#!/usr/bin/env python3 import abc import argparse import distutils.util import enum import functools import glob import itertools import logging import math import multiprocessing import os import pathlib import pyudev import re import shutil import subprocess import sys import urllib.request import yaml import platform import shlex dry_run_mode = False def perftune_print(log_msg, *args, **kwargs): if dry_run_mode: log_msg = "# " + log_msg print(log_msg, *args, **kwargs) def __run_one_command(prog_args, stderr=None, check=True): proc = subprocess.Popen(prog_args, stdout = subprocess.PIPE, stderr = stderr) outs, errs = proc.communicate() outs = str(outs, 'utf-8') if check and proc.returncode != 0: raise subprocess.CalledProcessError(returncode=proc.returncode, cmd=" ".join(prog_args), output=outs, stderr=errs) return outs def run_one_command(prog_args, stderr=None, check=True): if dry_run_mode: print(" ".join([shlex.quote(x) for x in prog_args])) else: __run_one_command(prog_args, stderr=stderr, check=check) def run_read_only_command(prog_args, stderr=None, check=True): return __run_one_command(prog_args, stderr=stderr, check=check) def run_hwloc_distrib(prog_args): """ Returns a list of strings - each representing a single line of hwloc-distrib output. """ return run_read_only_command(['hwloc-distrib'] + prog_args).splitlines() def run_hwloc_calc(prog_args): """ Returns a single string with the result of the execution. """ return run_read_only_command(['hwloc-calc'] + prog_args).rstrip() def run_ethtool(prog_args): """ Returns a list of strings - each representing a single line of ethtool output. """ return run_read_only_command(['ethtool'] + prog_args).splitlines() def fwriteln(fname, line, log_message, log_errors=True): try: if dry_run_mode: print("echo {} > {}".format(line, fname)) return else: with open(fname, 'w') as f: f.write(line) print(log_message) except: if log_errors: print("{}: failed to write into {}: {}".format(log_message, fname, sys.exc_info())) def readlines(fname): try: with open(fname, 'r') as f: return f.readlines() except: print("Failed to read {}: {}".format(fname, sys.exc_info())) return [] def fwriteln_and_log(fname, line, log_errors=True): msg = "Writing '{}' to {}".format(line, fname) fwriteln(fname, line, log_message=msg, log_errors=log_errors) double_commas_pattern = re.compile(',,') def set_one_mask(conf_file, mask, log_errors=True): if not os.path.exists(conf_file): raise Exception("Configure file to set mask doesn't exist: {}".format(conf_file)) mask = re.sub('0x', '', mask) while double_commas_pattern.search(mask): mask = double_commas_pattern.sub(',0,', mask) msg = "Setting mask {} in {}".format(mask, conf_file) fwriteln(conf_file, mask, log_message=msg, log_errors=log_errors) def distribute_irqs(irqs, cpu_mask, log_errors=True): # If IRQs' list is empty - do nothing if not irqs: return for i, mask in enumerate(run_hwloc_distrib(["{}".format(len(irqs)), '--single', '--restrict', cpu_mask])): set_one_mask("/proc/irq/{}/smp_affinity".format(irqs[i]), mask, log_errors=log_errors) def is_process_running(name): return len(list(filter(lambda ps_line : not re.search('', ps_line), run_read_only_command(['ps', '--no-headers', '-C', name], check=False).splitlines()))) > 0 def restart_irqbalance(banned_irqs): """ Restart irqbalance if it's running and ban it from moving the IRQs from the given list. """ config_file = '/etc/default/irqbalance' options_key = 'OPTIONS' systemd = False banned_irqs_list = list(banned_irqs) # If there is nothing to ban - quit if not banned_irqs_list: return # return early if irqbalance is not running if not is_process_running('irqbalance'): perftune_print("irqbalance is not running") return # If this file exists - this a "new (systemd) style" irqbalance packaging. # This type of packaging uses IRQBALANCE_ARGS as an option key name, "old (init.d) style" # packaging uses an OPTION key. if os.path.exists('/lib/systemd/system/irqbalance.service') or \ os.path.exists('/usr/lib/systemd/system/irqbalance.service'): options_key = 'IRQBALANCE_ARGS' systemd = True if not os.path.exists(config_file): if os.path.exists('/etc/sysconfig/irqbalance'): config_file = '/etc/sysconfig/irqbalance' elif os.path.exists('/etc/conf.d/irqbalance'): config_file = '/etc/conf.d/irqbalance' options_key = 'IRQBALANCE_OPTS' with open('/proc/1/comm', 'r') as comm: systemd = 'systemd' in comm.read() else: perftune_print("Unknown system configuration - not restarting irqbalance!") perftune_print("You have to prevent it from moving IRQs {} manually!".format(banned_irqs_list)) return orig_file = "{}.scylla.orig".format(config_file) # Save the original file if not dry_run_mode: if not os.path.exists(orig_file): print("Saving the original irqbalance configuration is in {}".format(orig_file)) shutil.copyfile(config_file, orig_file) else: print("File {} already exists - not overwriting.".format(orig_file)) # Read the config file lines cfile_lines = open(config_file, 'r').readlines() # Build the new config_file contents with the new options configuration perftune_print("Restarting irqbalance: going to ban the following IRQ numbers: {} ...".format(", ".join(banned_irqs_list))) # Search for the original options line opt_lines = list(filter(lambda line : re.search("^\s*{}".format(options_key), line), cfile_lines)) if not opt_lines: new_options = "{}=\"".format(options_key) elif len(opt_lines) == 1: # cut the last " new_options = re.sub("\"\s*$", "", opt_lines[0].rstrip()) opt_lines = opt_lines[0].strip() else: raise Exception("Invalid format in {}: more than one lines with {} key".format(config_file, options_key)) for irq in banned_irqs_list: # prevent duplicate "ban" entries for the same IRQ patt_str = "\-\-banirq\={}\Z|\-\-banirq\={}\s".format(irq, irq) if not re.search(patt_str, new_options): new_options += " --banirq={}".format(irq) new_options += "\"" if dry_run_mode: if opt_lines: print("sed -i 's/^{}/#{}/g' {}".format(options_key, options_key, config_file)) print("echo {} | tee -a {}".format(new_options, config_file)) else: with open(config_file, 'w') as cfile: for line in cfile_lines: if not re.search("^\s*{}".format(options_key), line): cfile.write(line) cfile.write(new_options + "\n") if systemd: perftune_print("Restarting irqbalance via systemctl...") run_one_command(['systemctl', 'try-restart', 'irqbalance']) else: perftune_print("Restarting irqbalance directly (init.d)...") run_one_command(['/etc/init.d/irqbalance', 'restart']) def learn_irqs_from_proc_interrupts(pattern, irq2procline): return [ irq for irq, proc_line in filter(lambda irq_proc_line_pair : re.search(pattern, irq_proc_line_pair[1]), irq2procline.items()) ] def learn_all_irqs_one(irq_conf_dir, irq2procline, xen_dev_name): """ Returns a list of IRQs of a single device. irq_conf_dir: a /sys/... directory with the IRQ information for the given device irq2procline: a map of IRQs to the corresponding lines in the /proc/interrupts xen_dev_name: a device name pattern as it appears in the /proc/interrupts on Xen systems """ msi_irqs_dir_name = os.path.join(irq_conf_dir, 'msi_irqs') # Device uses MSI IRQs if os.path.exists(msi_irqs_dir_name): return os.listdir(msi_irqs_dir_name) irq_file_name = os.path.join(irq_conf_dir, 'irq') # Device uses INT#x if os.path.exists(irq_file_name): return [ line.lstrip().rstrip() for line in open(irq_file_name, 'r').readlines() ] # No irq file detected modalias = open(os.path.join(irq_conf_dir, 'modalias'), 'r').readline() # virtio case if re.search("^virtio", modalias): return list(itertools.chain.from_iterable( map(lambda dirname : learn_irqs_from_proc_interrupts(dirname, irq2procline), filter(lambda dirname : re.search('virtio', dirname), itertools.chain.from_iterable([ dirnames for dirpath, dirnames, filenames in os.walk(os.path.join(irq_conf_dir, 'driver')) ]))))) # xen