/* * This file is open source software, licensed to you under the terms * of the Apache License, Version 2.0 (the "License"). See the NOTICE file * distributed with this work for additional information regarding copyright * ownership. You may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Copyright (C) 2017 ScyllaDB */ #include #include #include #include #include #include #include #include #include using namespace seastar; // // Sanity check the accuracy of the steady low-resolution clock. // SEASTAR_TEST_CASE(steady_clock_sanity) { return do_with(lowres_clock::now(), [](auto &&t1) { static constexpr auto sleep_duration = std::chrono::milliseconds(100); return ::seastar::sleep(sleep_duration).then([&t1] { auto const elapsed = lowres_clock::now() - t1; auto const minimum_elapsed = 0.9 * sleep_duration; BOOST_REQUIRE(elapsed >= minimum_elapsed); return make_ready_future<>(); }); }); } // // At the very least, we can verify that the low-resolution system clock is within a second of the // high-resolution system clock. // SEASTAR_TEST_CASE(system_clock_sanity) { static const auto check_matching = [] { auto const system_time = std::chrono::system_clock::now(); auto const lowres_time = lowres_system_clock::now(); auto const t1 = std::chrono::system_clock::to_time_t(system_time); auto const t2 = lowres_system_clock::to_time_t(lowres_time); std::tm *lt1 = std::localtime(&t1); std::tm *lt2 = std::localtime(&t2); return (lt1->tm_isdst == lt2->tm_isdst) && (lt1->tm_year == lt2->tm_year) && (lt1->tm_mon == lt2->tm_mon) && (lt1->tm_yday == lt2->tm_yday) && (lt1->tm_mday == lt2->tm_mday) && (lt1->tm_wday == lt2->tm_wday) && (lt1->tm_hour == lt2->tm_hour) && (lt1->tm_min == lt2->tm_min) && (lt1->tm_sec == lt2->tm_sec); }; // // Check two out of three samples in order to account for the possibility that the high-resolution clock backing // the low-resoltuion clock was captured in the range of the 990th to 999th millisecond of the second. This would // make the low-resolution clock and the high-resolution clock disagree on the current second. // return do_with(0ul, 0ul, [](std::size_t& index, std::size_t& success_count) { return repeat([&index, &success_count] { if (index >= 3) { BOOST_REQUIRE_GE(success_count, 2u); return make_ready_future(stop_iteration::yes); } return ::seastar::sleep(std::chrono::milliseconds(10)).then([&index, &success_count] { if (check_matching()) { ++success_count; } ++index; return stop_iteration::no; }); }); }); } // // Verify that the low-resolution clock updates its reported time point over time. // SEASTAR_TEST_CASE(system_clock_dynamic) { return do_with(lowres_system_clock::now(), [](auto &&t1) { return seastar::sleep(std::chrono::milliseconds(100)).then([&t1] { auto const t2 = lowres_system_clock::now(); BOOST_REQUIRE_NE(t1.time_since_epoch().count(), t2.time_since_epoch().count()); return make_ready_future<>(); }); }); }