/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2014-2018 Broadcom * All rights reserved. */ #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_ring.h" #include "bnxt_rxr.h" #include "bnxt_rxq.h" #include "hsi_struct_def_dpdk.h" #ifdef RTE_LIBRTE_IEEE1588 #include "bnxt_hwrm.h" #endif #include #include /* * RX Ring handling */ static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb) { struct rte_mbuf *data; data = rte_mbuf_raw_alloc(mb); return data; } static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq, struct bnxt_rx_ring_info *rxr, uint16_t prod) { struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod]; struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; struct rte_mbuf *mbuf; mbuf = __bnxt_alloc_rx_data(rxq->mb_pool); if (!mbuf) { rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail); return -ENOMEM; } rx_buf->mbuf = mbuf; mbuf->data_off = RTE_PKTMBUF_HEADROOM; rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); return 0; } static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq, struct bnxt_rx_ring_info *rxr, uint16_t prod) { struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod]; struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod]; struct rte_mbuf *mbuf; if (rxbd == NULL) { PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n"); return -EINVAL; } if (rx_buf == NULL) { PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n"); return -EINVAL; } mbuf = __bnxt_alloc_rx_data(rxq->mb_pool); if (!mbuf) { rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail); return -ENOMEM; } rx_buf->mbuf = mbuf; mbuf->data_off = RTE_PKTMBUF_HEADROOM; rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); return 0; } static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr, struct rte_mbuf *mbuf) { uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod); struct bnxt_sw_rx_bd *prod_rx_buf; struct rx_prod_pkt_bd *prod_bd; prod_rx_buf = &rxr->rx_buf_ring[prod]; RTE_ASSERT(prod_rx_buf->mbuf == NULL); RTE_ASSERT(mbuf != NULL); prod_rx_buf->mbuf = mbuf; prod_bd = &rxr->rx_desc_ring[prod]; prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); rxr->rx_prod = prod; } static inline struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr, uint16_t cons) { struct bnxt_sw_rx_bd *cons_rx_buf; struct rte_mbuf *mbuf; cons_rx_buf = &rxr->rx_buf_ring[cons]; RTE_ASSERT(cons_rx_buf->mbuf != NULL); mbuf = cons_rx_buf->mbuf; cons_rx_buf->mbuf = NULL; return mbuf; } static void bnxt_tpa_start(struct bnxt_rx_queue *rxq, struct rx_tpa_start_cmpl *tpa_start, struct rx_tpa_start_cmpl_hi *tpa_start1) { struct bnxt_rx_ring_info *rxr = rxq->rx_ring; uint16_t agg_id; uint16_t data_cons; struct bnxt_tpa_info *tpa_info; struct rte_mbuf *mbuf; agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start); data_cons = tpa_start->opaque; tpa_info = &rxr->tpa_info[agg_id]; mbuf = bnxt_consume_rx_buf(rxr, data_cons); bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf); tpa_info->agg_count = 0; tpa_info->mbuf = mbuf; tpa_info->len = rte_le_to_cpu_32(tpa_start->len); mbuf->nb_segs = 1; mbuf->next = NULL; mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len); mbuf->data_len = mbuf->pkt_len; mbuf->port = rxq->port_id; mbuf->ol_flags = PKT_RX_LRO; if (likely(tpa_start->flags_type & rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) { mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash); mbuf->ol_flags |= PKT_RX_RSS_HASH; } else { mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code); mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID; } if (tpa_start1->flags2 & rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) { mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata); mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; } if (likely(tpa_start1->flags2 & rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC))) mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD; /* recycle next mbuf */ data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons); bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons)); } static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr, uint8_t agg_bufs, uint32_t raw_cp_cons) { uint16_t last_cp_cons; struct rx_pkt_cmpl *agg_cmpl; raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs); last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons); agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons]; cpr->valid = FLIP_VALID(raw_cp_cons, cpr->cp_ring_struct->ring_mask, cpr->valid); return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct); } /* TPA consume agg buffer out of order, allocate connected data only */ static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq) { struct bnxt_rx_ring_info *rxr = rxq->rx_ring; uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod); /* TODO batch allocation for better performance */ while (rte_bitmap_get(rxr->ag_bitmap, next)) { if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) { PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n", next); break; } rte_bitmap_clear(rxr->ag_bitmap, next); rxr->ag_prod = next; next = RING_NEXT(rxr->ag_ring_struct, next); } return 0; } static int bnxt_rx_pages(struct bnxt_rx_queue *rxq, struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons, uint8_t agg_buf, struct bnxt_tpa_info *tpa_info) { struct bnxt_cp_ring_info *cpr = rxq->cp_ring; struct bnxt_rx_ring_info *rxr = rxq->rx_ring; int i; uint16_t cp_cons, ag_cons; struct rx_pkt_cmpl *rxcmp; struct rte_mbuf *last = mbuf; bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp); for (i = 0; i < agg_buf; i++) { struct bnxt_sw_rx_bd *ag_buf; struct rte_mbuf *ag_mbuf; if (is_thor_tpa) { rxcmp = (void *)&tpa_info->agg_arr[i]; } else { *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons); cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons); rxcmp = (struct rx_pkt_cmpl *) &cpr->cp_desc_ring[cp_cons]; } #ifdef BNXT_DEBUG bnxt_dump_cmpl(cp_cons, rxcmp); #endif ag_cons = rxcmp->opaque; RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask); ag_buf = &rxr->ag_buf_ring[ag_cons]; ag_mbuf = ag_buf->mbuf; RTE_ASSERT(ag_mbuf != NULL); ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len); mbuf->nb_segs++; mbuf->pkt_len += ag_mbuf->data_len; last->next = ag_mbuf; last = ag_mbuf; ag_buf->mbuf = NULL; /* * As aggregation buffer consumed out of order in TPA module, * use bitmap to track freed slots to be allocated and notified * to NIC */ rte_bitmap_set(rxr->ag_bitmap, ag_cons); } bnxt_prod_ag_mbuf(rxq); return 0; } static inline struct rte_mbuf *bnxt_tpa_end( struct bnxt_rx_queue *rxq, uint32_t *raw_cp_cons, struct rx_tpa_end_cmpl *tpa_end, struct rx_tpa_end_cmpl_hi *tpa_end1) { struct bnxt_cp_ring_info *cpr = rxq->cp_ring; struct bnxt_rx_ring_info *rxr = rxq->rx_ring; uint16_t agg_id; struct rte_mbuf *mbuf; uint8_t agg_bufs; uint8_t payload_offset; struct bnxt_tpa_info *tpa_info; if (BNXT_CHIP_THOR(rxq->bp)) { struct rx_tpa_v2_end_cmpl *th_tpa_end; struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1; th_tpa_end = (void *)tpa_end; th_tpa_end1 = (void *)tpa_end1; agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end); agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1); payload_offset = th_tpa_end1->payload_offset; } else { agg_id = BNXT_TPA_END_AGG_ID(tpa_end); agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end); if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons)) return NULL; payload_offset = tpa_end->payload_offset; } tpa_info = &rxr->tpa_info[agg_id]; mbuf = tpa_info->mbuf; RTE_ASSERT(mbuf != NULL); rte_prefetch0(mbuf); if (agg_bufs) { bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info); } mbuf->l4_len = payload_offset; struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool); RTE_ASSERT(new_data != NULL); if (!new_data) { rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail); return NULL; } tpa_info->mbuf = new_data; return mbuf; } static uint32_t bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1) { uint32_t l3, pkt_type = 0; uint32_t t_ipcs = 0, ip6 = 0, vlan = 0; uint32_t flags_type; vlan = !!(rxcmp1->flags2 & rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)); pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER; t_ipcs = !!(rxcmp1->flags2 & rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)); ip6 = !!