case if re.search("^xen:", modalias): return learn_irqs_from_proc_interrupts(xen_dev_name, irq2procline) return [] def get_irqs2procline_map(): return { line.split(':')[0].lstrip().rstrip() : line for line in open('/proc/interrupts', 'r').readlines() } class AutodetectError(Exception): pass def auto_detect_irq_mask(cpu_mask, cores_per_irq_core): """ The logic of auto-detection of what was once a 'mode' is generic and is all about the amount of CPUs and NUMA nodes that are present and a restricting 'cpu_mask'. This function implements this logic: * up to 4 CPU threads: use 'cpu_mask' * up to 4 CPU cores (on x86 this would translate to 8 CPU threads): use a single CPU thread out of allowed * up to 16 CPU cores: use a single CPU core out of allowed * more than 16 CPU cores: use a single CPU core for each 16 CPU cores and distribute them evenly among all present NUMA nodes. An AutodetectError exception is raised if 'cpu_mask' is defined in a way that there is a different number of threads and/or cores among different NUMA nodes. In such a case a user needs to provide an IRQ CPUs definition explicitly using 'irq_cpu_mask' parameter. :param cpu_mask: CPU mask that defines which out of present CPUs can be considered for tuning :param cores_per_irq_core number of cores to allocate a single IRQ core out of, e.g. 6 means allocate a single IRQ core out of every 6 CPU cores. :return: CPU mask to bind IRQs to, a.k.a. irq_cpu_mask """ cores_key = 'cores' PUs_key = 'PUs' # List of NUMA IDs that own CPUs from the given CPU mask numa_ids_list = run_hwloc_calc(['-I', 'numa', cpu_mask]).split(",") # Let's calculate number of HTs and cores on each NUMA node belonging to the given CPU set cores_PUs_per_numa = {} # { : {'cores': , 'PUs': }} for n in numa_ids_list: num_cores = int(run_hwloc_calc(['--restrict', cpu_mask, '--number-of', 'core', f'numa:{n}'])) num_PUs = int(run_hwloc_calc(['--restrict', cpu_mask, '--number-of', 'PU', f'numa:{n}'])) cores_PUs_per_numa[n] = {cores_key: num_cores, PUs_key: num_PUs} # Let's check if configuration on each NUMA is the same. If it's not then we can't auto-detect the IRQs CPU set # and a user needs to provide it explicitly num_cores0 = cores_PUs_per_numa[numa_ids_list[0]][cores_key] num_PUs0 = cores_PUs_per_numa[numa_ids_list[0]][PUs_key] for n in numa_ids_list: if cores_PUs_per_numa[n][cores_key] != num_cores0 or cores_PUs_per_numa[n][PUs_key] != num_PUs0: raise AutodetectError(f"NUMA{n} has a different configuration from NUMA0 for a given CPU mask {cpu_mask}: " f"{cores_PUs_per_numa[n][cores_key]}:{cores_PUs_per_numa[n][PUs_key]} vs " f"{num_cores0}:{num_PUs0}. Auto-detection of IRQ CPUs in not possible. " f"Please, provide irq_cpu_mask explicitly.") # Auto-detection of IRQ CPU set is possible - let's get to it! # # Total counts for the whole machine num_cores = int(run_hwloc_calc(['--restrict', cpu_mask, '--number-of', 'core', 'machine:0'])) num_PUs = int(run_hwloc_calc(['--restrict', cpu_mask, '--number-of', 'PU', 'machine:0'])) if num_PUs <= 4: return cpu_mask elif num_cores <= 4: return run_hwloc_calc(['--restrict', cpu_mask, 'PU:0']) elif num_cores <= cores_per_irq_core: return run_hwloc_calc(['--restrict', cpu_mask, 'core:0']) else: # Big machine. # Let's allocate a full core out of every cores_per_irq_core cores. # Let's distribute IRQ cores among present NUMA nodes num_irq_cores = math.ceil(num_cores / cores_per_irq_core) hwloc_args = [] numa_cores_count = {n: 0 for n in numa_ids_list} added_cores = 0 while added_cores < num_irq_cores: for numa in numa_ids_list: hwloc_args.append(f"node:{numa}.core:{numa_cores_count[numa]}") added_cores += 1 numa_cores_count[numa] += 1 if added_cores >= num_irq_cores: break return run_hwloc_calc(['--restrict', cpu_mask] + hwloc_args) ################################################################################ class PerfTunerBase(metaclass=abc.ABCMeta): def __init__(self, args): self.__args = args self.__args.cpu_mask = run_hwloc_calc(['--restrict', self.__args.cpu_mask, 'all']) self.__mode = None self.__compute_cpu_mask = None if self.args.mode: self.mode = PerfTunerBase.SupportedModes[self.args.mode] elif args.irq_cpu_mask: self.irqs_cpu_mask = args.irq_cpu_mask else: self.irqs_cpu_mask = auto_detect_irq_mask(self.cpu_mask, self.cores_per_irq_core) self.__is_aws_i3_nonmetal_instance = None #### Public methods ########################## class CPUMaskIsZeroException(Exception): """Thrown if CPU mask turns out to be zero""" pass class SupportedModes(enum.IntEnum): """ Modes are ordered from the one that cuts the biggest number of CPUs from the compute CPUs' set to the one that takes the smallest ('mq' doesn't cut any CPU from the compute set). This fact is used when we calculate the 'common quotient' mode out of a given set of modes (e.g. default modes of different Tuners) - this would be the smallest among the given modes. """ sq_split = 0 sq = 1 mq = 2 # Note: no_irq_restrictions should always have the greatest value in the enum since it's the least restricting mode. no_irq_restrictions = 9999 @staticmethod def names(): return PerfTunerBase.SupportedModes.__members__.keys() @staticmethod def combine(modes): """ :param modes: a set of modes of the PerfTunerBase.SupportedModes type :return: the mode that is the "common ground" for a given set of modes. """ # Perform an explicit cast in order to verify that the values in the 'modes' are compatible with the # expected PerfTunerBase.SupportedModes type. return min([PerfTunerBase.SupportedModes(m) for m in modes]) @staticmethod def cpu_mask_is_zero(cpu_mask): """ The cpu_mask is a comma-separated list of 32-bit hex values with possibly omitted zero components, e.g. 0xffff,,0xffff We want to estimate if the whole mask is all-zeros. :param cpu_mask: hwloc-calc generated CPU mask :return: True if mask is zero, False otherwise """ for cur_cpu_mask in cpu_mask.split(','): if cur_cpu_mask and int(cur_cpu_mask, 16) != 0: return False return True @staticmethod def compute_cpu_mask_for_mode(mq_mode, cpu_mask): mq_mode = PerfTunerBase.SupportedModes(mq_mode) if mq_mode == PerfTunerBase.SupportedModes.sq: # all but CPU0 compute_cpu_mask = run_hwloc_calc([cpu_mask, '~PU:0']) elif mq_mode == PerfTunerBase.SupportedModes.sq_split: # all but CPU0 and its HT siblings compute_cpu_mask = run_hwloc_calc([cpu_mask, '~core:0']) elif mq_mode == PerfTunerBase.SupportedModes.mq: # all available cores compute_cpu_mask = cpu_mask elif mq_mode == PerfTunerBase.SupportedModes.no_irq_restrictions: # all available cores compute_cpu_mask = cpu_mask else: raise Exception("Unsupported mode: {}".format(mq_mode)) if PerfTunerBase.cpu_mask_is_zero(compute_cpu_mask): raise PerfTunerBase.CPUMaskIsZeroException("Bad configuration mode ({}) and cpu-mask value ({}): this results in a zero-mask for compute".format(mq_mode.name, cpu_mask)) return compute_cpu_mask @staticmethod def irqs_cpu_mask_for_mode(mq_mode, cpu_mask): mq_mode = PerfTunerBase.SupportedModes(mq_mode) irqs_cpu_mask = 0 if mq_mode != PerfTunerBase.SupportedModes.mq and mq_mode != PerfTunerBase.SupportedModes.no_irq_restrictions: irqs_cpu_mask = run_hwloc_calc([cpu_mask, "~{}".format(PerfTunerBase.compute_cpu_mask_for_mode(mq_mode, cpu_mask))]) else: # mq_mode == PerfTunerBase.SupportedModes.mq or mq_mode == PerfTunerBase.SupportedModes.no_irq_restrictions # distribute equally between all available cores irqs_cpu_mask = cpu_mask if PerfTunerBase.cpu_mask_is_zero(irqs_cpu_mask): raise PerfTunerBase.CPUMaskIsZeroException("Bad configuration mode ({}) and cpu-mask value ({}): this results in a zero-mask for IRQs".format(mq_mode.name, cpu_mask)) return irqs_cpu_mask @property def mode(self): """ Return the configuration mode """ return self.__mode @mode.setter def mode(self, new_mode): """ Set the new configuration mode and recalculate the corresponding masks. """ # Make sure the new_mode is of PerfTunerBase.AllowedModes type self.