/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) 2016 - 2018 Cavium Inc. * All rights reserved. * www.cavium.com */ #include #include "qede_rxtx.h" static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq) { struct rte_mbuf *new_mb = NULL; struct eth_rx_bd *rx_bd; dma_addr_t mapping; uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq); new_mb = rte_mbuf_raw_alloc(rxq->mb_pool); if (unlikely(!new_mb)) { PMD_RX_LOG(ERR, rxq, "Failed to allocate rx buffer " "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u", idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq), rte_mempool_avail_count(rxq->mb_pool), rte_mempool_in_use_count(rxq->mb_pool)); return -ENOMEM; } rxq->sw_rx_ring[idx].mbuf = new_mb; rxq->sw_rx_ring[idx].page_offset = 0; mapping = rte_mbuf_data_iova_default(new_mb); /* Advance PROD and get BD pointer */ rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring); rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping)); rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping)); rxq->sw_rx_prod++; return 0; } #define QEDE_MAX_BULK_ALLOC_COUNT 512 static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count) { void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned; struct rte_mbuf *mbuf = NULL; struct eth_rx_bd *rx_bd; dma_addr_t mapping; int i, ret = 0; uint16_t idx; if (count > QEDE_MAX_BULK_ALLOC_COUNT) count = QEDE_MAX_BULK_ALLOC_COUNT; ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count); if (unlikely(ret)) { PMD_RX_LOG(ERR, rxq, "Failed to allocate %d rx buffers " "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u", count, rxq->sw_rx_prod & NUM_RX_BDS(rxq), rxq->sw_rx_cons & NUM_RX_BDS(rxq), rte_mempool_avail_count(rxq->mb_pool), rte_mempool_in_use_count(rxq->mb_pool)); return -ENOMEM; } for (i = 0; i < count; i++) { mbuf = obj_p[i]; if (likely(i < count - 1)) rte_prefetch0(obj_p[i + 1]); idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq); rxq->sw_rx_ring[idx].mbuf = mbuf; rxq->sw_rx_ring[idx].page_offset = 0; mapping = rte_mbuf_data_iova_default(mbuf); rx_bd = (struct eth_rx_bd *) ecore_chain_produce(&rxq->rx_bd_ring); rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping)); rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping)); rxq->sw_rx_prod++; } return 0; } /* Criterias for calculating Rx buffer size - * 1) rx_buf_size should not exceed the size of mbuf * 2) In scattered_rx mode - minimum rx_buf_size should be * (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT * 3) In regular mode - minimum rx_buf_size should be * (MTU + Maximum L2 Header Size + 2) * In above cases +2 corrosponds to 2 bytes padding in front of L2 * header. * 4) rx_buf_size should be cacheline-size aligned. So considering * criteria 1, we need to adjust the size to floor instead of ceil, * so that we don't exceed mbuf size while ceiling rx_buf_size. */ int qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz, uint16_t max_frame_size) { struct qede_dev *qdev = QEDE_INIT_QDEV(dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); int rx_buf_size; if (dev->data->scattered_rx) { /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of * bufferes can be used for single packet. So need to make sure * mbuf size is sufficient enough for this. */ if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) < (max_frame_size + QEDE_ETH_OVERHEAD)) { DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n", mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size); return -EINVAL; } rx_buf_size = RTE_MAX(mbufsz, (max_frame_size + QEDE_ETH_OVERHEAD) / ETH_RX_MAX_BUFF_PER_PKT); } else { rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD; } /* Align to cache-line size if needed */ return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size); } static struct qede_rx_queue * qede_alloc_rx_queue_mem(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, struct rte_mempool *mp, uint16_t bufsz) { struct qede_dev *qdev = QEDE_INIT_QDEV(dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qede_rx_queue *rxq; size_t size; int rc; /* First allocate the rx queue data structure */ rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (!rxq) { DP_ERR(edev, "Unable to allocate memory for rxq on socket %u", socket_id); return NULL; } rxq->qdev = qdev; rxq->mb_pool = mp; rxq->nb_rx_desc = nb_desc; rxq->queue_id = queue_idx; rxq->port_id = dev->data->port_id; rxq->rx_buf_size = bufsz; DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n", qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx); /* Allocate the parallel driver ring for Rx buffers */ size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc; rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size, RTE_CACHE_LINE_SIZE, socket_id); if (!rxq->sw_rx_ring) { DP_ERR(edev, "Memory allocation fails for sw_rx_ring on" " socket %u\n", socket_id); rte_free(rxq); return NULL; } /* Allocate FW Rx ring */ rc = qdev->ops->common->chain_alloc(edev, ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, ECORE_CHAIN_MODE_NEXT_PTR, ECORE_CHAIN_CNT_TYPE_U16, rxq->nb_rx_desc, sizeof(struct eth_rx_bd), &rxq->rx_bd_ring, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Memory allocation fails for RX BD ring" " on socket %u\n", socket_id); rte_free(rxq->sw_rx_ring); rte_free(rxq); return NULL; } /* Allocate FW completion ring */ rc = qdev->ops->common->chain_alloc(edev, ECORE_CHAIN_USE_TO_CONSUME, ECORE_CHAIN_MODE_PBL, ECORE_CHAIN_CNT_TYPE_U16, rxq->nb_rx_desc, sizeof(union eth_rx_cqe), &rxq->rx_comp_ring, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Memory allocation fails for RX CQE ring" " on socket %u\n", socket_id); qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring); rte_free(rxq->sw_rx_ring); rte_free(rxq); return NULL; } return rxq; } int qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid, uint16_t nb_desc, unsigned int socket_id, __rte_unused const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { struct qede_dev *qdev = QEDE_INIT_QDEV(dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; struct qede_rx_queue *rxq; uint16_t max_rx_pkt_len; uint16_t bufsz; int rc; PMD_INIT_FUNC_TRACE(edev); /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */ if (!rte_is_power_of_2(nb_desc)) { DP_ERR(edev, "Ring size %u is not power of 2\n", nb_desc); return -EINVAL; } /* Free memory prior to re-allocation if needed... */ if (dev->data->rx_queues[qid] != NULL) { qede_rx_queue_release(dev->data->rx_queues[qid]); dev->data->rx_queues[qid] = NULL; } max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len; /* Fix up RX buffer size */ bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM; /* cache align the mbuf size to simplfy rx_buf_size calculation */ bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz); if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) || (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) { if (!dev->data->scattered_rx) { DP_INFO(edev, "Forcing scatter-gather mode\n"); dev->data->scattered_rx = 1; } } rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len); if (rc < 0) return rc; bufsz = rc; if (ECORE_IS_CMT(edev)) { rxq = qede_alloc_rx_queue_mem(dev, qid * 2, nb_desc, socket_id, mp, bufsz); if (!rxq) return -ENOMEM; qdev->fp_array[qid * 2].rxq = rxq; rxq = qede_alloc_rx_queue_mem(dev, qid * 2 + 1, nb_desc, socket_id, mp, bufsz); if (!rxq) return -ENOMEM; qdev->fp_array[qid * 2 + 1].rxq = rxq; /* provide per engine fp struct as rx queue */ dev->data->rx_queues[qid] = &qdev->fp_array_cmt[qid]; } else { rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc, socket_id, mp, bufsz); if (!rxq) return -ENOMEM; dev->data->rx_queues[qid] = rxq; qdev->fp_array[qid].rxq = rxq; } DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n", qid, nb_desc, rxq->rx_buf_size, socket_id); return 0; } static void qede_rx_queue_reset(__rte_unused struct qede_dev *qdev, struct qede_rx_queue *rxq) { DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id); ecore_chain_reset(&rxq->rx_bd_ring); ecore_chain_reset(&rxq->rx_comp_ring); rxq->sw_rx_prod = 0; rxq->sw_rx_cons = 0; *rxq->hw_cons_ptr = 0; } static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq) { uint16_t i; if (rxq->sw_rx_ring) { for (i = 0; i < rxq->nb_rx_desc; i++) { if (rxq->sw_rx_ring[i].mbuf) { rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf); rxq->sw_rx_ring[i].mbuf = NULL; } } } } static void _qede_rx_queue_release(struct qede_dev *qdev, struct ecore_dev *edev, struct qede_rx_queue *rxq) { qede_rx_queue_release_mbufs(rxq); qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring); qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring); rte_free(rxq->sw_rx_ring); rte_free(rxq); } void qede_rx_queue_release(void *rx_queue) { struct qede_rx_queue *rxq = rx_queue; struct qede_fastpath_cmt *fp_cmt; struct qede_dev *qdev; struct ecore_dev *edev; if (rxq) { qdev = rxq->qdev; edev = QEDE_INIT_EDEV(qdev); PMD_INIT_FUNC_TRACE(edev); if (ECORE_IS_CMT(edev)) { fp_cmt = rx_queue; _qede_rx_queue_release(qdev, edev, fp_cmt->fp0->rxq); _qede_rx_queue_release(qdev, edev, fp_cmt->fp1->rxq); } else { _qede_rx_queue_release(qdev, edev, rxq); } } } /* Stops a given RX queue in the HW */ static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_hwfn *p_hwfn; struct qede_rx_queue *rxq; int hwfn_index; int rc; if (rx_queue_id < qdev->num_rx_queues) { rxq = qdev->fp_array[rx_queue_id].rxq; hwfn_index = rx_queue_id % edev->num_hwfns; p_hwfn = &edev->hwfns[hwfn_index]; rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle, true, false); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id); return -1; } qede_rx_queue_release_mbufs(rxq); qede_rx_queue_reset(qdev, rxq); eth_dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id); } else { DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id); rc = -EINVAL; } return rc; } static struct qede_tx_queue * qede_alloc_tx_queue_mem(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct qede_dev *qdev = dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct qede_tx_queue *txq; int rc; txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) { DP_ERR(edev, "Unable to allocate memory for txq on socket %u", socket_id); return NULL; } txq->nb_tx_desc = nb_desc; txq->qdev = qdev; txq->port_id = dev->data->port_id; rc = qdev->ops->common->chain_alloc(edev, ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, ECORE_CHAIN_MODE_PBL, ECORE_CHAIN_CNT_TYPE_U16, txq->nb_tx_desc, sizeof(union eth_tx_bd_types), &txq->tx_pbl, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Unable to allocate memory for txbd ring on socket %u", socket_id); qede_tx_queue_release(txq); return NULL; } /* Allocate software ring */ txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring", (sizeof(struct qede_tx_entry) * txq->nb_tx_desc), RTE_CACHE_LINE_SIZE, socket_id); if (!txq->sw_tx_ring) { DP_ERR(edev, "Unable to allocate memory for txbd ring on socket %u", socket_id); qdev->ops->common->chain_free(edev, &txq->tx_pbl); qede_tx_queue_release(txq); return NULL; } txq->queue_id = queue_idx; txq->nb_tx_avail = txq->nb_tx_desc; txq->tx_free_thresh = tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh : (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH); DP_INFO(edev, "txq %u num_desc %u tx_free_thresh %u socket %u\n", queue_idx, nb_desc, txq->tx_free_thresh, socket_id); return txq; } int qede_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct qede_dev *qdev = dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct qede_tx_queue *txq; PMD_INIT_FUNC_TRACE(edev); if (!rte_is_power_of_2(nb_desc)) { DP_ERR(edev, "Ring size %u is not power of 2\n", nb_desc); return -EINVAL; } /* Free memory prior to re-allocation if needed... */ if (dev->data->tx_queues[queue_idx] != NULL) { qede_tx_queue_release(dev->data->tx_queues[queue_idx]); dev->data->tx_queues[queue_idx] = NULL; } if (ECORE_IS_CMT(edev)) { txq = qede_alloc_tx_queue_mem(dev, queue_idx * 2, nb_desc, socket_id, tx_conf); if (!txq) return -ENOMEM; qdev->fp_array[queue_idx * 2].txq = txq; txq = qede_alloc_tx_queue_mem(dev, (queue_idx * 2) + 1, nb_desc, socket_id, tx_conf); if (!txq) return -ENOMEM; qdev->fp_array[(queue_idx * 2) + 1].txq = txq; dev->data->tx_queues[queue_idx] = &qdev->fp_array_cmt[queue_idx]; } else { txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc, socket_id, tx_conf); if (!txq) return -ENOMEM; dev->data->tx_queues[queue_idx] = txq; qdev->fp_array[queue_idx].txq = txq; } return 0; } static void qede_tx_queue_reset(__rte_unused struct qede_dev *qdev, struct qede_tx_queue *txq) { DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id); ecore_chain_reset(&txq->tx_pbl); txq->sw_tx_cons = 0; txq->sw_tx_prod = 0; *txq->hw_cons_ptr = 0; } static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq) { uint16_t i; if (txq->sw_tx_ring) { for (i = 0; i < txq->nb_tx_desc; i++) { if (txq->sw_tx_ring[i].mbuf) { rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf); txq->sw_tx_ring[i].mbuf = NULL; } } } } static void _qede_tx_queue_release(struct qede_dev *qdev, struct ecore_dev *edev, struct qede_tx_queue *txq) { qede_tx_queue_release_mbufs(txq); qdev->ops->common->chain_free(edev, &txq->tx_pbl); rte_free(txq->sw_tx_ring); rte_free(txq); } void qede_tx_queue_release(void *tx_queue) { struct qede_tx_queue *txq = tx_queue; struct qede_fastpath_cmt *fp_cmt; struct qede_dev *qdev; struct ecore_dev *edev; if (txq) { qdev = txq->qdev; edev = QEDE_INIT_EDEV(qdev); PMD_INIT_FUNC_TRACE(edev); if (ECORE_IS_CMT(edev)) { fp_cmt = tx_queue; _qede_tx_queue_release(qdev, edev, fp_cmt->fp0->txq); _qede_tx_queue_release(qdev, edev, fp_cmt->fp1->txq); } else { _qede_tx_queue_release(qdev, edev, txq); } } } /* This function allocates fast-path status block memory */ static int qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info, uint16_t sb_id) { struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct status_block *sb_virt; dma_addr_t sb_phys; int rc; sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys, sizeof(struct status_block)); if (!sb_virt) { DP_ERR(edev, "Status block allocation failed\n"); return -ENOMEM; } rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt, sb_phys, sb_id); if (rc) { DP_ERR(edev, "Status block initialization failed\n"); OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys, sizeof(struct status_block)); return rc; } return 0; } int qede_alloc_fp_resc(struct qede_dev *qdev) { struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qede_fastpath *fp; uint32_t num_sbs; uint16_t sb_idx; int i; PMD_INIT_FUNC_TRACE(edev); if (IS_VF(edev)) ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs); else num_sbs = ecore_cxt_get_proto_cid_count (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL); if (num_sbs == 0) { DP_ERR(edev, "No status blocks available\n"); return -EINVAL; } qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev), sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE); if (!qdev->fp_array) { DP_ERR(edev, "fp array allocation failed\n"); return -ENOMEM; } memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) * sizeof(*qdev->fp_array)); if (ECORE_IS_CMT(edev)) { qdev->fp_array_cmt = rte_calloc("fp_cmt", QEDE_RXTX_MAX(qdev) / 2, sizeof(*qdev->fp_array_cmt), RTE_CACHE_LINE_SIZE); if (!qdev->fp_array_cmt) { DP_ERR(edev, "fp array for CMT allocation failed\n"); return -ENOMEM; } memset((void *)qdev->fp_array_cmt, 0, (QEDE_RXTX_MAX(qdev) / 2) * sizeof(*qdev->fp_array_cmt)); /* Establish the mapping of fp_array with fp_array_cmt */ for (i = 0; i < QEDE_RXTX_MAX(qdev) / 2; i++) { qdev->fp_array_cmt[i].qdev = qdev; qdev->fp_array_cmt[i].fp0 = &qdev->fp_array[i * 2]; qdev->fp_array_cmt[i].fp1 = &qdev->fp_array[i * 2 + 1]; } } for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) { fp = &qdev->fp_array[sb_idx]; if (!fp) continue; fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info), RTE_CACHE_LINE_SIZE); if (!fp->sb_info) { DP_ERR(edev, "FP sb_info allocation fails\n"); return -1; } if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) { DP_ERR(edev, "FP status block allocation fails\n"); return -1; } DP_INFO(edev, "sb_info idx 0x%x initialized\n", fp->sb_info->igu_sb_id); } return 0; } void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qede_fastpath *fp; uint16_t sb_idx; uint8_t i; PMD_INIT_FUNC_TRACE(edev); for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) { fp = &qdev->fp_array[sb_idx]; if (!fp) continue; DP_INFO(edev, "Free sb_info index 0x%x\n", fp->sb_info->igu_sb_id); if (fp->sb_info) { OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt, fp->sb_info->sb_phys, sizeof(struct status_block)); rte_free(fp->sb_info); fp->sb_info = NULL; } } /* Free packet buffers and ring memories */ for (i = 0; i < eth_dev->data->nb_rx_queues; i++) { if (eth_dev->data->rx_queues[i]) { qede_rx_queue_release(eth_dev->data->rx_queues[i]); eth_dev->data->rx_queues[i] = NULL; } } for (i = 0; i < eth_dev->data->nb_tx_queues; i++) { if (eth_dev->data->tx_queues[i]) { qede_tx_queue_release(eth_dev->data->tx_queues[i]); eth_dev->data->tx_queues[i] = NULL; } } if (qdev->fp_array) rte_free(qdev->fp_array); qdev->fp_array = NULL; if (qdev->fp_array_cmt) rte_free(qdev->fp_array_cmt); qdev->fp_array_cmt = NULL; } static inline void qede_update_rx_prod(__rte_unused struct qede_dev *edev, struct qede_rx_queue *rxq) { uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring); uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring); struct eth_rx_prod_data rx_prods = { 0 }; /* Update producers */ rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod); rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod); /* Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. */ rte_wmb(); internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), (uint32_t *)&rx_prods); /* mmiowb is needed to synchronize doorbell