/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include #include "pipeline_common.h" struct config_data cdata = { .num_packets = (1L << 25), /* do ~32M packets */ .num_fids = 512, .queue_type = RTE_SCHED_TYPE_ATOMIC, .next_qid = {-1}, .qid = {-1}, .num_stages = 1, .worker_cq_depth = 16 }; static bool core_in_use(unsigned int lcore_id) { return (fdata->rx_core[lcore_id] || fdata->sched_core[lcore_id] || fdata->tx_core[lcore_id] || fdata->worker_core[lcore_id]); } /* * Parse the coremask given as argument (hexadecimal string) and fill * the global configuration (core role and core count) with the parsed * value. */ static int xdigit2val(unsigned char c) { int val; if (isdigit(c)) val = c - '0'; else if (isupper(c)) val = c - 'A' + 10; else val = c - 'a' + 10; return val; } static uint64_t parse_coremask(const char *coremask) { int i, j, idx = 0; unsigned int count = 0; char c; int val; uint64_t mask = 0; const int32_t BITS_HEX = 4; if (coremask == NULL) return -1; /* Remove all blank characters ahead and after . * Remove 0x/0X if exists. */ while (isblank(*coremask)) coremask++; if (coremask[0] == '0' && ((coremask[1] == 'x') || (coremask[1] == 'X'))) coremask += 2; i = strlen(coremask); while ((i > 0) && isblank(coremask[i - 1])) i--; if (i == 0) return -1; for (i = i - 1; i >= 0 && idx < MAX_NUM_CORE; i--) { c = coremask[i]; if (isxdigit(c) == 0) { /* invalid characters */ return -1; } val = xdigit2val(c); for (j = 0; j < BITS_HEX && idx < MAX_NUM_CORE; j++, idx++) { if ((1 << j) & val) { mask |= (1UL << idx); count++; } } } for (; i >= 0; i--) if (coremask[i] != '0') return -1; if (count == 0) return -1; return mask; } static struct option long_options[] = { {"workers", required_argument, 0, 'w'}, {"packets", required_argument, 0, 'n'}, {"atomic-flows", required_argument, 0, 'f'}, {"num_stages", required_argument, 0, 's'}, {"rx-mask", required_argument, 0, 'r'}, {"tx-mask", required_argument, 0, 't'}, {"sched-mask", required_argument, 0, 'e'}, {"cq-depth", required_argument, 0, 'c'}, {"work-cycles", required_argument, 0, 'W'}, {"mempool-size", required_argument, 0, 'm'}, {"queue-priority", no_argument, 0, 'P'}, {"parallel", no_argument, 0, 'p'}, {"ordered", no_argument, 0, 'o'}, {"quiet", no_argument, 0, 'q'}, {"use-atq", no_argument, 0, 'a'}, {"dump", no_argument, 0, 'D'}, {0, 0, 0, 0} }; static void usage(void) { const char *usage_str = " Usage: eventdev_demo [options]\n" " Options:\n" " -n, --packets=N Send N packets (default ~32M), 0 implies no limit\n" " -f, --atomic-flows=N Use N random flows from 1 to N (default 16)\n" " -s, --num_stages=N Use N atomic stages (default 1)\n" " -r, --rx-mask=core mask Run NIC rx on CPUs in core mask\n" " -w, --worker-mask=core mask Run worker on CPUs in core mask\n" " -t, --tx-mask=core mask Run NIC tx on CPUs in core mask\n" " -e --sched-mask=core mask Run scheduler on CPUs in core mask\n" " -c --cq-depth=N Worker CQ depth (default 16)\n" " -W --work-cycles=N Worker cycles (default 0)\n" " -P --queue-priority Enable scheduler queue prioritization\n" " -o, --ordered Use ordered scheduling\n" " -p, --parallel Use parallel scheduling\n" " -q, --quiet Minimize printed output\n" " -a, --use-atq Use all type queues\n" " -m, --mempool-size=N Dictate the mempool size\n" " -D, --dump Print detailed statistics before exit" "\n"; fprintf(stderr, "%s", usage_str); exit(1); } static void parse_app_args(int