__mode = PerfTunerBase.SupportedModes(new_mode) self.__compute_cpu_mask = PerfTunerBase.compute_cpu_mask_for_mode(self.__mode, self.__args.cpu_mask) self.__irq_cpu_mask = PerfTunerBase.irqs_cpu_mask_for_mode(self.__mode, self.__args.cpu_mask) @property def cpu_mask(self): """ Return the CPU mask we operate on (the total CPU set) """ return self.__args.cpu_mask @property def cores_per_irq_core(self): """ Return the number of cores we are going to allocate a single IRQ core out of when auto-detecting """ return self.__args.cores_per_irq_core @staticmethod def min_cores_per_irq_core(): """ A minimum value of cores_per_irq_core. We don't allocate a full IRQ core if total number of CPU cores is less or equal to 4. """ return 5 @property def compute_cpu_mask(self): """ Return the CPU mask to use for seastar application binding. """ return self.__compute_cpu_mask @property def irqs_cpu_mask(self): """ Return the mask of CPUs used for IRQs distribution. """ return self.__irq_cpu_mask @irqs_cpu_mask.setter def irqs_cpu_mask(self, new_irq_cpu_mask): self.__irq_cpu_mask = new_irq_cpu_mask # Sanity check if PerfTunerBase.cpu_mask_is_zero(self.__irq_cpu_mask): raise PerfTunerBase.CPUMaskIsZeroException("Bad configuration: zero IRQ CPU mask is given") if run_hwloc_calc([self.__irq_cpu_mask]) == run_hwloc_calc([self.cpu_mask]): # Special case: if IRQ CPU mask is the same as total CPU mask - set a Compute CPU mask to cpu_mask self.__compute_cpu_mask = self.cpu_mask else: # Otherwise, a Compute CPU mask is a CPU mask without IRQ CPU mask bits self.__compute_cpu_mask = run_hwloc_calc([self.cpu_mask, f"~{self.__irq_cpu_mask}"]) # Sanity check if PerfTunerBase.cpu_mask_is_zero(self.__compute_cpu_mask): raise PerfTunerBase.CPUMaskIsZeroException( f"Bad configuration: cpu_maks:{self.cpu_mask}, irq_cpu_mask:{self.__irq_cpu_mask}: " f"results in a zero-mask for compute") @property def is_aws_i3_non_metal_instance(self): """ :return: True if we are running on the AWS i3.nonmetal instance, e.g. i3.4xlarge """ if self.__is_aws_i3_nonmetal_instance is None: self.__check_host_type() return self.__is_aws_i3_nonmetal_instance @property def args(self): return self.__args @property def irqs(self): return self._get_irqs() #### "Protected"/Public (pure virtual) methods ########### @abc.abstractmethod def tune(self): pass @abc.abstractmethod def _get_irqs(self): """ Return the iteratable value with all IRQs to be configured. """ pass #### Private methods ############################ def __check_host_type(self): """ Check if we are running on the AWS i3 nonmetal instance. If yes, set self.__is_aws_i3_nonmetal_instance to True, and to False otherwise. """ try: aws_instance_type = urllib.request.urlopen("http://169.254.169.254/latest/meta-data/instance-type", timeout=0.1).read().decode() if re.match(r'^i3\.((?!metal)\w)+$', aws_instance_type): self.__is_aws_i3_nonmetal_instance = True else: self.__is_aws_i3_nonmetal_instance = False return except (urllib.error.URLError, ConnectionError, TimeoutError): # Non-AWS case pass except: logging.warning("Unexpected exception while attempting to access AWS meta server: {}".format(sys.exc_info()[0])) self.__is_aws_i3_nonmetal_instance = False ################################################# class NetPerfTuner(PerfTunerBase): def __init__(self, args): super().__init__(args) self.nics=args.nics self.__nic_is_bond_iface = self.__check_dev_is_bond_iface() self.__slaves = self.__learn_slaves() # check that self.nics contain a HW device or a bonding interface self.__check_nics() # Fetch IRQs related info self.__get_irqs_info() #### Public methods ############################ def tune(self): """ Tune the networking server configuration. """ for nic in self.nics: if self.nic_is_hw_iface(nic): perftune_print("Setting a physical interface {}...".format(nic)) self.__setup_one_hw_iface(nic) else: perftune_print("Setting {} bonding interface...".format(nic)) self.__setup_bonding_iface(nic) # Increase the socket listen() backlog fwriteln_and_log('/proc/sys/net/core/somaxconn', '4096') # Increase the maximum number of remembered connection requests, which are still # did not receive an acknowledgment from connecting client. fwriteln_and_log('/proc/sys/net/ipv4/tcp_max_syn_backlog', '4096') def nic_is_bond_iface(self, nic): return self.__nic_is_bond_iface[nic] def nic_exists(self, nic): return self.__iface_exists(nic) def nic_is_hw_iface(self, nic): return self.__dev_is_hw_iface(nic) def slaves(self, nic): """ Returns an iterator for all slaves of the nic. If agrs.nic is not a bonding interface an attempt to use the returned iterator will immediately raise a StopIteration exception - use __dev_is_bond_iface() check to avoid this. """ return iter(self.__slaves[nic]) #### Protected methods ########################## def _get_irqs(self): """ Returns the iterator for all IRQs that are going to be configured (according to args.nics parameter). For instance, for a bonding interface that's going to include IRQs of all its slaves. """ return itertools.chain.from_iterable(self.__nic2irqs.values()) #### Private methods ############################ def __get_irqs_info(self): self.__irqs2procline = get_irqs2procline_map() self.__nic2irqs = self.__learn_irqs() @property def __rfs_table_size(self): return 32768 def __check_nics(self): """ Checks that self.nics are supported interfaces """ for nic in self.nics: if not self.nic_exists(nic): raise Exception("Device {} does not exist".format(nic)) if not self.nic_is_hw_iface(nic) and not self.nic_is_bond_iface(nic): raise Exception("Not supported virtual device {}".format(nic)) def __get_irqs_one(self, iface): """ Returns the list of IRQ numbers for the given interface. """ return self.__nic2irqs[iface] def __setup_rfs(self, iface): rps_limits = glob.glob("/sys/class/net/{}/queues/*/rps_flow_cnt".format(iface)) one_q_limit = int(self.__rfs_table_size / len(rps_limits)) # If RFS feature is not present - get out try: run_one_command(['sysctl', 'net.core.rps_sock_flow_entries']) except: return # Enable RFS perftune_print("Setting net.core.rps_sock_flow_entries to {}".format(self.__rfs_table_size)) run_one_command(['sysctl', '-w', 'net.core.rps_sock_flow_entries={}'.format(self.__rfs_table_size)]) # Set each RPS queue limit for rfs_limit_cnt in rps_limits: msg = "Setting limit {} in {}".format(one_q_limit, rfs_limit_cnt) fwriteln(rfs_limit_cnt, "{}".format(one_q_limit), log_message=msg) # Enable/Disable ntuple filtering HW offload on the NIC. This is going to enable/disable aRFS on NICs supporting # aRFS since ntuple is pre-requisite for an aRFS feature. # If no explicit configuration has been requested enable ntuple (and thereby aRFS) only in MQ mode. # # aRFS acts similar to (SW) RFS: it places a TCP packet on a HW queue that it supposed to be "close" to an # application thread that sent a packet on the same TCP stream. # # For instance if a given TCP stream was sent from CPU3 then the next Rx packet is going to be placed in an Rx # HW queue which IRQ affinity is set to CPU3 or otherwise to the one with affinity close enough to CPU3. # # Read more here: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-acc-rfs # # Obviously it would achieve the best result if there is at least one Rx HW queue with an affinity set to each # application threads that handle TCP. # # And, similarly, if we know in advance that there won't be any such HW queue (sq and sq_split modes) - there is # no sense enabling aRFS. op = "Enable" value = 'on' if (self.args.enable_arfs is None and self.irqs_cpu_mask == self.cpu_mask) or self.args.enable_arfs is False: op = "Disable" value = 'off' ethtool_msg = "{} ntuple filtering HW offload for {}...".format(op, iface) if dry_run_mode: perftune_print(ethtool_msg) run_one_command(['ethtool','-K', iface, 'ntuple', value], stderr=subprocess.DEVNULL) else: try: print("Trying to {} ntuple filtering HW offload for {}...".format(op.lower(), iface), end='') run_one_command(['ethtool','-K', iface, 'ntuple', value], stderr=subprocess.DEVNULL) print("ok") except: print("not supported") def __setup_rps(self, iface, mask): for one_rps_cpus in self.