writes from more than one * processor. It guarantees that the write arrives to the device before * the napi lock is released and another qede_poll is called (possibly * on another CPU). Without this barrier, the next doorbell can bypass * this doorbell. This is applicable to IA64/Altix systems. */ rte_wmb(); PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u", bd_prod, cqe_prod); } /* Starts a given RX queue in HW */ static int qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_queue_start_common_params params; struct ecore_rxq_start_ret_params ret_params; struct qede_rx_queue *rxq; struct qede_fastpath *fp; struct ecore_hwfn *p_hwfn; dma_addr_t p_phys_table; uint16_t page_cnt; uint16_t j; int hwfn_index; int rc; if (rx_queue_id < qdev->num_rx_queues) { fp = &qdev->fp_array[rx_queue_id]; rxq = fp->rxq; /* Allocate buffers for the Rx ring */ for (j = 0; j < rxq->nb_rx_desc; j++) { rc = qede_alloc_rx_buffer(rxq); if (rc) { DP_ERR(edev, "RX buffer allocation failed" " for rxq = %u\n", rx_queue_id); return -ENOMEM; } } /* disable interrupts */ ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0); /* Prepare ramrod */ memset(¶ms, 0, sizeof(params)); params.queue_id = rx_queue_id / edev->num_hwfns; params.vport_id = 0; params.stats_id = params.vport_id; params.p_sb = fp->sb_info; DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n", fp->rxq->queue_id, fp->sb_info->igu_sb_id); params.sb_idx = RX_PI; hwfn_index = rx_queue_id % edev->num_hwfns; p_hwfn = &edev->hwfns[hwfn_index]; p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring); page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring); memset(&ret_params, 0, sizeof(ret_params)); rc = ecore_eth_rx_queue_start(p_hwfn, p_hwfn->hw_info.opaque_fid, ¶ms, fp->rxq->rx_buf_size, fp->rxq->rx_bd_ring.p_phys_addr, p_phys_table, page_cnt, &ret_params); if (rc) { DP_ERR(edev, "RX queue %u could not be started, rc = %d\n", rx_queue_id, rc); return -1; } /* Update with the returned parameters */ fp->rxq->hw_rxq_prod_addr = ret_params.p_prod; fp->rxq->handle = ret_params.p_handle; fp->rxq->hw_cons_ptr = &fp->sb_info->sb_pi_array[RX_PI]; qede_update_rx_prod(qdev, fp->rxq); eth_dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; DP_INFO(edev, "RX queue %u started\n", rx_queue_id); } else { DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id); rc = -EINVAL; } return rc; } static int qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_queue_start_common_params params; struct ecore_txq_start_ret_params ret_params; struct ecore_hwfn *p_hwfn; dma_addr_t p_phys_table; struct qede_tx_queue *txq; struct qede_fastpath *fp; uint16_t page_cnt; int hwfn_index; int rc; if (tx_queue_id < qdev->num_tx_queues) { fp = &qdev->fp_array[tx_queue_id]; txq = fp->txq; memset(¶ms, 0, sizeof(params)); params.queue_id = tx_queue_id / edev->num_hwfns; params.vport_id = 0; params.stats_id = params.vport_id; params.p_sb = fp->sb_info; DP_INFO(edev, "txq %u igu_sb_id 0x%x\n", fp->txq->queue_id, fp->sb_info->igu_sb_id); params.sb_idx = TX_PI(0); /* tc = 0 */ p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl); page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl); hwfn_index = tx_queue_id % edev->num_hwfns; p_hwfn = &edev->hwfns[hwfn_index]; if (qdev->dev_info.is_legacy) fp->txq->is_legacy = true; rc = ecore_eth_tx_queue_start(p_hwfn, p_hwfn->hw_info.opaque_fid, ¶ms, 0 /* tc */, p_phys_table, page_cnt, &ret_params); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n", tx_queue_id, rc); return -1; } txq->doorbell_addr = ret_params.p_doorbell; txq->handle = ret_params.p_handle; txq->hw_cons_ptr = &fp->sb_info->sb_pi_array[TX_PI(0)]; SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, DQ_XCM_ETH_TX_BD_PROD_CMD); txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; eth_dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; DP_INFO(edev, "TX queue %u started\n", tx_queue_id); } else { DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id); rc = -EINVAL; } return rc; } static inline void qede_free_tx_pkt(struct qede_tx_queue *txq) { struct rte_mbuf *mbuf; uint16_t nb_segs; uint16_t idx; idx = TX_CONS(txq); mbuf = txq->sw_tx_ring[idx].mbuf; if (mbuf) { nb_segs = mbuf->nb_segs; PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs); while (nb_segs) { /* It's like consuming rxbuf in recv() */ ecore_chain_consume(&txq->tx_pbl); txq->nb_tx_avail++; nb_segs--; } rte_pktmbuf_free(mbuf); txq->sw_tx_ring[idx].mbuf = NULL; txq->sw_tx_cons++; PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n"); } else { ecore_chain_consume(&txq->tx_pbl); txq->nb_tx_avail++; } } static inline void qede_process_tx_compl(__rte_unused struct ecore_dev *edev, struct qede_tx_queue *txq) { uint16_t hw_bd_cons; #ifdef RTE_LIBRTE_QEDE_DEBUG_TX uint16_t sw_tx_cons; #endif rte_compiler_barrier(); hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr); #ifdef RTE_LIBRTE_QEDE_DEBUG_TX sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl); PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n", abs(hw_bd_cons - sw_tx_cons)); #endif while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) qede_free_tx_pkt(txq); } static int qede_drain_txq(struct qede_dev *qdev, struct qede_tx_queue *txq, bool allow_drain) { struct ecore_dev *edev = &qdev->edev; int rc, cnt = 1000; while (txq->sw_tx_cons != txq->sw_tx_prod) { qede_process_tx_compl(edev, txq); if (!cnt) { if (allow_drain) { DP_ERR(edev, "Tx queue[%u] is stuck," "requesting MCP to drain\n", txq->queue_id); rc = qdev->ops->common->drain(edev); if (rc) return rc; return qede_drain_txq(qdev, txq, false); } DP_ERR(edev, "Timeout waiting for tx queue[%d]:" "PROD=%d, CONS=%d\n", txq->queue_id, txq->sw_tx_prod, txq->sw_tx_cons); return -1; } cnt--; DELAY(1000); rte_compiler_barrier(); } /* FW finished processing, wait for HW to transmit all tx packets */ DELAY(2000); return 0; } /* Stops a given TX queue in the HW */ static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_hwfn *p_hwfn; struct qede_tx_queue *txq; int hwfn_index; int rc; if (tx_queue_id < qdev->num_tx_queues) { txq = qdev->fp_array[tx_queue_id].txq; /* Drain txq */ if (qede_drain_txq(qdev, txq, true)) return -1; /* For the lack of retcodes */ /* Stop txq */ hwfn_index = tx_queue_id % edev->num_hwfns; p_hwfn = &edev->hwfns[hwfn_index]; rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id); return -1; } qede_tx_queue_release_mbufs(txq); qede_tx_queue_reset(qdev, txq); eth_dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id); } else { DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id); rc = -EINVAL; } return rc; } int qede_start_queues(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); uint8_t id; int rc = -1; for (id = 0; id < qdev->num_rx_queues; id++) { rc = qede_rx_queue_start(eth_dev, id); if (rc != ECORE_SUCCESS) return -1; } for (id = 0; id < qdev->num_tx_queues; id++) { rc = qede_tx_queue_start(eth_dev, id); if (rc != ECORE_SUCCESS) return -1; } return rc; } void qede_stop_queues(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); uint8_t id; /* Stopping RX/TX queues */ for (id = 0; id < qdev->num_tx_queues; id++) qede_tx_queue_stop(eth_dev, id); for (id = 0; id < qdev->num_rx_queues; id++) qede_rx_queue_stop(eth_dev, id); } static inline bool qede_tunn_exist(uint16_t flag) { return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag); } static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag) { return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag); } /* * qede_check_tunn_csum_l4: * Returns: * 1 : If L4 csum is enabled AND if the validation has failed. * 0 : Otherwise */ static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag) { if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag) return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag); return 0; } static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag) { if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag); return 0; } /* Returns outer L2, L3 and L4 packet_type for tunneled packets */ static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m) { uint32_t packet_type = RTE_PTYPE_UNKNOWN; struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; struct rte_vlan_hdr *vlan_hdr; uint16_t ethertype; bool vlan_tagged = 0; uint16_t len; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); len = sizeof(struct rte_ether_hdr); ethertype = rte_cpu_to_be_16(eth_hdr->ether_type); /* Note: Valid only if VLAN stripping is disabled */ if (ethertype == RTE_ETHER_TYPE_VLAN) { vlan_tagged = 1; vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1); len += sizeof(struct rte_vlan_hdr); ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto); } if (ethertype == RTE_ETHER_TYPE_IPV4) { packet_type |= RTE_PTYPE_L3_IPV4; ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, len); if (ipv4_hdr->next_proto_id == IPPROTO_TCP) packet_type |= RTE_PTYPE_L4_TCP; else if (ipv4_hdr->next_proto_id == IPPROTO_UDP) packet_type |= RTE_PTYPE_L4_UDP; } else if (ethertype == RTE_ETHER_TYPE_IPV6) { packet_type |= RTE_PTYPE_L3_IPV6; ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, len); if (ipv6_hdr->proto == IPPROTO_TCP) packet_type |= RTE_PTYPE_L4_TCP; else if (ipv6_hdr->proto == IPPROTO_UDP) packet_type |= RTE_PTYPE_L4_UDP; } if (vlan_tagged) packet_type |= RTE_PTYPE_L2_ETHER_VLAN; else packet_type |= RTE_PTYPE_L2_ETHER; return packet_type; } static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags) { uint16_t val; /* Lookup table */ static const uint32_t ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = { [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L2_ETHER, [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L2_ETHER, [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP | RTE_PTYPE_INNER_L2_ETHER, [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP | RTE_PTYPE_INNER_L2_ETHER, [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP | RTE_PTYPE_INNER_L2_ETHER, [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP | RTE_PTYPE_INNER_L2_ETHER, /* Frags with no VLAN */ [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_FRAG | RTE_PTYPE_INNER_L2_ETHER, [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_FRAG | RTE_PTYPE_INNER_L2_ETHER, /* VLANs */ [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP | RTE_PTYPE_INNER_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP | RTE_PTYPE_INNER_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP | RTE_PTYPE_INNER_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP | RTE_PTYPE_INNER_L2_ETHER_VLAN, /* Frags with VLAN */ [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_FRAG | RTE_PTYPE_INNER_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_FRAG | RTE_PTYPE_INNER_L2_ETHER_VLAN, }; /* Bits (0..3) provides L3/L4 protocol type */ /* Bits (4,5) provides frag and VLAN info */ val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK << PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) | (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK << PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) | (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) | (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK << PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags; if (val < QEDE_PKT_TYPE_MAX) return ptype_lkup_tbl[val]; return RTE_PTYPE_UNKNOWN; } static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags) { uint16_t val; /* Lookup table */ static const uint32_t ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = { [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER, [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER, [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP | RTE_PTYPE_L2_ETHER, [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP | RTE_PTYPE_L2_ETHER, [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP | RTE_PTYPE_L2_ETHER, [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP | RTE_PTYPE_L2_ETHER, /* Frags with no VLAN */ [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_FRAG | RTE_PTYPE_L2_ETHER, [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_FRAG | RTE_PTYPE_L2_ETHER, /* VLANs */ [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP | RTE_PTYPE_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP | RTE_PTYPE_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP | RTE_PTYPE_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP | RTE_PTYPE_L2_ETHER_VLAN, /* Frags with VLAN */ [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_FRAG | RTE_PTYPE_L2_ETHER_VLAN, [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_FRAG | RTE_PTYPE_L2_ETHER_VLAN, }; /* Bits (0..3) provides L3/L4 protocol type */ /* Bits (4,5) provides frag and VLAN info */ val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK << PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) | (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK << PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) | (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) | (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK << PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags; if (val < QEDE_PKT_TYPE_MAX) return ptype_lkup_tbl[val]; return RTE_PTYPE_UNKNOWN; } static inline uint8_t qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag) { struct rte_ipv4_hdr *ip; uint16_t pkt_csum; uint16_t calc_csum; uint16_t val; val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag); if (unlikely(val)) { m->packet_type = qede_rx_cqe_to_pkt_type(flag); if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); pkt_csum = ip->hdr_checksum; ip->hdr_checksum = 0; calc_csum = rte_ipv4_cksum(ip); ip->hdr_checksum = pkt_csum; return (calc_csum != pkt_csum); } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { return 1; } } return 0; } static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) { ecore_chain_consume(&rxq->rx_bd_ring); rxq->sw_rx_cons++; } static inline void qede_reuse_page(__rte_unused struct qede_dev *qdev, struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons) { struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring); uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq); struct qede_rx_entry *curr_prod; dma_addr_t new_mapping; curr_prod = &rxq->sw_rx_ring[idx]; *curr_prod = *curr_cons; new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) + curr_prod->page_offset; rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping)); rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping)); rxq->sw_rx_prod++; } static inline void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, struct qede_dev *qdev, uint8_t count) { struct qede_rx_entry *curr_cons; for (; count > 0; count--) { curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)]; qede_reuse_page(qdev, rxq, curr_cons); qede_rx_bd_ring_consume(rxq); } } static inline void qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev, struct qede_rx_queue *rxq, uint8_t agg_index, uint16_t len) { struct qede_agg_info *tpa_info; struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */ uint16_t cons_idx; /* Under certain conditions it is possible that FW may not consume * additional or new BD. So decision to consume the BD must be made * based on len_list[0]. */ if (rte_le_to_cpu_16(len)) { tpa_info = &rxq->tpa_info[agg_index]; cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq); curr_frag = rxq->sw_rx_ring[cons_idx].mbuf; assert(curr_frag); curr_frag->nb_segs = 1; curr_frag->pkt_len = rte_le_to_cpu_16(len); curr_frag->data_len = curr_frag->pkt_len; tpa_info->tpa_tail->next = curr_frag; tpa_info->tpa_tail = curr_frag; qede_rx_bd_ring_consume(rxq); if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) { PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n"); rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; rxq->rx_alloc_errors++; } } } static inline void qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev, struct qede_rx_queue *rxq, struct eth_fast_path_rx_tpa_cont_cqe *cqe) { PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n", cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0])); /* only len_list[0] will have value */ qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index, cqe->len_list[0]); } static inline void qede_rx_process_tpa_end_cqe(struct qede_dev *qdev, struct qede_rx_queue *rxq, struct eth_fast_path_rx_tpa_end_cqe *cqe) { struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */ qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index, cqe->len_list[0]); /* Update total length and frags based on end TPA */ rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head; /* TODO: Add Sanity Checks */ rx_mb->nb_segs = cqe->num_of_bds; rx_mb->pkt_len = cqe->total_packet_len; PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d" " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason, rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs, rx_mb->pkt_len); } static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags) { uint32_t val; /* Lookup table */ static const uint32_t ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = { [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN, [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE, [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE, [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN, [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE, [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] = RTE_PTYPE_TUNNEL_GRE, [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN, [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE, [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] = RTE_PTYPE_TUNNEL_GRE, [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN, [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4, [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] = RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4, [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4, [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4, [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] = RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4, [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4, [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6, [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] = RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6, [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6, [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6, [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] = RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6, [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6, }; /* Cover bits[4-0] to include tunn_type and next protocol */ val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK << ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) | (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK << ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags; if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE) return ptype_tunn_lkup_tbl[val]; else return RTE_PTYPE_UNKNOWN; } static inline int qede_process_sg_pkts(void *p_rxq, struct rte_mbuf *rx_mb, uint8_t num_segs, uint16_t pkt_len) { struct qede_rx_queue *rxq = p_rxq; struct qede_dev *qdev = rxq->qdev; register struct rte_mbuf *seg1 = NULL; register struct rte_mbuf *seg2 = NULL; uint16_t sw_rx_index; uint16_t cur_size; seg1 = rx_mb; while (num_segs) { cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : pkt_len; if (unlikely(!cur_size)) { PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs" " left for mapping jumbo\n", num_segs); qede_recycle_rx_bd_ring(rxq, qdev, num_segs); return -EINVAL; } sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq); seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf; qede_rx_bd_ring_consume(rxq); pkt_len -= cur_size; seg2->data_len = cur_size; seg1->next = seg2; seg1 = seg1->next; num_segs--; rxq->rx_segs++; } return 0; } #ifdef RTE_LIBRTE_QEDE_DEBUG_RX static inline void print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq, uint8_t bitfield) { PMD_RX_LOG(INFO, rxq, "len 0x%04x bf 0x%04x hash_val 0x%x" " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s" " inner_l2=%s inner_l3=%s inner_l4=%s\n", m->data_len, bitfield, m->hash.rss, (unsigned long)m->ol_flags, rte_get_ptype_l2_name(m->packet_type), rte_get_ptype_l3_name(m->packet_type), rte_get_ptype_l4_name(m->packet_type), rte_get_ptype_tunnel_name(m->packet_type), rte_get_ptype_inner_l2_name(m->packet_type), rte_get_ptype_inner_l3_name(m->packet_type), rte_get_ptype_inner_l4_name(m->packet_type)); } #endif uint16_t qede_recv_pkts_regular(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL; register struct rte_mbuf *rx_mb = NULL; struct qede_rx_queue *rxq = p_rxq; struct qede_dev *qdev = rxq->qdev; struct ecore_dev *edev = &qdev->edev; union eth_rx_cqe *cqe; uint64_t ol_flags; enum eth_rx_cqe_type cqe_type; int rss_enable = qdev->rss_enable; int rx_alloc_count = 0; uint32_t packet_type; uint32_t rss_hash; uint16_t vlan_tci, port_id; uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index, num_rx_bds; uint16_t rx_pkt = 0; uint16_t pkt_len = 0; uint16_t len; /* Length of first BD */ uint16_t preload_idx; uint16_t parse_flag; #ifdef RTE_LIBRTE_QEDE_DEBUG_RX uint8_t bitfield_val; #endif uint8_t offset, flags, bd_num; /* Allocate buffers that we used in previous loop */ if (rxq->rx_alloc_count) { if (unlikely(qede_alloc_rx_bulk_mbufs(rxq, rxq->rx_alloc_count))) { struct rte_eth_dev *dev; PMD_RX_LOG(ERR, rxq, "New buffer allocation failed," "dropping incoming packetn"); dev = &rte_eth_devices[rxq->port_id]; dev->data->rx_mbuf_alloc_failed += rxq->rx_alloc_count; rxq->rx_alloc_errors += rxq->rx_alloc_count; return 0; } qede_update_rx_prod(qdev, rxq); rxq->rx_alloc_count = 0; } hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); rte_rmb(); if (hw_comp_cons == sw_comp_cons) return 0; num_rx_bds = NUM_RX_BDS(rxq); port_id = rxq->port_id; while (sw_comp_cons != hw_comp_cons) { ol_flags = 0; packet_type = RTE_PTYPE_UNKNOWN; vlan_tci = 0; rss_hash = 0; /* Get the CQE from the completion ring */ cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); cqe_type = cqe->fast_path_regular.type; PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type); if (likely(cqe_type == ETH_RX_CQE_TYPE_REGULAR)) { fp_cqe = &cqe->fast_path_regular; } else { if (cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH) { PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n"); ecore_eth_cqe_completion (&edev->hwfns[rxq->queue_id % edev->num_hwfns], (struct eth_slow_path_rx_cqe *)cqe); } goto next_cqe; } /* Get the data from the SW ring */ sw_rx_index = rxq->sw_rx_cons & num_rx_bds; rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf; assert(rx_mb != NULL); parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags); offset = fp_cqe->placement_offset; len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd); pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len); vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag); rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash); bd_num = fp_cqe->bd_num; #ifdef RTE_LIBRTE_QEDE_DEBUG_RX bitfield_val = fp_cqe->bitfields; #endif if (unlikely(qede_tunn_exist(parse_flag))) { PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n"); if (unlikely(qede_check_tunn_csum_l4(parse_flag))) { PMD_RX_LOG(ERR, rxq, "L4 csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_L4_CKSUM_BAD; } else { ol_flags |= PKT_RX_L4_CKSUM_GOOD; } if (unlikely(qede_check_tunn_csum_l3(parse_flag))) { PMD_RX_LOG(ERR, rxq, "Outer L3 csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_EIP_CKSUM_BAD; } else { ol_flags |= PKT_RX_IP_CKSUM_GOOD; } flags = fp_cqe->tunnel_pars_flags.flags; /* Tunnel_type */ packet_type = qede_rx_cqe_to_tunn_pkt_type(flags); /* Inner header */ packet_type |= qede_rx_cqe_to_pkt_type_inner(parse_flag); /* Outer L3/L4 types is not available in CQE */ packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); /* Outer L3/L4 types is not available in CQE. * Need to add offset to parse correctly, */ rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); } else { packet_type |= qede_rx_cqe_to_pkt_type(parse_flag); } /* Common handling for non-tunnel packets and for inner * headers in the case of tunnel. */ if (unlikely(qede_check_notunn_csum_l4(parse_flag))) { PMD_RX_LOG(ERR, rxq, "L4 csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_L4_CKSUM_BAD; } else { ol_flags |= PKT_RX_L4_CKSUM_GOOD; } if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) { PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_IP_CKSUM_BAD; } else { ol_flags |= PKT_RX_IP_CKSUM_GOOD; } if (unlikely(CQE_HAS_VLAN(parse_flag) || CQE_HAS_OUTER_VLAN(parse_flag))) { /* Note: FW doesn't indicate Q-in-Q packet */ ol_flags |= PKT_RX_VLAN; if (qdev->vlan_strip_flg) { ol_flags |= PKT_RX_VLAN_STRIPPED; rx_mb->vlan_tci = vlan_tci; } } if (rss_enable) { ol_flags |= PKT_RX_RSS_HASH; rx_mb->hash.rss = rss_hash; } rx_alloc_count++; qede_rx_bd_ring_consume(rxq); /* Prefetch next mbuf while processing current one. */ preload_idx = rxq->sw_rx_cons & num_rx_bds; rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf); /* Update rest of the MBUF fields */ rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; rx_mb->port = port_id; rx_mb->ol_flags = ol_flags; rx_mb->data_len = len; rx_mb->packet_type = packet_type; #ifdef RTE_LIBRTE_QEDE_DEBUG_RX print_rx_bd_info(rx_mb, rxq, bitfield_val); #endif rx_mb->nb_segs = bd_num; rx_mb->pkt_len = pkt_len; rx_pkts[rx_pkt] = rx_mb; rx_pkt++; next_cqe: ecore_chain_recycle_consumed(&rxq->rx_comp_ring); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); if (rx_pkt == nb_pkts) { PMD_RX_LOG(DEBUG, rxq, "Budget reached nb_pkts=%u received=%u", rx_pkt, nb_pkts); break; } } /* Request number of bufferes to be allocated in next loop */ rxq->rx_alloc_count = rx_alloc_count; rxq->rcv_pkts += rx_pkt; rxq->rx_segs += rx_pkt; PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id()); return rx_pkt; } uint16_t qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct qede_rx_queue *rxq = p_rxq; struct qede_dev *qdev = rxq->qdev; struct ecore_dev *edev = &qdev->edev; uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index; uint16_t rx_pkt = 0; union eth_rx_cqe *cqe; struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL; register struct rte_mbuf *rx_mb = NULL; register struct rte_mbuf *seg1 = NULL; enum eth_rx_cqe_type cqe_type; uint16_t pkt_len = 0; /* Sum of all BD segments */ uint16_t len; /* Length of first BD */ uint8_t num_segs = 1; uint16_t preload_idx; uint16_t parse_flag; #ifdef RTE_LIBRTE_QEDE_DEBUG_RX uint8_t bitfield_val; #endif uint8_t tunn_parse_flag; struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa; uint64_t