/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 /* allow max jumbo frame 9.5 KB */ #define JUMBO_FRAME_MAX_SIZE 0x2600 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) /* * Default byte size for the IPv6 Maximum Transfer Unit (MTU). * This value includes the size of IPv6 header. */ #define IPV4_MTU_DEFAULT ETHER_MTU #define IPV6_MTU_DEFAULT ETHER_MTU /* * The overhead from max frame size to MTU. * We have to consider the max possible overhead. */ #define MTU_OVERHEAD \ (ETHER_HDR_LEN + ETHER_CRC_LEN + 2 * sizeof(struct vlan_hdr)) /* * Default payload in bytes for the IPv6 packet. */ #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) /* * Max number of fragments per packet expected - defined by config file. */ #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG #define NB_MBUF 8192 #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 1024 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /* ethernet addresses of ports */ static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; #ifndef IPv4_BYTES #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 #define IPv4_BYTES(addr) \ (uint8_t) (((addr) >> 24) & 0xFF),\ (uint8_t) (((addr) >> 16) & 0xFF),\ (uint8_t) (((addr) >> 8) & 0xFF),\ (uint8_t) ((addr) & 0xFF) #endif #ifndef IPv6_BYTES #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ "%02x%02x:%02x%02x:%02x%02x:%02x%02x" #define IPv6_BYTES(addr) \ addr[0], addr[1], addr[2], addr[3], \ addr[4], addr[5], addr[6], addr[7], \ addr[8], addr[9], addr[10], addr[11],\ addr[12], addr[13],addr[14], addr[15] #endif #define IPV6_ADDR_LEN 16 /* mask of enabled ports */ static int enabled_port_mask = 0; static int rx_queue_per_lcore = 1; #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) struct mbuf_table { uint16_t len; struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; }; struct rx_queue { struct rte_mempool *direct_pool; struct rte_mempool *indirect_pool; struct rte_lpm *lpm; struct rte_lpm6 *lpm6; uint16_t portid; }; #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT 16 struct lcore_queue_conf { uint16_t n_rx_queue; uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; } __rte_cache_aligned; struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; static struct rte_eth_conf port_conf = { .rxmode = { .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, .split_hdr_size = 0, .offloads = (DEV_RX_OFFLOAD_CHECKSUM | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_JUMBO_FRAME), }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_MULTI_SEGS), }, }; /* * IPv4 forwarding table */ struct l3fwd_ipv4_route { uint32_t ip; uint8_t depth; uint8_t if_out; }; struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { {IPv4(100,10,0,0), 16, 0}, {IPv4(100,20,0,0), 16, 1}, {IPv4(100,30,0,0), 16, 2}, {IPv4(100,40,0,0), 16, 3}, {IPv4(100,50,0,0), 16, 4}, {IPv4(100,60,0,0), 16, 5}, {IPv4(100,70,0,0), 16, 6}, {IPv4(100,80,0,0), 16, 7}, }; /* * IPv6 forwarding table */ struct l3fwd_ipv6_route { uint8_t ip[IPV6_ADDR_LEN]; uint8_t depth; uint8_t if_out; }; static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, }; #define LPM_MAX_RULES 1024 #define LPM6_MAX_RULES 1024 #define LPM6_NUMBER_TBL8S (1 << 16) struct rte_lpm6_config lpm6_config = { .max_rules = LPM6_MAX_RULES, .number_tbl8s = LPM6_NUMBER_TBL8S, .flags = 0 }; static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; /* Send burst of packets on an output interface */ static inline int send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) { struct rte_mbuf **m_table; int ret; uint16_t queueid; queueid = qconf->tx_queue_id[port]; m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; ret = rte_eth_tx_burst(port, queueid, m_table, n); if (unlikely(ret < n)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < n); } return 0; } static inline void l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, uint8_t queueid, uint16_t port_in) { struct rx_queue *rxq; uint32_t i, len, next_hop; uint8_t ipv6; uint16_t port_out; int32_t len2; ipv6 = 0; rxq = &qconf->rx_queue_list[queueid]; /* by default, send everything back to the source port */ port_out = port_in; /* Remove the Ethernet header and trailer from the input packet */ rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); /* Build transmission burst */ len = qconf->tx_mbufs[port_out].len; /* if this is an IPv4 packet */ if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { struct ipv4_hdr *ip_hdr; uint32_t ip_dst; /* Read the lookup key (i.e. ip_dst) from the input packet */ ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); /* Find destination port */ if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && (enabled_port_mask & 1 << next_hop) != 0) { port_out = next_hop; /* Build transmission burst for new port */ len = qconf->tx_mbufs[port_out].len; } /* if