__get_rps_cpus(iface): set_one_mask(one_rps_cpus, mask) self.__setup_rfs(iface) def __setup_xps(self, iface): xps_cpus_list = glob.glob("/sys/class/net/{}/queues/*/xps_cpus".format(iface)) masks = run_hwloc_distrib(["{}".format(len(xps_cpus_list))]) for i, mask in enumerate(masks): set_one_mask(xps_cpus_list[i], mask) def __iface_exists(self, iface): if len(iface) == 0: return False return os.path.exists("/sys/class/net/{}".format(iface)) def __dev_is_hw_iface(self, iface): return os.path.exists("/sys/class/net/{}/device".format(iface)) def __check_dev_is_bond_iface(self): bond_dict = {} if not os.path.exists('/sys/class/net/bonding_masters'): for nic in self.nics: bond_dict[nic] = False #return False for every nic return bond_dict for nic in self.nics: bond_dict[nic] = any([re.search(nic, line) for line in open('/sys/class/net/bonding_masters', 'r').readlines()]) return bond_dict def __learn_slaves(self): slaves_list_per_nic = {} for nic in self.nics: if self.nic_is_bond_iface(nic): slaves_list_per_nic[nic] = list(itertools.chain.from_iterable([line.split() for line in open("/sys/class/net/{}/bonding/slaves".format(nic), 'r').readlines()])) return slaves_list_per_nic def __intel_irq_to_queue_idx(self, irq): """ Return the HW queue index for a given IRQ for Intel NICs in order to sort the IRQs' list by this index. Intel's fast path IRQs have the following name convention: -TxRx- Intel NICs also have the IRQ for Flow Director (which is not a regular fast path IRQ) whose name looks like this: :fdir-TxRx- We want to put the Flow Director's IRQ at the end of the sorted list of IRQs. :param irq: IRQ number :return: HW queue index for Intel NICs and sys.maxsize for all other NICs """ intel_fp_irq_re = re.compile("\-TxRx\-(\d+)") fdir_re = re.compile("fdir\-TxRx\-\d+") m = intel_fp_irq_re.search(self.__irqs2procline[irq]) m1 = fdir_re.search(self.__irqs2procline[irq]) if m and not m1: return int(m.group(1)) else: return sys.maxsize def __mlx_irq_to_queue_idx(self, irq): """ Return the HW queue index for a given IRQ for Mellanox NICs in order to sort the IRQs' list by this index. Mellanox NICs have the IRQ which name looks like this: mlx5_comp23 mlx5_comp or this: mlx4-6 mlx4- :param irq: IRQ number :return: HW queue index for Mellanox NICs and sys.maxsize for all other NICs """ mlx5_fp_irq_re = re.compile("mlx5_comp(\d+)") mlx4_fp_irq_re = re.compile("mlx4\-(\d+)") m5 = mlx5_fp_irq_re.search(self.__irqs2procline[irq]) if m5: return int(m5.group(1)) else: m4 = mlx4_fp_irq_re.search(self.__irqs2procline[irq]) if m4: return int(m4.group(1)) return sys.maxsize def __virtio_irq_to_queue_idx(self, irq): """ Return the HW queue index for a given IRQ for VIRTIO in order to sort the IRQs' list by this index. VIRTIO NICs have the IRQ's name that looks like this: Queue K of a device virtioY, where Y is some integer is comprised of 2 IRQs with following names: * Tx IRQ: virtioY-output.K * Rx IRQ: virtioY-input.K :param irq: IRQ number :return: HW queue index for VIRTIO fast path IRQ and sys.maxsize for all other IRQs """ virtio_fp_re = re.compile(r"virtio\d+-(input|output)\.(\d+)$") virtio_fp_irq = virtio_fp_re.search(self.__irqs2procline[irq]) if virtio_fp_irq: return int(virtio_fp_irq.group(2)) return sys.maxsize def __get_driver_name(self, iface): """ :param iface: Interface to check :return: driver name from ethtool """ driver_name = '' ethtool_i_lines = run_ethtool(['-i', iface]) driver_re = re.compile("driver:") driver_lines = list(filter(lambda one_line: driver_re.search(one_line), ethtool_i_lines)) if driver_lines: if len(driver_lines) > 1: raise Exception("More than one 'driver:' entries in the 'ethtool -i {}' output. Unable to continue.".format(iface)) driver_name = driver_lines[0].split()[1].strip() return driver_name def __learn_irqs_one(self, iface): """ This is a slow method that is going to read from the system files. Never use it outside the initialization code. Use __get_irqs_one() instead. Filter the fast path queues IRQs from the __get_all_irqs_one() result according to the known patterns. Right now we know about the following naming convention of the fast path queues vectors: - Intel: -TxRx- - Broadcom: -fp- - ena: -Tx-Rx- - Mellanox: for mlx4 mlx4-@ or for mlx5 mlx5_comp@ - VIRTIO: virtioN-[input|output].D So, we will try to filter the etries in /proc/interrupts for IRQs we've got from get_all_irqs_one() according to the patterns above. If as a result all IRQs are filtered out (if there are no IRQs with the names from the patterns above) then this means that the given NIC uses a different IRQs naming pattern. In this case we won't filter any IRQ. Otherwise, we will use only IRQs which names fit one of the patterns above. For NICs with a limited number of Rx queues the IRQs that handle Rx are going to be at the beginning of the list. """ # filter 'all_irqs' to only reference valid keys from 'irqs2procline' and avoid an IndexError on the 'irqs' search below all_irqs = set(learn_all_irqs_one("/sys/class/net/{}/device".format(iface), self.__irqs2procline, iface)).intersection(self.__irqs2procline.keys()) fp_irqs_re = re.compile("\-TxRx\-|\-fp\-|\-Tx\-Rx\-|mlx4-\d+@|mlx5_comp\d+@|virtio\d+-(input|output)") irqs = sorted(list(filter(lambda irq : fp_irqs_re.search(self.__irqs2procline[irq]), all_irqs))) if irqs: irqs.sort(key=self.__get_irq_to_queue_idx_functor(iface)) return irqs else: return list(all_irqs) def __get_irq_to_queue_idx_functor(self, iface): """ Get a functor returning a queue index for a given IRQ. This functor is needed for NICs that are known to not release IRQs when the number of Rx channels is reduced or have extra IRQs for non-RSS channels. Therefore, for these NICs we need a functor that would allow us to pick IRQs that belong to channels that are going to handle TCP traffic: first X channels, where the value of X depends on the NIC's type and configuration. For others, e.g. ENA, or Broadcom, which are only going to allocate IRQs that belong to TCP handling channels, we don't really need to sort them as long as we filter fast path IRQs and distribute them evenly among IRQ CPUs. :param iface: NIC's interface name, e.g. eth19 :return: A functor that returns a queue index for a given IRQ if a mapping is known or a constant big integer value if mapping is unknown. """ # There are a few known drivers for which we know how to get a queue index from an IRQ name in /proc/interrupts driver_name = self.__get_driver_name(iface) # Every functor returns a sys.maxsize for an unknown driver IRQs. # So, choosing Intel's as a default is as good as any other. irq_to_idx_func = self.__intel_irq_to_queue_idx if driver_name.startswith("mlx"): irq_to_idx_func = self.__mlx_irq_to_queue_idx elif driver_name.startswith("virtio"): irq_to_idx_func = self.__virtio_irq_to_queue_idx return irq_to_idx_func def __irq_lower_bound_by_queue(self, iface, irqs, queue_idx): """ Get the index of the first element in irqs array which queue is greater or equal to a given index. IRQs array is supposed to be sorted by queues numbers IRQs belong to. There are additional assumptions: * IRQs array items queue numbers are monotonically not decreasing, and if it increases then it increases by one. * Queue indexes are numbered starting from zero. :param irqs: IRQs array sorted by queues numbers IRQs belong to :param queue_idx: Queue index to partition by :return: The first index in the IRQs array that corresponds to a queue number greater or equal to a given index which is at least queue_idx. If there is no such IRQ - returns len(irqs). """ irq_to_idx_func = self.