argc, char **argv) { /* Parse cli options*/ int option_index; int c; opterr = 0; uint64_t rx_lcore_mask = 0; uint64_t tx_lcore_mask = 0; uint64_t sched_lcore_mask = 0; uint64_t worker_lcore_mask = 0; int i; for (;;) { c = getopt_long(argc, argv, "r:t:e:c:w:n:f:s:m:paoPqDW:", long_options, &option_index); if (c == -1) break; int popcnt = 0; switch (c) { case 'n': cdata.num_packets = (int64_t)atol(optarg); if (cdata.num_packets == 0) cdata.num_packets = INT64_MAX; break; case 'f': cdata.num_fids = (unsigned int)atoi(optarg); break; case 's': cdata.num_stages = (unsigned int)atoi(optarg); break; case 'c': cdata.worker_cq_depth = (unsigned int)atoi(optarg); break; case 'W': cdata.worker_cycles = (unsigned int)atoi(optarg); break; case 'P': cdata.enable_queue_priorities = 1; break; case 'o': cdata.queue_type = RTE_SCHED_TYPE_ORDERED; break; case 'p': cdata.queue_type = RTE_SCHED_TYPE_PARALLEL; break; case 'a': cdata.all_type_queues = 1; break; case 'q': cdata.quiet = 1; break; case 'D': cdata.dump_dev = 1; break; case 'w': worker_lcore_mask = parse_coremask(optarg); break; case 'r': rx_lcore_mask = parse_coremask(optarg); popcnt = __builtin_popcountll(rx_lcore_mask); fdata->rx_single = (popcnt == 1); break; case 't': tx_lcore_mask = parse_coremask(optarg); popcnt = __builtin_popcountll(tx_lcore_mask); fdata->tx_single = (popcnt == 1); break; case 'e': sched_lcore_mask = parse_coremask(optarg); popcnt = __builtin_popcountll(sched_lcore_mask); fdata->sched_single = (popcnt == 1); break; case 'm': cdata.num_mbuf = (uint64_t)atol(optarg); break; default: usage(); } } cdata.worker_lcore_mask = worker_lcore_mask; cdata.sched_lcore_mask = sched_lcore_mask; cdata.rx_lcore_mask = rx_lcore_mask; cdata.tx_lcore_mask = tx_lcore_mask; if (cdata.num_stages == 0 || cdata.num_stages > MAX_NUM_STAGES) usage(); for (i = 0; i < MAX_NUM_CORE; i++) { fdata->rx_core[i] = !!(rx_lcore_mask & (1UL << i)); fdata->tx_core[i] = !!(tx_lcore_mask & (1UL << i)); fdata->sched_core[i] = !!(sched_lcore_mask & (1UL << i)); fdata->worker_core[i] = !!(worker_lcore_mask & (1UL << i)); if (fdata->worker_core[i]) cdata.num_workers++; if (core_in_use(i)) cdata.active_cores++; } } /* * Initializes a given port using global settings and with the RX buffers * coming from the mbuf_pool passed as a parameter. */ static inline int port_init(uint8_t port, struct rte_mempool *mbuf_pool) { struct rte_eth_rxconf rx_conf; static const struct rte_eth_conf port_conf_default = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = ETHER_MAX_LEN, }, .rx_adv_conf = { .rss_conf = { .rss_hf = ETH_RSS_IP | ETH_RSS_TCP | ETH_RSS_UDP, } } }; const uint16_t rx_rings = 1, tx_rings = 1; const uint16_t rx_ring_size = 512, tx_ring_size = 512; struct rte_eth_conf port_conf = port_conf_default; int retval; uint16_t q; struct rte_eth_dev_info dev_info; struct rte_eth_txconf txconf; if (!rte_eth_dev_is_valid_port(port)) return -1; rte_eth_dev_info_get(port, &dev_info); if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; rx_conf = dev_info.default_rxconf; rx_conf.offloads = port_conf.rxmode.offloads; port_conf.rx_adv_conf.rss_conf.rss_hf &= dev_info.flow_type_rss_offloads; if (port_conf.rx_adv_conf.rss_conf.rss_hf != port_conf_default.rx_adv_conf.rss_conf.rss_hf) { printf("Port %u modified RSS hash function based on hardware