ol_flags; uint32_t packet_type; uint16_t vlan_tci; bool tpa_start_flg; uint8_t offset, tpa_agg_idx, flags; struct qede_agg_info *tpa_info = NULL; uint32_t rss_hash; int rx_alloc_count = 0; /* Allocate buffers that we used in previous loop */ if (rxq->rx_alloc_count) { if (unlikely(qede_alloc_rx_bulk_mbufs(rxq, rxq->rx_alloc_count))) { struct rte_eth_dev *dev; PMD_RX_LOG(ERR, rxq, "New buffer allocation failed," "dropping incoming packetn"); dev = &rte_eth_devices[rxq->port_id]; dev->data->rx_mbuf_alloc_failed += rxq->rx_alloc_count; rxq->rx_alloc_errors += rxq->rx_alloc_count; return 0; } qede_update_rx_prod(qdev, rxq); rxq->rx_alloc_count = 0; } hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); rte_rmb(); if (hw_comp_cons == sw_comp_cons) return 0; while (sw_comp_cons != hw_comp_cons) { ol_flags = 0; packet_type = RTE_PTYPE_UNKNOWN; vlan_tci = 0; tpa_start_flg = false; rss_hash = 0; /* Get the CQE from the completion ring */ cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); cqe_type = cqe->fast_path_regular.type; PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type); switch (cqe_type) { case ETH_RX_CQE_TYPE_REGULAR: fp_cqe = &cqe->fast_path_regular; break; case ETH_RX_CQE_TYPE_TPA_START: cqe_start_tpa = &cqe->fast_path_tpa_start; tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index]; tpa_start_flg = true; /* Mark it as LRO packet */ ol_flags |= PKT_RX_LRO; /* In split mode, seg_len is same as len_on_first_bd * and bw_ext_bd_len_list will be empty since there are * no additional buffers */ PMD_RX_LOG(INFO, rxq, "TPA start[%d] - len_on_first_bd %d header %d" " [bd_list[0] %d], [seg_len %d]\n", cqe_start_tpa->tpa_agg_index, rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd), cqe_start_tpa->header_len, rte_le_to_cpu_16(cqe_start_tpa->bw_ext_bd_len_list[0]), rte_le_to_cpu_16(cqe_start_tpa->seg_len)); break; case ETH_RX_CQE_TYPE_TPA_CONT: qede_rx_process_tpa_cont_cqe(qdev, rxq, &cqe->fast_path_tpa_cont); goto next_cqe; case ETH_RX_CQE_TYPE_TPA_END: qede_rx_process_tpa_end_cqe(qdev, rxq, &cqe->fast_path_tpa_end); tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index; tpa_info = &rxq->tpa_info[tpa_agg_idx]; rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head; goto tpa_end; case ETH_RX_CQE_TYPE_SLOW_PATH: PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n"); ecore_eth_cqe_completion( &edev->hwfns[rxq->queue_id % edev->num_hwfns], (struct eth_slow_path_rx_cqe *)cqe); /* fall-thru */ default: goto next_cqe; } /* Get the data from the SW ring */ sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq); rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf; assert(rx_mb != NULL); /* Handle regular CQE or TPA start CQE */ if (!tpa_start_flg) { parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags); offset = fp_cqe->placement_offset; len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd); pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len); vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag); rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash); #ifdef RTE_LIBRTE_QEDE_DEBUG_RX bitfield_val = fp_cqe->bitfields; #endif } else { parse_flag = rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags); offset = cqe_start_tpa->placement_offset; /* seg_len = len_on_first_bd */ len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd); vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag); #ifdef RTE_LIBRTE_QEDE_DEBUG_RX bitfield_val = cqe_start_tpa->bitfields; #endif rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash); } if (qede_tunn_exist(parse_flag)) { PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n"); if (unlikely(qede_check_tunn_csum_l4(parse_flag))) { PMD_RX_LOG(ERR, rxq, "L4 csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_L4_CKSUM_BAD; } else { ol_flags |= PKT_RX_L4_CKSUM_GOOD; } if (unlikely(qede_check_tunn_csum_l3(parse_flag))) { PMD_RX_LOG(ERR, rxq, "Outer L3 csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_EIP_CKSUM_BAD; } else { ol_flags |= PKT_RX_IP_CKSUM_GOOD; } if (tpa_start_flg) flags = cqe_start_tpa->tunnel_pars_flags.flags; else flags = fp_cqe->tunnel_pars_flags.flags; tunn_parse_flag = flags; /* Tunnel_type */ packet_type = qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag); /* Inner header */ packet_type |= qede_rx_cqe_to_pkt_type_inner(parse_flag); /* Outer L3/L4 types is not available in CQE */ packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); /* Outer L3/L4 types is not available in CQE. * Need to add offset to parse correctly, */ rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); } else { packet_type |= qede_rx_cqe_to_pkt_type(parse_flag); } /* Common handling for non-tunnel packets and for inner * headers in the case of tunnel. */ if (unlikely(qede_check_notunn_csum_l4(parse_flag))) { PMD_RX_LOG(ERR, rxq, "L4 csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_L4_CKSUM_BAD; } else { ol_flags |= PKT_RX_L4_CKSUM_GOOD; } if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) { PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n", parse_flag); rxq->rx_hw_errors++; ol_flags |= PKT_RX_IP_CKSUM_BAD; } else { ol_flags |= PKT_RX_IP_CKSUM_GOOD; } if (CQE_HAS_VLAN(parse_flag) || CQE_HAS_OUTER_VLAN(parse_flag)) { /* Note: FW doesn't indicate Q-in-Q packet */ ol_flags |= PKT_RX_VLAN; if (qdev->vlan_strip_flg) { ol_flags |= PKT_RX_VLAN_STRIPPED; rx_mb->vlan_tci = vlan_tci; } } /* RSS Hash */ if (qdev->rss_enable) { ol_flags |= PKT_RX_RSS_HASH; rx_mb->hash.rss = rss_hash; } rx_alloc_count++; qede_rx_bd_ring_consume(rxq); if (!tpa_start_flg && fp_cqe->bd_num > 1) { PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs" " len on first: %04x Total Len: %04x", fp_cqe->bd_num, len, pkt_len); num_segs = fp_cqe->bd_num - 1; seg1 = rx_mb; if (qede_process_sg_pkts(p_rxq, seg1, num_segs, pkt_len - len)) goto next_cqe; rx_alloc_count += num_segs; rxq->rx_segs += num_segs; } rxq->rx_segs++; /* for the first segment */ /* Prefetch next mbuf while processing current one. */ preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq); rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf); /* Update rest of the MBUF fields */ rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; rx_mb->port = rxq->port_id; rx_mb->ol_flags = ol_flags; rx_mb->data_len = len; rx_mb->packet_type = packet_type; #ifdef RTE_LIBRTE_QEDE_DEBUG_RX print_rx_bd_info(rx_mb, rxq, bitfield_val); #endif if (!tpa_start_flg) { rx_mb->nb_segs = fp_cqe->bd_num; rx_mb->pkt_len = pkt_len; } else { /* store ref to the updated mbuf */ tpa_info->tpa_head = rx_mb; tpa_info->tpa_tail = tpa_info->tpa_head; } rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *)); tpa_end: if (!tpa_start_flg) { rx_pkts[rx_pkt] = rx_mb; rx_pkt++; } next_cqe: ecore_chain_recycle_consumed(&rxq->rx_comp_ring); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); if (rx_pkt == nb_pkts) { PMD_RX_LOG(DEBUG, rxq, "Budget reached nb_pkts=%u received=%u", rx_pkt, nb_pkts); break; } } /* Request number of bufferes to be allocated in next loop */ rxq->rx_alloc_count = rx_alloc_count; rxq->rcv_pkts += rx_pkt; PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id()); return rx_pkt; } uint16_t qede_recv_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct qede_fastpath_cmt *fp_cmt = p_fp_cmt; uint16_t eng0_pkts, eng1_pkts; eng0_pkts = nb_pkts / 2; eng0_pkts = qede_recv_pkts(fp_cmt->fp0->rxq, rx_pkts, eng0_pkts); eng1_pkts = nb_pkts - eng0_pkts; eng1_pkts = qede_recv_pkts(fp_cmt->fp1->rxq, rx_pkts + eng0_pkts, eng1_pkts); return eng0_pkts + eng1_pkts; } /* Populate scatter gather buffer descriptor fields */ static inline uint16_t qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg, struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3, uint16_t start_seg) { struct qede_tx_queue *txq = p_txq; struct eth_tx_bd *tx_bd = NULL; dma_addr_t mapping; uint16_t nb_segs = 0; /* Check for scattered buffers */ while (m_seg) { if (start_seg == 0) { if (!*bd2) { *bd2 = (struct eth_tx_2nd_bd *) ecore_chain_produce(&txq->tx_pbl); memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd)); nb_segs++; } mapping = rte_mbuf_data_iova(m_seg); QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len); PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len); } else if (start_seg == 1) { if (!