__get_irq_to_queue_idx_functor(iface) if queue_idx < len(irqs): for idx in range(queue_idx, len(irqs)): if irq_to_idx_func(irqs[idx]) >= queue_idx: return idx return len(irqs) def __learn_irqs(self): """ This is a slow method that is going to read from the system files. Never use it outside the initialization code. """ nic_irq_dict={} for nic in self.nics: if self.nic_is_bond_iface(nic): for slave in filter(self.__dev_is_hw_iface, self.slaves(nic)): nic_irq_dict[slave] = self.__learn_irqs_one(slave) else: nic_irq_dict[nic] = self.__learn_irqs_one(nic) return nic_irq_dict def __get_rps_cpus(self, iface): """ Prints all rps_cpus files names for the given HW interface. There is a single rps_cpus file for each RPS queue and there is a single RPS queue for each HW Rx queue. Each HW Rx queue should have an IRQ. Therefore the number of these files is equal to the number of fast path Rx IRQs for this interface. """ return glob.glob("/sys/class/net/{}/queues/*/rps_cpus".format(iface)) def __set_rx_channels_count(self, iface, count): """ Try to set the number of Rx channels of a given interface to a given value. Rx channels of any NIC can be configured using 'ethtool -L' command using one of the following semantics: ethtool -L rx or ethtool -L combined If a specific semantics is not supported by a given NIC or if changing the number of channels is not supported ethtool is going to return an error. Instead of parsing and trying to detect which one of the following semantics a given interface supports we will simply try to use both semantics till either one of them succeeds or both fail. :param iface: NIC interface name, e.g. eth4 :param count: number of Rx channels we want to configure :return: True if configuration was successful, False otherwise """ options = ["rx", "combined"] for o in options: try: cmd = ['ethtool', '-L', iface, o, f"{count}"] perftune_print(f"Executing: {' '.join(cmd)}") run_one_command(cmd, stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError: pass return False def __setup_one_hw_iface(self, iface): # Set Rx channels count to a number of IRQ CPUs unless an explicit count is given if self.args.num_rx_queues is not None: num_rx_channels = self.args.num_rx_queues else: num_rx_channels = 0 # If a mask is wider than 32 bits it's going to be presented as a comma-separated list of 32-bit masks # with possibly omitted zero components, e.g. 0x01,0x100,,0x12122 for m in self.irqs_cpu_mask.split(","): if m: num_rx_channels += bin(int(m, 16)).count('1') # Let's try setting the number of Rx channels to the number of IRQ CPUs. # # If we were able to change the number of Rx channels the number of IRQs could have changed. # In this case let's refresh IRQs info. rx_channels_set = self.__set_rx_channels_count(iface, num_rx_channels) if rx_channels_set: self.__get_irqs_info() max_num_rx_queues = self.__max_rx_queue_count(iface) all_irqs = self.__get_irqs_one(iface) # Bind the NIC's IRQs according to the configuration mode # # If this NIC has a limited number of Rx queues then we want to distribute their IRQs separately. # For such NICs we've sorted IRQs list so that IRQs that handle Rx are all at the head of the list. if rx_channels_set or max_num_rx_queues < len(all_irqs): num_rx_queues = self.__get_rx_queue_count(iface) tcp_irqs_lower_bound = self.__irq_lower_bound_by_queue(iface, all_irqs, num_rx_queues) perftune_print(f"Distributing IRQs handling Rx and Tx for first {num_rx_queues} channels:") distribute_irqs(all_irqs[0:tcp_irqs_lower_bound], self.irqs_cpu_mask) perftune_print("Distributing the rest of IRQs") distribute_irqs(all_irqs[tcp_irqs_lower_bound:], self.irqs_cpu_mask) else: perftune_print("Distributing all IRQs") distribute_irqs(all_irqs, self.irqs_cpu_mask) self.__setup_rps(iface, self.cpu_mask) self.__setup_xps(iface) def __setup_bonding_iface(self, nic): for slave in self.slaves(nic): if self.__dev_is_hw_iface(slave): perftune_print("Setting up {}...".format(slave)) self.__setup_one_hw_iface(slave) else: perftune_print("Skipping {} (not a physical slave device?)".format(slave)) def __max_rx_queue_count(self, iface): """ :param iface: Interface to check :return: The maximum number of RSS queues for the given interface if there is known limitation and sys.maxsize otherwise. Networking drivers serving HW with the known maximum RSS queue limitation (due to lack of RSS bits): ixgbe: PF NICs support up to 16 RSS queues. ixgbevf: VF NICs support up to 4 RSS queues. i40e: PF NICs support up to 64 RSS queues. i40evf: VF NICs support up to 16 RSS queues. """ driver_to_max_rss = {'ixgbe': 16, 'ixgbevf': 4, 'i40e': 64, 'i40evf': 16} driver_name = self.__get_driver_name(iface) return driver_to_max_rss.get(driver_name, sys.maxsize) def __get_rx_queue_count(self, iface): """ :return: the RSS Rx queues count for the given interface. """ num_irqs = len(self.__get_irqs_one(iface)) rx_queues_count = len(self.__get_rps_cpus(iface)) if rx_queues_count == 0: rx_queues_count = num_irqs return min(self.__max_rx_queue_count(iface), rx_queues_count) class ClocksourceManager: class PreferredClockSourceNotAvailableException(Exception): pass def __init__(self, args): self.__args = args self._preferred = {"x86_64": "tsc", "kvm": "kvm-clock"} self._arch = self._get_arch() self._available_clocksources_file = "/sys/devices/system/clocksource/clocksource0/available_clocksource" self._current_clocksource_file = "/sys/devices/system/clocksource/clocksource0/current_clocksource" self._recommendation_if_unavailable = { "x86_64": "The tsc clocksource is not available. Consider using a hardware platform where the tsc clocksource is available, or try forcing it withe the tsc=reliable boot option", "kvm": "kvm-clock is not available" } def _available_clocksources(self): return open(self._available_clocksources_file).readline().split() def _current_clocksource(self): return open(self._current_clocksource_file).readline().strip() def _get_arch(self): try: virt = run_read_only_command(['systemd-detect-virt']).strip() if virt == "kvm": return virt except: pass return platform.machine() def enforce_preferred_clocksource(self): fwriteln(self._current_clocksource_file, self._preferred[self._arch], "Setting clocksource to {}".format(self._preferred[self._arch])) def preferred(self): return self._preferred[self._arch] def setting_available(self): return self._arch in self._preferred def preferred_clocksource_available(self): return self._preferred[self._arch] in self._available_clocksources() def recommendation_if_unavailable(self): return self._recommendation_if_unavailable[self._arch] class SystemPerfTuner(PerfTunerBase): def __init__(self, args): super().__init__(args) self._clocksource_manager = ClocksourceManager(args) def tune(self): if self.args.tune_clock: if not self._clocksource_manager.setting_available(): perftune_print("Clocksource setting not available or not needed for this architecture. Not tuning") elif not self._clocksource_manager.preferred_clocksource_available(): perftune_print(self._clocksource_manager.recommendation_if_unavailable()) else: self._clocksource_manager.enforce_preferred_clocksource() #### Protected methods ########################## def _get_irqs(self): return [] ################################################# class DiskPerfTuner(PerfTunerBase): class SupportedDiskTypes(enum.IntEnum): nvme = 0 non_nvme = 1 def __init__(self, args): super().__init__(args) if not (self.args.dirs or self.args.devs): raise Exception("'disks' tuning was requested but neither directories nor storage devices were given") self.__pyudev_ctx = pyudev.Context() self.__dir2disks = self.__learn_directories() self.__irqs2procline = get_irqs2procline_map() self.