support," "requested:%#"PRIx64" configured:%#"PRIx64"\n", port, port_conf_default.rx_adv_conf.rss_conf.rss_hf, port_conf.rx_adv_conf.rss_conf.rss_hf); } /* Configure the Ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); if (retval != 0) return retval; /* Allocate and set up 1 RX queue per Ethernet port. */ for (q = 0; q < rx_rings; q++) { retval = rte_eth_rx_queue_setup(port, q, rx_ring_size, rte_eth_dev_socket_id(port), &rx_conf, mbuf_pool); if (retval < 0) return retval; } txconf = dev_info.default_txconf; txconf.offloads = port_conf_default.txmode.offloads; /* Allocate and set up 1 TX queue per Ethernet port. */ for (q = 0; q < tx_rings; q++) { retval = rte_eth_tx_queue_setup(port, q, tx_ring_size, rte_eth_dev_socket_id(port), &txconf); if (retval < 0) return retval; } /* Display the port MAC address. */ struct ether_addr addr; rte_eth_macaddr_get(port, &addr); printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", (unsigned int)port, addr.addr_bytes[0], addr.addr_bytes[1], addr.addr_bytes[2], addr.addr_bytes[3], addr.addr_bytes[4], addr.addr_bytes[5]); /* Enable RX in promiscuous mode for the Ethernet device. */ rte_eth_promiscuous_enable(port); return 0; } static int init_ports(uint16_t num_ports) { uint16_t portid; if (!cdata.num_mbuf) cdata.num_mbuf = 16384 * num_ports; struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool", /* mbufs */ cdata.num_mbuf, /* cache_size */ 512, /* priv_size*/ 0, /* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); RTE_ETH_FOREACH_DEV(portid) if (port_init(portid, mp) != 0) rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n", portid); return 0; } static void do_capability_setup(uint8_t eventdev_id) { int ret; uint16_t i; uint8_t generic_pipeline = 0; uint8_t burst = 0; RTE_ETH_FOREACH_DEV(i) { uint32_t caps = 0; ret = rte_event_eth_tx_adapter_caps_get(eventdev_id, i, &caps); if (ret) rte_exit(EXIT_FAILURE, "Invalid capability for Tx adptr port %d\n", i); generic_pipeline |= !(caps & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT); } struct rte_event_dev_info eventdev_info; memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info)); rte_event_dev_info_get(eventdev_id, &eventdev_info); burst = eventdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_BURST_MODE ? 1 : 0; if (generic_pipeline) set_worker_generic_setup_data(&fdata->cap, burst); else set_worker_tx_enq_setup_data(&fdata->cap, burst); } static void signal_handler(int signum) { static uint8_t once; uint16_t portid; if (fdata->done) rte_exit(1, "Exiting on signal %d\n", signum); if ((signum == SIGINT || signum == SIGTERM) && !once) { printf("\n\nSignal %d received, preparing to exit...\n", signum); if (cdata.dump_dev) rte_event_dev_dump(0, stdout); once = 1; fdata->done = 1; rte_smp_wmb(); RTE_ETH_FOREACH_DEV(portid) { rte_event_eth_rx_adapter_stop(portid); rte_event_eth_tx_adapter_stop(portid); rte_eth_dev_stop(portid); } rte_eal_mp_wait_lcore(); RTE_ETH_FOREACH_DEV(portid) { rte_eth_dev_close(portid); } rte_event_dev_stop(0); rte_event_dev_close(0); } if (signum == SIGTSTP) rte_event_dev_dump(0, stdout); } static inline uint64_t port_stat(int dev_id, int32_t p) { char statname[64]; snprintf(statname, sizeof(statname), "port_%u_rx", p); return rte_event_dev_xstats_by_name_get(dev_id, statname, NULL); } int main(int argc, char **argv) { struct worker_data *worker_data; uint16_t num_ports; uint16_t portid; int lcore_id; int err; signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); signal(SIGTSTP, signal_handler); err = rte_eal_init(argc, argv); if (err < 0) rte_panic("Invalid EAL arguments\n"); argc -= err; argv += err; fdata = rte_malloc(NULL, sizeof(struct fastpath_data), 0); if (fdata == NULL) rte_panic("Out of memory\n"); /* Parse cli options*/ parse_app_args(argc, argv); num_ports = rte_eth_dev_count_avail(); if (num_ports == 0) rte_panic("No ethernet ports found\n"); const unsigned int cores_needed = cdata.active_cores; if (!cdata.quiet) { printf(" Config:\n"); printf("\tports: %u\n", num_ports); printf("\tworkers: %u\n", cdata.num_workers); printf("\tpackets: %"PRIi64"\n", cdata.num_packets); printf("\tQueue-prio: %u\n", cdata.enable_queue_priorities); if (cdata.queue_type == RTE_SCHED_TYPE_ORDERED) printf("\tqid0 type: ordered\n"); if (cdata.queue_type == RTE_SCHED_TYPE_ATOMIC) printf("\tqid0 type: atomic\n"); printf("\tCores available: %u\n", rte_lcore_count()); printf("\tCores used: %u\n", cores_needed); } if (rte_lcore_count() < cores_needed) rte_panic("Too few cores (%d < %d)\n", rte_lcore_count(), cores_needed); const unsigned int ndevs = rte_event_dev_count(); if (ndevs == 0) rte_panic("No dev_id devs found. Pasl in a --vdev eventdev.\n"); if (ndevs > 1) fprintf(stderr, "Warning: More than one eventdev, using idx 0"); do_capability_setup(0); fdata->cap.check_opt(); worker_data = rte_calloc(0, cdata.num_workers, sizeof(worker_data[0]), 0); if (worker_data == NULL) rte_panic("rte_calloc failed\n"); int dev_id = fdata->cap.evdev_setup(worker_data); if (dev_id < 0) rte_exit(EXIT_FAILURE, "Error setting up eventdev\n"); init_ports(num_ports); fdata->cap.adptr_setup(num_ports); /* Start the Ethernet port. */ RTE_ETH_FOREACH_DEV(portid) { err = rte_eth_dev_start(portid); if (err < 0) rte_exit(EXIT_FAILURE, "Error starting ethdev %d\n", portid); } int worker_idx = 0; RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (lcore_id >= MAX_NUM_CORE) break; if (!fdata->rx_core[lcore_id] && !fdata->worker_core[lcore_id] && !fdata->tx_core[lcore_id] && !fdata->sched_core[lcore_id]) continue; if (fdata->rx_core[lcore_id]) printf( "[%s()] lcore %d executing NIC Rx\n", __func__, lcore_id); if (fdata->tx_core[lcore_id]) printf( "[%s()] lcore %d executing NIC Tx\n", __func__, lcore_id); if (fdata->sched_core[lcore_id]) printf("[%s()] lcore %d executing scheduler\n", __func__, lcore_id); if (fdata->worker_core[lcore_id]) printf( "[%s()] lcore %d executing worker, using eventdev port %u\n", __func__, lcore_id, worker_data[worker_idx].port_id); err = rte_eal_remote_launch(fdata->cap.worker, &worker_data[worker_idx], lcore_id); if (err) { rte_panic("Failed to launch worker on core %d\n", lcore_id); continue; } if (fdata->worker_core[lcore_id]) worker_idx++; } lcore_id = rte_lcore_id(); if (core_in_use(lcore_id)) fdata->cap.worker(&worker_data[worker_idx++]); rte_eal_mp_wait_lcore(); if (!cdata.quiet && (port_stat(dev_id, worker_data[0].port_id) != (uint64_t)-ENOTSUP)) { printf("\nPort Workload distribution:\n"); uint32_t i; uint64_t tot_pkts = 0; uint64_t pkts_per_wkr[RTE_MAX_LCORE] = {0}; for (i = 0; i < cdata.num_workers; i++) { pkts_per_wkr[i] = port_stat(dev_id, worker_data[i].port_id); tot_pkts += pkts_per_wkr[i]; } for (i = 0; i < cdata.num_workers; i++) { float pc = pkts_per_wkr[i] * 100 / ((float)tot_pkts); printf("worker %i :\t%.1f %% (%"PRIu64" pkts)\n", i, pc, pkts_per_wkr[i]); } } return 0; }