*bd3) { *bd3 = (struct eth_tx_3rd_bd *) ecore_chain_produce(&txq->tx_pbl); memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd)); nb_segs++; } mapping = rte_mbuf_data_iova(m_seg); QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len); PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len); } else { tx_bd = (struct eth_tx_bd *) ecore_chain_produce(&txq->tx_pbl); memset(tx_bd, 0, sizeof(*tx_bd)); nb_segs++; mapping = rte_mbuf_data_iova(m_seg); QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len); PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len); } start_seg++; m_seg = m_seg->next; } /* Return total scattered buffers */ return nb_segs; } #ifdef RTE_LIBRTE_QEDE_DEBUG_TX static inline void print_tx_bd_info(struct qede_tx_queue *txq, struct eth_tx_1st_bd *bd1, struct eth_tx_2nd_bd *bd2, struct eth_tx_3rd_bd *bd3, uint64_t tx_ol_flags) { char ol_buf[256] = { 0 }; /* for verbose prints */ if (bd1) PMD_TX_LOG(INFO, txq, "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x", rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds, bd1->data.bd_flags.bitfields, rte_cpu_to_le_16(bd1->data.bitfields)); if (bd2) PMD_TX_LOG(INFO, txq, "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n", rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1, bd2->data.bitfields2, bd2->data.tunn_ip_size); if (bd3) PMD_TX_LOG(INFO, txq, "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x " "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n", rte_cpu_to_le_16(bd3->nbytes), rte_cpu_to_le_16(bd3->data.bitfields), rte_cpu_to_le_16(bd3->data.lso_mss), bd3->data.tunn_l4_hdr_start_offset_w, bd3->data.tunn_hdr_size_w); rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf)); PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf); } #endif /* TX prepare to check packets meets TX conditions */ uint16_t #ifdef RTE_LIBRTE_QEDE_DEBUG_TX qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct qede_tx_queue *txq = p_txq; #else qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { #endif uint64_t ol_flags; struct rte_mbuf *m; uint16_t i; #ifdef RTE_LIBRTE_ETHDEV_DEBUG int ret; #endif for (i = 0; i < nb_pkts; i++) { m = tx_pkts[i]; ol_flags = m->ol_flags; if (ol_flags & PKT_TX_TCP_SEG) { if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) { rte_errno = EINVAL; break; } /* TBD: confirm its ~9700B for both ? */ if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) { rte_errno = EINVAL; break; } } else { if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) { rte_errno = EINVAL; break; } } if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) { /* We support only limited tunnel protocols */ if (ol_flags & PKT_TX_TUNNEL_MASK) { uint64_t temp; temp = ol_flags & PKT_TX_TUNNEL_MASK; if (temp == PKT_TX_TUNNEL_VXLAN || temp == PKT_TX_TUNNEL_GENEVE || temp == PKT_TX_TUNNEL_MPLSINUDP || temp == PKT_TX_TUNNEL_GRE) continue; } rte_errno = ENOTSUP; break; } #ifdef RTE_LIBRTE_ETHDEV_DEBUG ret = rte_validate_tx_offload(m); if (ret != 0) { rte_errno = -ret; break; } #endif } #ifdef RTE_LIBRTE_QEDE_DEBUG_TX if (unlikely(i != nb_pkts)) PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n", nb_pkts - i); #endif return i; } #define MPLSINUDP_HDR_SIZE (12) #ifdef RTE_LIBRTE_QEDE_DEBUG_TX static inline void qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf, struct qede_tx_queue *txq) { if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff) PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n"); if (((mbuf->outer_l2_len + mbuf->outer_l3_len + MPLSINUDP_HDR_SIZE) / 2) > 0xff) PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n"); if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) > ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n"); if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) > ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n"); } #endif uint16_t qede_xmit_pkts_regular(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct qede_tx_queue *txq = p_txq; struct qede_dev *qdev = txq->qdev; struct ecore_dev *edev = &qdev->edev; struct eth_tx_1st_bd *bd1; struct eth_tx_2nd_bd *bd2; struct eth_tx_3rd_bd *bd3; struct rte_mbuf *m_seg = NULL; struct rte_mbuf *mbuf; struct qede_tx_entry *sw_tx_ring; uint16_t nb_tx_pkts; uint16_t bd_prod; uint16_t idx; uint16_t nb_frags = 0; uint16_t nb_pkt_sent = 0; uint8_t nbds; uint64_t tx_ol_flags; /* BD1 */ uint16_t bd1_bf; uint8_t bd1_bd_flags_bf; if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) { PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u", nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh); qede_process_tx_compl(edev, txq); } nb_tx_pkts = nb_pkts; bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); sw_tx_ring = txq->sw_tx_ring; while (nb_tx_pkts--) { /* Init flags/values */ nbds = 0; bd1 = NULL; bd2 = NULL; bd3 = NULL; bd1_bf = 0; bd1_bd_flags_bf = 0; nb_frags = 0; mbuf = *tx_pkts++; assert(mbuf); /* Check minimum TX BDS availability against available BDs */ if (unlikely(txq->nb_tx_avail < mbuf->nb_segs)) break; tx_ol_flags = mbuf->ol_flags; bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; if (unlikely(txq->nb_tx_avail < ETH_TX_MIN_BDS_PER_NON_LSO_PKT)) break; bd1_bf |= (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; /* Offload the IP checksum in the hardware */ if (tx_ol_flags & PKT_TX_IP_CKSUM) bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; /* L4 checksum offload (tcp or udp) */ if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) && (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; /* Fill the entry in the SW ring and the BDs in the FW ring */ idx = TX_PROD(txq); sw_tx_ring[idx].mbuf = mbuf; /* BD1 */ bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl); memset(bd1, 0, sizeof(struct eth_tx_1st_bd)); nbds++; /* Map MBUF linear data for DMA and set in the BD1 */ QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf), mbuf->data_len); bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf); bd1->data.bd_flags.bitfields = bd1_bd_flags_bf; /* Handle fragmented MBUF */ if (unlikely(mbuf->nb_segs > 1)) { m_seg = mbuf->next; /* Encode scatter gather buffer descriptors */ nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1); } bd1->data.nbds = nbds + nb_frags; txq->nb_tx_avail -= bd1->data.nbds; txq->sw_tx_prod++; bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); #ifdef RTE_LIBRTE_QEDE_DEBUG_TX print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags); #endif nb_pkt_sent++; txq->xmit_pkts++; } /* Write value of prod idx into bd_prod */ txq->tx_db.data.bd_prod = bd_prod; rte_wmb(); rte_compiler_barrier(); DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw); rte_wmb(); /* Check again for Tx completions */ qede_process_tx_compl(edev, txq); PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d", nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id()); return nb_pkt_sent; } uint16_t qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct qede_tx_queue *txq = p_txq; struct qede_dev *qdev = txq->qdev; struct ecore_dev *edev = &qdev->edev; struct rte_mbuf *mbuf; struct rte_mbuf *m_seg = NULL; uint16_t nb_tx_pkts; uint16_t bd_prod; uint16_t idx; uint16_t nb_frags; uint16_t nb_pkt_sent = 0; uint8_t nbds; bool lso_flg; bool mplsoudp_flg; __rte_unused bool tunn_flg; bool tunn_ipv6_ext_flg; struct eth_tx_1st_bd *bd1; struct eth_tx_2nd_bd *bd2; struct eth_tx_3rd_bd *bd3; uint64_t tx_ol_flags; uint16_t hdr_size; /* BD1 */ uint16_t bd1_bf; uint8_t bd1_bd_flags_bf; uint16_t vlan; /* BD2 */ uint16_t bd2_bf1; uint16_t bd2_bf2; /* BD3 */ uint16_t mss; uint16_t bd3_bf; uint8_t tunn_l4_hdr_start_offset; uint8_t tunn_hdr_size; uint8_t inner_l2_hdr_size; uint16_t inner_l4_hdr_offset; if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) { PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u", nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh); qede_process_tx_compl(edev, txq); } nb_tx_pkts = nb_pkts; bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); while (nb_tx_pkts--) { /* Init flags/values */ tunn_flg = false; lso_flg = false; nbds = 0; vlan = 0; bd1 = NULL; bd2 = NULL; bd3 = NULL; hdr_size = 0; bd1_bf = 0; bd1_bd_flags_bf = 0; bd2_bf1 = 0; bd2_bf2 = 0; mss = 0; bd3_bf = 0; mplsoudp_flg = false; tunn_ipv6_ext_flg = false; tunn_hdr_size = 0; tunn_l4_hdr_start_offset = 0; mbuf = *tx_pkts++; assert(mbuf); /* Check minimum TX BDS availability against available BDs */ if (unlikely(txq->nb_tx_avail < mbuf->nb_segs)) break; tx_ol_flags = mbuf->ol_flags; bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; /* TX prepare would have already checked supported tunnel Tx * offloads. Don't rely on pkt_type marked by Rx, instead use * tx_ol_flags to decide. */ tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK); if (tunn_flg) { /* Check against max which is Tunnel IPv6 + ext */ if (unlikely(txq->nb_tx_avail < ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT)) break; /* First indicate its a tunnel pkt */ bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; /* Legacy FW had flipped behavior in regard to this bit * i.e. it needed to set to prevent FW from touching * encapsulated packets when it didn't need to. */ if (unlikely(txq->is_legacy)) { bd1_bf ^= 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; } /* Outer IP checksum offload */ if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM | PKT_TX_OUTER_IPV4)) { bd1_bd_flags_bf |= ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; } /** * Currently, only inner