/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include "comp_perf_options.h" #define CPERF_PTEST_TYPE ("ptest") #define CPERF_DRIVER_NAME ("driver-name") #define CPERF_TEST_FILE ("input-file") #define CPERF_SEG_SIZE ("seg-sz") #define CPERF_BURST_SIZE ("burst-sz") #define CPERF_EXTENDED_SIZE ("extended-input-sz") #define CPERF_POOL_SIZE ("pool-sz") #define CPERF_MAX_SGL_SEGS ("max-num-sgl-segs") #define CPERF_NUM_ITER ("num-iter") #define CPERF_OPTYPE ("operation") #define CPERF_HUFFMAN_ENC ("huffman-enc") #define CPERF_LEVEL ("compress-level") #define CPERF_WINDOW_SIZE ("window-sz") #define CPERF_EXTERNAL_MBUFS ("external-mbufs") /* cyclecount-specific options */ #define CPERF_CYCLECOUNT_DELAY_US ("cc-delay-us") struct name_id_map { const char *name; uint32_t id; }; static void usage(char *progname) { printf("%s [EAL options] --\n" " --ptest throughput / verify / pmd-cyclecount\n" " --driver-name NAME: compress driver to use\n" " --input-file NAME: file to compress and decompress\n" " --extended-input-sz N: extend file data up to this size (default: no extension)\n" " --seg-sz N: size of segment to store the data (default: 2048)\n" " --burst-sz N: compress operation burst size\n" " --pool-sz N: mempool size for compress operations/mbufs\n" " (default: 8192)\n" " --max-num-sgl-segs N: maximum number of segments for each mbuf\n" " (default: 16)\n" " --num-iter N: number of times the file will be\n" " compressed/decompressed (default: 10000)\n" " --operation [comp/decomp/comp_and_decomp]: perform test on\n" " compression, decompression or both operations\n" " --huffman-enc [fixed/dynamic/default]: Huffman encoding\n" " (default: dynamic)\n" " --compress-level N: compression level, which could be a single value, list or range\n" " (default: range between 1 and 9)\n" " --window-sz N: base two log value of compression window size\n" " (e.g.: 15 => 32k, default: max supported by PMD)\n" " --external-mbufs: use memzones as external buffers instead of\n" " keeping the data directly in mbuf area\n" " --cc-delay-us N: delay between enqueue and dequeue operations in microseconds\n" " valid only for cyclecount perf test (default: 500 us)\n" " -h: prints this help\n", progname); } static int get_str_key_id_mapping(struct name_id_map *map, unsigned int map_len, const char *str_key) { unsigned int i; for (i = 0; i < map_len; i++) { if (strcmp(str_key, map[i].name) == 0) return map[i].id; } return -1; } static int parse_cperf_test_type(struct comp_test_data *test_data, const char *arg) { struct name_id_map cperftest_namemap[] = { { comp_perf_test_type_strs[CPERF_TEST_TYPE_THROUGHPUT], CPERF_TEST_TYPE_THROUGHPUT }, { comp_perf_test_type_strs[CPERF_TEST_TYPE_VERIFY], CPERF_TEST_TYPE_VERIFY }, { comp_perf_test_type_strs[CPERF_TEST_TYPE_PMDCC], CPERF_TEST_TYPE_PMDCC } }; int id = get_str_key_id_mapping( (struct name_id_map *)cperftest_namemap, RTE_DIM(cperftest_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "failed to parse test type"); return -1; } test_data->test = (enum cperf_test_type)id; return 0; } static int parse_uint32_t(uint32_t *value, const char *arg) { char *end = NULL; unsigned long n = strtoul(arg, &end, 10); if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (n > UINT32_MAX) return -ERANGE; *value = (uint32_t) n; return 0; } static int parse_uint16_t(uint16_t *value, const char *arg) { uint32_t val = 0; int ret = parse_uint32_t(&val, arg); if (ret < 0) return ret; if (val > UINT16_MAX) return -ERANGE; *value = (uint16_t) val; return 0; } static int parse_range(const char *arg, uint8_t *min, uint8_t *max, uint8_t *inc) { char *token; uint8_t number; char *copy_arg = strdup(arg); if (copy_arg == NULL) return -1; errno = 0; token = strtok(copy_arg, ":"); /* Parse minimum value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE) goto err_range; *min = number; } else goto err_range; token = strtok(NULL, ":"); /* Parse increment value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_range; *inc = number; } else goto err_range; token = strtok(NULL, ":"); /* Parse maximum value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number < *min) goto err_range; *max = number; } else goto err_range; if (strtok(NULL, ":") != NULL) goto err_range; free(copy_arg); return 0; err_range: free(copy_arg); return -1; } static int parse_list(const char *arg, uint8_t *list, uint8_t *min, uint8_t *max) { char *token; uint32_t number; uint8_t count = 0; uint32_t temp_min; uint32_t temp_max; char *copy_arg = strdup(arg); if (copy_arg == NULL) return -1; errno = 0; token = strtok(copy_arg, ","); /* Parse first value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE) goto err_list; list[count++] = number; temp_min = number; temp_max = number; } else goto err_list; token = strtok(NULL, ","); while (token != NULL) { if (count == MAX_LIST) { RTE_LOG(WARNING, USER1, "Using only the first %u sizes\n", MAX_LIST); break; } number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE) goto err_list; list[count++] = number; if (number < temp_min) temp_min = number; if (number > temp_max) temp_max = number; token = strtok(NULL, ","); } if (min) *min = temp_min; if (max) *max = temp_max; free(copy_arg); return count; err_list: free(copy_arg); return -1; } static int parse_num_iter(struct comp_test_data *test_data, const char *arg) { int ret = parse_uint32_t(&test_data->num_iter, arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse total iteration count\n"); return -1; } if (test_data->num_iter == 0) { RTE_LOG(ERR, USER1, "Total number of iterations must be higher than 0\n"); return -1; } return ret; } static int parse_pool_sz(struct comp_test_data *test_data, const char *arg) { int ret = parse_uint32_t(&test_data->pool_sz, arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse pool size"); return -1; } if (test_data->pool_sz == 0) { RTE_LOG(ERR, USER1, "Pool size must be higher than 0\n"); return -1; } return ret; } static int parse_burst_sz(struct comp_test_data *test_data, const char *arg) { int ret = parse_uint16_t(&test_data->burst_sz, arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse burst size/s\n"); return -1; } if (test_data->burst_sz == 0) { RTE_LOG(ERR, USER1, "Burst size must be higher than 0\n"); return -1; } return 0; } static int parse_extended_input_sz(struct comp_test_data *test_data, const char *arg) { uint32_t tmp; int ret = parse_uint32_t(&tmp, arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse extended input size\n"); return -1; } test_data->input_data_sz = tmp; if (tmp == 0) { RTE_LOG(ERR, USER1, "Extended file size must be higher than 0\n"); return -1; } return 0; } static int parse_seg_sz(struct comp_test_data *test_data, const char *arg) { int ret = parse_uint16_t(&test_data->seg_sz, arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse segment size\n"); return -1; } if (test_data->seg_sz < MIN_COMPRESSED_BUF_SIZE) { RTE_LOG(ERR, USER1, "Segment size must be higher than %d\n", MIN_COMPRESSED_BUF_SIZE - 1); return -1; } if (test_data->seg_sz > MAX_SEG_SIZE) { RTE_LOG(ERR, USER1, "Segment size must be lower than %d\n", MAX_SEG_SIZE + 1); return -1; } return 0; } static int parse_max_num_sgl_segs(struct comp_test_data *test_data, const char *arg) { int ret = parse_uint16_t(&test_data->max_sgl_segs, arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse max number of segments per mbuf chain\n"); return -1; } if (test_data->max_sgl_segs == 0) { RTE_LOG(ERR, USER1, "Max number of segments per mbuf chain " "must be higher than 0\n"); return -1; } return 0; } static int parse_window_sz(struct comp_test_data *test_data, const char *arg) { uint16_t tmp; int ret = parse_uint16_t(&tmp, arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse window size\n"); return -1; } test_data->window_sz = (int)tmp; return 0; } static int parse_driver_name(struct comp_test_data *test_data, const char *arg) { if (strlen(arg) > (sizeof(test_data->driver_name) - 1)) return -1; strlcpy(test_data->driver_name, arg, sizeof(test_data->driver_name)); return 0; } static int parse_test_file(struct comp_test_data *test_data, const char *arg) { if (strlen(arg) > (sizeof(test_data->input_file) - 1)) return -1; strlcpy(test_data->input_file, arg, sizeof(test_data->input_file)); return 0; } static int parse_op_type(struct comp_test_data *test_data, const char *arg) { struct name_id_map optype_namemap[] = { { "comp", COMPRESS_ONLY }, { "decomp", DECOMPRESS_ONLY }, { "comp_and_decomp", COMPRESS_DECOMPRESS } }; int id = get_str_key_id_mapping(optype_namemap, RTE_DIM(optype_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "Invalid operation type specified\n"); return -1; } test_data->test_op = (enum comp_operation)id; return 0; } static int parse_huffman_enc(struct comp_test_data *test_data, const char *arg) { struct name_id_map huffman_namemap[] = { { "default", RTE_COMP_HUFFMAN_DEFAULT }, { "fixed", RTE_COMP_HUFFMAN_FIXED }, { "dynamic", RTE_COMP_HUFFMAN_DYNAMIC } }; int id = get_str_key_id_mapping(huffman_namemap, RTE_DIM(huffman_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "Invalid Huffmane encoding specified\n"); return -1; } test_data->huffman_enc = (enum rte_comp_huffman)id; return 0; } static int parse_level(struct comp_test_data *test_data, const char *arg) { int ret; /* * Try parsing the argument as a range, if it fails, * arse it as a list */ if (parse_range(arg, &test_data->level_lst.min, &test_data->level_lst.max, &test_data->level_lst.inc) < 0) { ret = parse_list(arg, test_data->level_lst.list, &test_data->level_lst.min, &test_data->level_lst.max); if (ret < 0) { RTE_LOG(ERR, USER1, "Failed to parse compression level/s\n"); return -1; } test_data->level_lst.count = ret; if (test_data->level_lst.max > RTE_COMP_LEVEL_MAX) { RTE_LOG(ERR, USER1, "Level cannot be higher than %u\n", RTE_COMP_LEVEL_MAX); return -1; } } return 0; } static int parse_external_mbufs(struct comp_test_data *test_data, const char *arg __rte_unused) { test_data->use_external_mbufs = 1; return 0; } static int parse_cyclecount_delay_us(struct comp_test_data *test_data, const char *arg) { int ret = parse_uint32_t(&(test_data->cyclecount_delay), arg); if (ret) { RTE_LOG(ERR, USER1, "Failed to parse cyclecount delay\n"); return -1; } return 0; } typedef int (*option_parser_t)(struct comp_test_data *test_data, const char *arg); struct long_opt_parser { const char *lgopt_name; option_parser_t parser_fn; }; static struct option lgopts[] = { { CPERF_PTEST_TYPE, required_argument, 0, 0 }, { CPERF_DRIVER_NAME, required_argument, 0, 0 }, { CPERF_TEST_FILE, required_argument, 0, 0 }, { CPERF_SEG_SIZE, required_argument, 0, 0 }, { CPERF_BURST_SIZE, required_argument, 0, 0 }, { CPERF_EXTENDED_SIZE, required_argument, 0, 0 }, { CPERF_POOL_SIZE, required_argument, 0, 0 }, { CPERF_MAX_SGL_SEGS, required_argument, 0, 0}, { CPERF_NUM_ITER, required_argument, 0, 0 }, { CPERF_OPTYPE, required_argument, 0, 0 }, { CPERF_HUFFMAN_ENC, required_argument, 0, 0 }, { CPERF_LEVEL, required_argument, 0, 0 }, { CPERF_WINDOW_SIZE, required_argument, 0, 0 }, { CPERF_EXTERNAL_MBUFS, 0, 0, 0 }, { CPERF_CYCLECOUNT_DELAY_US, required_argument, 0, 0 }, { NULL, 0, 0, 0 } }; static int comp_perf_opts_parse_long(int opt_idx, struct comp_test_data *test_data) { struct long_opt_parser parsermap[] = { { CPERF_PTEST_TYPE, parse_cperf_test_type }, { CPERF_DRIVER_NAME, parse_driver_name }, { CPERF_TEST_FILE, parse_test_file }, { CPERF_SEG_SIZE, parse_seg_sz }, { CPERF_BURST_SIZE, parse_burst_sz }, { CPERF_EXTENDED_SIZE, parse_extended_input_sz }, { CPERF_POOL_SIZE, parse_pool_sz }, { CPERF_MAX_SGL_SEGS, parse_max_num_sgl_segs }, { CPERF_NUM_ITER, parse_num_iter }, { CPERF_OPTYPE, parse_op_type }, { CPERF_HUFFMAN_ENC, parse_huffman_enc }, { CPERF_LEVEL, parse_level }, { CPERF_WINDOW_SIZE, parse_window_sz }, { CPERF_EXTERNAL_MBUFS, parse_external_mbufs }, { CPERF_CYCLECOUNT_DELAY_US, parse_cyclecount_delay_us }, }; unsigned int i; for (i = 0; i < RTE_DIM(parsermap); i++) { if (strncmp(lgopts[opt_idx].name, parsermap[i].lgopt_name, strlen(lgopts[opt_idx].name)) == 0) return parsermap[i].parser_fn(test_data, optarg); } return -EINVAL; } int comp_perf_options_parse(struct comp_test_data *test_data, int argc, char **argv) { int opt, retval, opt_idx; while ((opt = getopt_long(argc, argv, "h", lgopts, &opt_idx)) != EOF) { switch (opt) { case 'h': usage(argv[0]); rte_exit(EXIT_SUCCESS, "Displayed help\n"); break; /* long options */ case 0: retval = comp_perf_opts_parse_long(opt_idx, test_data); if (retval != 0) return retval; break; default: usage(argv[0]); return -EINVAL; } } return 0; } void comp_perf_options_default(struct comp_test_data *test_data) { test_data->seg_sz = 2048; test_data->burst_sz = 32; test_data->pool_sz = 8192; test_data->max_sgl_segs = 16; test_data->num_iter = 10000; test_data->huffman_enc = RTE_COMP_HUFFMAN_DYNAMIC; test_data->test_op = COMPRESS_DECOMPRESS; test_data->window_sz = -1; test_data->level_lst.min = RTE_COMP_LEVEL_MIN; test_data->level_lst.max = RTE_COMP_LEVEL_MAX; test_data->level_lst.inc = 1; test_data->test = CPERF_TEST_TYPE_THROUGHPUT; test_data->use_external_mbufs = 0; test_data->cyclecount_delay = 500; } int comp_perf_options_check(struct comp_test_data *test_data) { if (test_data->driver_name[0] == '\0') { RTE_LOG(ERR, USER1, "Driver name has to be set\n"); return -1; } if (test_data->input_file[0] == '\0') { RTE_LOG(ERR, USER1, "Input file name has to be set\n"); return -1; } return 0; }