__disk2irqs = self.__learn_irqs() self.__type2diskinfo = self.__group_disks_info_by_type() # sets of devices that have already been tuned self.__io_scheduler_tuned_devs = set() self.__nomerges_tuned_devs = set() self.__write_back_cache_tuned_devs = set() #### Public methods ############################# def tune(self): """ Distribute IRQs according to the requested mode (args.mode): - Distribute NVMe disks' IRQs equally among all available CPUs. - Distribute non-NVMe disks' IRQs equally among designated CPUs or among all available CPUs in the 'mq' mode. """ non_nvme_disks, non_nvme_irqs = self.__disks_info_by_type(DiskPerfTuner.SupportedDiskTypes.non_nvme) if non_nvme_disks: perftune_print("Setting non-NVMe disks: {}...".format(", ".join(non_nvme_disks))) distribute_irqs(non_nvme_irqs, self.irqs_cpu_mask) self.__tune_disks(non_nvme_disks) else: perftune_print("No non-NVMe disks to tune") nvme_disks, nvme_irqs = self.__disks_info_by_type(DiskPerfTuner.SupportedDiskTypes.nvme) if nvme_disks: # Linux kernel is going to use IRQD_AFFINITY_MANAGED mode for NVMe IRQs # on most systems (currently only AWS i3 non-metal are known to have a # different configuration). SMP affinity of an IRQ in this mode may not be # changed and an attempt to modify it is going to fail. However right now # the only way to determine that IRQD_AFFINITY_MANAGED mode has been used # is to attempt to modify IRQ SMP affinity (and fail) therefore we prefer # to always do it. # # What we don't want however is to see annoying errors every time we # detect that IRQD_AFFINITY_MANAGED was actually used. Therefore we will only log # them in the "verbose" mode or when we run on an i3.nonmetal AWS instance. perftune_print("Setting NVMe disks: {}...".format(", ".join(nvme_disks))) distribute_irqs(nvme_irqs, self.args.cpu_mask, log_errors=(self.is_aws_i3_non_metal_instance or self.args.verbose)) self.__tune_disks(nvme_disks) else: perftune_print("No NVMe disks to tune") #### Protected methods ########################## def _get_irqs(self): return itertools.chain.from_iterable(irqs for disks, irqs in self.__type2diskinfo.values()) #### Private methods ############################ @property def __io_schedulers(self): """ :return: An ordered list of IO schedulers that we want to configure. Schedulers are ordered by their priority from the highest (left most) to the lowest. """ return ["none", "noop"] @property def __nomerges(self): return '2' @property def __write_cache_config(self): """ :return: None - if write cache mode configuration is not requested or the corresponding write cache configuration value string """ if self.args.set_write_back is None: return None return "write back" if self.args.set_write_back else "write through" def __disks_info_by_type(self, disks_type): """ Returns a tuple ( [], [] ) for the given disks type. IRQs numbers in the second list are promised to be unique. """ return self.__type2diskinfo[DiskPerfTuner.SupportedDiskTypes(disks_type)] def __nvme_fast_path_irq_filter(self, irq): """ Return True for fast path NVMe IRQs. For NVMe device only queues 1- are going to do fast path work. NVMe IRQs have the following name convention: nvmeq, e.g. nvme0q7 :param irq: IRQ number :return: True if this IRQ is an IRQ of a FP NVMe queue. """ nvme_irq_re = re.compile(r'(\s|^)nvme\d+q(\d+)(\s|$)') # There may be more than an single HW queue bound to the same IRQ. In this case queue names are going to be # comma separated split_line = self.__irqs2procline[irq].split(",") for line in split_line: m = nvme_irq_re.search(line) if m and 0 < int(m.group(2)) <= multiprocessing.cpu_count(): return True return False def __group_disks_info_by_type(self): """ Return a map of tuples ( [], [] ), where "disks" are all disks of the specific type and "irqs" are the corresponding IRQs. It's promised that every element is "disks" and "irqs" is unique. The disk types are 'nvme' and 'non-nvme' """ disks_info_by_type = {} nvme_disks = set() nvme_irqs = set() non_nvme_disks = set() non_nvme_irqs = set() nvme_disk_name_pattern = re.compile('^nvme') for disk, irqs in self.__disk2irqs.items(): if nvme_disk_name_pattern.search(disk): nvme_disks.add(disk) for irq in irqs: nvme_irqs.add(irq) else: non_nvme_disks.add(disk) for irq in irqs: non_nvme_irqs.add(irq) if not (nvme_disks or non_nvme_disks): raise Exception("'disks' tuning was requested but no disks were found") nvme_irqs = list(nvme_irqs) # There is a known issue with Xen hypervisor that exposes itself on AWS i3 instances where nvme module # over-allocates HW queues and uses only queues 1,2,3,..., for data transfer. # On these instances we will distribute only these queues. if self.is_aws_i3_non_metal_instance: nvme_irqs = list(filter(self.__nvme_fast_path_irq_filter, nvme_irqs)) # Sort IRQs for easier verification nvme_irqs.sort(key=lambda irq_num_str: int(irq_num_str)) disks_info_by_type[DiskPerfTuner.SupportedDiskTypes.nvme] = (list(nvme_disks), nvme_irqs) disks_info_by_type[DiskPerfTuner.SupportedDiskTypes.non_nvme] = ( list(non_nvme_disks), list(non_nvme_irqs) ) return disks_info_by_type def __learn_directories(self): return { directory : self.__learn_directory(directory) for directory in self.args.dirs } def __learn_directory(self, directory, recur=False): """ Returns a list of disks the given directory is mounted on (there will be more than one if the mount point is on the RAID volume) """ if not os.path.exists(directory): if not recur: perftune_print("{} doesn't exist - skipping".format(directory)) return [] try: udev_obj = pyudev.Devices.from_device_number(self.__pyudev_ctx, 'block', os.stat(directory).st_dev) return self.__get_phys_devices(udev_obj) except: # handle cases like ecryptfs where the directory is mounted to another directory and not to some block device filesystem = run_read_only_command(['df', '-P', directory]).splitlines()[-1].split()[0].strip() if not re.search(r'^/dev/', filesystem): devs = self.__learn_directory(filesystem, True) else: raise Exception("Logic error: failed to create a udev device while 'df -P' {} returns a {}".format(directory, filesystem)) # log error only for the original directory if not recur and not devs: perftune_print("Can't get a block device for {} - skipping".format(directory)) return devs def __get_phys_devices(self, udev_obj): # if device is a virtual device - the underlying physical devices are going to be its slaves if re.search(r'virtual', udev_obj.sys_path): slaves = os.listdir(os.path.join(udev_obj.sys_path, 'slaves')) # If the device is virtual but doesn't have slaves (e.g. as nvm-subsystem virtual devices) handle it # as a regular device. if slaves: return list(itertools.chain.from_iterable([ self.__get_phys_devices(pyudev.Devices.from_device_file(self.__pyudev_ctx, "/dev/{}".format(slave))) for slave in slaves ])) # device node is something like /dev/sda1 - we need only the part without /dev/ return [ re.match(r'/dev/(\S+\d*)', udev_obj.device_node).group(1) ] def __learn_irqs(self): disk2irqs = {} for devices in list(self.__dir2disks.values()) + [ self.args.devs ]: for device in devices: # There could be that some of the given directories are on the same disk. # There is no need to rediscover IRQs of the disk we've already handled. if device in disk2irqs.keys(): continue udev_obj = pyudev.Devices.from_device_file(self.