we don't need to do any fragmentation */ if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { qconf->tx_mbufs[port_out].m_table[len] = m; len2 = 1; } else { len2 = rte_ipv4_fragment_packet(m, &qconf->tx_mbufs[port_out].m_table[len], (uint16_t)(MBUF_TABLE_SIZE - len), IPV4_MTU_DEFAULT, rxq->direct_pool, rxq->indirect_pool); /* Free input packet */ rte_pktmbuf_free(m); /* If we fail to fragment the packet */ if (unlikely (len2 < 0)) return; } } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { /* if this is an IPv6 packet */ struct ipv6_hdr *ip_hdr; ipv6 = 1; /* Read the lookup key (i.e. ip_dst) from the input packet */ ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); /* Find destination port */ if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop) == 0 && (enabled_port_mask & 1 << next_hop) != 0) { port_out = next_hop; /* Build transmission burst for new port */ len = qconf->tx_mbufs[port_out].len; } /* if we don't need to do any fragmentation */ if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { qconf->tx_mbufs[port_out].m_table[len] = m; len2 = 1; } else { len2 = rte_ipv6_fragment_packet(m, &qconf->tx_mbufs[port_out].m_table[len], (uint16_t)(MBUF_TABLE_SIZE - len), IPV6_MTU_DEFAULT, rxq->direct_pool, rxq->indirect_pool); /* Free input packet */ rte_pktmbuf_free(m); /* If we fail to fragment the packet */ if (unlikely (len2 < 0)) return; } } /* else, just forward the packet */ else { qconf->tx_mbufs[port_out].m_table[len] = m; len2 = 1; } for (i = len; i < len + len2; i ++) { void *d_addr_bytes; m = qconf->tx_mbufs[port_out].m_table[i]; struct ether_hdr *eth_hdr = (struct ether_hdr *) rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); if (eth_hdr == NULL) { rte_panic("No headroom in mbuf.\n"); } m->l2_len = sizeof(struct ether_hdr); /* 02:00:00:00:00:xx */ d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); /* src addr */ ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); if (ipv6) eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); else eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); } len += len2; if (likely(len < MAX_PKT_BURST)) { qconf->tx_mbufs[port_out].len = (uint16_t)len; return; } /* Transmit packets */ send_burst(qconf, (uint16_t)len, port_out); qconf->tx_mbufs[port_out].len = 0; } /* main processing loop */ static int main_loop(__attribute__((unused)) void *dummy) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; unsigned lcore_id; uint64_t prev_tsc, diff_tsc, cur_tsc; int i, j, nb_rx; uint16_t portid; struct lcore_queue_conf *qconf; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; prev_tsc = 0; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; if (qconf->n_rx_queue == 0) { RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->n_rx_queue; i++) { portid = qconf->rx_queue_list[i].portid; RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, portid); } while (1) { cur_tsc = rte_rdtsc(); /* * TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { /* * This could be optimized (use queueid instead of * portid), but it is not called so often */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { if (qconf->tx_mbufs[portid].len == 0) continue; send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, portid); qconf->tx_mbufs[portid].len = 0; } prev_tsc = cur_tsc; } /* * Read packet from RX queues */ for (i = 0; i < qconf->n_rx_queue; i++) { portid = qconf->rx_queue_list[i].portid; nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, MAX_PKT_BURST); /* Prefetch first packets */ for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { rte_prefetch0(rte_pktmbuf_mtod( pkts_burst[j], void *)); } /* Prefetch and forward already prefetched packets */ for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ j + PREFETCH_OFFSET], void *)); l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); } /* Forward remaining prefetched packets */ for (; j < nb_rx; j++) { l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); } } } } /* display usage */ static void print_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -q NQ: number of queue (=ports) per lcore (default is 1)\n", prgname); } static int parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return -1; return pm; } static int parse_nqueue(const char *q_arg) { char *end = NULL; unsigned long n; /* parse hexadecimal string */ n = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (n == 0) return -1; if (n >= MAX_RX_QUEUE_PER_LCORE) return -1; return n; } /* Parse the argument given in the command line of the application */ static int parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:q:", lgopts, &option_index)) != EOF) { switch (opt) { /* portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask < 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; /* nqueue */ case 'q': rx_queue_per_lcore = parse_nqueue(optarg); if (rx_queue_per_lcore < 0) { printf("invalid queue number\n"); print_usage(prgname); return -1; } break; /* long options */ case 0: print_usage(prgname); return -1; default: print_usage(prgname); return -1; } } if (enabled_port_mask == 0) { printf("portmask not specified\n"); print_usage(prgname); return -1; } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ return ret; } static void print_ethaddr(const char *name, struct ether_addr *eth_addr) { char buf[ETHER_ADDR_FMT_SIZE]; ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; RTE_ETH_FOREACH_DEV(portid) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf( "Port%d Link Up .Speed %u Mbps - %s\n", portid, link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("\ndone\n"); } } } /* Check L3 packet type detection capablity of the NIC port */ static int check_ptype(int portid) { int i, ret; int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; uint32_t ptype_mask = RTE_PTYPE_L3_MASK; ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); if (ret <= 0) return 0; uint32_t ptypes[ret]; ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); for (i = 0; i < ret; ++i) { if (ptypes[i] & RTE_PTYPE_L3_IPV4) ptype_l3_ipv4 = 1; if (ptypes[i] & RTE_PTYPE_L3_IPV6) ptype_l3_ipv6 = 1; } if (ptype_l3_ipv4 == 0) printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); if (ptype_l3_ipv6 == 0) printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); if (ptype_l3_ipv4 && ptype_l3_ipv6) return 1; return 0; } /* Parse packet type of a packet by SW */ static inline void parse_ptype(struct rte_mbuf *m) { struct ether_hdr *eth_hdr; uint32_t packet_type = RTE_PTYPE_UNKNOWN; uint16_t ether_type; eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); ether_type = eth_hdr->ether_type; if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; m->packet_type = packet_type; } /* callback function to detect packet type for a queue of a port */ static uint16_t cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t max_pkts __rte_unused, void *user_param __rte_unused) { uint16_t i; for (i = 0; i < nb_pkts; ++i) parse_ptype(pkts[i]); return nb_pkts; } static int init_routing_table(void) { struct rte_lpm *lpm; struct rte_lpm6 *lpm6; int socket, ret; unsigned i; for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { if (socket_lpm[socket]) { lpm = socket_lpm[socket]; /* populate the LPM table */ for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { ret = rte_lpm_add(lpm, l3fwd_ipv4_route_array[i].ip, l3fwd_ipv4_route_array[i].depth, l3fwd_ipv4_route_array[i].if_out); if (ret < 0) { RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " "LPM table\n", i); return -1; } RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT "/%d (port %d)\n", socket, IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), l3fwd_ipv4_route_array[i].depth, l3fwd_ipv4_route_array[i].if_out); } } if (socket_lpm6[socket]) { lpm6 = socket_lpm6[socket]; /* populate the LPM6 table */ for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { ret = rte_lpm6_add(lpm6, l3fwd_ipv6_route_array[i].ip, l3fwd_ipv6_route_array[i].depth, l3fwd_ipv6_route_array[i].if_out); if (ret < 0) { RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " "LPM6 table\n", i); return -1; } RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT "/%d (port %d)\n", socket, IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), l3fwd_ipv6_route_array[i].depth, l3fwd_ipv6_route_array[i].if_out); } } } return 0; } static int init_mem(void) { char buf[PATH_MAX]; struct rte_mempool *mp; struct rte_lpm *lpm; struct rte_lpm6 *lpm6; struct rte_lpm_config lpm_config; int socket; unsigned lcore_id; /* traverse through lcores and initialize structures on each socket */ for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; socket = rte_lcore_to_socket_id(lcore_id); if (socket == SOCKET_ID_ANY) socket = 0; if (socket_direct_pool[socket] == NULL) { RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", socket); snprintf(buf, sizeof(buf), "pool_direct_%i", socket); mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); if (mp == NULL) { RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); return -1; } socket_direct_pool[socket] = mp; } if (socket_indirect_pool[socket] == NULL) { RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", socket); snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, socket); if (mp == NULL) { RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); return -1; } socket_indirect_pool[socket] = mp; } if (socket_lpm[socket] == NULL) { RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); lpm_config.max_rules = LPM_MAX_RULES; lpm_config.number_tbl8s = 256; lpm_config.flags = 0; lpm = rte_lpm_create(buf, socket, &lpm_config); if (lpm == NULL) { RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); return -1; } socket_lpm[socket] = lpm; } if (socket_lpm6[socket] == NULL) { RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); if (lpm6 == NULL) { RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); return -1; } socket_lpm6[socket] = lpm6; } } return 0; } int main(int argc, char **argv) { struct lcore_queue_conf *qconf; struct rte_eth_dev_info dev_info; struct rte_eth_txconf *txconf; struct rx_queue *rxq; int socket, ret; uint16_t nb_ports; uint16_t queueid = 0; unsigned lcore_id = 0, rx_lcore_id = 0; uint32_t n_tx_queue, nb_lcores; uint16_t portid; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eal_init failed"); argc -= ret; argv += ret; /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid arguments"); nb_ports = rte_eth_dev_count_avail(); if (nb_ports == 0) rte_exit(EXIT_FAILURE, "No ports found!\n"); nb_lcores = rte_lcore_count(); /* initialize structures (mempools, lpm etc.) */ if (init_mem() < 0) rte_panic("Cannot initialize memory structures!\n"); /* check if portmask has non-existent ports */ if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); /* initialize all ports */ RTE_ETH_FOREACH_DEV(portid) { struct rte_eth_conf local_port_conf = port_conf; struct rte_eth_rxconf rxq_conf; /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { printf("Skipping disabled port %d\n", portid); continue; } qconf = &lcore_queue_conf[rx_lcore_id]; /* limit the frame size to the maximum supported by NIC */ rte_eth_dev_info_get(portid, &dev_info); local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( dev_info.max_rx_pktlen, local_port_conf.rxmode.max_rx_pkt_len); /* get the lcore_id for this port */ while (rte_lcore_is_enabled(rx_lcore_id) == 0 || qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { rx_lcore_id ++; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); qconf = &lcore_queue_conf[rx_lcore_id]; } socket = (int) rte_lcore_to_socket_id(rx_lcore_id); if (socket == SOCKET_ID_ANY) socket = 0; rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; rxq->portid = portid; rxq->direct_pool = socket_direct_pool[socket]; rxq->indirect_pool = socket_indirect_pool[socket]; rxq->lpm = socket_lpm[socket]; rxq->lpm6 = socket_lpm6[socket]; qconf->n_rx_queue++; /* init port */ printf("Initializing port %d on lcore %u...", portid, rx_lcore_id); fflush(stdout); n_tx_queue = nb_lcores; if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) n_tx_queue = MAX_TX_QUEUE_PER_PORT; if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, &local_port_conf); if (ret < 0) { printf("\n"); rte_exit(EXIT_FAILURE, "Cannot configure device: " "err=%d, port=%d\n", ret, portid); } /* set the mtu to the maximum received packet size */ ret = rte_eth_dev_set_mtu(portid, local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD); if (ret < 0) { printf("\n"); rte_exit(EXIT_FAILURE, "Set MTU failed: " "err=%d, port=%d\n", ret, portid); } ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (ret < 0) { printf("\n"); rte_exit(EXIT_FAILURE, "Cannot adjust number of " "descriptors: err=%d, port=%d\n", ret, portid); } /* init one RX queue */ rxq_conf = dev_info.default_rxconf; rxq_conf.offloads = local_port_conf.rxmode.offloads; ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, socket, &rxq_conf, socket_direct_pool[socket]); if (ret < 0) { printf("\n"); rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " "err=%d, port=%d\n", ret, portid); } rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); print_ethaddr(" Address:", &ports_eth_addr[portid]); printf("\n"); /* init one TX queue per couple (lcore,port) */ queueid = 0; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; socket = (int) rte_lcore_to_socket_id(lcore_id); printf("txq=%u,%d ", lcore_id, queueid); fflush(stdout); txconf = &dev_info.default_txconf; txconf->offloads = local_port_conf.txmode.offloads; ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, socket, txconf); if (ret < 0) { printf("\n"); rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " "err=%d, port=%d\n", ret, portid); } qconf = &lcore_queue_conf[lcore_id]; qconf->tx_queue_id[portid] = queueid; queueid++; } printf("\n"); } printf("\n"); /* start ports */ RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) { continue; } /* Start device */ ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", ret, portid); rte_eth_promiscuous_enable(portid); if (check_ptype(portid) == 0) { rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); printf("Add Rx callback function to detect L3 packet type by SW :" " port = %d\n", portid); } } if (init_routing_table() < 0) rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); check_all_ports_link_status(enabled_port_mask); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; }