_KVARG_FW_VARIANT_LOW_LATENCY) == 0) *value = EFX_FW_VARIANT_LOW_LATENCY; else if (strcasecmp(value_str, SFC_KVARG_FW_VARIANT_PACKED_STREAM) == 0) *value = EFX_FW_VARIANT_PACKED_STREAM; else if (strcasecmp(value_str, SFC_KVARG_FW_VARIANT_DPDK) == 0) *value = EFX_FW_VARIANT_DPDK; else return -EINVAL; return 0; } static int sfc_get_fw_variant(struct sfc_adapter *sa, efx_fw_variant_t *efv) { efx_nic_fw_info_t enfi; int rc; rc = efx_nic_get_fw_version(sa->nic, &enfi); if (rc != 0) return rc; else if (!enfi.enfi_dpcpu_fw_ids_valid) return ENOTSUP; /* * Firmware variant can be uniquely identified by the RxDPCPU * firmware id */ switch (enfi.enfi_rx_dpcpu_fw_id) { case EFX_RXDP_FULL_FEATURED_FW_ID: *efv = EFX_FW_VARIANT_FULL_FEATURED; break; case EFX_RXDP_LOW_LATENCY_FW_ID: *efv = EFX_FW_VARIANT_LOW_LATENCY; break; case EFX_RXDP_PACKED_STREAM_FW_ID: *efv = EFX_FW_VARIANT_PACKED_STREAM; break; case EFX_RXDP_DPDK_FW_ID: *efv = EFX_FW_VARIANT_DPDK; break; default: /* * Other firmware variants are not considered, since they are * not supported in the device parameters */ *efv = EFX_FW_VARIANT_DONT_CARE; break; } return 0; } static const char * sfc_fw_variant2str(efx_fw_variant_t efv) { switch (efv) { case EFX_RXDP_FULL_FEATURED_FW_ID: return SFC_KVARG_FW_VARIANT_FULL_FEATURED; case EFX_RXDP_LOW_LATENCY_FW_ID: return SFC_KVARG_FW_VARIANT_LOW_LATENCY; case EFX_RXDP_PACKED_STREAM_FW_ID: return SFC_KVARG_FW_VARIANT_PACKED_STREAM; case EFX_RXDP_DPDK_FW_ID: return SFC_KVARG_FW_VARIANT_DPDK; default: return "unknown"; } } static int sfc_kvarg_rxd_wait_timeout_ns(struct sfc_adapter *sa) { int rc; long value; value = SFC_RXD_WAIT_TIMEOUT_NS_DEF; rc = sfc_kvargs_process(sa, SFC_KVARG_RXD_WAIT_TIMEOUT_NS, sfc_kvarg_long_handler, &value); if (rc != 0) return rc; if (value < 0 || (unsigned long)value > EFX_RXQ_ES_SUPER_BUFFER_HOL_BLOCK_MAX) { sfc_err(sa, "wrong '" SFC_KVARG_RXD_WAIT_TIMEOUT_NS "' " "was set (%ld);", value); sfc_err(sa, "it must not be less than 0 or greater than %u", EFX_RXQ_ES_SUPER_BUFFER_HOL_BLOCK_MAX); return EINVAL; } sa->rxd_wait_timeout_ns = value; return 0; } static int sfc_nic_probe(struct sfc_adapter *sa) { efx_nic_t *enp = sa->nic; efx_fw_variant_t preferred_efv; efx_fw_variant_t efv; int rc; preferred_efv = EFX_FW_VARIANT_DONT_CARE; rc = sfc_kvargs_process(sa, SFC_KVARG_FW_VARIANT, sfc_kvarg_fv_variant_handler, &preferred_efv); if (rc != 0) { sfc_err(sa, "invalid %s parameter value", SFC_KVARG_FW_VARIANT); return rc; } rc = sfc_kvarg_rxd_wait_timeout_ns(sa); if (rc != 0) return rc; rc = efx_nic_probe(enp, preferred_efv); if (rc == EACCES) { /* Unprivileged functions cannot set FW variant */ rc = efx_nic_probe(enp, EFX_FW_VARIANT_DONT_CARE); } if (rc != 0) return rc; rc = sfc_get_fw_variant(sa, &efv); if (rc == ENOTSUP) { sfc_warn(sa, "FW variant can not be obtained"); return 0; } if (rc != 0) return rc; /* Check that firmware variant was changed to the requested one */ if (preferred_efv != EFX_FW_VARIANT_DONT_CARE && preferred_efv != efv) { sfc_warn(sa, "FW variant has not changed to the requested %s", sfc_fw_variant2str(preferred_efv)); } sfc_notice(sa, "running FW variant is %s", sfc_fw_variant2str(efv)); return 0; } int sfc_probe(struct sfc_adapter *sa) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(sa->eth_dev); unsigned int membar; efx_nic_t *enp; int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); sa->socket_id = rte_socket_id(); rte_atomic32_init(&sa->restart_required); sfc_log_init(sa, "get family"); rc = efx_family(pci_dev->id.vendor_id, pci_dev->id.device_id, &sa->family, &membar); if (rc != 0) goto fail_family; sfc_log_init(sa, "family is %u, membar is %u", sa->family, membar); sfc_log_init(sa, "init mem bar"); rc = sfc_mem_bar_init(sa, membar); if (rc != 0) goto fail_mem_bar_init; sfc_log_init(sa, "create nic"); rte_spinlock_init(&sa->nic_lock); rc = efx_nic_create(sa->family, (efsys_identifier_t *)sa, &sa->mem_bar, &sa->nic_lock, &enp); if (rc != 0) goto fail_nic_create; sa->nic = enp; rc = sfc_mcdi_init(sa); if (rc != 0) goto fail_mcdi_init; sfc_log_init(sa, "probe nic"); rc = sfc_nic_probe(sa); if (rc != 0) goto fail_nic_probe; sfc_log_init(sa, "done"); return 0; fail_nic_probe: sfc_mcdi_fini(sa); fail_mcdi_init: sfc_log_init(sa, "destroy nic"); sa->nic = NULL; efx_nic_destroy(enp); fail_nic_create: sfc_mem_bar_fini(sa); fail_mem_bar_init: fail_family: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_unprobe(struct sfc_adapter *sa) { efx_nic_t *enp = sa->nic; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); sfc_log_init(sa, "unprobe nic"); efx_nic_unprobe(enp); sfc_mcdi_fini(sa); /* * Make sure there is no pending alarm to restart since we are * going to free device private which is passed as the callback * opaque data. A new alarm cannot be scheduled since MCDI is * shut down. */ rte_eal_alarm_cancel(sfc_restart_if_required, sa); sfc_log_init(sa, "destroy nic"); sa->nic = NULL; efx_nic_destroy(enp); sfc_mem_bar_fini(sa); sfc_flow_fini(sa); sa->state = SFC_ADAPTER_UNINITIALIZED; } uint32_t sfc_register_logtype(const struct rte_pci_addr *pci_addr, const char *lt_prefix_str, uint32_t ll_default) { size_t lt_prefix_str_size = strlen(lt_prefix_str); size_t lt_str_size_max; char *lt_str = NULL; int ret; if (SIZE_MAX - PCI_PRI_STR_SIZE - 1 > lt_prefix_str_size) { ++lt_prefix_str_size; /* Reserve space for prefix separator */ lt_str_size_max = lt_prefix_str_size + PCI_PRI_STR_SIZE + 1; } else { return sfc_logtype_driver; } lt_str = rte_zmalloc("logtype_str", lt_str_size_max, 0); if (lt_str == NULL) return sfc_logtype_driver; strncpy(lt_str, lt_prefix_str, lt_prefix_str_size); lt_str[lt_prefix_str_size - 1] = '.'; rte_pci_device_name(pci_addr, lt_str + lt_prefix_str_size, lt_str_size_max - lt_prefix_str_size); lt_str[lt_str_size_max - 1] = '\0'; ret = rte_log_register_type_and_pick_level(lt_str, ll_default); rte_free(lt_str); if (ret < 0) return sfc_logtype_driver; return ret; }