__pyudev_ctx, "/dev/{}".format(device)) dev_sys_path = udev_obj.sys_path # If the device is a virtual NVMe device it's sys file name goes as follows: # /sys/devices/virtual/nvme-subsystem/nvme-subsys0/nvme0n1 # # and then there is this symlink: # /sys/devices/virtual/nvme-subsystem/nvme-subsys0/nvme0n1/device/nvme0 -> ../../../pci0000:85/0000:85:01.0/0000:87:00.0/nvme/nvme0 # # So, the "main device" is a "nvme\d+" prefix of the actual device name. if re.search(r'virtual', udev_obj.sys_path): m = re.match(r'(nvme\d+)\S*', device) if m: dev_sys_path = "{}/device/{}".format(udev_obj.sys_path, m.group(1)) split_sys_path = list(pathlib.PurePath(pathlib.Path(dev_sys_path).resolve()).parts) # first part is always /sys/devices/pciXXX ... controller_path_parts = split_sys_path[0:4] # ...then there is a chain of one or more "domain:bus:device.function" followed by the storage device enumeration crap # e.g. /sys/devices/pci0000:00/0000:00:1f.2/ata2/host1/target1:0:0/1:0:0:0/block/sda/sda3 or # /sys/devices/pci0000:00/0000:00:02.0/0000:02:00.0/host6/target6:2:0/6:2:0:0/block/sda/sda1 # We want only the path till the last BDF including - it contains the IRQs information. patt = re.compile("^[0-9ABCDEFabcdef]{4}\:[0-9ABCDEFabcdef]{2}\:[0-9ABCDEFabcdef]{2}\.[0-9ABCDEFabcdef]$") for split_sys_path_branch in split_sys_path[4:]: if patt.search(split_sys_path_branch): controller_path_parts.append(split_sys_path_branch) else: break controler_path_str = functools.reduce(lambda x, y : os.path.join(x, y), controller_path_parts) disk2irqs[device] = learn_all_irqs_one(controler_path_str, self.__irqs2procline, 'blkif') return disk2irqs def __get_feature_file(self, dev_node, path_creator): """ Find the closest ancestor with the given feature and return its ('feature file', 'device node') tuple. If there isn't such an ancestor - return (None, None) tuple. :param dev_node Device node file name, e.g. /dev/sda1 :param path_creator A functor that creates a feature file name given a device system file name """ # Sanity check if dev_node is None or path_creator is None: return None, None udev = pyudev.Devices.from_device_file(pyudev.Context(), dev_node) feature_file = path_creator(udev.sys_path) if os.path.exists(feature_file): return feature_file, dev_node elif udev.parent is not None: return self.__get_feature_file(udev.parent.device_node, path_creator) else: return None, None def __tune_one_feature(self, dev_node, path_creator, value, tuned_devs_set): """ Find the closest ancestor that has the given feature, configure it and return True. If there isn't such ancestor - return False. :param dev_node Device node file name, e.g. /dev/sda1 :param path_creator A functor that creates a feature file name given a device system file name """ feature_file, feature_node = self.__get_feature_file(dev_node, path_creator) if feature_file is None: return False if feature_node not in tuned_devs_set: fwriteln_and_log(feature_file, value) tuned_devs_set.add(feature_node) return True def __tune_io_scheduler(self, dev_node, io_scheduler): return self.__tune_one_feature(dev_node, lambda p : os.path.join(p, 'queue', 'scheduler'), io_scheduler, self.__io_scheduler_tuned_devs) def __tune_nomerges(self, dev_node): return self.__tune_one_feature(dev_node, lambda p : os.path.join(p, 'queue', 'nomerges'), self.__nomerges, self.__nomerges_tuned_devs) # If write cache configuration is not requested - return True immediately def __tune_write_back_cache(self, dev_node): if self.__write_cache_config is None: return True return self.__tune_one_feature(dev_node, lambda p : os.path.join(p, 'queue', 'write_cache'), self.__write_cache_config, self.__write_back_cache_tuned_devs) def __get_io_scheduler(self, dev_node): """ Return a supported scheduler that is also present in the required schedulers list (__io_schedulers). If there isn't such a supported scheduler - return None. """ feature_file, feature_node = self.__get_feature_file(dev_node, lambda p : os.path.join(p, 'queue', 'scheduler')) lines = readlines(feature_file) if not lines: return None # Supported schedulers appear in the config file as a single line as follows: # # sched1 [sched2] sched3 # # ...with one or more schedulers where currently selected scheduler is the one in brackets. # # Return the scheduler with the highest priority among those that are supported for the current device. supported_schedulers = frozenset([scheduler.lstrip("[").rstrip("]").rstrip("\n") for scheduler in lines[0].split(" ")]) return next((scheduler for scheduler in self.__io_schedulers if scheduler in supported_schedulers), None) def __tune_disk(self, device): dev_node = "/dev/{}".format(device) io_scheduler = self.__get_io_scheduler(dev_node) if not io_scheduler: perftune_print("Not setting I/O Scheduler for {} - required schedulers ({}) are not supported".format(device, list(self.__io_schedulers))) elif not self.__tune_io_scheduler(dev_node, io_scheduler): perftune_print("Not setting I/O Scheduler for {} - feature not present".format(device)) if not self.__tune_nomerges(dev_node): perftune_print("Not setting 'nomerges' for {} - feature not present".format(device)) if not self.__tune_write_back_cache(dev_node): perftune_print("Not setting 'write_cache' for {} - feature not present".format(device)) def __tune_disks(self, disks): for disk in disks: self.__tune_disk(disk) ################################################################################ class TuneModes(enum.Enum): disks = 0 net = 1 system = 2 @staticmethod def names(): return list(TuneModes.__members__.keys()) argp = argparse.ArgumentParser(description = 'Configure various system parameters in order to improve the seastar application performance.', formatter_class=argparse.RawDescriptionHelpFormatter, epilog= ''' This script will: - Ban relevant IRQs from being moved by irqbalance. - Configure various system parameters in /proc/sys. - Distribute the IRQs (using SMP affinity configuration) among CPUs according to the configuration mode (see below) or an 'irq_cpu_mask' value. As a result some of the CPUs may be destined to only handle the IRQs and taken out of the CPU set that should be used to run the seastar application ("compute CPU set"). Modes description: sq - set all IRQs of a given NIC to CPU0 and configure RPS to spreads NAPIs' handling between other CPUs. sq_split - divide all IRQs of a given NIC between CPU0 and its HT siblings and configure RPS to spreads NAPIs' handling between other CPUs. mq - distribute NIC's IRQs among all CPUs instead of binding them all to CPU0. In this mode RPS is always enabled to spreads NAPIs' handling between all CPUs. If there isn't any mode given script will use a default mode: - If number of CPU cores is greater than 16, allocate a single IRQ CPU core for each 16 CPU cores in 'cpu_mask'. IRQ cores are going to be allocated evenly on available NUMA nodes according to 'cpu_mask' value. - If number of physical CPU cores per Rx HW queue is greater than 4 and less than 16 - use the 'sq-split' mode. - Otherwise, if number of hyper-threads per Rx HW queue is greater than 4 - use the 'sq' mode. - Otherwise use the 'mq' mode. Default values: --nic NIC - default: eth0 --cpu-mask MASK - default: all available cores mask --tune-clock - default: false ''') argp.add_argument('--mode', choices=PerfTunerBase.SupportedModes.names(), help='configuration mode (deprecated, use --irq-cpu-mask instead)') argp.add_argument('--nic', action='append', help='network interface name(s), by default uses \'eth0\' (may appear more than once)', dest='nics', default=[]) argp.add_argument('--tune-clock', action='store_true', help='Force tuning of the system clocksource') argp.add_argument('--get-cpu-mask', action='store_true', help="print the CPU mask to be used for compute") argp.add_argument('--get-cpu-mask-quiet', action='store_true', help="print the CPU mask to be used for compute, print the zero CPU set if that's what it turns out to be") argp.add_argument('--get-irq-cpu-mask', action='store_true', help="print the CPU mask to be used for IRQs binding") argp.add_argument('--verbose', action='store_true', help="be more verbose about operations and their result") argp.add_argument('--tune', choices=TuneModes.names(), help="components to configure (may be given more than once)", action='append', default=[]) argp.add_argument('--cpu-mask', help="mask