checksum offload in MPLS-in-UDP * tunnel with one MPLS label is supported. Both outer * and inner layers lengths need to be provided in * mbuf. */ if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) == PKT_TX_TUNNEL_MPLSINUDP) { mplsoudp_flg = true; #ifdef RTE_LIBRTE_QEDE_DEBUG_TX qede_mpls_tunn_tx_sanity_check(mbuf, txq); #endif /* Outer L4 offset in two byte words */ tunn_l4_hdr_start_offset = (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2; /* Tunnel header size in two byte words */ tunn_hdr_size = (mbuf->outer_l2_len + mbuf->outer_l3_len + MPLSINUDP_HDR_SIZE) / 2; /* Inner L2 header size in two byte words */ inner_l2_hdr_size = (mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2; /* Inner L4 header offset from the beggining * of inner packet in two byte words */ inner_l4_hdr_offset = (mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2; /* Inner L2 size and address type */ bd2_bf1 |= (inner_l2_hdr_size & ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) << ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT; bd2_bf1 |= (UNICAST_ADDRESS & ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) << ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT; /* Treated as IPv6+Ext */ bd2_bf1 |= 1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT; /* Mark inner IPv6 if present */ if (tx_ol_flags & PKT_TX_IPV6) bd2_bf1 |= 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT; /* Inner L4 offsets */ if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) && (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) { /* Determines if BD3 is needed */ tunn_ipv6_ext_flg = true; if ((tx_ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM) { bd2_bf1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; } /* TODO other pseudo checksum modes are * not supported */ bd2_bf1 |= ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT; bd2_bf2 |= (inner_l4_hdr_offset & ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; } } /* End MPLSoUDP */ } /* End Tunnel handling */ if (tx_ol_flags & PKT_TX_TCP_SEG) { lso_flg = true; if (unlikely(txq->nb_tx_avail < ETH_TX_MIN_BDS_PER_LSO_PKT)) break; /* For LSO, packet header and payload must reside on * buffers pointed by different BDs. Using BD1 for HDR * and BD2 onwards for data. */ hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len; if (tunn_flg) hdr_size += mbuf->outer_l2_len + mbuf->outer_l3_len; bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT; bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */ bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; mss = rte_cpu_to_le_16(mbuf->tso_segsz); /* Using one header BD */ bd3_bf |= rte_cpu_to_le_16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); } else { if (unlikely(txq->nb_tx_avail < ETH_TX_MIN_BDS_PER_NON_LSO_PKT)) break; bd1_bf |= (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; } /* Descriptor based VLAN insertion */ if (tx_ol_flags & PKT_TX_VLAN_PKT) { vlan = rte_cpu_to_le_16(mbuf->vlan_tci); bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; } /* Offload the IP checksum in the hardware */ if (tx_ol_flags & PKT_TX_IP_CKSUM) { bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; /* There's no DPDK flag to request outer-L4 csum * offload. But in the case of tunnel if inner L3 or L4 * csum offload is requested then we need to force * recalculation of L4 tunnel header csum also. */ if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) != PKT_TX_TUNNEL_GRE)) { bd1_bd_flags_bf |= ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK << ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; } } /* L4 checksum offload (tcp or udp) */ if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) && (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) { bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; /* There's no DPDK flag to request outer-L4 csum * offload. But in the case of tunnel if inner L3 or L4 * csum offload is requested then we need to force * recalculation of L4 tunnel header csum also. */ if (tunn_flg) { bd1_bd_flags_bf |= ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK << ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; } } /* Fill the entry in the SW ring and the BDs in the FW ring */ idx = TX_PROD(txq); txq->sw_tx_ring[idx].mbuf = mbuf; /* BD1 */ bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl); memset(bd1, 0, sizeof(struct eth_tx_1st_bd)); nbds++; /* Map MBUF linear data for DMA and set in the BD1 */ QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf), mbuf->data_len); bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf); bd1->data.bd_flags.bitfields = bd1_bd_flags_bf; bd1->data.vlan = vlan; if (lso_flg || mplsoudp_flg) { bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce (&txq->tx_pbl); memset(bd2, 0, sizeof(struct eth_tx_2nd_bd)); nbds++; /* BD1 */ QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf), hdr_size); /* BD2 */ QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size + rte_mbuf_data_iova(mbuf)), mbuf->data_len - hdr_size); bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1); if (mplsoudp_flg) { bd2->data.bitfields2 = rte_cpu_to_le_16(bd2_bf2); /* Outer L3 size */ bd2->data.tunn_ip_size = rte_cpu_to_le_16(mbuf->outer_l3_len); } /* BD3 */ if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) { bd3 = (struct eth_tx_3rd_bd *) ecore_chain_produce(&txq->tx_pbl); memset(bd3, 0, sizeof(struct eth_tx_3rd_bd)); nbds++; bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf); if (lso_flg) bd3->data.lso_mss = mss; if (mplsoudp_flg) { bd3->data.tunn_l4_hdr_start_offset_w = tunn_l4_hdr_start_offset; bd3->data.tunn_hdr_size_w = tunn_hdr_size; } } } /* Handle fragmented MBUF */ m_seg = mbuf->next; /* Encode scatter gather buffer descriptors if required */ nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1); bd1->data.nbds = nbds + nb_frags; txq->nb_tx_avail -= bd1->data.nbds; txq->sw_tx_prod++; bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); #ifdef RTE_LIBRTE_QEDE_DEBUG_TX print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags); #endif nb_pkt_sent++; txq->xmit_pkts++; } /* Write value of prod idx into bd_prod */ txq->tx_db.data.bd_prod = bd_prod; rte_wmb(); rte_compiler_barrier(); DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw); rte_wmb(); /* Check again for Tx completions */ qede_process_tx_compl(edev, txq); PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d", nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id()); return nb_pkt_sent; } uint16_t qede_xmit_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct qede_fastpath_cmt *fp_cmt = p_fp_cmt; uint16_t eng0_pkts, eng1_pkts; eng0_pkts = nb_pkts / 2; eng0_pkts = qede_xmit_pkts(fp_cmt->fp0->txq, tx_pkts, eng0_pkts); eng1_pkts = nb_pkts - eng0_pkts; eng1_pkts = qede_xmit_pkts(fp_cmt->fp1->txq, tx_pkts + eng0_pkts, eng1_pkts); return eng0_pkts + eng1_pkts; } uint16_t qede_rxtx_pkts_dummy(__rte_unused void *p_rxq, __rte_unused struct rte_mbuf **pkts, __rte_unused uint16_t nb_pkts) { return 0; } /* this function does a fake walk through over completion queue * to calculate number of BDs used by HW. * At the end, it restores the state of completion queue. */ static uint16_t qede_parse_fp_cqe(struct qede_rx_queue *rxq) { uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0; union eth_rx_cqe *cqe, *orig_cqe = NULL; hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); if (hw_comp_cons == sw_comp_cons) return 0; /* Get the CQE from the completion ring */ cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); orig_cqe = cqe; while (sw_comp_cons != hw_comp_cons) { switch (cqe->fast_path_regular.type) { case ETH_RX_CQE_TYPE_REGULAR: bd_count += cqe->fast_path_regular.bd_num; break; case ETH_RX_CQE_TYPE_TPA_END: bd_count += cqe->fast_path_tpa_end.num_of_bds; break; default: break; } cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); } /* revert comp_ring to original state */ ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe); return bd_count; } int qede_rx_descriptor_status(void *p_rxq, uint16_t offset) { uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod; uint16_t produced, consumed; struct qede_rx_queue *rxq = p_rxq; if (offset > rxq->nb_rx_desc) return -EINVAL; sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring); sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring); /* find BDs used by HW from completion queue elements */ hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq); if (hw_bd_cons < sw_bd_cons) /* wraparound case */ consumed = (0xffff - sw_bd_cons) + hw_bd_cons; else consumed = hw_bd_cons - sw_bd_cons; if (offset <= consumed) return RTE_ETH_RX_DESC_DONE; if (sw_bd_prod < sw_bd_cons) /* wraparound case */ produced = (0xffff - sw_bd_cons) + sw_bd_prod; else produced = sw_bd_prod - sw_bd_cons; if (offset <= produced) return RTE_ETH_RX_DESC_AVAIL; return RTE_ETH_RX_DESC_UNAVAIL; }