(rxcmp1->flags2 & rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE)); flags_type = rxcmp->flags_type & rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK); if (!t_ipcs && !ip6) l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; else if (!t_ipcs && ip6) l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; else if (t_ipcs && !ip6) l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN; else l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN; switch (flags_type) { case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP): if (!t_ipcs) pkt_type |= l3 | RTE_PTYPE_L4_ICMP; else pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP; break; case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP): if (!t_ipcs) pkt_type |= l3 | RTE_PTYPE_L4_TCP; else pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP; break; case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP): if (!t_ipcs) pkt_type |= l3 | RTE_PTYPE_L4_UDP; else pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP; break; case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP): pkt_type |= l3; break; } return pkt_type; } #ifdef RTE_LIBRTE_IEEE1588 static void bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl) { uint64_t systime_cycles = 0; if (!BNXT_CHIP_THOR(bp)) return; /* On Thor, Rx timestamps are provided directly in the * Rx completion records to the driver. Only 32 bits of * the timestamp is present in the completion. Driver needs * to read the current 48 bit free running timer using the * HWRM_PORT_TS_QUERY command and combine the upper 16 bits * from the HWRM response with the lower 32 bits in the * Rx completion to produce the 48 bit timestamp for the Rx packet */ bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME, &systime_cycles); bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000); bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl; } #endif static void bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf) { uint32_t cfa_code; uint32_t meta_fmt; uint32_t meta; bool gfid = false; uint32_t mark_id; uint32_t flags2; int rc; cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code); flags2 = rte_le_to_cpu_32(rxcmp1->flags2); meta = rte_le_to_cpu_32(rxcmp1->metadata); /* * The flags field holds extra bits of info from [6:4] * which indicate if the flow is in TCAM or EM or EEM */ meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >> BNXT_CFA_META_FMT_SHFT; switch (meta_fmt) { case 0: /* Not an LFID or GFID, a flush cmd. */ goto skip_mark; case 4: case 5: /* * EM/TCAM case * Assume that EM doesn't support Mark due to GFID * collisions with EEM. Simply return without setting the mark * in the mbuf. */ if (BNXT_CFA_META_EM_TEST(meta)) goto skip_mark; /* * It is a TCAM entry, so it is an LFID. The TCAM IDX and Mode * can also be determined by decoding the meta_data. We are not * using these for now. */ break; case 6: case 7: /* EEM Case, only using gfid in EEM for now. */ gfid = true; /* * For EEM flows, The first part of cfa_code is 16 bits. * The second part is embedded in the * metadata field from bit 19 onwards. The driver needs to * ignore the first 19 bits of metadata and use the next 12 * bits as higher 12 bits of cfa_code. */ meta >>= BNXT_RX_META_CFA_CODE_SHIFT; cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT; break; default: /* For other values, the cfa_code is assumed to be an LFID. */ break; } if (cfa_code) { rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid, cfa_code, &mark_id); if (!rc) { /* Got the mark, write it to the mbuf and return */ mbuf->hash.fdir.hi = mark_id; mbuf->udata64 = (cfa_code & 0xffffffffull) << 32; mbuf->hash.fdir.id = rxcmp1->cfa_code; mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID; return; } } skip_mark: mbuf->hash.fdir.hi = 0; mbuf->hash.fdir.id = 0; } void bnxt_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf) { uint32_t cfa_code = 0; uint8_t meta_fmt = 0; uint16_t flags2 = 0; uint32_t meta = 0; cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code); if (!cfa_code) return; if (cfa_code && !bp->mark_table[cfa_code].valid) return; flags2 = rte_le_to_cpu_16(rxcmp1->flags2); meta = rte_le_to_cpu_32(rxcmp1->metadata); if (meta) { meta >>= BNXT_RX_META_CFA_CODE_SHIFT; /* The flags field holds extra bits of info from [6:4] * which indicate if the flow is in TCAM or EM or EEM */ meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >> BNXT_CFA_META_FMT_SHFT; /* meta_fmt == 4 => 'b100 => 'b10x => EM. * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN * meta_fmt == 6 => 'b110 => 'b11x => EEM * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN. */ meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT; } mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id; mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID; } static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt, struct