of cores to use, by default use all available cores", metavar='MASK') argp.add_argument('--irq-cpu-mask', help="mask of cores to use for IRQs binding", metavar='MASK') argp.add_argument('--dir', help="directory to optimize (may appear more than once)", action='append', dest='dirs', default=[]) argp.add_argument('--dev', help="device to optimize (may appear more than once), e.g. sda1", action='append', dest='devs', default=[]) argp.add_argument('--options-file', help="configuration YAML file") argp.add_argument('--dump-options-file', action='store_true', help="Print the configuration YAML file containing the current configuration") argp.add_argument('--dry-run', action='store_true', help="Don't take any action, just recommend what to do.") argp.add_argument('--write-back-cache', help="Enable/Disable \'write back\' write cache mode.", dest="set_write_back") argp.add_argument('--arfs', help="Enable/Disable aRFS", dest="enable_arfs") argp.add_argument('--num-rx-queues', help="Set a given number of Rx queues", type=int) argp.add_argument('--irq-core-auto-detection-ratio', help="Use a given ratio for IRQ mask auto-detection. For " "instance, if 8 is given and auto-detection is requested, a " "single IRQ CPU core is going to be allocated for every 8 " "CPU cores out of available according to a 'cpu_mask' value." "Default is 16", type=int, default=16, dest='cores_per_irq_core') def parse_cpu_mask_from_yaml(y, field_name, fname): hex_32bit_pattern='0x[0-9a-fA-F]{1,8}' mask_pattern = re.compile('^{}((,({})?)*,{})*$'.format(hex_32bit_pattern, hex_32bit_pattern, hex_32bit_pattern)) if mask_pattern.match(str(y[field_name])): return y[field_name] else: raise Exception("Bad '{}' value in {}: {}".format(field_name, fname, str(y[field_name]))) def extend_and_unique(orig_list, iterable): """ Extend items to a list, and make the list items unique """ assert(isinstance(orig_list, list)) assert(isinstance(iterable, list)) orig_list.extend(iterable) return list(set(orig_list)) def parse_tri_state_arg(value, arg_name): try: if value is not None: return distutils.util.strtobool(value) else: return None except: sys.exit("Invalid {} value: should be boolean but given: {}".format(arg_name, value)) def parse_options_file(prog_args): if not prog_args.options_file: return y = yaml.safe_load(open(prog_args.options_file)) if y is None: return if 'mode' in y and not prog_args.mode: if not y['mode'] in PerfTunerBase.SupportedModes.names(): raise Exception("Bad 'mode' value in {}: {}".format(prog_args.options_file, y['mode'])) prog_args.mode = y['mode'] if 'nic' in y: # Multiple nics was supported by commit a2fc9d72c31b97840bc75ae49dbd6f4b6d394e25 # `nic' option dumped to config file will be list after this change, but the `nic' # option in old config file is still string, which was generated before this change. # So here convert the string option to list. if not isinstance(y['nic'], list): y['nic'] = [y['nic']] prog_args.nics = extend_and_unique(prog_args.nics, y['nic']) if 'tune_clock' in y and not prog_args.tune_clock: prog_args.tune_clock= y['tune_clock'] if 'tune' in y: if set(y['tune']) <= set(TuneModes.names()): prog_args.tune = extend_and_unique(prog_args.tune, y['tune']) else: raise Exception("Bad 'tune' value in {}: {}".format(prog_args.options_file, y['tune'])) if 'cpu_mask' in y and not prog_args.cpu_mask: prog_args.cpu_mask = parse_cpu_mask_from_yaml(y, 'cpu_mask', prog_args.options_file) if 'irq_cpu_mask' in y and not prog_args.irq_cpu_mask: prog_args.irq_cpu_mask = parse_cpu_mask_from_yaml(y, 'irq_cpu_mask', prog_args.options_file) if 'dir' in y: prog_args.dirs = extend_and_unique(prog_args.dirs, y['dir']) if 'dev' in y: prog_args.devs = extend_and_unique(prog_args.devs, y['dev']) if 'write_back_cache' in y: prog_args.set_write_back = distutils.util.strtobool("{}".format(y['write_back_cache'])) if 'arfs' in y: prog_args.enable_arfs = distutils.util.strtobool("{}".format(y['arfs'])) if 'num_rx_queues' in y: prog_args.num_rx_queues = int(y['num_rx_queues']) # prog_options['irq_core_auto_detection_ratio'] = prog_args.cores_per_irq_core if 'irq_core_auto_detection_ratio' in y: prog_args.cores_per_irq_core = int(y['irq_core_auto_detection_ratio']) def dump_config(prog_args): prog_options = {} if prog_args.mode: assert prog_args.cpu_mask, "cpu_mask has to always be set. Something is terribly wrong (a bug in perftune.py?)" mode = PerfTunerBase.SupportedModes[prog_args.mode] prog_options['irq_cpu_mask'] = PerfTunerBase.irqs_cpu_mask_for_mode(mode, prog_args.cpu_mask) if prog_args.nics: prog_options['nic'] = list(set(prog_args.nics)) if prog_args.tune_clock: prog_options['tune_clock'] = prog_args.tune_clock if prog_args.tune: prog_options['tune'] = list(set(prog_args.tune)) if prog_args.cpu_mask: prog_options['cpu_mask'] = prog_args.cpu_mask if prog_args.irq_cpu_mask: prog_options['irq_cpu_mask'] = prog_args.irq_cpu_mask if prog_args.dirs: prog_options['dir'] = list(set(prog_args.dirs)) if prog_args.devs: prog_options['dev'] = list(set(prog_args.devs)) if prog_args.set_write_back is not None: prog_options['write_back_cache'] = prog_args.set_write_back if prog_args.enable_arfs is not None: prog_options['arfs'] = prog_args.enable_arfs if prog_args.num_rx_queues is not None: prog_options['num_rx_queues'] = f"{prog_args.num_rx_queues}" prog_options['irq_core_auto_detection_ratio'] = prog_args.cores_per_irq_core perftune_print(yaml.dump(prog_options, default_flow_style=False)) ################################################################################ args = argp.parse_args() # Sanity check args.set_write_back = parse_tri_state_arg(args.set_write_back, "--write-back-cache/write_back_cache") args.enable_arfs = parse_tri_state_arg(args.enable_arfs, "--arfs/arfs") dry_run_mode = args.dry_run parse_options_file(args) # if nothing needs to be configured - quit if not args.tune: sys.exit("ERROR: At least one tune mode MUST be given.") # The must be either 'mode' or an explicit 'irq_cpu_mask' given - not both if args.mode and args.irq_cpu_mask: sys.exit("ERROR: Provide either tune mode or IRQs CPU mask - not both.") # Sanity check if args.cores_per_irq_core < PerfTunerBase.min_cores_per_irq_core(): sys.exit(f"ERROR: irq_core_auto_detection_ratio value must be greater or equal than " f"{PerfTunerBase.min_cores_per_irq_core()}") # set default values ##################### if not args.nics: args.nics = ['eth0'] if not args.cpu_mask: args.cpu_mask = run_hwloc_calc(['all']) ########################################## # Sanity: irq_cpu_mask should be a subset of cpu_mask if args.irq_cpu_mask and run_hwloc_calc([args.cpu_mask]) != run_hwloc_calc([args.cpu_mask, args.irq_cpu_mask]): sys.exit("ERROR: IRQ CPU mask({}) must be a subset of CPU mask({})".format(args.irq_cpu_mask, args.cpu_mask)) if args.dump_options_file: dump_config(args) sys.exit(0) try: tuners = [] if TuneModes.disks.name in args.tune: tuners.append(DiskPerfTuner(args)) if TuneModes.net.name in args.tune: tuners.append(NetPerfTuner(args)) if TuneModes.system.name in args.tune: tuners.append(SystemPerfTuner(args)) if args.get_cpu_mask or args.get_cpu_mask_quiet: # Print the compute mask from the first tuner - it's going to be the same in all of them perftune_print(tuners[0].compute_cpu_mask) elif args.get_irq_cpu_mask: perftune_print(tuners[0].irqs_cpu_mask) else: # Tune the system restart_irqbalance(itertools.chain.from_iterable([ tuner.irqs for tuner in tuners ])) for tuner in tuners: tuner.tune() except PerfTunerBase.CPUMaskIsZeroException as e: # Print a zero CPU set if --get-cpu-mask-quiet was requested. if args.get_cpu_mask_quiet: perftune_print("0x0") else: sys.exit("ERROR: {}. Your system can't be tuned until the issue is fixed.".format(e)) except Exception as e: sys.exit("ERROR: {}. Your system can't be tuned until the issue is fixed.".format(e))