bnxt_rx_queue *rxq, uint32_t *raw_cons) { struct bnxt_cp_ring_info *cpr = rxq->cp_ring; struct bnxt_rx_ring_info *rxr = rxq->rx_ring; struct rx_pkt_cmpl *rxcmp; struct rx_pkt_cmpl_hi *rxcmp1; uint32_t tmp_raw_cons = *raw_cons; uint16_t cons, prod, cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons); struct rte_mbuf *mbuf; int rc = 0; uint8_t agg_buf = 0; uint16_t cmp_type; uint32_t flags2_f = 0; uint16_t flags_type; struct bnxt *bp = rxq->bp; rxcmp = (struct rx_pkt_cmpl *) &cpr->cp_desc_ring[cp_cons]; cmp_type = CMP_TYPE(rxcmp); if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) { struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp; uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id); struct bnxt_tpa_info *tpa_info; tpa_info = &rxr->tpa_info[agg_id]; RTE_ASSERT(tpa_info->agg_count < 16); tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; rc = -EINVAL; /* Continue w/o new mbuf */ goto next_rx; } tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons); rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons]; if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct)) return -EBUSY; cpr->valid = FLIP_VALID(cp_cons, cpr->cp_ring_struct->ring_mask, cpr->valid); if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) { bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp, (struct rx_tpa_start_cmpl_hi *)rxcmp1); rc = -EINVAL; /* Continue w/o new mbuf */ goto next_rx; } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) { mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons, (struct rx_tpa_end_cmpl *)rxcmp, (struct rx_tpa_end_cmpl_hi *)rxcmp1); if (unlikely(!mbuf)) return -EBUSY; *rx_pkt = mbuf; goto next_rx; } else if (cmp_type != 0x11) { rc = -EINVAL; goto next_rx; } agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK) >> RX_PKT_CMPL_AGG_BUFS_SFT; if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons)) return -EBUSY; prod = rxr->rx_prod; cons = rxcmp->opaque; mbuf = bnxt_consume_rx_buf(rxr, cons); if (mbuf == NULL) return -EBUSY; rte_prefetch0(mbuf); mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->nb_segs = 1; mbuf->next = NULL; mbuf->pkt_len = rxcmp->len; mbuf->data_len = mbuf->pkt_len; mbuf->port = rxq->port_id; mbuf->ol_flags = 0; flags_type = rte_le_to_cpu_16(rxcmp->flags_type); if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) { mbuf->hash.rss = rxcmp->rss_hash; mbuf->ol_flags |= PKT_RX_RSS_HASH; } if (BNXT_TRUFLOW_EN(bp)) bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf); else bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf); #ifdef RTE_LIBRTE_IEEE1588 if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) == RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) { mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST; bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder); } #endif if (agg_buf) bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL); if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) { mbuf->vlan_tci = rxcmp1->metadata & (RX_PKT_CMPL_METADATA_VID_MASK | RX_PKT_CMPL_METADATA_DE | RX_PKT_CMPL_METADATA_PRI_MASK); mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; } flags2_f = flags2_0xf(rxcmp1); /* IP Checksum */ if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) { if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1))) mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD; else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN; else mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD; } else if (IS_IP_TUNNEL_PKT(flags2_f)) { if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) || RX_CMP_IP_CS_ERROR(rxcmp1))) mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD; else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN; else mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD; } /* L4 Checksum */ if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) { if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1))) mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD; else mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD; } else if (IS_L4_TUNNEL_PKT(flags2_f)) { if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1))) mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD; else mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD; if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) { mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD; } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS (flags2_f))) { mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN; } else { mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD; } } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) { mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN; } mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1); #ifdef BNXT_DEBUG if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) { /* Re-install the mbuf back to the rx ring */ bnxt_reuse_rx_mbuf(rxr, cons, mbuf); rc = -EIO; goto next_rx; } #endif /* * TODO: Redesign this.... * If the allocation fails, the packet does not get received. * Simply returning this will result in slowly falling behind * on the producer ring buffers. * Instead, "filling up" the producer just before ringing the * doorbell could be a better solution since it will let the * producer ring starve until memory is available again pushing * the drops into hardware and getting them out of the driver * allowing recovery to a full producer ring. * * This could also help with cache usage by preventing per-packet * calls in favour of a tight loop with the same function being called * in it. */ prod = RING_NEXT(rxr->rx_ring_struct, prod); if (bnxt_alloc_rx_data(rxq, rxr, prod)) { PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod); rc = -ENOMEM; goto rx; } rxr->rx_prod = prod; /* * All MBUFs are allocated with the same size under DPDK, * no optimization for rx_copy_thresh */ rx: *rx_pkt = mbuf; next_rx: *raw_cons = tmp_raw_cons; return rc; } uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct bnxt_rx_queue *rxq = rx_queue; struct bnxt_cp_ring_info *cpr = rxq->cp_ring; struct bnxt_rx_ring_info *rxr = rxq->rx_ring; uint32_t raw_cons = cpr->cp_raw_cons; uint32_t cons; int nb_rx_pkts = 0; struct rx_pkt_cmpl *rxcmp; uint16_t prod = rxr->rx_prod; uint16_t ag_prod = rxr->ag_prod; int rc = 0; bool evt = false; if (unlikely(is_bnxt_in_error(rxq->bp))) return 0; /* If Rx Q was stopped return */ if (unlikely(!rxq->rx_started || !rte_spinlock_trylock(&rxq->lock))) return 0; /* Handle RX burst request */ while (1) { cons = RING_CMP(cpr->cp_ring_struct, raw_cons); rte_prefetch0(&cpr->cp_desc_ring[cons]); rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct)) break; cpr->valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, cpr->valid); /* TODO: Avoid magic numbers... */ if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) { rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons); if (likely(!rc) || rc == -ENOMEM) nb_rx_pkts++; if (rc == -EBUSY) /* partial completion */ break; } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) { evt = bnxt_event_hwrm_resp_handler(rxq->bp, (struct cmpl_base *)rxcmp); /* If the async event is Fatal error, return */ if (unlikely(is_bnxt_in_error(rxq->bp))) goto done; } raw_cons = NEXT_RAW_CMP(raw_cons); if (nb_rx_pkts == nb_pkts || evt) break; /* Post some Rx buf early in case of larger burst processing */ if (nb_rx_pkts == BNXT_RX_POST_THRESH) bnxt_db_write(&rxr->rx_db, rxr->rx_prod); } cpr->cp_raw_cons = raw_cons; if (!nb_rx_pkts && !evt) { /* * For PMD, there is no need to keep on pushing to REARM * the doorbell if there are no new completions */ goto done; } if (prod != rxr->rx_prod) bnxt_db_write(&rxr->rx_db, rxr->rx_prod); /* Ring the AGG ring DB */ if (ag_prod != rxr->ag_prod) bnxt_db_write(&rxr->ag_db, rxr->ag_prod); bnxt_db_cq(cpr); /* Attempt to alloc Rx buf in case of a previous allocation failure. */ if (rc == -ENOMEM) { int i = RING_NEXT(rxr->rx_ring_struct, prod); int cnt = nb_rx_pkts; for (; cnt; i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) { struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; /* Buffer already allocated for this index. */ if (rx_buf->mbuf != NULL) continue; /* This slot is empty. Alloc buffer for Rx */ if (!bnxt_alloc_rx_data(rxq, rxr, i)) { rxr->rx_prod = i; bnxt_db_write(&rxr->rx_db, rxr->rx_prod); } else { PMD_DRV_LOG(ERR, "Alloc mbuf failed\n"); break; } } } done: rte_spinlock_unlock(&rxq->lock); return nb_rx_pkts; } /* * Dummy DPDK callback for RX. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. */ uint16_t bnxt_dummy_recv_pkts(void *rx_queue __rte_unused, struct rte_mbuf **rx_pkts __rte_unused, uint16_t nb_pkts __rte_unused) { return 0; } void bnxt_free_rx_rings(struct bnxt *bp) { int i; struct bnxt_rx_queue *rxq; if (!bp->rx_queues) return; for (i = 0; i < (int)bp->rx_nr_rings; i++) { rxq = bp->rx_queues[i]; if (!rxq) continue; bnxt_free_ring(rxq->rx_ring->rx_ring_struct); rte_free(rxq->rx_ring->rx_ring_struct); /* Free the Aggregator ring */ bnxt_free_ring(rxq->rx_ring->ag_ring_struct); rte_free(rxq->rx_ring->ag_ring_struct); rxq->rx_ring->ag_ring_struct = NULL; rte_free(rxq->rx_ring); bnxt_free_ring(rxq->cp_ring->cp_ring_struct); rte_free(rxq->cp_ring->cp_ring_struct); rte_free(rxq->cp_ring); rte_free(rxq); bp->rx_queues[i] = NULL; } } int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id) { struct bnxt_cp_ring_info *cpr; struct bnxt_rx_ring_info *rxr; struct bnxt_ring *ring; rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf); rxr = rte_zmalloc_socket("bnxt_rx_ring", sizeof(struct bnxt_rx_ring_info), RTE_CACHE_LINE_SIZE, socket_id); if (rxr == NULL) return -ENOMEM; rxq->rx_ring = rxr; ring = rte_zmalloc_socket("bnxt_rx_ring_struct", sizeof(struct bnxt_ring), RTE_CACHE_LINE_SIZE, socket_id); if (ring == NULL) return -ENOMEM; rxr->rx_ring_struct = ring; ring->ring_size = rte_align32pow2(rxq->nb_rx_desc); ring->ring_mask = ring->ring_size - 1; ring->bd = (void *)rxr->rx_desc_ring; ring->bd_dma = rxr->rx_desc_mapping; ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd); ring->vmem = (void **)&rxr->rx_buf_ring; cpr = rte_zmalloc_socket("bnxt_rx_ring", sizeof(struct bnxt_cp_ring_info), RTE_CACHE_LINE_SIZE, socket_id); if (cpr == NULL) return -ENOMEM; rxq->cp_ring = cpr; ring = rte_zmalloc_socket("bnxt_rx_ring_struct", sizeof(struct bnxt_ring), RTE_CACHE_LINE_SIZE, socket_id); if (ring == NULL) return -ENOMEM; cpr->cp_ring_struct = ring; ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size * (2 + AGG_RING_SIZE_FACTOR)); ring->ring_mask = ring->ring_size - 1; ring->bd = (void *)cpr->cp_desc_ring; ring->bd_dma = cpr->cp_desc_mapping; ring->vmem_size = 0; ring->vmem = NULL; /* Allocate Aggregator rings */ ring = rte_zmalloc_socket("bnxt_rx_ring_struct", sizeof(struct bnxt_ring), RTE_CACHE_LINE_SIZE, socket_id); if (ring == NULL) return -ENOMEM; rxr->ag_ring_struct = ring; ring->ring_size = rte_align32pow2(rxq->nb_rx_desc * AGG_RING_SIZE_FACTOR); ring->ring_mask = ring->ring_size - 1; ring->bd = (void *)rxr->ag_desc_ring; ring->bd_dma = rxr->ag_desc_mapping; ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd); ring->vmem = (void **)&rxr->ag_buf_ring; return 0; } static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type, uint16_t len) { uint32_t j; struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd; if (!rx_bd_ring) return; for (j = 0; j < ring->ring_size; j++) { rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type); rx_bd_ring[j].len = rte_cpu_to_le_16(len); rx_bd_ring[j].opaque = j; } } int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq) { struct bnxt_rx_ring_info *rxr; struct bnxt_ring *ring; uint32_t prod, type; unsigned int i; uint16_t size; size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM; size = RTE_MIN(BNXT_MAX_PKT_LEN, size); type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD; rxr = rxq->rx_ring; ring = rxr->rx_ring_struct; bnxt_init_rxbds(ring, type, size); prod = rxr->rx_prod; for (i = 0; i < ring->ring_size; i++) { if (unlikely(!rxr->rx_buf_ring[i].mbuf)) { if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) { PMD_DRV_LOG(WARNING, "init'ed rx ring %d with %d/%d mbufs only\n", rxq->queue_id, i, ring->ring_size); break; } } rxr->rx_prod = prod; prod = RING_NEXT(rxr->rx_ring_struct, prod); } ring = rxr->ag_ring_struct; type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG; bnxt_init_rxbds(ring, type, size); prod = rxr->ag_prod; for (i = 0; i < ring->ring_size; i++) { if (unlikely(!rxr->ag_buf_ring[i].mbuf)) { if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) { PMD_DRV_LOG(WARNING, "init'ed AG ring %d with %d/%d mbufs only\n", rxq->queue_id, i, ring->ring_size); break; } } rxr->ag_prod = prod; prod = RING_NEXT(rxr->ag_ring_struct, prod); } PMD_DRV_LOG(DEBUG, "AGG Done!\n"); if (rxr->tpa_info) { unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp); for (i = 0; i < max_aggs; i++) { if (unlikely(!rxr->tpa_info[i].mbuf)) { rxr->tpa_info[i].mbuf = __bnxt_alloc_rx_data(rxq->mb_pool); if (!rxr->tpa_info[i].mbuf) { rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail); return -ENOMEM; } } } } PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n"); return 0; }